Science.gov

Sample records for ion implantation technique

  1. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  2. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  3. Plasma-based ion implantation sterilization technique and ion energy estimation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, S.; Shibahara, K.; Yokoyama, S.; Takagi, T.

    2005-07-01

    Plasma-based ion implantation (PBII) is applied as a sterilization technique for three-dimensional work pieces. In the sterilization process, a pulsed negative high voltage (5 μs pulse width, 300 pulses/s,-800 V to -13 kV) is applied to the electrode (workpiece) under N2 at a gas pressure of 2.4 Pa. The resultant self-ignited plasma is shown to successfully reduce the number of active Bacillus pumilus cells by 105 times after 5 min of processing. The nitrogen ion energy is estimated using a simple method based on secondary ion mass spectroscopy analysis of the vertical distribution of nitrogen in PBII-treated Si.

  4. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    NASA Astrophysics Data System (ADS)

    Qu, Shilian; Li, Yuanfei; Wang, Zhigang; Jia, Yuzhen; Li, Chun; Xu, Ben; Chen, Wanqi; Bai, Suyuan; Huang, Zhengxing; Tang, Zhenan; Liu, Wei

    2017-02-01

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  5. Properties of ion implanted Ti-6Al-4V processed using beamline and PSII techniques

    SciTech Connect

    Walter, K.C.; Woodring, J.S.; Nastasi, M.; Munson, C.M.; Williams, J.M.; Poker, D.B.

    1996-12-31

    The surface of Ti-6Al-4V (Ti64) alloy has been modified using beamline implantation of boron. In separate experiments, Ti64 has been implanted with nitrogen using a plasma source ion implantation (PSII) technique utilizing either ammonia (NH{sub 3}), nitrogen (N{sub 2}), or their combinations as the source of nitrogen ions. Beamline experiments have shown the hardness of the N-implanted surface saturates at a dose level of {approximately} 4 {times} 10{sup 17} at/cm{sup 2} at {approximately} 10 GPa. The present work makes comparisons of hardness and tribological tests of (1) B implantation using beamline techniques, and (2) N implanted samples using ammonia and/or nitrogen gas in a PSII process. The results show that PSII using N{sub 2} or NH{sub 3} gives similar hardness as N implantation using a beamline process. The presence of H in the Ti alloy surface does not affect the hardness of the implanted surface. Boron implantation increased the surface hardness by as much as 2.5x at the highest dose level. Wear testing by a pin-on-disk method indicated that nitrogen implantation reduced the wear rate by as much as 120x, and boron implantation reduced the wear rate by 6.5x. Increased wear resistance was accompanied by a decreased coefficient of friction.

  6. Develop Techniques for Ion Implantation of PLZT for Adaptive Optics

    DTIC Science & Technology

    1989-11-01

    est+of spectral photoconductivity method for C , 0 implanted PLZT. 98 56 Photoacoustic spectra of PZT and doped PZT. 99 57 Potoacoustic spectrum of...spectra of undoped and doped PZT. 102 60 Spectral content of Xenon-arc lamp/monochrometer combination. 103 61 Pyroelectric response for virgin PLZT sample...pyroelectric response. 126 84 Result of doping PZT with La and Mn (Ref. 7). 127 85 APW results along the lin for several perovskite- type compounds and ReO 2

  7. Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces

    PubMed Central

    LIANG, YONGQIANG; XU, JUAN; CHEN, JING; QI, MENGCHUN; XIE, XUEHONG; HU, MIN

    2015-01-01

    The plasma immersion ion implantation and deposition (PIIID) technique was used to implant zinc (Zn) ions into smooth surfaces of pure titanium (Ti) disks for investigation of tooth implant surface modification. The aim of the present study was to evaluate the surface structure and chemical composition of a modified Ti surface following Zn ion implantation and deposition and to examine the effect of such modification on osteoblast biocompatibility. Using the PIIID technique, Zn ions were deposited onto the smooth surface of pure Ti disks. The physical structure and chemical composition of the modified surface layers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. In vitro culture assays using the MG-63 bone cell line were performed to determine the effects of Zn-modified Ti surfaces following PIIID on cellular function. Acridine orange staining was used to detect cell attachment to the surfaces and cell cycle analysis was performed using flow cytometry. SEM revealed a rough ‘honeycomb’ structure on the Zn-modified Ti surfaces following PIIID processing and XPS data indicated that Zn and oxygen concentrations in the modified Ti surfaces increased with PIIID processing time. SEM also revealed significantly greater MG-63 cell growth on Zn-modified Ti surfaces than on pure Ti surfaces (P<0.05). Flow cytometric analysis revealed increasing percentages of MG-63 cells in S phase with increasing Zn implantation and deposition, suggesting that MG-63 apoptosis was inhibited and MG-63 proliferation was promoted on Zn-PIIID-Ti surfaces. The present results suggest that modification with Zn-PIIID may be used to improve the osteoblast biocompatibility of Ti implant surfaces. PMID:25673139

  8. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    NASA Astrophysics Data System (ADS)

    Kordyasz, A. J.; Le Neindre, N.; Parlog, M.; Casini, G.; Bougault, R.; Poggi, G.; Bednarek, A.; Kowalczyk, M.; Lopez, O.; Merrer, Y.; Vient, E.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Gruyer, D.; Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M. F.; Salomon, F.; Bini, M.; Valdré, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S.; Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E.; Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M.; Alba, R.; Santonocito, D.; Maiolino, C.; Cinausero, M.; Gramegna, F.; Marchi, T.; Kozik, T.; Kulig, P.; Twaróg, T.; Sosin, Z.; Gaşior, K.; Grzeszczuk, A.; Zipper, W.; Sarnecki, J.; Lipiński, D.; Wodzińska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyżak, K.; Tarasiuk, K. J.; Khabanowa, Z.; Kordyasz, Ł.

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R&D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B+ ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from 241Am (< E α > = 5.5 MeV). Preliminary tests on the first thin detector (area ≈ 20 × 20 mm2) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction 84Kr ( E = 35 A MeV) + 112Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge.

  9. New Techniques for Simulation of Ion Implantation by Numerical Integration of Boltzmann Transport Equation

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Wei; Guo, Shuang-Fa

    1998-01-01

    New techniques for more accurate and efficient simulation of ion implantations by a stepwise numerical integration of the Boltzmann transport equation (BTE) have been developed in this work. Instead of using uniform energy grid, a non-uniform grid is employed to construct the momentum distribution matrix. A more accurate simulation result is obtained for heavy ions implanted into silicon. In the same time, rather than utilizing the conventional Lindhard, Nielsen and Schoitt (LNS) approximation, an exact evaluation of the integrals involving the nuclear differential scattering cross-section (dσn=2πp dp) is proposed. The impact parameter p as a function of ion energy E and scattering angle φ is obtained by solving the magic formula iteratively and an interpolation techniques is devised during the simulation process. The simulation time using exact evaluation is about 3.5 times faster than that using the Littmark and Ziegler (LZ) spline fitted cross-section function for phosphorus implantation into silicon.

  10. Improved bio-tribology of biomedical alloys by ion implantation techniques

    NASA Astrophysics Data System (ADS)

    Díaz, C.; Lutz, J.; Mändl, S.; García, J. A.; Martínez, R.; Rodríguez, R. J.

    2009-05-01

    Surface modification of biomaterials by conventional ion implantation (II) and plasma immersion ion implantation (PI3) are innovative methods to improve the biocompatibility of these advanced materials. This paper describes the biocompatibility improvements of Ti6Al4V and Co28Cr6Mo implanted with N and O in a conventional implantation and a plasma immersion ion implantation processes. Tribo-corrosion friction and wear tests were performed in a realistic environment - in Hank's solution - to investigate the introduced modifications. The wear performance was only slightly improved due to a thin layer thickness, whereas, in contrast, the corrosion rate was significantly reduced.

  11. Trends and techniques for space base electronics. [mathematical models, ion implantation, and semiconductors

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.

    1978-01-01

    A system was developed for depositing aluminum and aluminum alloys by the D.C. sputtering technique. This system which was designed for a high level of cleanliness and ion monitoring the deposition parameters during film preparation is ready for studying the deposition and annealing parameters upon double level metal preparation. The finite element method was studied for use in the computer modeling of two dimensional MOS transistor structures. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions typical of those used at MSFC. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients. Data are given showing both two dimensional effects and the evolution of the junction depth, sheet resistance and integrated dose with redistribution time.

  12. A feasibility study of ion implantation techniques for mass spectrometer calibration

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.

    1978-01-01

    An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.

  13. Molecular ion implantation technique for obtaining the same depth profile for the component atoms

    SciTech Connect

    Ishikawa, Junzo; Tsuji, Hiroshi; Mimura, Masakazu; Gotoh, Yasuhito

    1996-12-31

    The molecular ion implantation, in which the ions of polyatomic molecule are used as an implantation particle, is expected to have two main advantages: (1) obtaining the similar depth profiles of implanted component atoms of different elements at a single implantation, and (2) achieving simultaneous implantation of different atoms at the same position. In this paper, we have showed these advantages by an analytical estimation of the projected ranges for each implanted atoms of a polyatomic molecule, and then, by the computer simulation by TRIM. In addition, the experimental results obtained by SIMS were also presented. As for the evaluation of depth profiles, the overlap areas between two depth distributions were calculated by a numerical integration as a degree of the similarity between two depth profiles of different atoms. As a result, the projected ranges and overlap areas showed that depth profiles are almost the same in a usual implantation energy range, except of hydrogen due to the lack of neutron in the nucleus. For the simple evaluation for the similarity of two depth profiles, a factor S was proposed instead of the overlap area.

  14. Ion sources for ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-01

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  15. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  16. An optimal annealing technique for ohmic contacts to ion-implanted n-layers in semi-insulating indium phosphide

    NASA Astrophysics Data System (ADS)

    Pande, K. P.; Martin, E.; Gutierrez, D.; Aina, O.

    1987-03-01

    An optimal annealing process was developed for sintering AuGe ohmic contacts to ion-implanted semi-insulating InP substrates. Contacts were annealed using a standard furnace, graphite strip heater and a lamp annealer. Alloying at 375°C for 3 min was found to be most suitable for achieving good contact morphology and lowest contact resistivity. Of the three techniques, the lamp annealing technique was found to give the best results when contacts were annealed under a SiO 2 cap. Contact resistivity as low as 8 × 10 -6 cm 2 was obtained for ion-implanted n+ layers in semi-insulating InP.

  17. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  18. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  19. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  20. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  1. Single atom devices by ion implantation.

    PubMed

    van Donkelaar, Jessica; Yang, C; Alves, A D C; McCallum, J C; Hougaard, C; Johnson, B C; Hudson, F E; Dzurak, A S; Morello, A; Spemann, D; Jamieson, D N

    2015-04-22

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling.

  2. Ion implantation technology and ion sources

    NASA Astrophysics Data System (ADS)

    Sugitani, Michiro

    2014-02-01

    Ion implantation (I/I) technology has been developed with a great economic success of industries of VLSI (Very Large-Scale Integrated circuit) devices. Due to its large flexibility and good controllability, the I/I technology has been assuming various challenging requirements of VLSI evolutions, especially in advanced evolutional characteristics of CMOSFET. Here, reviewing the demands of VLSI manufacturing to the I/I technology, required characteristics of ion implanters, and their ion sources are discussed.

  3. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  4. Ion implantations of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  5. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  6. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  7. Ion implantation in crystalline and amorphous materials

    NASA Astrophysics Data System (ADS)

    Tasch, Al F.

    1998-05-01

    Ion implantation continues to be the selective doping technique of choice in silicon integrated circuit (IC) manufacturing, and its applications continue to grow in doping, damage gettering, and process simplification. However, in both technology and manufacturing equipment development there is a rapidly increasing need to understand in detail the dependence of implanted impurity profiles and implant-induced damage profiles in silicon on all key implant parameters. These reasons include largely reduced thermal budgets in IC processing, heavy emphasis on control of equipment and process costs, and the need for rigid manufacturing control. Towards this end, accurate, comprehensive, and computationally efficient models for ion implanted profiles (impurity and damage) in silicon are indispensable. These models greatly facilitate more timely technology development and implementation in manufacturing, improved manufacturing process control; and the development of new ion implantation tools can be executed more efficiently. This talk describes ion implant models and simulators developed in the ion implant modeling research/education project at the University of Texas at Austin. Physically based models for ion implantation into single-crystal Si have been developed for the commonly used implant species B, BF(2), As, P, and Si for the most commonly used implant energy ranges. These models have explicit dependence on the major implant parameters (energy, dose, tilt angle and rotation angle). In addition, the models have been extensively verified by the vast amount of experimental data which has been obtained in the experimental part of this project. The models have been extended down to ultra-low implant energies (<2keV) by removing two of the three major limitations of the binary collision approximation (bca) at ultra-low energies and overcoming part of the third limitation. At very high energies where electronic stopping dominates the energy loss, an electronic stopping

  8. The Investigation of Ion Implantation as a Technique for Manufacturing GaAs Magneto-Sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Karlova, G. F.; Avdochenko, B. I.

    2017-01-01

    This paper studies thin active layers of n-n i and n +-n-n i -types produced by means of silicon ion implantation into a semi-insulating GaAs substrate. The results of these structures’ physical parameters investigation are presented. Based on the structures the Hall-effect sensors are designed that have the linearity of Hall voltage dependency on magnetic density UH(B) of at least 1% in the range of up to B<1.2 T.

  9. Applications of ion implantation for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Kirkpatrick, A. R.

    1977-01-01

    Ion implantation is utilized for the dopant introduction processes necessary to fabricate a silicon solar cell. Implantation provides a versatile powerful tool for development of high efficiency cells. Advantages and problems of implantation and the present status of developmental use of the technique for solar cells are discussed.

  10. Single Ion Implantation and Deterministic Doping

    SciTech Connect

    Schenkel, Thomas

    2010-06-11

    The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion

  11. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  12. MEVVA ion-implantation of high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Martin, J. W.; Cohen, D. D.; Russell, G. J.; Dytlewski, N.; Evans, P. J.

    1995-12-01

    Metallised vapour vacuum arc (MEVVA) ion-implantation has been used to implant transition metal ions into high quality superconductor materials. Analysis of the samples was by the relatively new technique of heavy ion elastic recoil time-of-flight spectroscopy (ERTOFS), employing a 77 MeV 127I 10+ beam. The HIERTOFS technique is ideally suited to samples of this nature, providing individual depth profiles for each element within the matrix. The results were found to be implant-ion species dependent, with ions such as Ni and Co having differing effects to that of Fe. This paper will report on the use of ERTOFS as a method to obtain individual implant and substrate profiles from the ion-beam modified materials.

  13. 6Li + ion implantation into polystyrene

    NASA Astrophysics Data System (ADS)

    Soares, M. R. F.; Alegaonkar, P.; Behar, M.; Fink, D.; Müller, M.

    2004-06-01

    100 keV 6Li + ions were implanted into polystyrene at fluences of 1 × 10 13 to 1 × 10 14 cm -2, and their depth distributions were determined by means of the neutron depth profiling technique. In no case the projectile ions are found to come to rest according to their predicted implantation profiles. Instead, they always undergo considerable migration. During the irradiation process this motion is influenced by the radiation damage, and during the subsequent annealing steps one deals with thermal diffusion. The implant redistribution is always found to be governed strongly by the self-created damage, insofar as both electronic and nuclear defects in the polymer act as trapping centers.

  14. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  15. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  16. Complete arch implant impression technique.

    PubMed

    Ma, Junping; Rubenstein, Jeffrey E

    2012-06-01

    When making a definitive impression for an arch containing multiple implants, there are many reported techniques for splinting impression copings. This article introduces a splint technique that uses the shim method, which has been demonstrated to reduce laboratory and patient chair time, the number of impression copings and laboratory analogs needed, and the ultimate cost.

  17. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  18. New implantation techniques for improved solar cell junctions

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    Ion implantation techniques offering improved cell performance and reduced cost have been studied. These techniques include non-mass-analyzed phosphorus implantation, argon implantation gettering, and low temperature boron annealing. It is found that cells produced by non-mass-analyzed implantation perform as well as mass-analyzed controls, and that the cell performance is largely independent of process parameters. A study of argon implantation gettering shows no improvement over non-gettered controls. Results of low temperature boron annealing experiments are presented.

  19. Orthodontic palatal implants: clinical technique.

    PubMed

    Tinsley, D; O'Dwyer, J J; Benson, P E; Doyle, P T; Sandler, J

    2004-03-01

    The aim of this paper is to familiarize the readers with some of the clinical considerations necessary to ensure successful use of mid-palatal implants. Both surgical and technical aspects will be discussed along with a description of impression techniques used.

  20. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  1. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  2. Doping of ion implanted polyethylene with metallocarborane

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Červená, J.; Švorčík, V.; Rybka, V.; Popok, V.; Fink, D.; Klett, R.

    1995-11-01

    Polyethylene samples implanted with 150 keV F + ions to the doses from 5 × 10 13-1 × 10 15cm -2 were exposed to 0.05 M water solution of metallocarborane [(C 2B 9H 11) 2Co]Cs at temperatures of 24, 50 and 85°C, and the diffusion and incorporation of elements in the sample surface layer were studied using Rutherford back-scattering and neutron depth profiling techniques. The amount of incorporated B and Cs atoms was found to be an increasing function of the temperature for all implanted doses. The indiffusion and incorporation of the [(C 2B 9H 11) 2Co] - anion and the Cs + cation proceed separately and the final {B}/{Cs} ratio is well below metallocarborane stoichiometry in most cases. The total amount of incorporated Cs and B atoms and their depth profiles depend on the implanted dose in very complicated manner. For lower implanted doses anomalous depth profiles of B and Cs, roughly following calculated profiles of electronic energy loss of F + ions are observed.

  3. Ion implantation for corrosion inhibition of aluminum alloys in saline media

    SciTech Connect

    Williams, J.M. ); Gonzales, A. ); Quintana, J. ); Lee, I.-S.; Buchanan, R.A. ); Burns, F.C.; Culbertson, R.J.; Levy, M. . Materials Technology Lab.); Treglio, J.R. (ISM

    1990-01-01

    The effects of ion implantation treatments on corrosion of 2014 and 1100 aluminum in saline media were investigated. Implanted ions were N, Si, Ti and Cr. Techniques included salt spray testing, electrochemical studies, Rutherford backscattering spectrometry, and profilometry. It was concluded that ion implantation of Cr is of potential practical benefit for corrosion inhibition of 2014 Al in salt environments. 4 refs., 5 figs.

  4. Ion Implantation of Zinc Sulphide Thin Films,

    DTIC Science & Technology

    The report considers the use of ion implantation as a means of preparing rare earth doped thin films of zinc sulphide, and presents preliminary results on the luminescence of such films doped with Tb and Er166 ions. (Author)

  5. Accuracy of implant impression techniques.

    PubMed

    Assif, D; Marshak, B; Schmidt, A

    1996-01-01

    Three impression techniques were assessed for accuracy in a laboratory cast that simulated clinical practice. The first technique used autopolymerizing acrylic resin to splint the transfer copings. The second involved splinting of the transfer copings directly to an acrylic resin custom tray. In the third, only impression material was used to orient the transfer copings. The accuracy of stone casts with implant analogs was measured against a master framework. The fit of the framework on the casts was tested using strain gauges. The technique using acrylic resin to splint transfer copings in the impression material was significantly more accurate than the two other techniques. Stresses observed in the framework are described and discussed with suggestions to improve clinical and laboratory techniques.

  6. Silicon on sapphire for ion implantation studies

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.

    1974-01-01

    Van der Pauw or bridge samples are ultrasonically cut from silicon on sapphire wafers. Contact pad regions are implanted with moderately heavy dose of ions. Ion of interest is implanted into sample; and, before being annealed in vacuum, sample is sealed with sputtered layer of silicon dioxide. Nickel or aluminum is sputtered onto contact pad areas and is sintered in nitrogen atmosphere.

  7. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  8. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  9. Surface modification of sapphire by ion implantation

    SciTech Connect

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  10. A simplified impression technique for dental implants.

    PubMed

    Vogel, Robert E

    2002-03-01

    Dental implants have been considered an acceptable form of dental treatment since the early 1980s. A number of studies have been published describing impression techniques for dental implants. Many of the techniques described are so complex that they may seem daunting to the average restorative dentist. Most general practitioners do not wish to attempt to restore dental implants. This article describes a very simple, yet extremely accurate, technique for making impressions of dental implant fixtures.

  11. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  12. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  13. Synthesis of unattainable ion implantation profiles — 'Pseudo-implantation'

    NASA Astrophysics Data System (ADS)

    Brown, I. G.; Anders, A.; Anders, S.; Castro, R. A.; Dickinson, M. R.; MacGill, R. A.; Wang, Z.

    1995-12-01

    Metal implantation provides a powerful tool for the formation of non-equilibrium alloy layers for a wide variety of basic and applied materials applications, but the technique is fundamentally limited in two important ways: (i) the implanted species concentration is limited by sputtering of the modified layer by the incident ion beam itself, and the sputter-limited retained dose is often disappointingly low; (ii) the thickness of the modified layer is limited by the maximum ion energy available, and for practical reasons (implanter voltage) the layer thickness is often just a few hundred ångströms. We describe here a metal-plasma-immersion-based method for synthesizing non-equilibrium alloy layers of arbitrarily high dopant concentration and of arbitrary thickness. By repetitively pulse biasing the substrate to high negative voltage while it is immersed in the metal plasma from a vacuum arc plasma gun, a layer can be synthesized that is atomically mixed into the substrate with an interface width determined by the early-time bias voltage and with a thickness determined by the overall duration of the process. The species is that of the vacuum arc cathode material, which for this purpose can be a mixture of the substrate metal and the wanted dopant metal. We have used the method to form a high concentration Ta layer on the copper rails of an electromagnetic rail gun, with total surface area treated about 3000 cm 2; the Ta depth profile was flat at about 50 at.% Ta in Cu to a depth of about 1000 Å.

  14. Development of vertical compact ion implanter for gemstones applications

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  15. Diagnostic characterization of ablation plasma ion implantation

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Jones, M. C.; Johnston, M. D.; Lau, Y. Y.; Wang, L. M.; Lian, J.; Doll, G. L.; Lazarides, A.

    2003-06-01

    Experiments are reported in which two configurations for ablation-plasma-ion-implantation (APII) are characterized by diagnostics and compared. The first configuration oriented the target parallel to the deposition substrate. This orientation yielded ion-beam-assisted deposition of thin films. A delay (>5 μs) between laser and high voltage was necessary for this geometry to avoid arcing between negatively biased substrate and target. The second experimental configuration oriented the target perpendicular to the deposition substrate, reducing arcing, even for zero/negative delay between the laser and the high voltage pulse. This orientation also reduced neutral atom, ballistic deposition on the substrate resulting in a pure ion implantation mode. Ion density measurements were made by resonant laser diagnostics and Langmuir probes, yielding total ion populations in the range of 1014. Implanted ion doses were estimated by electrical diagnostics, and materials analysis, including x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy, yielding implanted doses in the range 1012 ions/cm2 per pulse. This yields an APII efficiency of order 10% for implantation of laser ablated ions. Scaling of ion dose with voltage agrees well with a theory assuming the Child-Langmuir law and that the ion current at the sheath edge is due to the uncovering of the ions by the movement of the sheath. Thin film analysis showed excellent adhesion with smoother films for an accelerating voltage of -3.2 kV; higher voltages (-7.7 kV) roughened the film.

  16. Ion-implantation studies on perpendicular media.

    PubMed

    Gaur, Nikita; Maurer, Siegfried L; Nunes, Ronald W; Piramanayagam, S N; Bhatia, C S

    2011-03-01

    Magnetic and structural properties of ion implanted perpendicular recording media have been investigated. Effects of 12C+ ion implantation with the doses of 2 x 10(11), 10(13), 10(14) and 10(16) ions/cm2 in the magnetic recording layer of conventional granular and continuous perpendicular media are reported in this paper. Implantation with the highest fluence of 10(16) ions/cm2 resulted in change of the magnetization reversal mechanism, thereby reducing coercivity. In continuous media the implanted ions cause increase in pinning defects, leading to an increase in coercivity. In contrast, high dose was found to cause similar change in the crystallographic properties of both the granular and continuous media.

  17. Hydrogenation of zirconium film by implantation of hydrogen ions

    NASA Astrophysics Data System (ADS)

    Yang, LIU; Kaihong, FANG; Huiyi, LV; Jiwei, LIU; Boyu, WANG

    2017-03-01

    In order to understand the drive-in target in a D–D type neutron generator, it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogen-absorbing metal film. The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions. Doses of 30 keV hydrogen ions ranging from 4.30 × 1017 to 1.43 × 1018 ions cm‑2 were loaded into the zirconium film through the ion beam implantation technique. Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy, atomic force microscopy and x-ray diffraction. Confirmation of the formation of δ phase zirconium hydride in the implanted samples was first made by x-ray diffraction, and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.

  18. Shallow junction formation by polyatomic cluster ion implantation

    SciTech Connect

    Takeuchi, Daisuke; Shimada, Norihiro; Matsuo, Jiro; Yamada, Isao

    1996-12-31

    Recent integrated circuits require shallow junctions which are less than 0.1 {mu}m depth. This creates a strong demand for low energy ion beam techniques. Equivalent low-energy and high-current ion beams can be realized quite easily with clusters, because the kinetic energy of the cluster is shared between the constituent atoms. Additionally, cluster-ion beams avoid damage due to excessive charge. We have used polyatomic clusters, decaborane (B{sub 10}H{sub 14}), as a kind of B cluster, in order to form a very shallow p{sup +} junction. A B SIMS profile of B{sub 10}H{sub 14} implanted into Si (100) at 20keV was quite similar to that of B implanted at 2keV. These SIMS measurements revealed that the cluster ion beam can realize equivalent low-energy implantation quite easily. The implantation efficiency achieved was about 90%. The damage induced by B{sub 10}H{sub 14} implantation was completely removed by a 600{degrees}C furnace anneal for 30 min, and implanted B atoms were electrically activated. After rapid thermal annealing (RTA) at 900{degrees}C of a sample prepared with a close of 5{times}10{sup 13} ion/cm{sup 2}, the sheet resistance decreased to about 600W/sq. and the activation efficiency was about 50%. These results show that a polyatomic cluster ion beam is useful for shallow junction formation.

  19. Optimization of the ion implantation process

    NASA Astrophysics Data System (ADS)

    Maczka, D.; Latuszynski, A.; Kuduk, R.; Partyka, J.

    This work is devoted to the optimization of the ion implantation process in the implanter Unimas of the Institute of Physics, Maria Curie-Sklodowska University, Lublin. The results obtained during several years of operation allow us to determine the optimal work parameters of the device [1-3].

  20. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  1. PLEPS study of ions implanted RAFM steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  2. Infrared reflectance measurement of ion implanted silica

    SciTech Connect

    Magruder, R.H. III; Morgan, S.H.; Weeks, R.A.; Zuhr, R.

    1988-01-01

    Infrared reflectance spectra of silica glass implanted with Ti, Cr, Mn, Fe, and Bi to doses between 0.5 - 6 /times/10/sup 16/ cm/sup /minus/2/ have been measured from 5000 cm/sup /minus/1/ to 400 cm/sup /minus/1/ at room temperature. The ion energy of the implantation was 160 keV and the current was 10..mu..A. Alterations in reflectance of bands at 1125 and 481 cm/sup /minus/1/ in the spectrum of an unimplanted sample of the order of 20% are observed. A band attributed to non-bridging oxygen ions at /approximately/1015 cm/sup /minus/1/ is observed to increase in intensity with increasing dose for all species. The band at 1125 cm/sup /minus/1/ is observed to shift to lower wavenumber with implantation. Bands due to implanted ion-oxygen vibrations were not detected. The magnitudes of the effects on the existing bands were ion specific. This ion specificity is attributed to the differing chemical states of the implanted ions after implantation. 15 refs., 8 figs.

  3. Impression techniques for implant dentistry.

    PubMed

    Chee, W; Jivraj, S

    2006-10-07

    The object of making an impression in implant dentistry is to accurately relate an analogue of the implant or implant abutment to the other structures in the dental arch. This is affected by use of an impression coping which is attached to the implant or implant abutment. This impression coping is incorporated in an impression - much as a metal framework is 'picked up' in a remount impression for fixed prosthodontics. With implant copings the coping is usually attached to the implant or abutment with screws. The impression material used is usually an elastomeric impression material; the two types most widely used and shown to be the most appropriate are polyether and polyvinyl siloxane impression materials.

  4. Ion Implant Enabled 2x Lithography

    NASA Astrophysics Data System (ADS)

    Martin, Patrick M.; Godet, Ludovic; Cheung, Andrew; de Cock, Gael; Hatem, Chris

    2011-01-01

    Ion implantation has many applications in microelectronics beyond doping. The broad range of species available combined with the ability to precisely control dose, angle, and energy offers compelling advantages for use in precision material modification. The application to lithography has been reported elsewhere. Integrating ion implantation into the lithography process enables scaling the feature size requirements beyond the 15 nm node with a simplified double patterning sequence. In addition, ion implant may be used to remove line edge roughness, providing tremendous advantages to meet extreme lithography imaging requirements and provide additional device stability. We examine several species (e.g. Si, Ar, etc.) and the effect of energy and impact angle on several commercially available 193 nm immersion photoresists using a Varian VIISta® single wafer high current ion implanter. The treated photoresist will be evaluated for stability in an integrated double patterning application with ion implant used to freeze the primary image. We report on critical dimension impact, pattern integrity, optical property modification, and adhesion. We analyze the impact of line edge roughness improvement beyond the work of C. Struck including the power spectral distribution. TGA and FTIR Spectroscopy results for the implanted photoresist materials will also be included.

  5. Abridged Technique for Precise Implant Angulation

    PubMed Central

    Perumal, Praveen; Chander, Gopi Naveen; Reddy, Ramesh; Muthukumar, B.

    2015-01-01

    Enormous scientific knowledge with evidence and clinical dexterity impart definitive ground for success in implant dentistry. Nevertheless, the unfeasibility to access the inner bone tissue makes the situation altogether more demanding. Presently the advent of numerous imaging techniques and associated surgical guide templates are documented for evaluation of implant angulation. However, they are not cost effective and consume more time to plan and design the structure. This article describes a simple concise technique for precise implant angulation. PMID:26816997

  6. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  7. Method For Silicon Surface Texturing Using Ion Implantation

    SciTech Connect

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods - ion implantation - is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  8. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  9. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  10. Ion implantation of silicon nitride ball bearings

    SciTech Connect

    Williams, J.M.; Miner, J.R.

    1996-09-01

    Hypothesis for ion implantation effect was that stress concentrations reflected into the bulk due to topography such as polishing imperfections, texture in the race, or transferred material, might be reduced due to surface amorphization. 42 control samples were tested to an intended runout period of 60 h. Six ion implanted balls were tested to an extended period of 150 h. Accelerated testing was done in a V groove so that wear was on two narrow wear tracks. Rutherford backscattering, XRPS, profilometry, optical microscopy, nanoindentation hardness, and white light interferometry were used. The balls were implanted with 150-keV C ions at fluence 1.1x10{sup 17}/cm{sup 2}. The samples had preexisting surface defects (C-cracks), so the failure rate of the control group was unacceptable. None of the ion-implanted samples failed in 150 h of testing. Probability of randomly selecting 6 samples from the control group that would perform this well is about 5%, so there is good probability that ion implantation improved performance. Possible reasons are discussed. Wear tracks, microstructure, and impurity content were studied in possible relation to C-cracks.

  11. Ion implantation of CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  12. Silicon solar cells by ion implantation and pulsed energy processing

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.

    1976-01-01

    A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.

  13. Techniques for dental implant nanosurface modifications

    PubMed Central

    Bathala, Lakshmana Rao; Sangur, Rajashekar

    2014-01-01

    PURPOSE Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants. MATERIALS AND METHODS A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis. RESULTS Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness. CONCLUSION Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures. PMID:25558347

  14. Ion implanted Bragg{endash}Fresnel lens

    SciTech Connect

    Souvorov, A.; Snigirev, A.; Snigireva, I.; Aristova, E.

    1996-05-01

    We have investigated the feasibility of widening the bandpath of the Bragg{endash}Fresnel optical element through the use of ion implantation. The focusing properties of Bragg{endash}Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15{percent} was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. {copyright} {ital 1996 American Institute of Physics.}

  15. N + surface doping on nanoscale polymer fabrics via ion implantation

    NASA Astrophysics Data System (ADS)

    Ho Wong, Kenneth Kar; Zinke-Allmang, Martin; Wan, Wankei

    2006-08-01

    Non-woven poly(vinyl alcohol) (PVA) fabrics composed of small diameter (∼110 nm) fibers have been spun by an electrospinning technique and then have been modified by ion implantation. 1.7 MeV N+ ion implantation with a dose of 1.2 × 1016 ions/cm2 was applied on the fabrics through a metal foil at room temperature. By using scanning electron microscopy (SEM), no surface morphology degradation has been observed on the fabric after the ion beam treatment. The diameter of the fibers has shrunk by 30% to about 74 nm. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) show that nitrogen surface doping was achieved and the formation of two new functional chemical groups (N-Cdbnd O and C-N) in the PVA is observed.

  16. More-reliable SOS ion implantations

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  17. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1986-03-06

    and prevented the formation of oxide debris normally generated during dry sliding contact [14-16]. In soft ( annealed ) steels it again reduced friction...for ion implantation of steels . Surface composition techniques such as scanning Auger microscopy, energy dispersive X-ray analysis and secondary ion...electron microscopy with energy dispersive x-ray analysis were used to characterize microstructure oxide growth rate and oxide film composition

  18. Vacancy supersaturations produced by high-energy ion implantation

    SciTech Connect

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.; Haynes, T.E.; Agarwal, A. |; Friessnegg, T.; Nielsen, B.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range ({1/2}R{sub p}) of MeV implants. The vacancy clustered region produced by a 2 MeV Si{sup +} implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions.

  19. 3D concentration distributions of ion implants in amorphous solids

    NASA Astrophysics Data System (ADS)

    Günzler, R.; Weiser, M.; Kalbitz, S.

    1992-01-01

    Spatial distributions of implanted ions have been derived from depth profiles of implants at varied incidence angle by applying tomographic techniques. To this end we have developed a new version of an algorithm known as simultaneous iterative reconstruction technique (SIRT), which covers the experimental concentration range of about three decades. In addition, the finite depth resolution of the nuclear reaction analysis (NRA) is accounted for in our computer program. In this way, we have reconstructed the three-dimensional implantation distributions of 0.15 MeV 1H, 1.5 and 6 MeV 15N, and 4 MeV 30Si in amorphized Ge layers. The agreement with TRIM calculations is reasonable: 10% ± 0.5% for the first and 10% ± 5% for the second range moments. Consequences of the longitudinal and lateral tailing for ion beam applications to large scale integration problems are discussed.

  20. Ion Implantation Effects on the Metal-Semiconductor Interfaces.

    NASA Astrophysics Data System (ADS)

    Yapsir, Andrie Setiawan

    1988-12-01

    In this thesis, the effects of ion implantation on metal-semiconductor interfaces are studied. Hydrogen ions have been used as the implanted species. The implantation is carried out on Al/n-Si Schottky contacts. Electrical characterizations, deep level transient spectroscopy measurements, and the ^{15}N hydrogen profiling technique have been used to study the effects of ion implantation. It is demonstrated that the defect centers in the depletion region created by hydrogen implantation have more likely negative or possibly neutral signatures, rather than a positive signature as has been previously speculated. These negatively charged centers compensate for the positive donor resulting in a widening of the depletion region and reduction in the capacitance of the metal-semiconductor contacts. The tendency of hydrogen to passivate its own damage which results in the recovery of electronic transport across the metal-semiconductor junction upon low temperature heat treatment is also demonstrated. In connection with the behavior of hydrogen in silicon, in the second part of this thesis, detailed theoretical calculations on the hydrogen passivation of defects in silicon are carried out. A particular type of defect, namely, a substitutional sulfur in silicon, is chosen and is studied using the modified intermediate neglect of differential overlap (MINDO/3) molecular orbital method. It is found that the sulfur center can be passivated using one or two hydrogen atoms. The calculations indicate that the most stable positions of the hydrogen atoms are between the sulfur and its silicon neighbors. The hydrogens bond to the nearest silicon atoms and only weakly interact with the sulfur. Thermochemistry considerations predict that a single hydrogen passivates the sulfur center, provided these centers are in abundance in the silicon. Hydrogen ion implantation has also been carried out on Schottky contacts having a large difference in metal work function, Ti/p-Si and Pt

  1. Formation of titanium silicides by high dose ion implantation

    NASA Astrophysics Data System (ADS)

    Salvi, V. P.; Vidwans, S. V.; Rangwala, A. A.; Arora, B. M.; Kuldeep; Jain, Animesh K.

    1987-09-01

    We have investigated titanium silicide formation using high dose (˜ 2 × 10 21 ions/m 2) ion implantation of 30 keV, 48Ti + ions a room temperature into two different types of Si substrates: (a) n-type <111> single crystals and (b) amorphous Si films (˜ 200 nm thick) vacuum deposited onto a thermally grown SiO 2 layer. XRD and RBS techniques were employed to characterize various silicide phases and their depth distribution in as-implanted as well as in annealed samples. We find that a mixture of TiSi, TiSi 2 and Ti 5Si 4 silicides is formed by high dose implantation. Out of these, TiSi; was found to be the dominant phase. The composition of these silicide layers is practically uniform with depth and remains unaltered on heat treatment up to 750° C. The electrical properties of silicide layers have also been investigated using sheet resistance measurements. The resistivity of as-implanted layers is rather high ( ˜ 10 μΩ m), but drops sharply by nearly a factor of 20 after a post-implantation anneal above 800° C. The resistivity of silicide layers thus obtained compare well with silicides prepared by other techniques.

  2. Ion-implanted laser annealed silicon solar cells

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1980-01-01

    Development of low cost solar cells fabrication technology is being sponsored by NASA JPL as part of the Low Cost Solar Array Project (LSA). In conformance to Project requirements ion implantation and laser annealing were evaluated as junction formation techniques offering low cost-high throughput potential. Properties of cells fabricated utilizing this technology were analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicated the laser annealed substrates to be damage free and electrically active. Similar analysis of ion implanted furnace annealed substrates revealed the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibited improved spectral response and conversion efficiency in comparison to furnace annealed cells. An economic projection for LSA indicates a potential for considerable savings from laser annealing technology.

  3. Hybrid quantum circuit with implanted erbium ions

    SciTech Connect

    Probst, S.; Rotzinger, H.; Tkalčec, A.; Kukharchyk, N.; Wieck, A. D.; Wünsch, S.; Siegel, M.; Ustinov, A. V.; Bushev, P. A.

    2014-10-20

    We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.

  4. Implantation of sodium ions into germanium

    SciTech Connect

    Korol', V. M.; Kudriavtsev, Yu.

    2012-02-15

    The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min at temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.

  5. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  6. Estimation of Nitrogen Ion Energy in Sterilization Technology by Plasma Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kondou, Youhei; Nakashima, Takeru; Tanaka, Takeshi; Takagi, Toshinori; Watanabe, Satoshi; Ohkura, Kensaku; Shibahara, Kentaro; Yokoyama, Shin

    Plasma based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which N2 gas self-ignitted plasma generated by only pulsed voltages is used, reduces the number of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. Since the ion energy is the most important processing parameter, a simple method to estimate the nitrogen ion energy from distribution of nitrogen atoms in Si implanted by PBII was developed. The implanted ion energy is discussed from the SIMS in depth profiles.

  7. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  8. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  9. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  10. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  11. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect

    Luo, J.; Li, L. H. E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Yu, K. M.; Fu, Ricky K. Y.; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-06-15

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  12. Burnishing Techniques Strengthen Hip Implants

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the late 1990s, Lambda Research Inc., of Cincinnati, Ohio, received Small Business Innovation Research (SBIR) awards from Glenn Research Center to demonstrate low plasticity burnishing (LPB) on metal engine components. By producing a thermally stable deep layer of compressive residual stress, LPB significantly strengthened turbine alloys. After Lambda patented the process, the Federal Aviation Administration accepted LPB for repair and alteration of commercial aircraft components, the U.S. Department of Energy found LPB suitable for treating nuclear waste containers at Yucca Mountain. Data from the U.S. Food and Drug Administration confirmed LPB to completely eliminate the occurrence of fretting fatigue failures in modular hip implants.

  13. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  14. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  15. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  16. Plasma immersion ion implantation for reducing metal ion release

    NASA Astrophysics Data System (ADS)

    Díaz, C.; García, J. A.; Mändl, S.; Pereiro, R.; Fernández, B.; Rodríguez, R. J.

    2012-11-01

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  17. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  18. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications.

  19. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    NASA Astrophysics Data System (ADS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-02-01

    Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  20. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  1. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  2. Laser annealing of ion implanted silicon

    SciTech Connect

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables.

  3. Integral stress in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Tamulevicius, S.; Pozela, I.; Jankauskas, J.

    1998-11-01

    A theoretical model of production and relaxation of stress in ion-implanted silicon is proposed. It is based on the assumptions that the point defects are the source of mechanical stress and that the relaxation of stress is due to the viscous flow of ion-irradiated silicon. The integrated stress acting in a damaged layer has been studied as a function of the 0022-3727/31/21/002/img1-ion current density j = 0.01-0022-3727/31/21/002/img2, ion energy 0022-3727/31/21/002/img3-160 keV, substrate temperature T = 78-500 K and dose in the range up to 0022-3727/31/21/002/img4. It was shown that the maximum integral stress values induced in silicon are of the order of 100 N 0022-3727/31/21/002/img5. The maximum is reached at a dose of about 0022-3727/31/21/002/img6 that corresponds to the silicon-amorphization dose. Stress due to implanted ions is essential for the high-dose region 0022-3727/31/21/002/img7 and it dominates at high temperatures of the substrate.

  4. Development of a microwave ion source for ion implantations

    SciTech Connect

    Takahashi, N. Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  5. Development of a microwave ion source for ion implantations

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-01

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P+ beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P+ beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas.

  6. A Method of Producing Surface Conduction on Ceramic Accelerator Components Using Metal Ion Implantation

    SciTech Connect

    Liu, F.; Brown, I.; Phillips, H.; Biallas, George; Siggins, Timothy

    1997-05-01

    An important technique used for the suppression of surface flashover on high voltage DC ceramic insulators as well as for RF windows is that of providing some surface conduction to bleed off accumulated surface charge. We have used metal ion implantation to modify the surface of high voltage ceramic vacuum insulators to provide a niform surface resistivity of approximately 5 x 1010 W/square. A vacuum arc ion source based implanter was used to implant Pt at an energy of about 135 keV to doses of up to more than 5 x 1016 ions/cm2 into small ceramic test coupons and also into the inside surface of several ceramic accelerator columns 25 cm I. D. by 28 cm long. Here we describe the experimental set-up used to do the ion implantation and summarize the results of our exploratory work on implantation into test coupons as well as the implantations of the actual ceramic columns.

  7. Distribution of Boron Atoms in Ion Implanted Compound Semiconductors

    DTIC Science & Technology

    1988-11-22

    The nondestructive neutron depth profiling (NDP) technique has been used to measure the boron (10B) distributions in GaAs, CdTe, Hg0.7Cd0.3Te, and Hg0.85Mn0.15Te after multiple energy ion implants. The NDP results are found to be in good agreement with the theoretical ion ranges obtained from Monte Carlo computer simulations. Only minor changes in the boron profiles were seen for the chosen annealing conditions. Keywords

  8. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  9. Thermal Behaviour of W+C Ion Implanted Ultra High Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Urkac, E. Sokullu; Oztarhan, A.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    The aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE ) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30 kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.

  10. Quantum-well intermixing for optoelectronic integration using high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Charbonneau, S.; Poole, P. J.; Piva, P. G.; Aers, G. C.; Koteles, E. S.; Fallahi, M.; He, J.-J.; McCaffrey, J. P.; Buchanan, M.; Dion, M.; Goldberg, R. D.; Mitchell, I. V.

    1995-09-01

    The technique of ion-induced quantum-well (QW) intermixing using broad area, high energy (2-8 MeV As4+) ion implantation has been studied in a graded-index separate confinement heterostructure InGaAs/GaAs QW laser. This approach offers the prospect of a powerful and relatively simple fabrication technique for integrating optoelectronic devices. Parameters controlling the ion-induced QW intermixing, such as ion doses, fluxes, and energies, post-implantation annealing time, and temperature are investigated and optimized using optical characterization techniques such as photoluminescence, photoluminescence excitation, and absorption spectroscopy.

  11. Computer automation of high current ion implanters

    NASA Astrophysics Data System (ADS)

    Woodard, Ollie; Lindsey, Paul; Cecil, Joseph; Pipe, Robert

    1985-01-01

    Complete computer automation of a high current ion implanter has been achieved. Special design considerations were necessary for automation including the development of a simplified ion source, a simplified beam transport control function, and a computer aided real-time feedback dosimetry control system. A special, versatile software architecture was also necessary to allow protected operation by unskilled operators, as well as diagnostic and maintenance modes accessible only to qualified personnel. Integral mounting of the DEC LSI-11 computer in the implanter frame provided additional challenges regarding EMI control and the electrical isolation required. The end result is a system in which all pertinent functions of the implanter are computer monitored and controlled continuously, allowing for automatic set-up, operation, on-line fault detection and diagnostics, with recovery software to correct many transient problems as they occur. This paper will discuss both general and specific solutions to the design problems encountered, and will review the system performance from a user point of view.

  12. Computational stochastic model of ions implantation

    SciTech Connect

    Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  13. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Assmann, W.; Schubert, M.; Held, A.; Pichler, A.; Chill, A.; Kiermaier, S.; Schlösser, K.; Busch, H.; Schenk, K.; Streufert, D.; Lanzl, I.

    2007-04-01

    A biodegradable, β-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the β-emitter 32P. The influence of ion implantation and gamma sterilisation on degradation and 32P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (1015 ions/cm2) and gamma dose (25 kGy) are found to be tolerable.

  14. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  15. Technique of after-loading interstitial implants.

    PubMed

    Syed, A M; Feder, B H

    1977-01-01

    Interstitial implants are either removable or permanent (and occasionally a combination of both). Permanent implants are generally utilized where tumors are not accessible enough to permit easy removal of sources or where accurate source distribution is less critical. They are useful for cancers of the lung, pancreas, prostate, bladder, lymph nodes, etc. Radon and gold-198 have been largely replaced by iodine-125. Our major interests are in the removable after-loading iridium-192 implant techniques. Template (steel guide) and non-template (plastic tube) techniques are utilized. Templates are preferred where the tumor volume can only be approached from one side and where accurate positioning of sources would otherwise be difficult. They are useful for cancers of the cervix, vagina, urethra, and rectum. Non-template (plastic tube) techniques are preferred where the tumor volume can be approached from at least two sides and where templates are either not feasible or not essential for accurate positioning of sources. The single needle non-template approach is useful for cancers of lip, nodes, and breast (plastic button) and for cancers of the oral cavity and oropharynx (gold button). The paired needle non-template approach is useful for cancers of the gum, retromolar trigone, and base of tongue (loop technique) and for cancers of the palate (arch technique). Procedures for each technique are described in detail.

  16. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  17. Fabrication of thin diamond membranes by using hot implantation and ion-cut methods

    NASA Astrophysics Data System (ADS)

    Suk, Jaekwon; Kim, Hyeongkwon; Lim, Weon Cheol; Yune, Jiwon; Moon, Sung; Eliades, John A.; Kim, Joonkon; Lee, Jaeyong; Song, Jonghan

    2017-03-01

    A thin (2 μm) and relatively large area (3 × 3 mm2) diamond membrane was fabricated by cleaving a surface from a single crystal chemical vapor deposition (CVD) diamond wafer (3 × 3 mm2× 300 μm) using a hot implantation and ion-cut method. First, while maintaining the CVD diamond at 400 °C, a damage zone was created at a depth of 2.3 μm underneath the surface by implanting 4 MeV carbon ions into the diamond in order to promote membrane cleavage (hot implantation). According to TEM data, hot implantation reduces the thickness of the implantation damage zone by about a factor of 10 when compared to implanting carbon ions with the CVD diamond at room temperature (RT). In order to recover crystallinity, the implanted sample was then annealed at 850 °C. Next, 380 keV hydrogen ions were implanted into the sample to a depth of 2.3 μm below the surface with the CVD diamond at RT. After annealing at 850 °C, the CVD diamond surface layer was cleaved at the damage-zone due to internal pressure from H2 gas arising from the implanted hydrogen (ion-cut). A thin layer of graphite (˜300 nm) on the cleavage surface, arising from the implanted carbon, was removed by O2 annealing. This technique can potentially be used to produce much larger area membranes of variable thickness.

  18. Why are mini-implants lost: the value of the implantation technique!

    PubMed

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  19. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  20. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.

  1. Radiation hardened PMOS process with ion implanted threshold adjust

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.

    1979-01-01

    By including specific process modifications the effect of ion implantation on radiation hardness can be minimized and radiation hard ion implanted MOS circuits can be fabricated. The experimental procedure followed was to examine key processing steps (with respect to radiation hardness) on ion-implanted individual PMOS transistors. The individual transistors were evaluated by continuously monitoring the threshold voltage as the transistors were being irradiated. By comparing runs it was possible to deduce what is considered a radiation hard ion implanted process. Tests with a complex LSI PMOS IC processor chip containing over 2000 transistors and resistors were also conducted

  2. The Optical Properties of Ion Implanted Silica

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

  3. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  4. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  5. All-ion-implantation process for integrated circuits

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1979-01-01

    Simpler than diffusion fabrication, ion bombardment produces complementary-metal-oxide-semiconductor / silicon-on-sapphire (CMOS/SOS) circuits that are one-third faster. Ion implantation simplifies the integrated circuit fabrication procedure and produces circuits with uniform characteristics.

  6. Low-cost ion implantation and annealing technology for solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. H.; Minnucci, J. A.; Greenwald, A. C.

    1980-01-01

    Ion implantation and thermal annealing techniques for processing junctions and back surface layers in solar cells are discussed. Standard 10 keV (31)p(+) junction implants and 25 keV (11)B(+) back surface implants in combination with three-step furnace annealing are used for processing a range of silicon materials and device structures. Cells with efficiencies up to 16.5% AM1 are being produced, and large-area terrestrial cells with implanted junctions and back fields being fabricated in pilot production exhibit average efficiencies in excess of 15% AM1. Thermal annealing methods for removal of the radiation damage caused by implantation should be replaced by transient processing techniques in future production. Design studies have been completed for solar cell processing implanters to support 10 MW/yr and 100 MW/yr production lines, and analyses indicate that implantation costs can be reduced to approximately 1 cent/watt.

  7. Temperature dependent surface modification of T91 steel under 3.25 MeV Fe-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Cui, Minghuan; Li, Bingsheng; Gao, Xing; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Xie, Erqing

    2015-01-01

    Ion implantation is an established technique for modifying the surface properties of a wide range of materials. In this research, temperature dependent surface modification induced by Fe-ion implantation in T91 steel was investigated. The T91 samples were implanted with 3.25 MeV Fe-ions to fluence of 1.7 × 1016 ions/cm2 at room temperature, 300 and 450 °C, respectively. After implantation, the T91 samples were characterized by means of positron annihilation Doppler broadening spectroscopy (PADBS) and nano-indention technology (NIT). It was found that the concentration of open-volume defects in T91 samples decreased with increasing implantation temperature. From NIT analysis, it was found that all the samples were hardened after implantation and the hardness of the implanted T91 samples increased with increasing implantation temperature.

  8. Cochlear implant simulator for surgical technique analysis

    NASA Astrophysics Data System (ADS)

    Turok, Rebecca L.; Labadie, Robert F.; Wanna, George B.; Dawant, Benoit M.; Noble, Jack H.

    2014-03-01

    Cochlear Implant (CI) surgery is a procedure in which an electrode array is inserted into the cochlea. The electrode array is used to stimulate auditory nerve fibers and restore hearing for people with severe to profound hearing loss. The primary goals when placing the electrode array are to fully insert the array into the cochlea while minimizing trauma to the cochlea. Studying the relationship between surgical outcome and various surgical techniques has been difficult since trauma and electrode placement are generally unknown without histology. Our group has created a CI placement simulator that combines an interactive 3D visualization environment with a haptic-feedback-enabled controller. Surgical techniques and patient anatomy can be varied between simulations so that outcomes can be studied under varied conditions. With this system, we envision that through numerous trials we will be able to statistically analyze how outcomes relate to surgical techniques. As a first test of this system, in this work, we have designed an experiment in which we compare the spatial distribution of forces imparted to the cochlea in the array insertion procedure when using two different but commonly used surgical techniques for cochlear access, called round window and cochleostomy access. Our results suggest that CIs implanted using round window access may cause less trauma to deeper intracochlear structures than cochleostomy techniques. This result is of interest because it challenges traditional thinking in the otological community but might offer an explanation for recent anecdotal evidence that suggests that round window access techniques lead to better outcomes.

  9. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  10. A novel method for effective sodium ion implantation into silicon

    SciTech Connect

    Lu Qiuyuan; Chu, Paul K.

    2012-07-15

    Although sodium ion implantation is useful to the surface modification of biomaterials and nano-electronic materials, it is a challenging to conduct effective sodium implantation by traditional implantation methods due to its high chemical reactivity. In this paper, we present a novel method by coupling a Na dispenser with plasma immersion ion implantation and radio frequency discharge. X-ray photoelectron spectroscopy (XPS) depth profiling reveals that sodium is effectively implanted into a silicon wafer using this apparatus. The Na 1s XPS spectra disclose Na{sub 2}O-SiO{sub 2} bonds and the implantation effects are confirmed by tapping mode atomic force microscopy. Our setup provides a feasible way to conduct sodium ion implantation effectively.

  11. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  12. A novel method for effective sodium ion implantation into silicon.

    PubMed

    Lu, Qiu Yuan; Chu, Paul K

    2012-07-01

    Although sodium ion implantation is useful to the surface modification of biomaterials and nano-electronic materials, it is a challenging to conduct effective sodium implantation by traditional implantation methods due to its high chemical reactivity. In this paper, we present a novel method by coupling a Na dispenser with plasma immersion ion implantation and radio frequency discharge. X-ray photoelectron spectroscopy (XPS) depth profiling reveals that sodium is effectively implanted into a silicon wafer using this apparatus. The Na 1s XPS spectra disclose Na(2)O-SiO(2) bonds and the implantation effects are confirmed by tapping mode atomic force microscopy. Our setup provides a feasible way to conduct sodium ion implantation effectively.

  13. Modeling of nanocluster formation by ion beam implantation

    SciTech Connect

    Li, Kun-Dar

    2011-08-15

    A theoretical model was developed to investigate the mechanism of the formation of nanoclusters via ion beam implantation. The evolution of nanoclusters, including the nucleation and growth process known as Ostwald ripening, was rebuilt using numerical simulations. The effects of implantation parameters such as the ion energy, ion fluence, and temperature on the morphology of implanted microstructures were also studied through integration with the Monte Carlo Transport of Ions in Matter code calculation for the distribution profiles of implanted ions. With an appropriate ion fluence, a labyrinth-like nanostructure with broad size distributions of nanoclusters formed along the ion implantation range. In a latter stage, a buried layer of implanted impurity developed. With decreasing ion energy, the model predicted the formation of precipitates on the surface. These simulation results were fully consistent with many experimental observations. With increased temperature, the characteristic length and size of nanostructures would increase due to the high mobility. This theoretical model provides an efficient numerical approach for fully understanding the mechanism of the formation of nanoclusters, allowing for the design of ion beam experiments to form specific nanostructures through ion-implantation technology.

  14. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  15. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  16. Ion-implanted extrinsic Ge photodetectors with extended cutoff wavelength

    NASA Technical Reports Server (NTRS)

    Wu, I. C.; Beeman, J. W.; Luke, P. N.; Hansen, W. L.; Haller, E. E.

    1991-01-01

    Far-IR Ge detectors fabricated using boron ion implantation are shown to exhibit operating characteristics compatible with requirements for low background applications. Device parameters such as low dark currents, reasonably good sensitivity, and extended wavelength threshold demonstrate that ion-implanted Ge far-IR detectors offer promise for use in astrophysics instrumentation.

  17. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, R.H.; Zhang, S.

    1997-01-14

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

  18. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  19. Pulsed-electron-beam annealing of ion-implantation damage

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.; Kirkpatrick, A. R.; Little, R. G.; Minnucci, J. A.

    1979-01-01

    Short-duration high-intensity pulsed electron beams have been used to anneal ion-implantation damage in silicon and to electrically activate the dopant species. Lattice regrowth and dopant activation were determined using He(+)-4 backscattering, SEM, TEM, and device performance characteristics as diagnostic techniques. The annealing mechanism is believed to be liquid-phase epitaxial regrowth initiating from the substrate. The high-temperature transient pulse produced by the electron beam causes the dopant to diffuse rapidly in the region where the liquid state is achieved.

  20. Doping concentration evaluation using plasma propagation models in plasma immersion ion implantation (PIII) system

    NASA Astrophysics Data System (ADS)

    Gupta, Dushyant; Prasad, B.; George, P. J.

    2004-01-01

    Plasma immersion ion implantation (PIII) is a high dose-rate implantation process technique in the area of semiconductor device fabrication used to fabricate various device structures like shallow junction, silicon on insulators and in the processing of flat panel display materials, trench doping, etc. The basic mechanism of ions source and their acceleration in PIII technique is different from that of the conventional ion-implantation. In this, the target is immersed in a plasma source and the implantation is done by accelerating the ions with a negative pulse bias voltage, applied to the target. The dynamics of ion transport and the implantation is different from line-of-sight implantation. In this paper, the doping of individual ions (Ar, He and N), in a collisionless PIII system is studied analytically when a negative pulse of 10 kV is applied to the target. The net ion doping concentration in one pulse duration has also been computed during the propagation of plasma sheaths.

  1. High Resolution Rutherford Back Scattering Estimation of the Surface Implanted Nitrogen Ion by Using Plasma-based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Takagi, Toshinori

    Plasma-based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which (N2 gas self-ignitted plasma generated by only pulsed voltages is used) reduces the numbers of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. As the ion energy is one of the important processing parameters on sterilization of the surface, the ion energy is discussed from the high resolution RBS depth profile.

  2. A study of the factors which control the efficiency of ion-implanted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Douglas, E. C.; Daiello, R. V.

    1980-01-01

    The objective of this work was to determine experimentally the ion-implantation parameters and furnace annealing conditions required to produce high-efficiency solar cells. A comprehensive experimental study was conducted in which the optimum ion-implantation parameters were found by a systematic variation of the implant parameters followed by detailed studies of solar-cell devices. Two furnace heat-treatment techniques were found which effectively anneal the implanted layers and at the same time preserve or improve the diffusion length in the bulk silicon. Detailed characteristics of both the junction and bulk properties of solar cells fabricated over the spectrum of implant parameters are discussed. Optimized implant parameters and annealing conditions were found which allow for the fabrication of 14-15-percent (AM1) efficient solar cells.

  3. Structural and Thermal Characterization of Ti+O Ion Implanted UltraHigh Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Oztarhan, A.; Urkac, E. Sokullu; Kaya, N.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    In this work, Metal-Gas Hybrid Ion Implantation technique was used as a tool for the surface modification of Ultra High Molecular Weight Polyethylene (UHMWPE). Samples were Ti+O ion implanted by using Metal-Vapour Vacuum Arc (MEVVA) ion implanter to a fluence of 5x10{sup 16} ion/cm{sup 2} for each species and extraction voltage of 30 kV. Untreated and surface treated samples were investigated by Rutherford Back Scattering (RBS) Spectrometry, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results indicate that Ti+O ion implantation can be applied on UHMWPE surfaces successfully. ATR-FTIR spectra indicate that the C-H concentration on the surface decreased after Ti+O implantation. Thermal characterization with TGA and DSC shows that polymeric decomposition temperature is shifted after ion implantation.

  4. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  5. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  6. Human study of ion implantation as a surface treatment for dental implants.

    PubMed

    De Maeztu, M A; Braceras, I; Álava, J I; Recio, C; Piñera, M; Gay-Escoda, C

    2013-07-01

    This clinical study evaluated a new surface treatment of ion implantation with CO ions which has previously been subjected to extensive study in animal models. The aim of this work was to assess its effect in humans. Experimental mini-implants were used; half of their longitudinal surface was machined and the other half was treated with CO ion implantation. The study was conducted in healthy volunteer patients who required prosthetic treatment with dental implants, and in accordance with the corresponding ethics committees. Coinciding with the insertion of commercial implants for oral restoration, one or two mini-implants were placed in the upper maxillary tuberosity or in the retromolar trigone of the mandible. The mini-implants were removed with a trephine jointly with a small volume of surrounding bone after a 3-month period. Two evaluation methods were used and both showed a greater degree of bone integration in the mini-implant section that underwent CO ion implantation treatment in comparison with the non-treated surface: 62.9% vs. 57.9%, and 54.8% vs. 46.2%. In addition, no adverse reactions were observed in the surface treatment with CO ion implantation. These results confirm the positive benefits in humans, based on the findings obtained from previous animal experiments.

  7. Enhancing antibacterial properties of UHMWPE via ion implantation

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Velardi, Luciano; Alifano, Pietro; Talà, Adelfia; Maurizio Tredici, Salvatore

    2012-10-01

    In the last decades, the demand for biomaterials of antimicrobial quality sensibly increased. The essential properties of these materials must be the biocompatibility, wettability, durability and their antibacterial characteristics. One of the most important biomaterial for medical applications is the ultra high molecular weight polyethylene (UHMWPE) that it is used to make components of prosthetic knee, hip and shoulder. It is well known that the presence in UHMWPE of Ag atoms increase its antibacterial properties while Cu and its alloys are known as natural antimicrobial materials. In this work it is proposed a dedicated laser ion source (LIS) accelerator to perform ion implantation together with a systematic study of the surface properties of UHMWPE samples treated with different metals in order to modify their antibacterial characteristics. The proposed technique consists in the application of a dose of specific ions inside the first layer of the sample to be treated. This goal can be effectively achieved if the ions are preventively accelerated. This technique seems to be interesting, since it can open the way to an easier realization of antibacterial materials using various metal ions.

  8. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  9. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  10. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  11. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  12. Dynamic MC simulation of low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1999-06-01

    In order to investigate the ion fluence effect in the depth profiles of the dynamic Monte Carlo code, ACAT-DIFFUSE, is applied to the calculation of depth profiles due to low-energy B ion implantation, where 1 and 5 keV B ions are implanted into an amorphized silicon target. As the ion fluence increases, the dopant B atoms are accumulated in solids and the target must be considered as a two-component material composed of the original target atoms and trapped implanted ions. This results in the radiation-induced-diffusion and the self-sputtering of trapped implanted ions. It is found that the peak locations of the dopant B depth profiles at 1 keV B ion bombardment shifted to the surface due to radiation-induced diffusion as ion increased and we observe the near-the-surface enhancement in the dopant B depth profiles due to 5 keV B ion bombardment. The self-sputtering also becomes important with increasing ion fluence. The retention ratios of the implanted B atoms are about 0.89 and 0.94 for 1 and 5 keV B ions, respectively, at 3.0 × 10 13 B ions/cm 2.

  13. Characterization of high energy ion implantation into Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Carroll, M. P.; Stephenson, K.; Findley, K. O.

    2009-06-01

    Ion implantation is a surface modification process that can improve the wear, fatigue, and corrosion resistance for several metals and alloys. Much of the research to date has focused on ion energies less than 1 MeV. With this in mind, Ti-6Al-4V was implanted with Al 2+, Au 3+, and N + ions at energies of 1.5 and 5 MeV and various doses to determine the effects on strengthening of a high energy beam. A post heat treatment on the specimens implanted with Al 2+ samples was conducted to precipitate Ti xAl type intermetallics near the surface. Novel techniques, such as nanoindentation, are available now to determine structure-mechanical property relationships in near-surface regions of the implanted samples. Thus, nanoindentation was performed on pre-implanted, as-implanted, and post heat treated samples to detect differences in elastic modulus and hardness at the sub-micron scale. In addition, sliding wear tests were performed to qualitatively determine the changes in wear performance. The effect of this processing was significant for samples implanted with Al 2+ ions at 1.5 MeV with a dose higher than 1 × 10 16 ions/cm 2 where precipitation hardening likely occurs and with N + ions.

  14. Plasma immersion ion implantation for sub-22 nm node devices: FD-SOI and Tri-Gate

    SciTech Connect

    Duchaine, J.; Milesi, F.; Coquand, R.; Barraud, S.; Reboh, S.; Gonzatti, F.; Mazen, F.; Torregrosa, Frank

    2012-11-06

    Here, we present and discuss the electrical characteristics of fully depleted MOSFET transistors of planar and tridimensional architecture, doped by Plasma Immersion Ion Implantation (PIII) or Beam Line Ion Implantation (BLII). Both techniques delivered similar and satisfactory results in considering the planar architecture. For tri-dimensional Tri-Gate transistors, the results obtained with PIII are superior.

  15. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  16. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  17. Software for goniometer control in the Triple Ion Implantation Facility

    SciTech Connect

    Allen, W.R.

    1994-02-01

    A computer program is described tat controls the goniometer employed in the ion scattering chamber of the Triple Ion Implantation Facility (TIF) in the Metals and Ceramics Division at Oak Ridge National Laboratory. Details of goniometer operation and its incorporation into the ion scattering setup specific to the TIF are also discussed.

  18. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  19. Improving Sustainability of Ion Implant Modules

    NASA Astrophysics Data System (ADS)

    Mayer, Jim

    2011-01-01

    Semiconductor fabs have long been pressured to manage capital costs, reduce energy consumption and increasingly improve efforts to recycle and recover resources. Ion implant tools have been high-profile offenders on all three fronts. They draw such large volumes of air for heat dissipation and risk reduction that historically, they are the largest consumer of cleanroom air of any process tool—and develop energy usage and resource profiles to match. This paper presents a documented approach to reduce their energy consumption and dramatically downsize on-site facilities support for cleanroom air manufacture and abatement. The combination produces significant capital expenditure savings. The case entails applying SAGS Type 1 (sub-atmospheric gas systems) toxic gas packaging to enable engineering adaptations that deliver the energy savings and cost benefits without any reduction in environmental health and safety. The paper also summarizes benefits as they relate to reducing a fabs carbon emission footprint (and longer range advantages relative to potential cap and trade programs) with existing technology.

  20. Characterization of Ion Implanted and Laser Processed Wear Surfaces.

    DTIC Science & Technology

    1986-04-22

    Cavitation erosion tests were performed on nonimplanted and ion implanted samples of a Co’based hardface alloy (Stoody 3). Erosion of the test samples was...implanted samples of a Co-based hardface alloy (Stoody 3). Erosion of the test samples was found to initiate by debonding at the carbide-matrix interfaces

  1. Electrical conductivity of MgO crystals implanted with lithium ions

    NASA Astrophysics Data System (ADS)

    Tardío, M.; Ramírez, R.; González, R.; Chen, Y.; Alves, E.

    2002-05-01

    MgO single crystals were implanted with a fluence of 1×10 17 Li +/cm 2 with 175 keV. Using ac and dc techniques, the electrical conductivity of these crystals was investigated in the temperature range 296-440 K. The electrical conductivity of the implanted region was 14 orders of magnitude higher than the unimplanted area. Measurements at different temperatures suggest a thermally activated process with an activation energy of about 0.33 eV. In the implanted area, electrical contacts are found to be ohmic whereas contacts are blocking in unimplanted crystals. Removal of thin layers of the implanted region by immersing the crystal in hot phosphoric acid suggests that the enhancement in conductivity in the implanted region is associated with the intrinsic defects created by the implantation, rather than with the Li ions.

  2. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell.

    PubMed

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3×10(16) ions/cm(2) was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.

  3. Studies on Amorphizing Silicon Using Silicon Ion Implantation.

    DTIC Science & Technology

    1985-04-01

    130-200 keV ions with doses of 5 x 1014 to 2 x 1015 2 15 2ions/cm and for 0.5 micron films, 260-300 keV ions at 1-2 x 10 ions/cm . Svensson et al...Vol. 42, pp. 707-709, 1983. 17. B. Svensson , J. Linnros & G. Holmen, "Ion Beam Induced Annealing of Radiation Damage in Silicon on Sapphire," Nucl...Mayer, Lennart Eriksson & John A. Davies, Ion Implantation in Semiconductors, Academic Press, NY, 1970. 21. L. T. Chadderton & F. H. Eisen, editors. Ion

  4. Development of vacuum arc ion sources for heavy ion accelerator injectors and ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.

    1998-02-01

    The status of experimental research and ongoing development and upgrade of MEVVA-type ion sources over the last two years since the previous ICIS-95 is reviewed. There are two main application fields for this ion source: heavy ion accelerators and material surface implantation technology. For particle accelerator ion injection to accelerators it is important to enhance the fractions of multiply charged ions in the ion beam as well as controlling the charge state distribution, and to improve of beam current stability (i.e., to minimize the beam noise) and pulse-to-pulse reproducibility. For ion implantation application we need to increase both the implantation dose rate and the source lifetime (between required maintenance downtime) as well as making this kind of source more reliable and of yet low cost. Most of experimental results reported on here have been obtained in a collaborative program between research groups LBNL (Berkeley, USA), GSI (Darmstadt, Germany), HCEI (Tomsk, Russia), and other important contributions have been made by the groups at (BNU, Beijing, China), EDU (Izmir, Turkey), and elsewhere.

  5. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  6. Physical and tribological characteristics of ion-implanted diamond films

    SciTech Connect

    Miyoshi, K.; Heidger, S.; Korenyi-both, A.L.; Jayne, D.T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P.J.; Wu, R.L.C.; Garscadden, A.; Barnes, P.N.

    1994-11-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  7. Extension of Plasma Source Ion Implantation to Ion Beam Enhanced Deposition

    DTIC Science & Technology

    1989-10-05

    22, 90 (1989). Nitriding/ Carburizing , Cincinnati, Ohio, Septem- 51. M. A. Lieberman, "Model of Plasma Immersion Ion ber 16-20, 1989. Implantation...TYPE AND OATES COVERED 1990 Final I Feb 89 - 31 Jul 89 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Extension of Plasma Source Ion Implantation to Ion Beam...UL NSN 7540-01.280-5500 Standard Form 298 (Rev 2-89) *’@Krab OV ANSI St 139-IS t9-0 Extension of Plasma Source Ion Implantation to Ion Beam Enhanced

  8. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    NASA Astrophysics Data System (ADS)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Implantation of high-energy ions produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Volkov, Roman V.; Golishnikov, D. M.; Gordienko, Vyacheslav M.; Savel'ev, Andrei B.; Chernysh, V. S.

    2005-01-01

    Germanium ions of an expanding plasma were implanted in a silicon collector. The plasma was produced by a femtosecond laser pulse with an intensity of ~1015 W cm-2 at the surface of the solid-state target. A technique was proposed for determining the energy characteristics of the ion component of the laser plasma from the density profile of the ions implanted in the substrate.

  10. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  11. Charge state defect engineering of silicon during ion implantation

    SciTech Connect

    Brown, R.A.; Ravi, J.; Erokhin, Y.; Rozgonyi, G.A.; White, C.W.

    1997-01-01

    Effects of in situ interventions which alter defect interactions during implantation, and thereby affect the final damage state, have been investigated. Specifically, we examined effects of internal electric fields and charge carrier injection on damage accumulation in Si. First, we implanted H or He ions into diode structures which were either reverse or forward biased during implantation. Second, we implanted B or Si ions into plain Si wafers while illuminating them with UV light. In each case, the overall effect is one of damage reduction. Both the electric field and charge carrier injection effects may be understood as resulting from changes in defect interactions caused in part by changes to the charge state of defects formed during implantation.

  12. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  13. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  14. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  15. The Behavior of Ion-Implanted Hydrogen in Gallium Nitride

    SciTech Connect

    Myers, S.M.; Headley, T.J.; Hills, C.R.; Han, J.; Petersen, G.A.; Seager, C.H.; Wampler, W.R.

    1999-01-07

    Hydrogen was ion-implanted into wurtzite-phase GaN, and its transport, bound states, and microstructural effects during annealing up to 980 C were investigated by nuclear-reaction profiling, ion-channeling analysis, transmission electron microscopy, and infrared (IR) vibrational spectroscopy. At implanted concentrations 1 at.%, faceted H{sub 2} bubbles formed, enabling identification of energetically preferred surfaces, examination of passivating N-H states on these surfaces, and determination of the diffusivity-solubility product of the H. Additionally, the formation and evolution of point and extended defects arising from implantation and bubble formation were characterized. At implanted H concentrations 0.1 at.%, bubble formation was not observed, and ion-channeling analysis indicated a defect-related H site located within the [0001] channel.

  16. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  17. Optical attenuation in ion-implanted silicon waveguide racetrack resonators.

    PubMed

    Doylend, J K; Jessop, P E; Knights, A P

    2011-08-01

    The optical absorption at wavelengths near 1550 nm has been quantified as a function of annealing temperature in ion-implanted silicon-on-insulator racetrack resonators. The variation of the output characteristics of the bus waveguide versus the concentration of implantation-induced lattice disorder in the ring is used to develop a novel method for the determination of the coupling and round-trip loss of the resonator, independently. This experimental procedure has general applicability for the determination of these parameters. Significant propagation loss is found to persist following annealing at temperatures previously observed to remove the majority of ion implantation damage. It is suggested that these annealing characteristics are a consequence of an ion implantation range which is greater than the silicon waveguide layer thickness.

  18. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    PubMed

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  19. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    PubMed Central

    Chen, ChienHsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-01-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications. PMID:28181507

  20. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.

    PubMed

    Wu, C H; Ku, W S; Jhan, F J; Chen, J H; Jeng, J T

    2015-05-01

    High-T(c) Josephson junctions were fabricated by nanolithography using focused ion beam (FIB) milling and ion implantation. The junctions were formed in a YBa2Cu3O7-x, thin film in regions defined using a gold-film mask with 50-nm-wide (top) slits, engraved by FIB. The focused ion beam system parameters for dwell time and passes were set to remove gold up to a precise depth. 150 keV oxygen ions were implanted at a nominal dose of up to 5 x 10(13) ions/cm2 into YBa2Cu3O7-x microbridges through the nanoscale slits. The current-voltage curves of the ion implantation junctions exhibit resistive-shunted-junction-like behavior at 77 K. The junction had an approximately linear temperature dependence of critical current. Shapiro steps were observed under microwave irradiation. A 50-nm-wide slit and 0-20-nm-thick buffer layers were chosen in order to make Josephson junctions due to the V-shape of the FIB-milled trench.

  1. Development of industrial ion implantation and ion assisted coating processes: A perspective

    NASA Astrophysics Data System (ADS)

    Legg, Keith O.; Solnick-Legg, Hillary

    1989-04-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes.

  2. Structural Changes in Polymer Films by Fast Ion Implantation

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  3. An antibacterial coating obtained through implantation of titanium ions

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-04-01

    Everyday life is exposed to the risks of contracting severe diseases due to the diffusion of severe pathogens. For this reason, efficient antimicrobial surfaces becomes a need of primary importance. In this work we report the first evidences of a new technique to synthesize an antibacterial coating on Ultra High Molecular Weight Polyethylene (UHMWPE)samples, based on a non-stoichiometric, visible light responsive, titanium oxide. The coating was obtained through laser ablation of a titanium target, then the resulting ions were accelerated and implanted on the samples. The samples where tested against a Staphylococcus aureus strain, in order to assay their antimicrobial efficacy. Results show that this treatment strongly discourages bacterial adhesion to the treated surfaces.

  4. Investigation of Donor and Acceptor Ion Implantation in AlN

    SciTech Connect

    Osinsky, Andrei

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  5. Surface modification of polymeric substrates by plasma-based ion implantation

    NASA Astrophysics Data System (ADS)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  6. Less-Costly Ion Implantation of Solar Cells

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1984-01-01

    Experiments point way toward more relaxed controls over ion-implanation dosage and uniformity in solar-cell fabrication. Data indicate cell performance, measured by output current density at fixed voltage, virtually same whether implant is particular ion species or broad-beam mixture of several species.

  7. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  8. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  9. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  10. Structural disorder in hard amorphous carbon films implanted with nitrogen ions

    SciTech Connect

    Freire, F.L. Jr.; Franceschini, D.F.; Achete, C.A.; Brusa, R.S.; Mariotto, G.; Karwasz, G.P.; Canteri, R.

    1996-12-31

    Hard amorphous hydrogenated carbon films deposited by self-bias glow discharge were implanted at room temperature with 70 keV-nitrogen ions at fluences between 2.0 and 9.0 {times} 10{sup 16} N/cm{sup 2}. The implanted samples were analyzed by Raman spectroscopy, SIMS and positron annihilation spectroscopy (Doppler broadening technique with the determination of the parameter S). For samples implanted with 2.0 {times} 10{sup 16} N/cm{sup 2} the S parameter follows the vacancies depth profile predicted by Monte Carlo simulation. For higher fluences the authors observed a reduction in the measured value of S. This result is discussed in terms of both hydrogen loss and structural modifications (increase of disorder at local scale and of the number of graphitic domains) induced in the carbon film by ion implantation.

  11. Down to 2 nm Ultra Shallow Junctions : Fabrication by IBS Plasma Immersion Ion Implantation Prototype PULSION registered

    SciTech Connect

    Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles; Roux, Laurent

    2006-11-13

    Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designed by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.

  12. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.

  13. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    PubMed

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants.

  14. Fabrication of Genesis Sample Simulants Using Plasma Source Ion Implantation (PSII)

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.

    2002-01-01

    Plasma source ion implantation can be used to fabricate simulant samples for the Genesis mission. These simulants will be needed by investigators to validate sample preparation and analysis techniques for the returned Genesis samples. Additional information is contained in the original extended abstract.

  15. Magnetic and structural properties of manganese ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Awo-Affouda, Chaffra A.

    2007-12-01

    This thesis focuses on semiconductor based spin electronics. The integration of ferromagnetic regions into semiconductor "spintronic" devices to produce spin polarized current is a dynamic research area. One avenue is to make conventional semiconductors ferromagnetic by doping with a transition metal impurity such as Mn. For this, we first investigated the magnetic properties of Mn-implanted Si. We were able to measure above room temperature ferromagnetic hysteresis loops. The high Curie temperature obtained (>400 K), indicated that the synthesis of a technologically useful Si-based magnetic semiconductor is possible. We then focused on studying the structure of the implanted samples in order to establish a correlation between the magnetic and structural properties. The structural investigation involved secondary ion mass spectrometry, Rutherford backscattering, and transmission electron microscopy (TEM) as the main characterization techniques. The combination of the structural and magnetic studies allowed us to isolate an "active" region from which the ferromagnetism originates. We then found that the magnetic properties of the samples are strongly dependant on the interaction of the Mn atoms with the residual implant damage. The evolution of the Mn concentration profiles was also found to be closely related to the distribution of the Si lattice defects. We also observed the formation of Mn rich secondary phases at high enough annealing temperatures >800°C. However, we argued that theses crystallites cannot account for all the observed magnetic properties due to the low Curie temperature of these compounds in bulk form. We concluded that achieving a room temperature Si-based DMS has great potential but careful synthesis of this material system is needed to prevent secondary phase formation.

  16. Oxide formation on NbAl{sub 3} and TiAl due to ion implantation of {sup 18}O

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.; Ristolainen, E.O.

    1993-12-31

    Surface modification by ion implantation of {sup 18}O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl{sub 3} and TiAl were implanted to a dose of 1 {times} 10{sup 18} ions/cm{sup 2} at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of {sup 18}O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.

  17. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  18. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  19. Planar InAs photodiodes fabricated using He ion implantation.

    PubMed

    Sandall, Ian; Tan, Chee Hing; Smith, Andrew; Gwilliam, Russell

    2012-04-09

    We have performed Helium (He) ion implantation on InAs and performed post implant annealing to investigate the effect on the sheet resistance. Using the transmission line model (TLM) we have shown that the sheet resistance of a p⁺ InAs layer, with a nominal doping concentration of 1x10¹⁸ cm⁻³, can increase by over 5 orders of magnitude upon implantation. We achieved a sheet resistance of 1x10⁵ Ω/Square in an 'as-implanted' sample and with subsequent annealing this can be further increased to 1x10⁷ Ω/Square. By also performing implantation on p-i-n structures we have shown that it is possible to produce planar photodiodes with comparable dark currents and quantum efficiencies to chemically etched reference mesa InAs photodiodes.

  20. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  1. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  2. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGES

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  3. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  4. Ion implanted junctions for silicon space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Sanfacon, M. M.; Wolfson, R. G.

    1983-01-01

    This paper reviews the application of ion implantation to emitter and back surface field formation in silicon space solar cells. Experiments based on 2 ohm-cm boron-doped silicon are presented. It is shown that the implantation process is particularly compatible with formation of a high-quality back surface reflector. Large area solar cells with AM0 efficiency greater than 14 percent are reported.

  5. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    PubMed

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  6. Nanotubular surface modification of metallic implants via electrochemical anodization technique

    PubMed Central

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility. PMID:25258532

  7. Distribution of boron atoms in ion-implanted-compound semiconductors. Technical report

    SciTech Connect

    Bowman, R.C.; Knudsen, J.F.; Downing, R.G.; Kremer, R.E.

    1988-11-22

    The nondestructive neutron depth profiling (NDP) technique was used to measure the boron (10B) distributions in GaAs, CdTe, Hg0.7Cd0.3Te, and Hg0.85Mn0.15Te after multiple energy ion implants. The NDP results are found to be in good agreement with the theoretical ion ranges obtained from Monte Carlo computer simulations. Only minor changes in the boron profiles were seen for the chosen annealing conditions.

  8. Ion implantation of graphene-toward IC compatible technologies.

    PubMed

    Bangert, U; Pierce, W; Kepaptsoglou, D M; Ramasse, Q; Zan, R; Gass, M H; Van den Berg, J A; Boothroyd, C B; Amani, J; Hofsäss, H

    2013-10-09

    Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion implantation and that the retention is in good agreement with predictions from calculation-based literature values. Atomic resolution high-angle dark field imaging (HAADF) combined with single-atom electron energy loss (EEL) spectroscopy reveals that for sufficiently low implantation energies ions are predominantly substitutionally incorporated into the graphene lattice with a very small fraction residing in defect-related sites.

  9. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  10. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  11. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  12. Ion implantation for manufacturing bent and periodically bent crystals

    SciTech Connect

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo Mazzolari, Andrea; Paternò, Gianfranco; Lanzoni, Luca

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  13. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  14. From plasma immersion ion implantation to deposition: A historical perspective on principles and trends

    SciTech Connect

    Anders, Andre

    2001-06-14

    Plasma immersion techniques of surface modification are known under a myriad of names. The family of techniques reaches from pure plasma ion implantation, to ion implantation and deposition hybrid modes, to modes that are essentially plasma film deposition with substrate bias. In the most general sense, all plasma immersion techniques have in common that the surface of a substrate (target) is exposed to plasma and that relatively high substrate bias is applied. The bias is usually pulsed. In this review, the roots of immersion techniques are explored, some going back to the 1800s, followed by a discussion of the groundbreaking works of Adler and Conrad in the 1980s. In the 1990s, plasma immersion techniques matured in theoretical understanding, scaling, and the range of applications. First commercial facilities are now operational. Various immersion concepts are compiled and explained in this review. While gas (often nitrogen) ion implantation dominated the early years, film-forming immersion techniques and semiconductor processing gained importance. In the 1980s and 1990s we have seen exponential growth of the field but signs of slowdown are clear since 1998. Nevertheless, plasma immersion techniques have found, and will continue to have, an important place among surface modification techniques.

  15. A micro-structured ion-implanted magnonic crystal

    SciTech Connect

    Obry, Bjoern; Pirro, Philipp; Chumak, Andrii V.; Ciubotaru, Florin; Serga, Alexander A.; Hillebrands, Burkard; Braecher, Thomas; Osten, Julia; Fassbender, Juergen

    2013-05-20

    We investigate spin-wave propagation in a microstructured magnonic-crystal waveguide fabricated by localized ion implantation. The irradiation caused a periodic variation in the saturation magnetization along the waveguide. As a consequence, the spin-wave transmission spectrum exhibits a set of frequency bands, where spin-wave propagation is suppressed. A weak modification of the saturation magnetization by 7% is sufficient to decrease the spin-wave transmission in the band gaps by a factor of 10. These results evidence the applicability of localized ion implantation for the fabrication of efficient micron- and nano-sized magnonic crystals for magnon spintronic applications.

  16. Ion Implanted GaAs I.C. Process Technology

    DTIC Science & Technology

    1981-07-01

    in ion implantation in GaAs, coupled with better control of the substrate material. 1 Once ion implantation became a reliable processing technology it... Processing Technology for Planar GaAs Integrated Circuits," GaAs IC Symposium, Lake Tahoe, CA., Sept. 1979. 20. R.C. Eden, "GaAs Integrated Circuit Device...1980. 25. B.M. Welch, "Advances in GaAs LSI!VLSI Processing Technology ," Sol. St. Tech., Feb. 1980, pp. 95-101. 27. R. Zucca, B.M. Welch, P.M

  17. Ta-ion implantation induced by a high-intensity laser for plasma diagnostics and target preparation

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Malinsky, P.; Mackova, A.; Matousek, J.; Torrisi, L.; Slepicka, P.; Ullschmied, J.

    2015-12-01

    The present work is focused on the implantation of Ta ions into silicon substrates covered by a silicon dioxide layer 50-300 nm thick. The implantation is achieved using sub-nanosecond pulsed laser ablation (1015 W/cm2) with the objective of accelerating non-equilibrium plasma ions. The accelerated Ta ions are implanted into the exposed silicon substrates at energies of approximately 20 keV per charge state. By changing a few variables in the laser pulse, it is possible to control the kinetic energy, the yield and the angular distribution of the emitted ions. Rutherford Back-Scattering analysis was performed using 2.0 MeV He+ as the probe ions to determine the elemental depth profiles and the chemical composition of the laser-implanted substrates. The depth distributions of the implanted Ta ions were compared to SRIM 2012 simulations. The evaluated results of energy distribution were compared with online techniques, such as Ion Collectors (IC) and an Ion Energy Analyser (IEA), for a detailed identification of the produced ion species and their energy-to-charge ratios (M/z). Moreover, XPS (X-ray Photon Spectroscopy) and AFM (Atomic Force Microscopy) analyses were carried out to obtain information on the surface morphology and the chemical composition of the modified implanted layers, as these features are important for further application of such structures.

  18. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    NASA Astrophysics Data System (ADS)

    Kumar, K. V. Aneesh; Ranganathaiah, C.; Kumarswamy, G. N.; Ravikumar, H. B.

    2016-05-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 1012, 1013, 1014 and 1015 ions/cm2. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (1012 to1014 ions/cm2) followed by cross-linking at 1015 ions/cm2 fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  19. Analytical electron microscopy of aluminum ion-implanted with molybdenum

    SciTech Connect

    Stephenson, L.D.; Bentley, J.; Benson, R.B. Jr.; Parrish, P.A.

    1983-01-01

    The microstructures of aluminum ion-implanted with molybdenum and subjected to various heat treatments were investigated for correlation with near-surface properties such as corrosion. Previous work indicated enhanced corrosion resistance, but dealt chiefly with the as-implanted condition and involved little microstructural characterization. In addition, the Al-Mo binary system is of interest because metastable phase formation was considered to be possible and the equilibrium phase diagram is poorly defined. Electropolished coupons 38 x 28 x 0.5 mm of 99.999% Al with approx.0.5 mm grain size were implanted with Mo/sup +/ ions at the Naval Research Laboratory. The dual energy implant schedule of 4.88 x 10/sup 19/ ions/m/sup 2/ at 50 keV plus 6.14 x 10/sup 19/ ions/m/sup 2/ at 110 keV resulted in a peak concentration of 4.4 at. % Mo (measured by ion backscattering) within the projected range of approx.50 nm. Results of the studies are presented.

  20. Anatomically guided implant site preparation technique at molar sites.

    PubMed

    Rodriguez-Tizcareño, Mario H; Bravo-Flores, Claudia

    2009-10-01

    Immediate postextraction implant placement in the areas of multiradicular teeth is a difficult procedure in view of having to place the implant in an ideal position without jeopardizing its initial stability. The surgeon often faces the problem of directing the initial osteotomy in the medial portion of the alveolus with the difficulty of engaging the inter-radicular septum of the extraction socket. The drill may slip continually leading to an inaccurate site preparation, and consequently to a deficient implant insertion. The fixture is often placed directly into either one of the extraction sockets of the tooth to be replaced. The anatomically guided site preparation technique is a very useful tool to perform implant placement in the areas of multiradicular teeth. This approach of implant insertion consists of a progressive preparation of the implant site using the anatomy and geometry of the root of the multiradicular teeth to be extracted as a reference and as an aid to engage the inter-radicular septum. This places the implants in a favorable and proper position from a biomechanical and occlusal standpoint. The objective of this article is to describe the anatomically guided implant site preparation technique as an aid to favorably place dental implants in multiradicular teeth postextraction.

  1. Peculiarities and application perspectives of metal-ion implants in glasses

    SciTech Connect

    Mazzoldi, P.; Gonella, F.; Arnold, G.W.; Battaglin, G.; Bertoncello, R.

    1993-12-31

    Ion implantation in insulators causes modifications in the refractive-index as a result of radiation damage, phase separation, or compound formation. As a consequence, light waveguides may be formed with interesting applications in the field of optoelectronics. Recently implantation of metals ions (e.g. silver, copper, gold, lead,...) showed the possibility of small radii colloidal particles formation, in a thin surface layer of the glass substrate. These particles exhibit an electron plasmon resonance which depends on the optical constants of the implanted metal and on the refractive-index of the glass host. The non-linear optical properties of such colloids, in particular the enhancement of optical Kerr susceptibility, suggest that the, ion implantation technique may play an important role for the production of all-optical switching devices. In this paper an analysis of the state-of-the-art of the research in this field will be presented in the framework of ion implantation in glass physics and chemistry.

  2. Surgical techniques for cochlear implantation in the very young child.

    PubMed

    Parisier, S C; Chute, P M; Popp, A L; Hanson, M B

    1997-09-01

    Early cochlear implantation to treat prelingually deafened children has been shown to improve speech perception and overall performance. The current age limit for implantation is 24 months in accordance with US Food and Drug Administration guidelines, but it is believed that earlier implantation is possible and may result in better performance. Implantation in children younger than 36 months, however, is complicated by the altered anatomy of the temporal bone in this young age group. We have developed specific modifications in the cochlear implantation technique for this young age group. This technique was used in implantation for 17 children younger than 36 months. The ages ranged from 16 to 36 months and averaged 30 months. All patients except one had complete electrode insertion without complication. The technique of cochlear implantation must be modified not only for differences in anatomy in these young children but also for the expected continued growth of the temporal bone and related structures. Cochlear implantation can be safely performed on children as young as 16 months.

  3. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  4. Method for fabricating MNOS structures utilizing hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Saks, N. S.

    1984-05-01

    An improved method for reducing the density of electronic trapping states and fixed insulator charge in the thin oxide layer of an MNOS structure is discussed. The method includes the steps of implanting hydrogen ions in field region of the oxide layer and annealing the MNOS structure at 400 deg C to cause the ions to diffuse laterally into the gate region of the oxide layer.

  5. An evaluation of impression techniques for osseointegrated implants.

    PubMed

    Spector, M R; Donovan, T E; Nicholls, J I

    1990-04-01

    A passive fit between osseointegrated implants and the prosthesis they will support has been advocated. An experimental model was developed to test the accuracy of three impression techniques and the components used to make the transfer records. Statistically, no significant difference was found between the three methods tested. From this initial study, it appears that further work is needed to isolate techniques that will predictably provide accurate registration of the position of endosseous implants.

  6. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shang, Yan-Xia; Zhang, Zao-Di; Wang, Ze-Song; Zhang, Rui; Fu, De-Jun

    2015-01-01

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11375135) and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-03).

  7. Formation of c-BN nanoparticles by helium, lithium and boron ion implantation

    NASA Astrophysics Data System (ADS)

    Aradi, Emily; Erasmus, Rudolph M.; Derry, Trevor E.

    2012-02-01

    Ion induced phase transformation from the soft graphitic hexagonal boron nitride ( h-BN) to ultrahard cubic boron nitride ( c-BN) nanoparticles is presented in the work herein. Ion implantation was used as a technique to introduce boron lithium and helium ions, at the energy of 150 keV and fluences ranging from 1 × 10 14 to 1 × 10 16 ions/cm 2, into hot pressed, polycrystalline h-BN. Analyses using Raman Spectroscopy showed that He +, Li + and B + led to a h-BN to c-BN phase transition, evident from the longitudinal optical (LO) Raman phonon features occurring in the implanted samples' spectra. The nature of these phonon peaks and their downshifting is explained using the spatial phonon correlation model.

  8. Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report

    SciTech Connect

    Williams, J.M.; Miner, J.

    1998-03-01

    The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

  9. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-02

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  10. Fabricating an Accurate Implant Master Cast: A Technique Report.

    PubMed

    Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F

    2015-12-01

    The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.

  11. Ion implantation in ices of interest for planetology

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Fulvio, D.; Garozzo, M.; Gomis, O.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Frozen sufaces of planetary moons and minor planets in Solar System are continuously irradiated by energetic ions (keV-MeV). These ions deposit their energy into the target via elastic and anelastic collisions which induce a break of molecular bonds. Because of their small penetration depth (0.1 - 2.0 mu m) impinging ions are implanted into the ices at the end of their path. Across the ion's path reconnection of molecular fragments can form new species and if the projectile is a reactive species it can be included into the newly formed molecules. In the Laboratory of Experimental Astrophysics (LASp) of Catania we are investigating the effects of reactive ion implantation in ices of interest for planetology. Results show that some molecules observed on frozen surfaces of minor bodies of the outer Solar System could be formed after implantation of reactive ions. After a short review of relevant experiments performed in our Laboratory we will show results of our latest experiments and their application to the moon of Jupiter Io.

  12. Above room temperature ferromagnetism in Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; Labella, V. P.

    2005-01-01

    Above room temperature ferromagnetic behavior is achieved in Si through Mn ion implantation. Three-hundred-keV Mn+ ions were implanted to 0.1% and 0.8% peak atomic concentrations, yielding a saturation magnetization of 0.3emu/g at 300K for the highest concentration as measured using a SQUID magnetometer. The saturation magnetization increased by ˜2× after annealing at 800°C for 5min . The Curie temperature for all samples was found to be greater than 400K . A significant difference in the temperature-dependent remnant magnetization between the implanted p-type and n-type Si is observed, giving strong evidence that a Si-based diluted magnetic semiconductor can be achieved.

  13. Optical properties of K9 glass waveguides fabricated by using carbon-ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Wei, Wei; Fu, Li-Li; Zhu, Xu-Feng; Guo, Hai-Tao; Li, Wei-Nan; Lin, She-Bao

    2016-07-01

    K9 glass is a material with promising properties that make it attractive for optical devices. Ion implantation is a powerful technique to form waveguides with controllable depth and refractive index profile. In this work, optical planar waveguide structures were fabricated in K9 glasses by using 6.0-MeV C3+-ion implantation with a fluence of 1.0 × 1015 ions/cm2. The effective refractive indices of the guided modes were measured by using a prism-coupling system. The refractive index change in the ion-irradiated region was simulated by using the intensity calculation method. The modal intensity profile of the waveguide was calculated and measured by using the finite difference beam propagation method and the end-face coupling technique, respectively. The transmission spectra before and after the implantation showed that the main absorption band was not influenced by the low fluence dopants. The optical properties of the carbon-implanted K9 glass waveguides show promise for use as integrated photonic devices.

  14. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  15. Ion plating technique improves thin film deposition

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1968-01-01

    Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.

  16. Making CoSi(2) Layers By Ion Implantation

    NASA Technical Reports Server (NTRS)

    Namavar, Fereydoon

    1994-01-01

    Monolithic photovoltaic batteries containing vertical cells include buried CoSi(2) contact layers. Vertical-junction photovoltaic cells in series fabricated in monolithic structure. N- and p-doped silicon layers deposited epitaxially. The CoSi(2) layers, formed by ion implantation and annealing, serve as thin, low-resistance ohmic contacts between cells.

  17. A New Ion Implant Monitor Electrical Test Structure.

    DTIC Science & Technology

    1986-01-01

    In this paper, a new Ion Implant Monitor test structure and measurement method is reported. A direct measurement of the sheet resistance of the...probe measurements. Voltage measurements are directly converted to sheet resistance , thus measurements may be performed rapidly.

  18. Extreme Precipitation Strengthening in Ion-Implanted Nickel

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Petersen, G.A.

    1999-05-03

    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550"C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP~ but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550"C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable ~-A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure.

  19. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    Lorenzelli and R. Pascard, Compt. Rend. 259, (1964) 2442-2444. 8. Linus Pauling , The Nature of the Chemical Bond, pg. 92 (Cornell Univ. Press, Ithaca...K. Hirvonen. 3. S. Spooner and K. 0. Legg,lon Implantation Metallurgy, 162 (1980); ed. C. M. Preece and J. K. Hirvonen. 4. L. Pauling , The Nature of...R from the Pauling electronegativity scale. According to Pauling (8), the contribu- tion of the bond to the heat of formation is Q - 23 (YEr - Yc) 2

  20. n{sup +}/p diodes by ion implantation: Dopant, extended defects, and impurity concerns

    SciTech Connect

    Xu, M.; Venables, D.; Christensen, K.N.; Maher, D.M.

    1995-08-01

    The present study is concerned with the formation of defect structures resulting from phosphorus ion implantation into p-type, <100> silicon and with the rearrangement as well as removal of defect structures following high temperature annealing. The problematic interaction of background impurities with extended defects also is included in this study, as are the non-illuminated and illuminated electrical characteristics of n+/p diodes that are fabricated using ion implantation. Wafers and diodes that are fabricated using a phosphorus planar diffusion technique are run in parallel and serve as the controls. In this contribution, preliminary results for the cases of a 50 keV implant followed by an anneal at 900{degrees}C/30 min and a diffusion at 825{degrees}C/60 min are summarized.

  1. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  2. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  3. Dependence of implantation sequence on surface blistering characteristics due to H and He ions co-implanted in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Hsieh, H. Y.; Wu, C. W.; Lin, C. M.

    2015-12-01

    This study investigated surface blistering characteristics due to H and He ions co-implanted in silicon at room temperature. The H and He ion energies were 40 and 50 keV, respectively, so that their depth profiles were similar. The total implantation fluence for the H and He ions was 5 × 1016 cm-2 under various fluence fractions in the H ions. The implantation sequences under investigation were He + H and H + He. Dynamic optical microscopy (DOM) was employed in order to dynamically analyze surface blistering characteristics. This study used DOM data to construct so-called time-temperature-transformation (T-T-T) curves to easily predict blistering and crater transformation at specific annealing times and temperatures. The results revealed that the curves of blister initialization, crater initialization, and crater completion in the He + H implant occurred at a lower annealing temperature but with a longer annealing time compared to those in the H + He implant. Furthermore, the threshold annealing temperatures for blister and crater formation in the He + H implant were lower than they were in the H + He implant. The size distributions of the blisters and craters in the He + H implant extended wider than those in the H + He implant. In addition, the He + H implant exhibited larger blisters and craters compared to the ones in the H + He implant. Since the former has a higher percentage of exfoliation area than the latter, it is regarded as the more optimal implantation sequence.

  4. Miniaturized EAPs with compliant electrodes fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Shea, H.

    2011-04-01

    Miniaturizing dielectric electroactive polymer (EAP) actuators will lead to highly-integrated mechanical systems on a chip, combining dozens to thousands of actuators and sensors on a few cm2. We present here µm to mm scale electroactive polymer (EAP) devices, batch fabricated on the chip or wafer scale, based on ion-implanted electrodes. Low-energy (2-10 keV) implantation of gold ions into a silicone elastomer leads to compliant stretchable electrodes consisting of a buried 20 nm thick layer of gold nanoparticles in a silicone matrix. These electrodes: 1) conduct at strains up to 175%, 2) are patternable on the µm scale, 3) have stiffness similar to silicone, 4) have good conductivity, and 5) excellent adhesion since implanted in the silicone. The EAP devices consist of 20 to 30 µm thick silicone membranes with µm to mm-scale ion-implanted electrodes on both sides, bonded to a holder. Depending on electrode shape and membrane size, several actuation modes are possible. Characterization of 3mm diameter bi-directional buckling mode actuators, mm-scale tunable lens arrays, 2-axis beam steering mirrors, as well as arrays of 72 cell-size (100x200 µm2) actuators to apply mechanical strain to single cells are reported. Speeds of up to several kHz are observed.

  5. Direct temperature monitoring for semiconductors in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Tian, Xiubo; Chu, Paul K.

    2000-07-01

    In situ temperature monitoring is extremely important in plasma immersion ion implantation (PIII) of semiconductors. For instance, the silicon wafer must be heated to 600 °C or higher in separation by plasma implantation of oxygen, and in the PIII/ion-cut process, the wafer temperature must remain below 300 °C throughout the experiment. In this article, we present a thermocouple-based direct temperature measurement system for planar samples such as silicon wafers. In order to ensure reliable high-voltage operation and overall electrical isolation, the thermocouple assembly and wires are integrated into the sample chuck and feedthrough. Hydrogen plasma immersion ion implantation is performed in silicon to demonstrate the effectiveness and reliability of the device. Our experimental results indicate that instrumental parameters such as implantation voltage, pulse duration, and pulsing frequency affect the sample temperature to a different extent. The measured temperature rise is higher than that predicted by a theoretical model based on the Child-Langmuir law. The discrepancy is attributed to the finite-sample size and the nonplanar, conformal plasma sheath.

  6. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  7. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    PubMed Central

    Hannan, Mahammad A.; Abbas, Saad M.; Samad, Salina A.; Hussain, Aini

    2012-01-01

    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices. PMID:22368470

  8. Modulation techniques for biomedical implanted devices and their challenges.

    PubMed

    Hannan, Mahammad A; Abbas, Saad M; Samad, Salina A; Hussain, Aini

    2012-01-01

    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices.

  9. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  10. Modelling of charging effects in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    En, William; Cheung, Nathan W.

    1995-03-01

    The charging effects of plasma immersion ion implantation on several device structures is simulated. The simulations use an analytical model which couples the interaction of the plasma and IC devices during plasma implantation. The plasma model is implemented within the circuit simulator SPICE, which allows the model to uses all of the IC device models existing within SPICE. The model of the Fowler-Nordheim tunneling current through thin gate oxides of MOS devices is demonstrated, and shown how it can be used to quantify the damage induced. Charging damage is shown to be strongly affected by the device structure.

  11. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1981-06-24

    implantation of an elemental species (such as Pb) which poisons the cathodic reaction has been shown to greatly reduce the corrosion rate of iron . More...such as Pb) which poisons the cathodic reaction has been shown to greatly reduce the corrosion rate of iron . More commonly, corrosion resistance is...rAD-AlO2 15 NAVAL RESEARCH LAB WASHINGTON DC F/6 13/A TE USE OF ION IMPLANTATION FOR MATERIALS PROCESSING.(U) JUN al F A SMIOT UNCLASSIFIED NRL-MR

  12. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  13. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  14. Combined Soft and Hard Tissue Peri-Implant Plastic Surgery Techniques to Enhance Implant Rehabilitation: A Case Report

    PubMed Central

    Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora

    2014-01-01

    This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation. PMID:25489351

  15. Highly tunable formation of nitrogen-vacancy centers via ion implantation

    SciTech Connect

    Sangtawesin, S.; Brundage, T. O.; Atkins, Z. J.; Petta, J. R.

    2014-08-11

    We demonstrate highly tunable formation of nitrogen-vacancy (NV) centers using 20 keV {sup 15}N{sup +} ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5×10{sup 10} to 2 × 10{sup 11} ions/cm{sup 2}, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6%–7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T{sub 2}{sup *} ∼ 3 μs, comparable to naturally occurring NV centers in high purity diamond with natural abundance {sup 13}C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.

  16. The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, R.; Christiansen, S. H.; Moutanabbir, O.; Gösele, U.

    2010-10-01

    Hydrogen and/or helium implantation-induced surface blistering and layer splitting in compound semiconductors such as InP, GaAs, GaN, AlN, and ZnO are discussed. The blistering phenomenon depends on many parameters such as the semiconductor material, ion fluence, ion energy, and implantation temperature. The optimum values of these parameters for compound semiconductors are presented. The blistering and splitting processes in silicon have been studied in detail, motivated by the fabrication of the widely used silicon-on-insulator wafers. Hence, a comparison of the blistering process in Si and compound semiconductors is also presented. This comparative study is technologically relevant since ion implantation-induced layer splitting combined with direct wafer bonding in principle allows the transfer of any type of semiconductor layer onto any foreign substrate of choice—the technique is known as the ion-cut or Smart-Cut™ method. For the aforementioned compound semiconductors, investigations regarding layer transfer using the ion-cut method are still in their infancy. We report feasibility studies of layer transfer by the ion-cut method for some of the most important and widely used compound semiconductors. The importance of characteristic values for successful wafer bonding such as wafer bow and surface flatness as well as roughness are discussed, and difficulties in achieving some of these values are pointed out.

  17. Operations manual for the plasma source ion implantation economics program

    SciTech Connect

    Bibeault, M.L.; Thayer, G.R.

    1995-10-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique for metal. PSIICOSTMODEL95 is an EXCEL-based program that estimates the cost for implementing a PSII system in a manufacturing setting where the number of parts to be processed is over 5,000 parts per day and the shape of each part does not change from day to day. Overall, the manufacturing process must be very well defined and should not change. This document is a self-contained manual for PSIICOSTMODEL95. It assumes the reader has some general knowledge of the technical requirements for PSII. Configuration of the PSII process versus design is used as the methodology in PSIICOSTMODEL95. The reason behind this is twofold. First, the design process cannot be programmed into a computer when the relationships between design variables are not understood. Second, the configuration methodology reduces the number of assumptions that must be programmed into our software. Misuse of results are less likely to occur if the user has fewer assumptions to understand.

  18. Vibrant soundbridge middle ear implant in otosclerosis: technique - indication.

    PubMed

    Dumon, Thibaud

    2007-01-01

    With our growing experience with the Vibrant Soundbridge (VSB) middle ear implant, the question emerged of its indication in mixed hearing loss due to advanced otosclerosis. We describe the VSB implantation technique in primary otosclerosis performed together with a stapedotomy piston procedure. Hearing results under headphone and free-field conditions show that the stapedotomy piston procedure closes the air-bone gap as expected and that the VSB provides comparable gain to that usually recorded for pure sensorineural hearing loss. The gains of the two procedures add up. These results open the field of mixed hearing loss to the VSB middle ear implant.

  19. Multi-Zone Modeling of Ion-Implanted Impurity Redistribution.

    NASA Astrophysics Data System (ADS)

    Araujo, Carlos Alberto Paz De.

    Implanted impurity redistribution has been observed during the annealing step of many ion-implanted materials. Throughout the ion-implantation literature, experimental evidence suggests some position dependence in the redistribution process. Specifically, the tail region of ion-implanted impurity profiles usually exhibit fast diffusion during annealing whereas the near-surface region shows slow diffusion. To date, redistribution models have failed to include this spacial dependence in the diffusion coefficient of ion -implanted impurities. Analytical expressions for the post -annealing profile are usually found from oversimplified redistribution models that employ Fick's second law with a reflecting surface boundary condition and a homogeneous semi-infinite medium. This modeling scheme is not capable to accommodate regions of high or low redistribution because of the restriction of a single diffusion constant. In general the ideal gaussian LSS profile is assumed as the initial condition rendering an analytic solution to the simple diffusion model that is capable of modeling only gaussian broadening. The approach taken in the present work is to model the ion-implanted substrate as a stratified medium with zones where a local diffusion equation is obeyed. An effective diffusion coefficient is defined within each zone with the intent to lump local disturbances such as defects and precipitates. Thus, regions of low or high redistribution are modeled by zones of large or small effective diffusion coefficients. Because it is not always possible to have an analytical expression for the pre-annealing profile the multi-zone modeling scheme developed in this work accepts any type of initial condition. In order to accomplish this level of generality the Crank-Nicolson numerical formula is used to solve the multi-zone equations. Also, the Crout-Doolittle matrix reduction algorithm is utilized to reduce the computation time. The multi-zone modeling scheme is tested for the case

  20. Comparative study of double ion implant Ti-salicide and pre-amorphization implant Co-salicide for ultra-large-scale integration applications

    NASA Astrophysics Data System (ADS)

    Chuang, Hung-Ming; Thei, Kong-Beng; Tsai, Sheng-Fu; Lu, Chun-Tsen; Liao, Xin-Da; Lee, Kuan-Ming; Liu, Wen-Chau

    2002-10-01

    We have investigated the interesting double ion implant (DII) Ti-salicide and pre-amorphization implant (PAI) Co-salicide techniques for ultra-large-scale integration (ULSI) applications. The DII technique is combined with germanium (or arsenic) PAI and Si ion-mixing processes. The sheet resistances both of n+ and p+ polysilicons are decreased when the DII Ti-salicide and PAI Co-salicide techniques are used. Moreover, the incomplete phase transformation of Ti-salicide is not observed in 0.2 μm wide polysilicon devices with the Ge DII process. Furthermore, the n+/p-well junction leakage current is reduced when the Si ion-mixing process is used. Experimentally, based on the studied DII Ti-salicide and PAI Co-salicide techniques, high-performance 0.2 μm CMOS devices have been successfully fabricated.

  1. Xenon diffusion following ion implantation into feldspar - Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Burnett, D. S.; Tombrello, T. A.

    1982-01-01

    The diffusion properties of xenon implanted into feldspar, a major mineral in meteorites and lunar samples, are investigated in light of the importance of xenon diffusion in the interpretation of early solar system chronologies and the retention time of solar-wind-implanted Xe. Known doses of Xe ions were implanted at an energy of 200 keV into single-crystal plagioclase targets, and depth profiles were measured by alpha particle backscattering before and after annealing for one hour at 900 or 1000 C. The fraction of Xe retained following annealing is found to be strongly dependent on implantation dose, being greatest at a dose of 3 x 10 to the 15th ions/sq cm and decreasing at higher and lower doses. Xe retention is also observed to be unaffected by two-step anneals, or by implantation with He or Ar. Three models of the dose-dependent diffusion properties are considered, including epitaxial crystal regrowth during annealing controlled by the extent of radiation damage, the creation of trapping sites by radiation damage, and the inhibition of recrystallization by Xe during annealing

  2. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  3. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  4. Gold ion implantation into alumina using an "inverted ion source" configuration

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Cattani, M.; Oks, E. M.; Brown, I. G.

    2014-02-01

    We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an "inverted ion implanter" of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3-9) × 1016 cm-2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

  5. Material synthesis for silicon integrated-circuit applications using ion implantation

    NASA Astrophysics Data System (ADS)

    Lu, Xiang

    As devices scale down into deep sub-microns, the investment cost and complexity to develop more sophisticated device technologies have increased substantially. There are some alternative potential technologies, such as silicon-on-insulator (SOI) and SiGe alloys, that can help sustain this staggering IC technology growth at a lower cost. Surface SiGe and SiGeC alloys with germanium peak composition up to 16 atomic percent are formed using high-dose ion implantation and subsequent solid phase epitaxial growth. RBS channeling spectra and cross-sectional TEM studies show that high quality SiGe and SiGeC crystals with 8 atomic percent germanium concentration are formed at the silicon surface. Extended defects are formed in SiGe and SiGeC with 16 atomic percent germanium concentration. X-ray diffraction experiments confirm that carbon reduces the lattice strain in SiGe alloys but without significant crystal quality improvement as detected by RBS channeling spectra and XTEM observations. Separation by plasma implantation of oxygen (SPIMOX) is an economical method for SOI wafer fabrication. This process employs plasma immersion ion implantation (PIII) for the implantation of oxygen ions. The implantation rate for Pm is considerably higher than that of conventional implantation. The feasibility of SPIMOX has been demonstrated with successful fabrication of SOI structures implementing this process. Secondary ion mass spectrometry (SIMS) analysis and cross-sectional transmission electron microscopy (XTEM) micrographs of the SPIMOX sample show continuous buried oxide under single crystal overlayer with sharp silicon/oxide interfaces. The operational phase space of implantation condition, oxygen dose and annealing requirement has been identified. Physical mechanisms of hydrogen induced silicon surface layer cleavage have been investigated using a combination of microscopy and hydrogen profiling techniques. The evolution of the silicon cleavage phenomenon is recorded by a series

  6. Synthesis of silicon carbide films by combined implantation with sputtering techniques

    NASA Astrophysics Data System (ADS)

    Li, Gaobao; Zhang, Jizhong; Meng, Qingli; Li, Wenzhi

    2007-08-01

    Silicon carbide (SiC) films were synthesized by combined metal vapor vacuum arc (MEVVA) ion implantation with ion beam assisted deposition (IBAD) techniques. Carbon ions with 40 keV energy were implanted into Si(1 0 0) substrates at ion fluence of 5 × 10 16 ions/cm 2. Then silicon and carbon atoms were co-sputtered on the Si(1 0 0) substrate surface, at the same time the samples underwent assistant Ar-ion irradiation at 20 keV energy. A group of samples with substrate temperatures ranging from 400 to 600 °C were used to analyze the effect of temperature on formation of the SiC film. Influence of the assistant Ar-ion irradiation was also investigated. The structure, morphology and mechanical properties of the deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation, respectively. The bond configurations were obtained from IR absorption and Raman spectroscopy. The experimental results indicate that microcrystalline SiC films were synthesized at 600 °C. The substrate temperature and assistant Ar-ion irradiation played a key role in the process. The assistant Ar-ion irradiation also helps increasing the nanohardness and bulk modulus of the SiC films. The best values of nanohardness and bulk modulus were 24.1 and 282.6 GPa, respectively.

  7. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation

    SciTech Connect

    Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.

    2009-04-15

    The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.

  8. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50–65 MHz.

  9. Estimation of nitrogen ion energy calculated using distribution for nitrogen in Si implanted by PBII

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, S.; Takagi, T.

    2006-01-01

    Plasma-based ion implantation (PBII) using N2 gas is examined as a sterilization technique for three-dimensional targets. The application of a pulsed negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -13 kV) at an N2 gas pressure of 2.4 Pa is shown to reduce the number of Bacillus pumilus survivors by up to 105 times after just 5 min of exposure. The energy of nitrogen ions is calculated based on the depth profile of nitrogen concentration in Si implanted by PBII, and it is revealed that the actual nitrogen ion energy is much lower than that calculated based on the voltage applied during processing.

  10. Fabrication of Graphene Using Carbon Ion Implantation

    NASA Astrophysics Data System (ADS)

    Colon, Tomeka; Smith, Cydale; Muntele, Claudiu

    2012-02-01

    Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite. Graphene's high electrical conductivity and high optical transparency make it a candidate for transparent conducting electrodes, required for such applications as touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. In particular, graphene's mechanical strength and flexibility are advantageous compared to indium tin oxide, which is brittle, and graphene films may be deposited from solution over large areas. One method to grow epitaxial graphene is by starting with single crystal silicon carbide (SiC). When SiC is heated under certain conditions, silicon evaporates leaving behind carbon that reorganizes into layers of graphene. Here we report on an alternate method of producing graphene by using low energy carbon implantation in a nickel layer deposited on silicon dioxide mechanical support, followed by heat treatment in a reducing atmosphere to induce carbon migration and self-assembly. We used high resolution RBS and Raman spectroscopy for process and sample characterization. Details will be discussed during the meeting.

  11. An evaluation of three implant level impression techniques for single tooth implant.

    PubMed

    Daoudi, M Firas; Setchell, Derrick J; Searson, Lloyd J

    2004-03-01

    This laboratory study investigated the hypotheses that there is no difference between three implant level impression techniques using vinyl polysiloxane impression material. The tested techniques were 1)- the repositioning technique. 2)-The pickup technique. 3)- The pickup technique with the impression copings splinted to the impression trays with autopolymerising acrylic resin. The Reflex Microscope was used for 3D measurement of distances and angles. Analysis of variance and Tukey's multiple comparisons test were applied to analyse the data. The results showed significant differences in implant analogue position with the repositioning and the pickup (unsplinted) impression techniques from the master model. Alarming rotational errors were recorded with the repositioning and the pickup (unsplinted) techniques. However, connecting the impression coping to the impression tray improves the accuracy of the pickup impression technique.

  12. Deep Trench Doping by Plasma Immersion Ion Implantation in Silicon

    SciTech Connect

    Nizou, S.; Vervisch, V.; Etienne, H.; Torregrosa, F.; Roux, L.; Ziti, M.; Alquier, D.; Roy, M.

    2006-11-13

    The realization of three dimensional (3D) device structures remains a great challenge in microelectronics. One of the main technological breakthroughs for such devices is the ability to control dopant implantation along silicon trench sidewalls. Plasma Immersion Ion Implantation (PIII) has shown its wide efficiency for specific doping processing in semiconductor applications. In this work, we propose to study the capability of PIII method for large scale silicon trench doping. Ultra deep trenches with high aspect ratio were etched on 6'' N type Si wafers. Wafers were then implanted with a PIII Pulsion system using BF3 gas source at various pressures and energies. The obtained results evidence that PIII can be used and are of grateful help to define optimized processing conditions to uniformly dope silicon trench sidewalls through the wafers.

  13. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    SciTech Connect

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; Vizkelethy, Gyorgy; Bielejec, Edward S.

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  14. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    NASA Astrophysics Data System (ADS)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  15. Effects of nickel ions implantation and subsequent thermal annealing on structural and magnetic properties of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Vakhitov, I. R.; Lyadov, N. M.; Valeev, V. F.; Nuzhdin, V. I.; Tagirov, L. R.; Khaibullin, R. I.

    2014-12-01

    Wide bandgap semiconducting rutile (TiO2) doped with 3d-elements is a promising material for spintronic applications. In our work a composite material of TiO2:Ni has been formed by using implantation of Ni+ ions into single-crystalline (100)- and (001)- plates of TiO2. Sub-micron magnetic layers of TiO2 containing nickel dopant have been obtained at high implantation fluence of 1×1017 ion/cm2. A part of the implanted samples was then annealed in vacuum at different temperatures Tann = 450-1200 K for 30 min. The influence of the implantation fluence, crystalline orientation, as well as subsequent annealing on the structural and magnetic properties of the nickel-implanted TiO2 have been investigated by using X-ray photoelectron spectroscopy, scanning electron microscopy and coil magnetometry techniques.

  16. The enhanced anticoagulation for graphene induced by COOH+ ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqi; Cao, Ye; Zhao, Mengli; Deng, Jianhua; Li, Xifei; Li, Dejun

    2015-01-01

    Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation when it comes in contact with blood, require further investigation. Little is known about the influence of exposure to COOH+-implanted graphene (COOH+/graphene) interacting with red blood cells and platelets. In this paper, COOH+/graphene was prepared by modified Hummers' method and implanted by COOH+ ions. The structure and surface chemical and physical properties of COOH+/graphene were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Systematic evaluation of anticoagulation, including in vitro platelet adhesion assays and hemolytic assays, proved that COOH+/graphene has significant anticoagulation. In addition, at the dose of 5 × 1017 ions/cm2, COOH+/graphene responded best on platelet adhesion, aggregation, and platelet activation.

  17. Reactive-element effect studied using ion implantation

    SciTech Connect

    King, W.E.; Grabowski, K.S.

    1988-11-01

    Implantation of reactive elements into metals that form chromia layers upon exposure to high temperature oxidizing environments has a very large effect on the growth rate of the oxide and adhesion of the oxide to the base alloy. We have investigated the effect of Y ion implantation on the high temperature oxidation of Fe-24Cr using Rutherford backscattering spectroscopy, secondary ion mass spectroscopy, and electron microscopy. Analytical tools have been applied to determine the spatial distribution of Y, the microstructure of the oxide, and contribution of oxygen transport to the oxidation process. Results are compared with similar experiments in Fe-Cr alloys with Y additions and with results of cation and anion tracer diffusion experiments. 51 refs., 17 figs., 3 tabs.

  18. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  19. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  20. Europium doping of zincblende GaN by ion implantation

    SciTech Connect

    Lorenz, K.; Franco, N.; Darakchieva, V.; Alves, E.; Roqan, I. S.; O'Donnell, K. P.; Trager-Cowan, C.; Martin, R. W.; As, D. J.; Panfilova, M.

    2009-06-01

    Eu was implanted into high quality cubic (zincblende) GaN (ZB-GaN) layers grown by molecular beam epitaxy. Detailed structural characterization before and after implantation was performed by x-ray diffraction (XRD) and Rutherford backscattering/channeling spectrometry. A low concentration (<10%) of wurtzite phase inclusions was observed by XRD analysis in as-grown samples with their (0001) planes aligned with the (111) planes of the cubic lattice. Implantation of Eu causes an expansion of the lattice parameter in the implanted region similar to that observed for the c-lattice parameter of wurtzite GaN (W-GaN). For ZB-GaN:Eu, a large fraction of Eu ions is found on a high symmetry interstitial site aligned with the <110> direction, while a Ga substitutional site is observed for W-GaN:Eu. The implantation damage in ZB-GaN:Eu could partly be removed by thermal annealing, but an increase in the wurtzite phase fraction was observed at the same time. Cathodoluminescence, photoluminescence (PL), and PL excitation spectroscopy revealed several emission lines which can be attributed to distinct Eu-related optical centers in ZB-GaN and W-GaN inclusions.

  1. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1984-08-23

    OXIDATION A. AN ELECTROCHEMICAL STUDY OF AMORPHOUS ION IMPLANTED STAINLESS STEELS .................... ............ .................. 115 C. R. Clayton...nonimplanted steel (P=0.6). Auger spectroscopy and energy- dispersive x-ray analysis were used to analyze the surface composition produced by the two processes...covered oxides present on all sur- In this fluence regime, an unexpectedly large concentration faces were ignored. Surfaces of steel disks represented in

  2. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    a pre- liminary study using silicon solar cells. This work was undertaken in cooperation with Dr. J. Eguren of the Instituto De Energia Solar , Madrid...device fabrication has been attempted. To date, resistors, capacitors, diodes, bipolar transistors, MOSFEs, and solar cells have been fabricated with...34 " 48 *Si Solar Cells Ruby PL P+ Ion-Implanted 49 Ruby PL Pulsed Diffused 50 :C

  3. LSI/VLSI Ion Implanted GaAs IC Processing

    DTIC Science & Technology

    1982-02-10

    insulating High Speed Logic Ion Implantation GaAs IC FET Integrated Circuits MESFET 20. ABSTRACT (Coalki. on.. roersie if oookay and IdoeI by WOOe tw**, This...The goal of this program is to realize the full potential of GaAs digital integrated circuits employing depletion mode MESFETs by developing the...Processing. The main objective of this program is to realize the full potential of GaAs digital integrated circuits by expanding and improving

  4. Developing Stability of Posterior Mandibular Implants Placed With Osteotome Expansion Technique Compared With Conventional Drilling Techniques.

    PubMed

    Lin, Yen-Ting; Hong, Adrienne; Peng, Ying-Chin; Hong, Hsiang-Hsi

    2017-04-01

    Clinical decisions regarding the stability and osseointegration of mandibular implants positioned using the bone expansion techniques are conflicting and limited. The objective was to evaluate the stability of implants placed using 2 surgical techniques, selected according to the initial width of the mandibular posterior edentulous ridge, with D3 bone density, during a 12-week period. Fifty-eight implants in 33 patients were evaluated. Thirty-two implants in 24 patients were positioned using the osteotome expansion technique, and 26 fixtures in 17 patients were installed using the conventional drilling technique. The implant stability quotient values were recorded at weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 postsurgery and evaluated using analysis of variance, independent, and paired t tests. Calibrated according to the stability reading of a 3.3-mm diameter implant, the osteotome expansion group was associated with a lower bone density than the conventional group (64.96 ± 6.25 vs 68.98 ± 5.06, P = .011). The osteotome expansion group achieved a comparable primary stability (ISQb-0, P = .124) and greater increases in secondary stability (ISQb-12, P = .07) than did the conventional technique. A D3 quality ridge with mild horizontal deficiency is expandable by using the osteotome expansion technique. Although the 2 groups presented similar implant stability quotient readings during the study period, the osteotome expansion technique showed significant improvement in secondary stability. The healing patterns for these techniques are therefore inconsistent.

  5. A technique for fabricating single screw-retained implant-supported interim crowns in conjunction with implant surgery.

    PubMed

    McRory, M Eric; Cagna, David R

    2014-06-01

    This article presents an intraoral technique for fabricating single screw-retained implant-supported interim crowns immediately after surgical implant placement in extraction sites. The technique may be used with any implant system that provides a provisional abutment or an open-tray impression coping that can be modified for use as a provisional abutment.

  6. Cathodic shift of onset potential for water oxidation of WO3 photoanode by Zr+ ions implantation

    NASA Astrophysics Data System (ADS)

    Wu, Hengyi; Ren, Feng; Xing, Zhuo; Zheng, Xudong; Wu, Liang; Jiang, Changzhong

    2017-02-01

    Tungsten trioxide is one of the most widely studied semiconductors for photoelectrochemical water splitting. However, its onset potential is too positive. In a photoelectrochemical system, a low onset potential and a high photocurrent for a photoanode are important for enhancing the efficiency of water splitting. It is an effective way to adjust the onset potential by changing the conduction and valence band level. Doping is a powerful way to alter the positions of the energy levels of semiconductors to improve their photoelectrochemical performance. In this paper, we present a method of ion implantation to alter the energy levels by implanting Zr+ ions into WO3. Cathodic shifts of the photocurrent onset potential for water oxidation are achieved. The systematic studies show that ion implantation followed by thermal annealing treatment can form substitutional Zr4+ in WO3. The upward shifts of the conduction band and valence band lead to the cathodic shifts of the onset potential. Two combined factors lead to the upward shift of the conduction band. One is strain induced after doping in the lattices. Another is due to the higher energy level of the Zr 4d orbital than the W 5d orbital. Meanwhile, the oxygen vacancy introduced during the ion implantation can cause an upward shift the valence band maximum. The results indicate that the upward shifts of the conduction band minimum and valence band maximum are good for the photoelectrochemical water splitting. It also shows that an ion implantation technique combined with thermal annealing could be an effective way to enhance the performance of the photoanode for water splitting.

  7. Bubble formation in Zr alloys under heavy ion implantation

    SciTech Connect

    Pagano, L. Jr.; Motta, A.T.; Birtcher, R.C.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  8. Collimator Magnet with Functionally Defined Profile for Ion Implantation

    SciTech Connect

    Nicolaescu, Dan; Gotoh, Yasuhito; Sakai, Shigeki; Ishikawa, Junzo

    2011-01-07

    Advanced implantation systems used for semiconductor processing should have high precision of ion beam collimation (+/-0.1 deg and better) and wide beam aperture (400 mm and more). Typical arrangements of ion implantation systems include beam scanning (BSM) and collimator magnets (CM). Standard collimator magnets have limited precision of beam collimation due to magnetic poles that have piecewise circular profile. This study proposes a novel ''constant sum angle collimator magnet''(CSACM) with non-circular magnetic pole profile. Angles of incidence {alpha}{sub i} and exit {alpha}{sub e} are defined as angles between ion trajectory and local normal to CM input/output magnetic pole edge. Profile of the CSACM is defined as having constant algebraic sum {alpha}{sub i}+{alpha}{sub e} = const for every ion trajectory of the scanned beam, in addition to ''usual'' beam collimation. An iterative procedure allows improve CSACM taking into account magnetic fringe field effects. Simulation results prove that CSACM assures precise beam collimation in two orthogonal planes. Circular approximations for CSACM magnetic poles are proposed. The model may be further developed for global design of the ion beam line (BSM+CM) and for taking into account space-charge effects.

  9. Solutions to Defect-Related Problems in Implanted Silicon by Controlled Injection of Vacancies by High-Energy Ion Irradiation

    SciTech Connect

    Duggan, J.L.; Holland, O.W.; Roth, E.

    1998-11-04

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Pre-amorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectroscopy was used to profile the dopant distributions.

  10. Ion beam system for implanting industrial products of various shapes

    NASA Astrophysics Data System (ADS)

    Denholm, A. S.; Wittkower, A. B.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 × 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm × 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15° steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop.

  11. Electrical properties of oxygen ion-implanted InP

    NASA Astrophysics Data System (ADS)

    He, L.; Anderson, W. A.

    1992-10-01

    The effect of oxygen ion implantation on defect levels and the electrical properties of undoped InP ( n-type) and Sn-doped InP have been investigated as a function of postimplant annealing at temperatures of 300 and 400° C. The surface interruption by ion bombardment was studied by a non-invasive optical technique—photoreflectance (PR) spectroscopy. Current-voltage (I-V) characterization and deep level transient spectros-copy (DLTS) were carried out. The free carrier compensation mechanism was studied from the microstructure behavior of defect levels associated with O+ implantation. Free carriers may be trapped in both residual and ion-bombardment-induced defect sites. Rapid thermal annealing (RTA) performed at different temperatures showed that if residual traps were removed by annealing, the compensation efficiency will be enhanced. Post-implant RTA treatment showed that at the higher temperature (400°C), trapped carriers may be re-excited, resulting in a weakened compensation. Comparing the results of undoped and Sn-doped InP indicated that the carrier compensation effect is substrate doping dependent.

  12. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  13. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  14. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  15. Surface Modification of Orthodontic Bracket Models via Ion Implantation: Effect on Coefficients of Friction

    DTIC Science & Technology

    1989-01-01

    This finding is suggestive of carbon contamination resulting from vacuum carburization which may well have occurred during the other implantations but...Analyzing Column Ion Separating Manei --------- Quadrupole Endstation Ion Extraction/ Preacceleration Plasma N-7 Magnet Filament (Cathode) Ion

  16. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    PubMed

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.

  17. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  18. Status of surface modification techniques for artificial hip implants

    PubMed Central

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Abstract Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants. PMID:28228866

  19. Status of surface modification techniques for artificial hip implants.

    PubMed

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.

  20. Damage formation and annealing at low temperatures in ion implanted ZnO

    SciTech Connect

    Lorenz, K.; Alves, E.; Wendler, E.; Bilani, O.; Wesch, W.; Hayes, M.

    2005-11-07

    N, Ar, and Er ions were implanted into ZnO at 15 K within a large fluence range. The Rutherford backscattering technique in the channeling mode was used to study in situ the damage built-up in the Zn sublattice at 15 K. Several stages in the damage formation were observed. From the linear increase of the damage for low implantation fluences, an upper limit of the Zn displacement energy of 65 eV could be estimated for [0001] oriented ZnO. Annealing measurements below room temperature show a significant recovery of the lattice starting at temperatures between 80 and 130 K for a sample implanted with low Er fluence. Samples with higher damage levels do not reveal any damage recovery up to room temperature, pointing to the formation of stable defect complexes.

  1. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-01

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  2. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    SciTech Connect

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-07

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  3. Hydrophilic property by contact angle change of ion implanted polycarbonate.

    PubMed

    Lee, Chan Young; Kil, Jae Keun

    2008-02-01

    In this study, ion implantation was performed onto a polymer, polycarbonate (PC), in order to investigate surface hydrophilic property through contact angle measurement. PC was irradiated with N, Ar, and Xe ions at the irradiation energy of 20-50 keV and the dose range of 5x10(15), 1x10(16), 7x10(16) ions/cm(2). The contact angle of water was estimated by means of the sessile drop method and was reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural properties are discussed in view of Furier transform infrared and x-ray photoelectron spectroscopy, which shows increasing C-O bonding and C-C bonding. The surface roughness examined by atomic force microscopy measurement changed smoothly from 3.59 to 2.22 A as the fluence increased. It is concluded that the change in wettability may be caused by surface carbonization and oxidation as well as surface roughness.

  4. Hydrophilic property by contact angle change of ion implanted polycarbonatea)

    NASA Astrophysics Data System (ADS)

    Lee, Chan Young; Kil, Jae Keun

    2008-02-01

    In this study, ion implantation was performed onto a polymer, polycarbonate (PC), in order to investigate surface hydrophilic property through contact angle measurement. PC was irradiated with N, Ar, and Xe ions at the irradiation energy of 20-50keV and the dose range of 5×1015, 1×1016, 7×1016ions/cm2. The contact angle of water was estimated by means of the sessile drop method and was reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural properties are discussed in view of Furier transform infrared and x-ray photoelectron spectroscopy, which shows increasing C O bonding and C C bonding. The surface roughness examined by atomic force microscopy measurement changed smoothly from 3.59to2.22Å as the fluence increased. It is concluded that the change in wettability may be caused by surface carbonization and oxidation as well as surface roughness.

  5. The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Shahid Rafique, M.; Yousaf, Daniel; Ahmad, Riaz

    2016-05-01

    The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate have been investigated. Thomson parabola technique was employed to measure the energy and flux of carbon ions. The magnetic field of strength 80 mT was applied on the graphite plasma plume to provide an appropriate trajectory to the generated ions. The energy of carbon ions is 678 KeV for laser fluence of 5.1 J/cm2 which was kept constant for all exposures. The flux of ions varies from 32 × 1011 to 72 × 1014 ions/cm2 for varying numbers of laser pulses from 3000 to 12,000. In order to explore the ion irradiation effects on brass, four brass substrates were irradiated by carbon ions of different flux. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) are used to analyze the surface morphology and crystallographic structure of ion-implanted brass, respectively. SEM analysis reveals the formation and growth of nano-/micro-sized cavities, pores and pits for the various ion flux for varying numbers of laser pulses from 3000 to 12,000. By increasing ion flux by increasing the number of pulses up to 9000 shots, the dendritic structures initiate to grow along with cavities and pores. At the maximum ion flux for 12,000 shots, the unequiaxed dendritic structures become distinct and the distance between the dendrites is decreased, whereas cavities, pores and pits are completely finished. The XRD analysis reveals that a new phase of ZnC (0012) is formed in the brass substrate after ion implantation. Universal tensile testing machine and Vickers microhardness tester are used to explore the yield stress, ultimate tensile strength and microhardness of ion-implanted brass substrate. The mechanical properties monotonically increase by increasing the ion flux. Variations in mechanical properties are correlated with surface and structural modifications of brass.

  6. Structural and Optical Properties Studies Of Ar{sup 2+} Ion Implanted Mn Deposited GaAs

    SciTech Connect

    Tripthi, S.; Dubey, R. L.; Dubey, S. K.; Yadav, A. D.

    2010-12-01

    Mn thin film deposited GaAs samples were implanted with 250 keV Ar{sup +2} ions for various fluences 5x10{sup 15}, 1x10{sup 16} and 5x10{sup 16} ions cm{sup -2}. Optical and structural properties of the samples have been investigated by using ultraviolet spectroscopy and X-ray diffraction techniques. Optical absorbance of the implanted samples was found to decrease with increase in argon ion fluence. XRD spectra of the samples implanted for ion fluences 5x10{sup 15} and 1x10{sup 16} showed the formation of (GaMn)As at 2{theta} value of 65.34 deg. The XRD spectrum of sample 1x10{sup 16} cm{sup -2} annealed at 450 deg. C showed the formation of magnetic phases.

  7. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants.

    PubMed

    Elias, Carlos Nelson; Rocha, Felipe Assis; Nascimento, Ana Lucia; Coelho, Paulo Guilherme

    2012-12-01

    The primary stability of dental implants has been investigated before, but a study of the influence of implant shape, size and surface morphology (machined, acid etched or anodized), surgical technique (press-fit or undersized) and substrate (natural or simulated bone) on the primary stability of dental implants has not been reported. The present work intends to fill this gap. In this work, six different dental implants were inserted into and removed from synthetic and natural bone while measuring the torque. A total of 255 dental implants with three shapes, four sizes and three surface topographies were inserted into pig rib, PTFE and polyurethane. The implant sites were prepared using straight and tapered drills. The primary stability was estimated from the maximum insertion torque. Comparisons between samples were based on the maximum insertion torque (MIT), the maximum removal torque (MRT) and the torque ratio (TR=MRT/MIT). The insertion torque into pig ribs showed larger dispersion. All parameters (shape, size and surface morphology of the implant, surgical technique and substrate type) were found to have a significant influence on primary stability. The insertion of a tapered implant requires a higher torque than the insertion of a straight implant. Surface treatments improve the primary stability. The influence of the surgical technique is smaller than that of implant size and shape. The highest insertion torque was that of anodized tapered implants inserted into undersized sites. Finally, the primary stability of dental implants is highly dependent on implant design, surgical technique and substrate type.

  8. Surgical implantation techniques for electronic tags in fish

    SciTech Connect

    Wagner, Glenn N.; Cooke, Steven J.; Brown, Richard S.; Deters, Katherine A.

    2011-01-01

    Intracoelomic implantation of transmitters into fish requires making a surgical incision, incision closure, and other surgery related techniques; however, the tools and techniques used in the surgical process vary widely. We review the available literature and focus on tools and techniques used for conducting surgery on juvenile salmonids because of the large amount of research that is conducted on them. The use of sterilized surgical instruments properly selected for a given size of fish will minimize tissue damage and infection rates, and speed the wound healing of fish implanted with transmitters. For the implantation of transmitters into small fish, the optimal surgical methods include making an incision on the ventral midline along the linea alba (for studies under 1 month), protecting the viscera (by lifting the skin with forceps while creating the incision), and using absorbable monofilament suture with a small-swaged-on swaged-on tapered or reverse-cutting needle. Standardizing the implantation techniques to be used in a study involving particular species and age classes of fish will improve survival and transmitter retention while allowing for comparisons to be made among studies and across multiple years. This review should be useful for researchers working on juvenile salmonids and other sizes and species of fish.

  9. Applications of ion implantation to high performance, radiation tolerant silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Matthei, K. W.

    1979-01-01

    Progress in the development of ion implanted silicon solar cells is reported. Effective back surface preparation by implantation, junction processing to achieve high open circuit voltages in low-resistivity cells, and radiation tolerance cells are among the topics studied.

  10. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.

  11. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  12. Ion-implanted epitaxially grown ZnSe

    NASA Technical Reports Server (NTRS)

    Chernow, F.

    1975-01-01

    The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.

  13. Hardening of Metallic Materials Using Plasma Immersion Ion Implantation (PIII)

    NASA Astrophysics Data System (ADS)

    Xu, Yufan; Clark, Mike; Flanagan, Ken; Milhone, Jason; Nonn, Paul; Forest, Cary

    2016-10-01

    A new approach of Plasma Immersion Ion Implantation (PIII) has been developed with the Plasma Couette Experiment Upgrade (PCX-U). The new approach efficiently reduces the duty cycle under the same average power for PIII. The experiment uses a Nitrogen plasma at a relatively high density of 1010 1011 cm-3 with ion temperatures of < 2 eV and electron temperature of 5 10 eV. The pulser for this PIII experiment has a maximum negative bias greater than 20kV, with 60Hz frequency and a 8 μs on-time in one working cycle. The samples (Alloy Steel 9310) are analyzed by a Vicker Hardness Tester to study the hardness and X-ray Photoelectron Spectroscopy (XPS) to study implantation density and depth. Different magnetic fields are also applied on samples to reduce the energy loss and secondary emission. Higher efficiency of implantation is expected from this experiment and the results will be presented. Hilldale Undergraduate/Faculty Research Fellowship of University of Wisconsin-Madison; Professor Cary Forest's Kellett Mid-Career Faculty Award.

  14. Simulation of BF{sub 3} plasma immersion ion implantation into silicon

    SciTech Connect

    Burenkov, A.; Hahn, A.; Spiegel, Y.; Etienne, H.; Torregrosa, Frank

    2012-11-06

    Plasma immersion ion implantation from a BF{sub 3} plasma into crystalline (100) silicon was performed using the PULSION plasma doping tool. Implanted boron profiles were measured with the SIMS method and simulated using models with different levels of sophistication. The physical implantation model is based on an analytical energy distribution for ions from the plasma and uses a Monte-Carlo simulation code. An analytical model of plasma immersion ion implantation that assumes a uniform and isotropic implantation was implemented in a software module called IMP3D. The functionality of this module which was initially envisaged for the three-dimensional simulation of conventional ion implantation was extended to plasma immersion ion implantation and examples of 2D and 3D simulations from this are presented.

  15. Aluminum diffusion in Al-implanted AISI 321 stainless steel using accelerator-based characterization techniques

    NASA Astrophysics Data System (ADS)

    Noli, F.; Misaelides, P.; Bethge, K.

    1998-04-01

    The aluminum diffusion in near-surface layers of Al-implanted AISI 321 austenitic stainless steel (Fe/Cr18/Ni8/Ti) was studied using ion beam analysis techniques. The implanted samples were investigated at temperatures between 450°C and 650°C (treatment times up to 144 h in vacuum and in air). The Al-profiles were determined by the 992 keV resonance of the 27Al(p,γ) 28Si nuclear reaction as well as by 4He +-Rutherford Backscattering Spectrometry (RBS). The experimental diffusion coefficients, obtained during this study using Fick's second law, were compared with corresponding literature concerning the aluminum diffusion in other relevant metallic materials. The determination of the depth profiles contributes to the interpretation of the high temperature oxidation behavior of Al-implanted stainless steel surfaces.

  16. Nonlinear optical waveguides produced by MeV ion implantation in LiNbO 3

    NASA Astrophysics Data System (ADS)

    Sarkisov, S. S.; Curley, M. J.; Williams, E. K.; Ila, D.; Svetchnikov, V. L.; Zandbergen, H. W.; Zykov, G. A.; Banks, C.; Wang, J.-C.; Poker, D. B.; Hensley, D. K.

    2000-05-01

    We analyze microstructure, linear and nonlinear optical properties of planar waveguides produced by implantation of MeV Ag ions into LiNbO3. Linear optical properties are described by the parameters of waveguide propagation modes and optical absorption spectra. Nonlinear properties are described by the nonlinear refractive index. Operation of the implanted crystal as an optical waveguide is due to modification of the linear refractive index of the implanted region. The samples as implanted do not show any light-guiding. The implanted region has amorphous and porous microstructure with the refractive index lower than the substrate. Heat treatment of the implanted samples produces planar light-guiding layer near the implanted surface. High-resolution electron microscopy reveals re-crystallization of the host between the surface and the nuclear stopping region in the form of randomly oriented crystalline grains. They make up a light-guiding layer isolated from the bulk crystal by the nuclear stopping layer with low refractive index. Optical absorption of the sample as implanted has a peak at 430 nm. This peak is due to the surface plasmon resonance in nano-clusters of metallic silver. Heat treatment of the samples shifts the absorption peak to 545 nm. This is more likely due to the increase of the refractive index back to the value for the crystalline LiNbO3. The nonlinear refractive index of the samples at 532 nm (of the order of 10-10 cm2 W-1) was measured with the Z-scan technique using a picosecond laser source. Possible applications of the waveguides include ultra-fast photonic switches and modulators.

  17. Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1996-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6

  18. Ion implanted integrated Bragg gratings in SOI waveguides

    NASA Astrophysics Data System (ADS)

    Bulk, M. P.; Knights, A. P.; Jessop, P. E.

    2007-06-01

    We report the realization of a Bragg grating optical filter at telecommunication wavelengths in silicon-on-insulator (SOI) through the use of ion implantation induced refractive index modulation. Silicon self-irradiation damage accumulation results in an increase of the refractive index to a saturated value, upon amorphization, of approximately 3.75. This makes it an interesting candidate for passive gratings as the silicon retains a planar surface, making it ideal for further processing. Monte Carlo simulations and coupled mode theory demonstrate the viability of the approach. Planar implanted SOI waveguides showed extinction ratios of -5 dB for TE and -2 dB for TM. An annealing study suggests complete amorphization was not achieved and future results should be improved dramatically.

  19. Surface modification of polymeric materials by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fu, Ricky K. Y.; Cheung, I. T. L.; Mei, Y. F.; Shek, C. H.; Siu, G. G.; Chu, Paul K.; Yang, W. M.; Leng, Y. X.; Huang, Y. X.; Tian, X. B.; Yang, S. Q.

    2005-08-01

    Polymer surfaces typically have low surface tension and high chemical inertness and so they usually have poor wetting and adhesion properties. The surface properties can be altered by modifying the molecular structure using plasma immersion ion implantation (PIII). In this work, Nylon-6 was treated using oxygen/nitrogen PIII. The observed improvement in the wettability is due to the oxygenated and nitrogen (amine) functional groups created on the polymer surface by the plasma treatment. X-ray photoelectron spectroscopy (XPS) results show that nitrogen and oxygen plasma implantation result in C-C bond breaking to form the imine and amine groups as well as alcohol and/or carbonyl groups on the surface. The water contact angle results reveal that the surface wetting properties depend on the functional groups, which can be adjusted by the ratio of oxygen-nitrogen mixtures.

  20. Stoichiometric disturbances in compound semiconductors due to ion implantation

    NASA Technical Reports Server (NTRS)

    Avila, R. E.; Fung, C. D.

    1986-01-01

    A method is developed to calculate the depth distribution of the local stoichiometric disturbance (SD) resulting from ion implantation in binary-compound substrates. The calculation includes first-order recoils considering projected range straggle of projectiles and recoils and lateral straggle of recoils. The method uses tabulated final-range statistics to infer the projectile range distributions at intermediate energies. This approach greatly simplifies the calculation with little compromise on accuracy as compared to existing procedures. As an illustration, the SD profile is calculated for implantation of boron, silicon, and aluminum in silicon carbide. The results for the latter case suggest that the SD may be responsible for otherwise unexplained distortions in the annealed aluminum profile. A comparison with calculations by other investigators using the Boltzmann transport equation shows good agreement.

  1. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Shishkova, Darya K.; Krukovskii, Konstantin V.; Kudryashov, Andrey N.

    2016-08-01

    Here we investigated in vivo interaction of Si-modified titanium nickelide (TiNi) samples with adjacent tissues in a rat subcutaneous implant model to assess the impact of the modification on the biocompatibility of the implant. Modification was performed by plasma immersion ion processing, which allows doping of different elements into surface layers of complex-shaped articles. The aim of modification was to reduce the level of toxic Ni ions on the implant surface for increasing biocompatibility. We identified a thin connective tissue capsule, endothelial cells, and capillary-like structures around the Si-modified implants both 30 and 90 days postimplantation. No signs of inflammation were found. In conclusion, modification of TiNi samples with Si ions increases biocompatibility of the implant.

  2. Electron spin resonance study of ion-implanted polymers

    NASA Astrophysics Data System (ADS)

    Wasserman, B.; Dresselhaus, M. S.; Braunstein, G.; Wnek, G. E.; Roth, G.

    1985-03-01

    The effect of ion implantation on the polymers PAN (polyacrylonitrile), PPO (poly 2,6-dimethylphenylene oxide) and PPS (p-polyphenylene sulfide) is studied using electron spin resonance. ESR measurements on these polymers were performed as a function of ion species and fluence in the temperature range 10 ion species used for implantation in this study (84Kr,80Br,75As,40Ar and14N). It is therefore concluded that the carrier concentration is related to the structural damage and not to chemical doping effects. From the shape of the ESR line, the ratio of the relaxation times for one-dimensional to three-dimensional spin diffusion is determined to be larger than 1000. The temperature dependence of the unpaired carrier concentration shows a strong deviation from a Curie law behavior, which can be explained by assuming that a defect band is formed with a bandgap due to strong Coulomb interaction between electrons on the defect sites.

  3. Antibacterial PVD coatings doped with silver by ion implantation

    NASA Astrophysics Data System (ADS)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  4. Lateral displacement induced disorder in L1(0)-FePt nanostructures by ion-implantation.

    PubMed

    Gaur, N; Kundu, S; Piramanayagam, S N; Maurer, S L; Tan, H K; Wong, S K; Steen, S E; Yang, H; Bhatia, C S

    2013-01-01

    Ion implantation is a promising technique for fabricating high density bit patterned media (BPM) as it may eliminate the requirement of disk planarization. However, there has not been any notable study on the impact of implantation on BPM fabrication of FePt, particularly at nano-scale, where the lateral straggle of implanted ions may become comparable to the feature size. In this work, implantation of antimony ions in patterned and unpatterned L1(0)-FePt thin films has been investigated. Unpatterned films implanted with high fluence of antimony exhibited reduced out-of-plane coercivity and change of magnetic anisotropy from perpendicular direction to film-plane. Interestingly, for samples implanted through patterned masks, the perpendicular anisotropy in the unimplanted region was also lost. This noteworthy observation can be attributed to the displacement of Fe and Pt atoms from the implantation sites to the unimplanted areas, thereby causing a phase disorder transformation from L1(0) to A1 FePt.

  5. GaAs transistors formed by Be or Mg ion implantation

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Marsh, O. J.

    1974-01-01

    N-p-n transistor structures have been formed in GaAs by implanting n-type substrates with Be ions to form base regions and then implanting them with 20-keV Si ions to form emitters. P-type layers have been produced in GaAs by implantation of either Mg or Be ions, with substrate at room temperature, followed by annealing at higher temperatures.

  6. The effect of germanium ion implantation dose on the amorphization and recrystallization of polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Komem, Y.; Hall, I. W.

    1981-11-01

    Polycrystalline Si films have been amorphized by implantation with 130-keV Ge ions and subsequently recrystallized by conventional heat treatment. It is found that, after amorphization with a low ion dose, recrystallization produces a structure which is morphologically similar to the original film. By contrast, after high Ge dose implantation, recrystallization proceeds dendritically. An initial rationale for this behavior is proposed in terms of the lattice disorder introduced by ion implantation.

  7. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul

    2016-12-01

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nm thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.

  8. Plasma Immersion Ion Implantation for Interdigitated Back Passivated Contact (IBPC) Solar Cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Young, Matthew; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul

    2016-11-21

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam-line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures grown on n-Cz wafers with PH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by photoluminescence and SIMS depth profiles. Initial IBPC cell results are presented.

  9. A method of producing very high resistivity surface conduction on ceramic accelerator components using metal ion implantation

    SciTech Connect

    F. Liu; I. Brown; L. Phillips; G. Biallas; T. Siggins

    1997-05-01

    An important technique used for the suppression of surface flashover on high voltage DC ceramic insulators as well as for RF windows is that of providing some surface conduction to bleed off accumulated surface charge. The authors have used metal ion implantation to modify the surface of high voltage ceramic vacuum insulators to provide a uniform surface resistivity of approximately 5 x 10{sup 10} Q{sup 2}. A vacuum arc ion source based implanter was used to implant Pt at an energy of about 135 MeV to doses of up to more than 5 x 10{sup 16} ions cm{sup 2} into small ceramic test coupons and also into the inside surface of several ceramic accelerator columns 25 cm I. D. by 28 cm long. Here they describe the experimental set-up used to do the ion implantation and summarize the results of their exploratory work on implantation into test coupons as well as the implantations of the actual ceramic columns.

  10. Dislocation-related photoluminescence in silicon implanted with fluorine ions

    NASA Astrophysics Data System (ADS)

    Sobolev, N. A.; Kalyadin, A. E.; Sakharov, V. I.; Serenkov, I. T.; Shek, E. I.; Karabeshkin, K. V.; Karasev, P. A.; Titov, A. I.

    2017-01-01

    The implantation of 85-keV fluorine ions at a dose of 8.3 × 1014 cm-2 into single crystal Si does not lead to formation of an amorphous layer. Subsequent annealing at a temperature of 1100°C in a chlorine-containing atmosphere is accompanied by the appearance of D1 and D2 lines of dislocation-related luminescence. The intensity of both lines decreases as the annealing duration is increased from 0.25 to 3 h. As the measurement temperature is increased from 80 to 200 K, the intensities of these lines decrease and the positions of their peaks shift to longer wavelengths.

  11. Ion Implantation in III-V Compound Semiconductors

    DTIC Science & Technology

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  12. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  13. Laser Annealing of Ion Implanted HgCdTe.

    DTIC Science & Technology

    1984-10-22

    Van der Pauw measurements were performed to obtain a rough idea of the conductivity and carried...result of the implantation, 6o that the properties of the isolated top layer can be directly determined. All Van der Pauw measurements were 0- carried...are evident. 3b. Fl ectrical (i) Van der Pauw measurements The results of conductivity measurements bythe Van der Pauw technique have 13) already

  14. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    SciTech Connect

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-07

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  15. Permeability control of GPC drug delivery by ion implantation

    SciTech Connect

    Zimmerman, R.L. |; Ila, D.; Poker, D.B.; Withrow, S.P.

    1997-02-01

    MeV Ion beams are used to tailor the drug delivery rate of materials with dual usage of prosthesis devices and drug encapsulation. Available surface porosity and diffusivity can be controlled by the choice of specie, fluence and energy of the bombarding ions. Together with appropriate drug concentration gradients within the capsule, the capsule can be made to deliver an initial dose rate either higher or lower than the steady state value for a predetermined time. The exceptional biocompatibility as well as porosity of glassy polymeric carbon (GPC) make it the favored material for drug encapsulation. A wide range of available porosity in the bulk material can be produced by heat treatment. We demonstrate that lithium diffusivity near the surface of GPC can be increased by carbon, oxygen or silicon ion bombardment and can be decreased by gold ion bombardment. In addition enhanced absorption of lithium in a layer near the end of the range of the implanted ions has been observed. {copyright} {ital 1997 American Institute of Physics.}

  16. Turning an organic semiconductor into a low-resistance material by ion implantation.

    PubMed

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-12-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.

  17. Turning an organic semiconductor into a low-resistance material by ion implantation

    PubMed Central

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-01-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance. PMID:27877850

  18. Accuracy of implant impression splinted techniques: effect of splinting material.

    PubMed

    Assif, D; Nissan, J; Varsano, I; Singer, A

    1999-01-01

    Three implant impression techniques, using 3 different splinting materials, were assessed for accuracy in a laboratory model that simulated clinical practice. For group A, an autopolymerizing acrylic resin was used to splint transfer copings. In group B, a dual-cure acrylic resin was used, and for group C, plaster, which was also the impression material, was used. A metal implant master cast with an implant master framework was made to accurately fit to the cast. This cast was the standard for all impressions. For each group, 15 impressions were made. Polyether impression material was used for groups A and B. The accuracy of the stone casts with the implant analogues was measured against the master framework, using strain gauges. A multiple analysis of variance with repeated measures was performed to test for significant differences among the 3 groups. Additional analyses of variance were carried out to locate the source of difference. The statistical analyses revealed that a significant difference existed between groups A and B and between groups B and C but not between groups A and C. Impression techniques using autopolymerizing acrylic resin or impression plaster as a splinting material were significantly more accurate than dual-cure acrylic resin. Plaster is the material of choice in completely edentulous patients, since it is much easier to manipulate, less time consuming, and less expensive.

  19. Fabrication of ultra-thin diamond films using hydrogen implantation and Lift-off technique

    NASA Astrophysics Data System (ADS)

    Popov, V. P.; Antonov, V. A.; Safronov, L. N.; Kupriyanov, I. N.; Pal'yanov, Yu. N.; Rubanov, S.

    2012-11-01

    The Lift-off technique based on high fluence (>3×1016cm-2) implantation of hydrogen (H-) ions has been developed to increase the structural quality and electro-optical properties of the diamond thin membranes. According to the XTEM study the Vacuum Pressure - High Temperature (VPHT) treatment of the H2+ implanted (111) diamond plates at 1200-1600°C and 10-3Pa forms buried glassy like graphite layers in the implanted areas. High Pressure - High Temperature (HPHT) annealing at the same temperatures but under the pressure 4-8 GPa leads to the epitaxial growth of graphite in the buried implanted layers, which could not be etched chemically, but could be easily removed by etching in the anodic cell. Visible light Raman spectroscopy has shown that the H-Lift-off technique is suitable for formation of ultra-thin (down to 30 nm) high quality single crystal diamond membranes and heterostructures. High concentration of nitrogen-vacancy NV- centres (˜1020cm-3) was observed under graphite contacts in thin layer (≤100 nm). Thin, 30 nm single crystal diamond films are the thinnest and largest area single crystal diamond structure produced to date by the Lift-off technique.

  20. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  1. Ion-implanted high microwave power indium phosphide transistors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Messick, Louis J.; Nguyen, Richard

    1989-01-01

    Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of InP power MISFETs with ion-implanted source, drain, and active-channel regions. The MISFETs had a gate length of 1.4 microns. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 microns, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using Si implants in InP at energies from 60 to 360 keV with doses of (1-560) x 10 to the 12th/sq cm. The implants were activated using RTA at 700 C for 30 sec in N2 or H2 ambients using an Si3N4 encapsulant. The high-power high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29 percent and output power density 70 percent greater than that of GaAs MESFETs.

  2. Ion Implant Technology for Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Olea, Javier; Pastor, David; Luque, María Toledano; Mártil, Ignacio; Díaz, Germán González

    This chapter describes the creation of an Intermediate Band (IB) on single crystal silicon substrates by means of high-dose Ti implantation and subsequent Pulsed Laser Melting (PLM). The Ti concentration over the Mott limit is confirmed by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) measurements and the recovery of the crystallinity after annealing by means of Glancing Incidence X Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM). Rutherford Backscattering Spectroscopy (RBS) measurements show that most of the atoms are located interstitially. Analysis of the sheet resistance and mobility measured using the van der Pauw geometry shows a temperature-dependent decoupling between the implanted layer and the substrate. This decoupling and the high laminated conductivity of the implanted layer could not be explained except if we assume that an IB has been formed in the semiconductor. A specific model for the bilayer electrical behaviour has been developed. The fitting of this model and also the simulation of the sheet resistance with the ATLAS code allow to determine that the IB energetic position is located around 0.36-0.38 eV below the conduction band. Carriers at the IB have a density very similar to the Ti concentration and behave as holes with mobilities as low as 0.4 cm2 Vs- 1.

  3. Detection of changes in DNA methylation induced by low-energy ion implantation in Arabidopsis thaliana.

    PubMed

    Yu, Haichan; Zhao, Jin; Xu, Jing; Li, Xiaoqu; Zhang, Fengshou; Wang, Yugang; Carr, Christopher; Zhang, Jun; Zhang, Genfa

    2011-05-01

    This study evaluated changes in DNA methylation in Arabidopsis thaliana plants grown from seeds implanted with low-energy N(+) and Ar(+) ions. Methylation-sensitive amplified polymorphism (MSAP) testing revealed altered DNA methylation patterns after ion implantation at doses of 1 × 10(14) to 1 × 10(16) ions/cm(2). Comparison of the MSAP electrophoretic profiles revealed nine types of polymorphisms in ion-implanted seedlings relative to control seedlings, among which four represented methylation events, three represented demethylation events, and the methylation status of two was uncertain. The diversity of plant DNA methylation was increased by low-energy ion implantation. At the same time, total genomic DNA methylation levels at CCGG sites were unchanged by ion implantation. Moreover, a comparison of polymorphisms seen in N(+) ion-implanted, Ar(+) ion-implanted, and control DNA demonstrated that the species of incident ion influenced the resulting DNA methylation pattern. Sequencing of eight isolated fragments that showed different changing patterns in implanted plants allowed their mapping onto variable regions on one or more of the five Arabidopsis chromosomes; these segments included protein-coding genes, transposon and repeat DNA sequence. A further sodium bisulfite sequencing of three fragments also displayed alterations in methylation among either different types or doses of incident ions. Possible causes for the changes in methylation are discussed.

  4. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  5. In-Plane Grain Orientation Alignment of Polycrystalline Silicon Films by Normal and Oblique-Angle Ion Implantations

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Kuroki, Shin-Ichiro; Fujii, Shuntaro; Ito, Takashi

    2012-04-01

    Random crystallographic orientations of polycrystalline silicon (poly-Si) grains in the films grown on a SiO2 substrate by chemical vapor deposition were laterally aligned by maintaining the 110 restricted pillar texture through double Si+ self-ion implantations. The in-plane X-ray diffraction pattern and rocking curve clearly indicate the lateral alignment. The oblique-angle Si+ self-ion implantation was also found to be useful for increasing the amount of the 110 pillar texture. The electron backscatter diffraction (EBSD) pattern supports the increase in the amount of the 110 pillar texture and the lateral crystal orientation alignment. The transmission electron micrography and EBSD results also suggest that grain size is increased by double Si+ self-ion implantations. Although further systematic optimization may be required, the technique will be useful for improving the electrical characteristics of poly-Si devices for future electronic systems on insulators.

  6. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chenyao; Jiao, Jiao; Chen, Qunxia; Xia, Ji; Li, Shuoqi; Hu, Jingbo; Li, Qilong

    2010-12-01

    A new type of gold nanoparticle attached to a NH2+ ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 × 10 15 ions/cm 2. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH2+ ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  7. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  8. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  9. Ion Beam Analysis Techniques in Interdisciplinary Applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-12-31

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  10. [Preliminary study on molecular mechanism of lotus mutants induced by ion implantation].

    PubMed

    Deng, Chuan-Liang; Jia, Yan-Yan; Ren, Ying-Xue; Gao, Wu-Jun; Zhang, Tao; Li, Peng-Fei; Lu, Long-Dou

    2011-01-01

    Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for horticultural plant breeding. Up to date, little is known about the mutation mechanism of ion implantation at the DNA level. To reveal the mutation effect of Fe+ ion implantation on Baiyangdian red lotus, the random amplified polymorphic DNA (RAPD) was used, and then the bands of mutants and the control in the radiation-sensitive sites were cloned to be sequenced for comparing their DNA sequences. The results indicated that the total base mutation rate of mutants was 0.87%, and there was different in the six mutants. The types of base changes included base transition, transversion, deletion, and insertion. Among the 159 base changes detected, the frequency of single base substitutions (61.01%) was higher than that of base deletions and insertions (38.99%), and the frequency of base transitions (44.65%) was 2.7 times of that of the base transversions (16.35%). The transitions between C and T accounted for largest proportion, A→G transitions and A→T transversions were also present at high frequency. Adenine, thymine, guanine or cytosine could be replaced by any of other three bases, except that there was no C → G substitution. However, thymine was more sensitive to the irradiation than other bases. In our study, we found many purine bases around the purine mutational sites, and many pyrimidine bases around the pyrimidine mutational sites. These will further help us to understand the mechanism of mutagenesis by ion implantation.

  11. Intraoral Digital Impressioning for Dental Implant Restorations Versus Traditional Implant Impression Techniques.

    PubMed

    Wilk, Brian L

    2015-01-01

    Over the course of the past two to three decades, intraoral digital impression systems have gained acceptance due to high accuracy and ease of use as they have been incorporated into the fabrication of dental implant restorations. The use of intraoral digital impressions enables the clinician to produce accurate restorations without the unpleasant aspects of traditional impression materials and techniques. This article discusses the various types of digital impression systems and their accuracy compared to traditional impression techniques. The cost, time, and patient satisfaction components of both techniques will also be reviewed.

  12. Nondestructive evaluation of as-implanted and annealed ultra shallow junctions by photothermal and photoluminescence heterodyne techniques

    NASA Astrophysics Data System (ADS)

    Geiler, H. D.; Karge, H.; Wagner, M.; Lerch, W.; Paul, S.

    2005-08-01

    The control of implantation dose, ion energy and the junction depth after annealing are key points of the on-line metrology for ultra shallow junction fabrication. Nondestructive and non-contact optical methods are examined with respect to their applicability for related tasks. High sensitive low noise photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH) techniques are applied to control implant parameters of 0.5 keV B+ - implants both immediately after implantation and after spike annealing. The photothermal response shows that beside dose and energy dependencies monitored after implantation the spike annealing results in a layer with reduced carrier lifetime and mobility. By photoluminescence response the existence of an impurity band and the correlation with the p-n-junction depth is demonstrated by measuring the response of carrier dynamics.

  13. Ion-implantation and analysis for doped silicon slot waveguides

    NASA Astrophysics Data System (ADS)

    Deam, L.; Stavrias, N.; Lee, K. K.; McCallum, J. C.

    2012-10-01

    We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL) and Rutherford backscattering spectrometry (RBS) to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  14. Sheath overlap during very large scale plasma source ion implantation

    NASA Astrophysics Data System (ADS)

    Cluggish, B. P.; Munson, C. P.

    1998-12-01

    Measurements of plasma source ion implantation have been performed on a large target of complex geometry. The target consists of 1000 aluminum, automotive piston surrogates mounted on four racks; total surface area is over 16 m2. The four racks are positioned parallel to each other, 0.25 m apart, in an 8 m3 vacuum chamber. The racks of pistons are immersed in a capacitive radio frequency plasma, with an argon gas pressure of 20-65 mPa. Langmuir probe measurements indicate that the plasma density profile is highly nonuniform, due to particle losses to the racks of pistons. The plasma ions are implanted into the pistons by pulse biasing the workpiece to negative voltages as low as -18 kV for up to 20 μs. During the voltage pulse, the high-voltage sheaths from adjacent racks of pistons converge towards each other. At plasma densities less than 109 cm-3 the sheaths are observed to overlap. Measurements of the sheath overlap time are compared with standard analytic theory and with simulations run with a two-dimensional particle-in-cell code.

  15. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine

  16. Atomistic modeling of ion implantation technologies in silicon

    NASA Astrophysics Data System (ADS)

    Marqués, Luis A.; Santos, Iván; Pelaz, Lourdes; López, Pedro; Aboy, María

    2015-06-01

    Requirements for the manufacturing of electronic devices at the nanometric scale are becoming more and more demanding on each new technology node, driving the need for the fabrication of ultra-shallow junctions and finFET structures. Main implantation strategies, cluster and cold implants, are aimed to reduce the amount of end-of-range defects through substrate amorphization. During finFET doping the device body gets amorphized, and its regrowth is more problematic than in the case of conventional planar devices. Consequently, there is a renewed interest on the modeling of amorphization and recrystallization in the front-end processing of Si. We present multi-scale simulation schemes to model amorphization and recrystallization in Si from an atomistic perspective. Models are able to correctly predict damage formation, accumulation and regrowth, both in the ballistic and thermal-spike regimes, in very good agreement with conventional molecular dynamics techniques but at a much lower computational cost.

  17. Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation

    SciTech Connect

    Shcherbachev, K. D. Voronova, M. I.; Bublik, V. T.; Mordkovich, V. N. Pazhin, D. M.; Zinenko, V. I.; Agafonov, Yu. A.

    2013-12-15

    The influence of the implantation of silicon single crystals by fluorine, nitrogen, oxygen, and neon ions on the distribution of strain and the static Debye-Waller factor in the crystal lattice over the implanted-layer depth has been investigated by high-resolution X-ray diffraction. The density depth distribution in the surface layer of native oxide has been measured by X-ray reflectometry. Room-temperature implantation conditions have ensured the equality of the suggested ranges of ions of different masses and the energies transferred by them to the target. It is convincingly shown that the change in the structural parameters of the radiation-damaged silicon layer and the native oxide layer depend on the chemical activity of the implanted ions.

  18. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  19. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  20. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  1. Nitrogen Plasma Ion Implantation of Al and Ti alloys in the High Voltage Glow Discharge Mode

    NASA Astrophysics Data System (ADS)

    Oliveira, R. M.; Ueda, M.; Rossi, J. O.; Reuther, H.; Lepienski, C. M.; Beloto, A. F.

    2006-11-01

    Enhanced surface properties can be attained for aluminum and its alloys (mechanical and tribological) and Ti6Al4V (mainly tribological) by Plasma Immersion Ion Implantation (PIII) technique. The main problem here, more severe for Al case, is the rapid oxygen contamination even in low O partial pressure. High energy nitrogen ions during PIII are demanded for this situation, in order to enable the ions to pass through the formed oxide layer. We have developed a PIII system that can operate at energies in excess of 50keV, using a Stacked Blumlein (SB) pulser which can nominally provide up to 100 kV pulses. Initially, we are using this system in the High Voltage Glow Discharge (HVGD) mode, to implant nitrogen ions into Al5052 alloy with energies in the range of 30 to 50keV, with 1.5μs duration pulses at a repetition rate of 100Hz. AES, pin-on-disc, nanoindentation measurements are under way but x-ray diffraction results already indicated abundant formation of AlN in the surface for Al5052 treated with this HVGD mode. Our major aim in this PIII experiment is to achieve this difficult to produce stable and highly reliable AlN rich surface layer with high hardness, high corrosion resistance and very low wear rate.

  2. Nitrogen Plasma Ion Implantation of Al and Ti alloys in the High Voltage Glow Discharge Mode

    SciTech Connect

    Oliveira, R. M.; Ueda, M.; Rossi, J. O.; Reuther, H.; Lepienski, C. M.; Beloto, A. F.

    2006-11-13

    Enhanced surface properties can be attained for aluminum and its alloys (mechanical and tribological) and Ti6Al4V (mainly tribological) by Plasma Immersion Ion Implantation (PIII) technique. The main problem here, more severe for Al case, is the rapid oxygen contamination even in low O partial pressure. High energy nitrogen ions during PIII are demanded for this situation, in order to enable the ions to pass through the formed oxide layer. We have developed a PIII system that can operate at energies in excess of 50keV, using a Stacked Blumlein (SB) pulser which can nominally provide up to 100 kV pulses. Initially, we are using this system in the High Voltage Glow Discharge (HVGD) mode, to implant nitrogen ions into Al5052 alloy with energies in the range of 30 to 50keV, with 1.5{mu}s duration pulses at a repetition rate of 100Hz. AES, pin-on-disc, nanoindentation measurements are under way but x-ray diffraction results already indicated abundant formation of AlN in the surface for Al5052 treated with this HVGD mode. Our major aim in this PIII experiment is to achieve this difficult to produce stable and highly reliable AlN rich surface layer with high hardness, high corrosion resistance and very low wear rate.

  3. Ahmed glaucoma valve implant: surgical technique and complications

    PubMed Central

    Riva, Ivano; Roberti, Gloria; Oddone, Francesco; Konstas, Anastasios GP; Quaranta, Luciano

    2017-01-01

    Implantation of Ahmed glaucoma valve is an effective surgical technique to reduce intraocular pressure in patients affected with glaucoma. While in the past, the use of this device was reserved to glaucoma refractory to multiple filtration surgical procedures, up-to-date mounting experience has encouraged its use also as a primary surgery for selected cases. Implantation of Ahmed glaucoma valve can be challenging for the surgeon, especially in patients who already underwent previous multiple surgeries. Several tips have to be acquired by the surgeon, and a long learning curve is always needed. Although the valve mechanism embedded in the Ahmed glaucoma valve decreases the risk of postoperative hypotony-related complications, it does not avoid the need of a careful follow-up. Complications related to this type of surgery include early and late postoperative hypotony, excessive capsule fibrosis around the plate, erosion of the tube or plate edge, and very rarely infection. The aim of this review is to describe surgical technique for Ahmed glaucoma valve implantation and to report related complications. PMID:28255226

  4. Formation of Nanometallic Clusters in Silica by Ion Implantation

    SciTech Connect

    Ila, D., Sarkisov, S., Williams, E.K. , Smith, C.C. , Poker, D.B., Hensley, D.K.

    1997-10-01

    We have changed both linear and nonlinear optical properties of suprasil-1 by implanting 2.0 MeV copper, 350 keV tin, 1.5 MeV silver and 3.0 MeV gold.These changes were induced both by over implantation above the threshold fluence for spontaneous cluster formation and by subsequent thermal annealing,and are due to an increase in resonance optical absorption as well as an enhancement of the nonlinear optical properties. Using optical absorption spectrophotometry and Rutherford Backscattering spectrometry, we have measured the cluster size for each heat treatment temperature. Using Z-scan technique we have determined the third order electric susceptibility for each implanted species to be 1.5 x 10(exp -6) esu for Sn nanoclusters, 2.7 x 10(exp -6) esu for Cu nanoclusters, 5 x 10(exp -7) esu for Ag nanoclusters, to 6.5 x 10(exp-7) esu for Au nanoclusters in suprasil- 1.

  5. New computer control system for the high current ion implanter PR-80

    NASA Astrophysics Data System (ADS)

    Sunouchi, T.; Sasaki, M.; Sato, S.; Harada, M.

    1989-02-01

    For a current semiconductor fabrication line, an ion implanter should have the versatility to handle different types of process menus and it should be FA compatible. An optical loopway linked microprocessor control system has been developed for our high current ion implanter. The system is compatible with SECS-II, and its preventive maintenance program is a powerful tool for efficient operation of the implanter.

  6. Evaluation of master cast techniques for multiple abutment implant prostheses.

    PubMed

    Vigolo, P; Millstein, P L

    1993-01-01

    This study compared the accuracy of three techniques used to fabricate master casts for implant prostheses. A metal model with six implants and standard abutments and a matching template were fabricated. Impressions of the model were made in Impregum and cast in Die Keen. The casts were divided into three groups of 15 casts: group A--solid casts; group B--Pindex; and group C--Zeiser system. Each cast was visually evaluated for fit of the template. Positional accuracy of the abutments was numerically assessed using an optical comparator. Visual analysis showed that only casts sectioned with the Zeiser system allowed a passive fit of the template. Statistical analysis of numerical findings indicated that casts made with the Zeiser system were significantly more accurate than solid casts, which in turn were more accurate than those made with the Pindex system.

  7. Low-temperature epitaxial growth of β-SiC by multiple-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Z. J.; Naramoto, H.; Miyashita, A.; Stritzker, B.; Lindner, J. K. N.

    1998-11-01

    A cubic silicon carbide (β-SiC) buried layer was synthesized in Si(111) using a combination of multienergy carbon ion implantation at room temperature and post-thermal annealing. The crystal structure and the crystalline quality of the β-SiC layer was identified by x-ray diffraction in the θ-2θ mode and was examined by pole figure measurement of x-ray diffraction. Interestingly, by using the multienergy implantation technique, the β-SiC buried layer showed epitaxial growth at annealing temperatures as low as 400 °C. At an annealing temperature of 800 °C, the x-ray pole figures show that the β-SiC buried layer has a near-perfect epitaxial relationship with the silicon substrate.

  8. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Bilińiski, A; Lewandowska-Szumieł, M D; Rajchel, B

    2001-08-01

    This work presents data on the structure and corrosion resistance of titanium after calcium-ion implantation with a dose of 10(17) Ca+/cm2. The ion energy was 25 keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells (HDBC) in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both calcium-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by TEM results, the surface layer formed during calcium-ion implantation was amorphous. The results of electrochemical examinations indicate that calcium-ion implantation increases the corrosion resistance, but only under stationary conditions; during anodic polarization the calcium-ion-implanted samples undergo pitting corrosion. The breakdown potential is high (2.7-3 V).

  9. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.

  10. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    SciTech Connect

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-10-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO{sub 3} crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO{sub 3} sample produced at five times less fluence is on average two times greater than that of the reference.

  11. Optical waveguides in TiO₂ formed by He ion implantation.

    PubMed

    Bi, Zhuan-Fang; Wang, Lei; Liu, Xiu-Hong; Zhang, Shao-Mei; Dong, Ming-Ming; Zhao, Quan-Zhong; Wu, Xiang-Long; Wang, Ke-Ming

    2012-03-12

    We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO₂ crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO₂ are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 10¹⁶ ions/cm² and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 10¹⁶ ions/cm² at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.

  12. Processing of silicon solar cells by ion implantation and laser annealing

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.; Greenwald, A. C.

    1981-01-01

    Methods to improve the radiation tolerance of silicon cells for spacecraft use are described. The major emphasis of the program was to reduce the process-induced carbon and oxygen impurities in the junction and base regions of the solar cell, and to measure the effect of reduced impurity levels on the radiation tolerance of cells. Substrates of 0.1, 1.0 and 10.0 ohm-cm float-zone material were used as starting material in the process sequence. High-dose, low-energy ion implantation was used to form the junction in n+p structures. Implant annealing was performed by conventional furnace techniques and by pulsed laser and pulsed electron beam annealing. Cells were tested for radiation tolerance at Spire and NASA-LeRC. After irradiation by 1 MeV electrons to a fluence of 10 to the 16th power per sq cm, the cells tested at Spire showed no significant process induced variations in radiation tolerance. However, for cells tested at Lewis to a fluence of 10 to the 15th power per sq cm, ion-implanted cells annealed in vacuum by pulsed electron beam consistently showed the best radiation tolerance for all cell resistivities.

  13. Diluted magnetic semiconductors formed by an ion implantation and pulsed-laser melting

    SciTech Connect

    Scarpulla, M.A.; Daud, U.; Yu, K.M.; Monteiro, O.; Liliental-Weber; Zakharov, D.; Walukiewicz, W.; Dubon, O.D.

    2003-07-23

    Using ion implantation followed by pulsed-laser melting (PLM), we have synthesized ferromagnetic films of Ga{sub 1-x}Mn{sub x}As. Ion-channeling experiments reveal that these films are single crystalline and have high Mn substitutionality while variable temperature resistivity measurements reveal the strong Mn-hole interactions characteristic of carrier-mediated ferromagnetism in homogeneous DMS's. We have observed Curie temperatures (T{sub C}'s) of approximately 80 K for films with substitutional Mn concentrations of x=0.04. The use of n-type counter doping as a means of increasing Mn substitutionality and T{sub c} is explored by co-implantation of Mn and Te into GaAs. In Ga{sub 1-x}Mn{sub x}P samples synthesized using our technique, the implanted layer regrows as an epitaxial single crystal capped by a highly defective surface layer. These samples display ferromagnetism with T{sub c} {approx} 23 K.

  14. Ion implantation of erbium into polycrystalline cadmium telluride

    SciTech Connect

    Ushakov, V. V. Klevkov, Yu. V.; Dravin, V. A.

    2015-05-15

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries.

  15. Intravascular brachytherapy with radioactive stents produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  16. Effectiveness of ion implantation of iron garnet films

    SciTech Connect

    Tikhonov, A.N.; Fedichkin, G.M.; Yurchenko, S.E.; Suslin, L.A.; Smirnov, I.S.; Shlenov, Yu.V.

    1986-01-01

    The authors seek to determine experimentally what changes of the magnetic bubble properties and of the iron garnet film characteristics resulting from implantation of Ne/sup +/ ions can be used as criteria for assessing the effectiveness of this process in the production of bubble devices. For the experiments, the authors used (YBi)/sub 3/(FeGa)/sub 5/O/sub 12/; (TmBi)/sub 3/(FeGa)/sub 5/O/sub 12/; and (YSmLuCa)/sub 3/(FeGe)/sub 5/O/sub 12/. The orientation of the Gd/sub 3/Ga/sub 5/O/sub 12/ substrate is (111) in all cases. The current density of the H/sup +/ proton beam did not exceed 0.5 micro-A/cm/sup 2/.

  17. High energy heavy ions: techniques and applications

    SciTech Connect

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 ..mu..sec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab.

  18. Analysis of ion-implanted surface and interface structures by computer-simulated backscattering spectra

    NASA Astrophysics Data System (ADS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Kawamoto, J.; Ohsawa, H.

    1985-10-01

    Computer codes for synthesizing random and channeling backscattering spectra have been elaborated to characterize the surface and interface structures formed or modified by ion implantation. Both effects of isotopes and energy fluctuation are taken into account in the spectrum simulation. This backscattering measurement combined with the simulation method is applied to characterization of the N(+)-implanted Al films and to quantitative analysis of chemical reaction and interdiffusion induced by ion-beam mixing. An ion-beam-induced damage profile and its epitaxial recovery of crystallinity are analyzed by the simulation of channeling spectra from ion-implanted Al2O3 substrates.

  19. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  20. Decrease in work function of boron ion-implanted ZnO thin films.

    PubMed

    Heo, Gi-Seok; Hong, Sang-Jin; Park, Jong-Woon; Choi, Bum-Ho; Lee, Jong-Ho; Shin, Dong-Chan

    2007-11-01

    We have fabricated boron ion-implanted ZnO thin films by ion implantation into sputtered ZnO thin films on a glass substrate. An investigation of the effects of ion doses and activation time on the electrical and optical properties of the films has been made. The electrical sheet resistance and resistivity of the implanted films are observed to increase with increasing rapid thermal annealing (RTA) time, while decreasing as the ion dose increases. Without any RTA process, the variation of the carrier density is insensitive to the ion dose. With the RTA process, however, the carrier density of the implanted films increases and approaches that of the un-implanted ZnO film as the ion dose increases. On the other hand, the carrier mobility is shown to decrease with increasing ion doses when no RTA process is applied. With the RTA process, however, there is almost no change in the mobility. We have achieved the optical transmittance as high as 87% within the visible wavelength range up to 800 nm. It is also demonstrated that the work function can be engineered by changing the ion dose during the ion implantation process. We have found that the work function decreases as the ion dose increases.

  1. Study on the growth and the photosynthetic characteristics of low energy C(+) ion implantation on peanut.

    PubMed

    Han, Yuguo; Xu, Lei; Yang, Peiling; Ren, Shumei

    2013-01-01

    Employing the Nonghua 5 peanut as experimental material, the effects of low energy C(+) ion implantation on caulis height, root length, dry weight, photosynthetic characteristics and leaf water use efficiency (WUE) of Peanut Ml Generation were studied. Four fluences were observed in the experiment. The results showed that ion implantation harmed the peanut seeds because caulis height, root length and dry weight all were lower in the treatments than in CK, and the harm was aggravated with the increase of ion fluence. Both Pn and Tr show a saddle-shape curve due to midday depression of photosynthesis. Low fluence of low energy C(+) ion implantation could increase the diurnal average Pn of peanut. The diurnal variation of Tr did not change as significantly as Pn. The light saturation point (LSP) was restrained by the ions. After low energy C(+) ion implantation, WUE was enhanced. When the fluence increased to a certain level, the WUE began to decrease.

  2. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    NASA Astrophysics Data System (ADS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  3. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  4. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  5. Ion Profiling of Implanted Dopants in Si (001) with Excess Vacancy Concentration

    SciTech Connect

    Dalponte, M.; Boudinov, H.; Goncharova, L. V.; Feng, T.; Garfunkel, E.; Gustafsson, T.

    2007-09-26

    Medium energy ion scattering (MEIS) was used to study the distribution of ion-implanted As and Sb dopants in Si with excess vacancies and SIMOX substrates as well as the effects of thermal treatments. Extra vacancies in Si were generated by N or O pre-implantation at high temperatures. Under these conditions, effects related to the different chemical nature of the pre-implanted species are expected. The annealing behavior and depth distribution of the Sb atoms differed for O compared to N pre-implanted Si. After long annealing times, the oxygen containing samples (SIMOX and O pre-implanted Si) presented higher substitutionality. The nitrogen pre-implanted Si presented the lowest amount of segregated Sb and a more uniform dopant distribution. For both N and O pre-implanted samples a large dopant loss to the atmosphere during annealing was observed.

  6. Metal plasma immersion ion implantation and deposition (MePIIID) on screw-shaped titanium implant: The effects of ion source, ion dose and acceleration voltage on surface chemistry and morphology.

    PubMed

    Kang, Byung-Soo; Sul, Young-Taeg; Jeong, Yongsoo; Byon, Eungsun; Kim, Jong-Kuk; Cho, Suyeon; Oh, Se-Jung; Albrektsson, Tomas

    2011-07-01

    The present study investigated the effect of metal plasma immersion ion implantation and deposition (MePIIID) process parameters, i.e., plasma sources of magnesium and calcium, ion dose, and acceleration voltage on the surface chemistry and morphology of screw-type titanium implants that have been most widely used for osseointegrated implants. It is found that irrespective of plasma ion source, surface topography and roughness showed no differences at the nanometer level; that atom concentrations increased with ion dose but decreased with acceleration voltage. Data obtained from X-ray photoelectron spectroscopy and auger electron spectroscopy suggested that MePIIID process produces 'intermixed' layer of cathodic arc deposition and plasma immersion ion implantation. The MePIIID process may create desired bioactive surface chemistry of dental and orthopaedic implants by tailoring ion and plasma sources and thus enable investigations of the effect of the surface chemistry on bone response.

  7. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10/sup 14/ 350 keV Ar/cm/sup 2/ + 1 x 10/sup 15/ 500 keV Ne/cm/sup 2/ is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity.

  8. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    PubMed

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis.

  9. Wear resistance of highly cross-linked and remelted polyethylenes after ion implantation and accelerated ageing.

    PubMed

    Medel, F J; Puértolas, J A

    2008-08-01

    Ion implantation may provide medical polyethylenes with excellent mechanical and tribological properties, helping to lower the risk of long-term osteolysis. Highly crosslinked and remelted polyethylenes, materials currently used as soft components in artificial joints, were implanted with N+ and He+ ions at different ion fluences. The mechanical and tribological properties under distilled water lubrication at body temperature were assessed after ion implantation by means of microhardness and pin-on-disc tests respectively. Thus, the influences of the ionic species and implantation dose on surface hardness, friction coefficient, and wear factor were fully characterized. Furthermore, the tribological behaviour was evaluated after an accelerated ageing protocol (120 degrees C for 36h). Ion implantation increased the surface hardness, as well as friction coefficients, and decreased the wear factors especially at the highest doses. Also, even though all artificially aged materials showed a worse wear behaviour, polyethylenes implanted with either N+ or He+ at the highest doses maintained a relatively good wear factor in comparison with the aged non-implanted material. The origins of these modifications are discussed according to the effects of ion implantation on the microstructure of the polymer.

  10. P-Type Zno:. as Obtained by Ion Implantation of AS+ with Post-Implantation Annealing in Oxygen Radicals

    NASA Astrophysics Data System (ADS)

    Georgobiani, A. N.; Demin, V. I.; Kotlyarevsky, M. B.; Rogozin, I. V.; Marakhovsky, A. V.

    2004-07-01

    Zinc oxide is the promising material for creation of the new generation of detectors for particle physics and radiation dosimetry. It has been shown that ion implantation of arsenic into zinc oxide film (arsenic is an acceptor impurity in ZnO) can result in formation of the p-type conductivity only in case of annealing in the flux of atomic oxygen. The ion implantation and the following annealing had influenced not only electrical properties of ZnO:As+ layers, but also their photoluminescence spectra. The ultraviolet luminescence band with the maximum at 3.33. eV corresponding to the AsO acceptor center had been clearly observed in the spectra of ZnO films implanted by As+ ions. The optimal temperature range of annealing in the atomic oxygen flux, required for obtaining of p-type conductivity in ZnO films, had been determined.

  11. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  12. Hydrogen-induced defects in ion-implanted Si

    NASA Astrophysics Data System (ADS)

    Socher, S.; Lavrov, E. V.; Weber, J.

    2012-09-01

    Single crystalline silicon implanted with 28Si ions and subsequently hydrogenated from an rf plasma at 200∘C is studied by Raman and photoluminescence spectroscopy. A broad Raman band at 3830 cm-1 previously assigned to the rovibrational transitions of hydrogen molecules trapped in Si multivacancies [Ishioka , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.60.10852 60, 10852 (1999)] reveals a complex line shape at 60 K. In contrast, our study correlates the Raman band to three different localized traps for hydrogen molecules which are identified from the dependence on the ion dose and annealing behavior. Each of these traps, which is saturated with H2, gives rise to three Raman transitions due to para- and ortho-H2. The H2 signals are shown to correlate with the Si-H vibrational modes at 1888, 1930, and 1964 cm-1. Ortho to para conversion rates of H2 at 77 K and room temperature were found to be 62±15 and 8±2 h, respectively.

  13. Flowing damage in ion-implanted amorphous silicon

    SciTech Connect

    Pothier, Jean-Christophe; Schiettekatte, Francois; Lewis, Laurent J.

    2011-06-15

    Using molecular-dynamics simulations, we have studied the creation and evolution of damage in crystalline and amorphous silicon following the implantation of energetic keV ions. A method is proposed to identify anomalous atoms based on a weighted combination of local, atomic-scale properties, which applies to both Si phases. For crystalline Si, the passage of the ions causes compact amorphous regions to form, while no evidence for melting is observed. The relaxation of the amorphouslike regions proceeds initially by the rapid recrystallization of smaller clusters and isolated atoms, followed by a long period of steplike changes in the number of defects due to spontaneous annealing of damage pockets at the crystalline-amorphous interface. In amorphous Si, the initial stage of damage annealing (which lasts a few picoseconds) resembles closely that observed in crystalline Si; on larger time scales, however, the damage is found to ''percolate,'' or flow, through the system, inducing damage away from the collision cascade, thus causing an overall ''derelaxation'' of the material.

  14. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold.

    PubMed

    Danscher, Gorm

    2002-05-01

    For some years, the implantation of small pieces of gold has been used as an unauthorised remedy for osteoarthritis and pain. The aim of the present study was to evaluate whether gold ions are released from gold implants. Pieces of pure gold were placed in the connective tissue of skin, bone and brains of anaesthetised animals. Ten days to several months later the animals were anaesthetised and killed by transcardial perfusion. Tissue blocks containing the gold pieces were cut, and the sections were silver-enhanced by autometallography. It was found that gold ions are released from the implanted gold and diffuse out into the surrounding tissue. The gold-containing cells in connective tissues were macrophages, mast cells and fibroblasts. In the brain, gold accumulated in astrocytes and neurons. Proton-induced X-ray emission spectroscopy analysis of the tissue surrounding gold implants confirmed that gold ions are liberated. The findings suggest that the gold implant technique, on a local scale, mimics systemic treatment with a gold-containing drug.

  15. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.

    PubMed

    Kobayashi, Satoshi; Muramatsu, Takehiro; Teranishi, Yoshikazu

    2015-01-01

    Hydroxyapatite (HA) has ability of bone-like apatite formation, which consists with chemical interaction between the surface of HA and ions included in body fluid. Thus, proper surface modification might enhance the function. In the present study, the effect of phosphorous ion implantation on mechanical properties and bioactivity of HA was investigated. In order to clarify the effect of ion implantation dose, ion dose of 1 × 10(12), 1 × 10(13) and 1 × 10(14) ions/cm(2) were selected. Mechanical properties and bioactivity were evaluated in 4-point bending tests and immersion test in simulated body fluid. Bending strength was reduced due to ion implantation. The amount of decreasing strength was similar regardless of ion implantation dose. Bone-like apatite formation was slightly delayed with ion implantation, however, improvement in interfacial strength between bone-like apatite layer and the base HA was indicated. From the results, the possibility of phosphorous ion implantation for enhancement of bioactivity of HA was proved.

  16. Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions

    SciTech Connect

    Qiu Feng; Narusawa, Tadashi; Zheng Jie

    2011-02-10

    Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60 MeV Ar or 20 MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a ''well + barrier'' type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539 nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

  17. Ion Implantation of Perfluoropolyether-Lubricated Surfaces for Improved Tribological Performance

    NASA Technical Reports Server (NTRS)

    Shogrin, Brad

    1998-01-01

    For over 30 years, perfluoropolyethers (PFPE's) have been the liquid lubricants of choice for space applications because of their proven tribological performance and desirable properties, such as low vapor pressure and a wide liquid temperature range. These oils are used in such space mechanisms as gyroscopes, scanning mirrors, actuators, and filter wheels. In the past few years, there have been several incidents during which PFPE-lubricated space mechanisms have shown anomalous behavior. These anomalies are thought to be the result of PFPE degradation. Investigative research focused on understanding and modeling the degradation of PFPE lubricants has shown that PFPE's degrade and lose their desirable properties while under boundary-lubricated, sliding/rolling contacts and at elevated temperatures. These performance deficiencies are strongly dependent on the surface chemistry and reactivity of the lubricated contacts, which dictate the formation of harmful catalytic by-products. One way to inhibit tribo-induced degradation may be to use passivated surfaces that do not promote the formation of harmful by-products. Such a passivated surface would inhibit PFPE degradation and increase the lifetime of the lubricated mechanism. Ion implantation is one such passivation technique. This surface-treatment technique can modify the surface properties of materials without affecting either the properties or dimensions of the bulk material beneath the treated layer. By introducing a foreign species into a submicron surface layer, ion implantation can induce unique surface microstructures.

  18. Intercalation of graphene on SiC(0001) via ion implantation

    NASA Astrophysics Data System (ADS)

    Stöhr, Alexander; Forti, Stiven; Link, Stefan; Zakharov, Alexei A.; Kern, Klaus; Starke, Ulrich; Benia, Hadj M.

    2016-08-01

    Electronic devices based on graphene technology are catching on rapidly and the ability to engineer graphene properties at the nanoscale is becoming, more than ever, indispensable. Here, we present a procedure of graphene functionalization on SiC(0001) that paves the way towards the fabrication of complex graphene electronic chips. The procedure resides on the well-known ion-implantation technique. The efficiency of the working principle is demonstrated by the intercalation of the epitaxial graphene layer on SiC(0001) with Bi atoms, which was not possible following standard procedures. The investigation of the obtained graphene system reveals no clear spin-orbit coupling enhancement expected by theory in addition to the presence of residual structural defects. Our graphene/SiC(0001) intercalation procedure puts forward the ion-beam lithography to nanostructure and functionalize desired graphene chips.

  19. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    PubMed Central

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  20. Nanomechanical and Corrosion Properties of ZK60 Magnesium Alloy Improved by GD Ion Implantation

    NASA Astrophysics Data System (ADS)

    Tao, Xue Wei; Wang, Zhang Zhong; Zhang, Xiao Bo; Ba, Zhi Xin; Wang, Ya Mei

    2014-09-01

    Gadolinium (Gd) ion implantation with doses from 2.5 × 1016 to 1 × 1017 ions/cm2 into ZK60 magnesium alloy was carried out to improve its surface properties. X-ray photoelectron spectroscopy (XPS), nanoindenter, electrochemical workstation and scanning electron microscope (SEM) were applied to analyze the chemical composition, nanomechanical properties and corrosion characteristics of the implanted layer. The results indicate that Gd ion implantation produces a hybrid-structure protective layer composed of MgO, Gd2O3 and metallic Gd in ZK60 magnesium alloy. The surface hardness and modulus of the Gd implanted magnesium alloy are improved by about 300% and 100%, respectively with the dose of 1 × 1017 ions/cm2, while the slowest corrosion rate of the magnesium alloy in 3.5 wt.% NaCl solution is obtained with the dose of 5 × 1016 ions/cm2.

  1. Work function increase of Al-doped ZnO thin films by B+ ion implantation.

    PubMed

    Hong, Sang-Jin; Heo, Gi-Seok; Park, Jong-Woon; Lee, In-Hwan; Choi, Bum-Ho; Lee, Jong-Ho; Park, Se-Yeon; Shin, Dong-Chan

    2007-11-01

    The work function of an Al-doped ZnO (AZO) thin film can be increased via B+ ion implantation from 3.92 eV up to 4.22 eV. The ion implantation has been carried out with the ion dose of 1 x 10(16) cm(-2) and ion energy of 5 keV. The resistance of the B+ implanted AZO films has been a bit raised, while their transmittance is slightly lowered, compared to those of un-implanted AZO films. These behaviors can be explained by the doping profile and the resultant band diagram. It is concluded that the coupling between the B+ ions and oxygen vacancies would be the main reason for an increase in the work function and a change in the other properties. We also address that the work function is more effectively alterable if the defect density of the top transparent conducting oxide layer can be controlled.

  2. Improvement in wear performance of surgical Ti-6Al-4V alloy by ion implantation of nitrogen or carbon

    SciTech Connect

    Williams, J.M.; Buchanan, R.A.; Rigney, E.D. Jr.

    1985-06-01

    The effects of ion implantations of either nitrogen or carbon on the corrosive-wear performance of surgical Ti-6A1-4V alloy were investigated. In vitro tests made use of an apparatus which could produce certain chemical and mechanical aspects of a sliding interface such as that which occurs between alloy and polyethylene components of an artificial hip (or knee) joint. Cylindrical samples of the Ti alloy were rotated between loaded, conforming pads made of ultrahigh molecular weight polyethylene (UHMWPE) while these test components were immersed either in a saline solution or a saline solution with bovine serum added. During the tests open-circuit corrosion currents for the alloy were measured by the Tafel extrapolation technique. Profilometry studies were done before and after the tests. Alloy samples implanted with either nitrogen or carbon remained as-new for all test conditions. Unimplanted control samples were severely scored. Corrosion currents as measured under the mechanical action were reduced by a factor of approximately one hundred by the ion implantation treatments. It is concluded that nitrogen or carbon ion implantation produces a marked improvement in the corrosive wear performance of the alloy in these tests. It is inferred that abrasive wear is the dominant mechanism of material removal. In addition, apparently owing to reduction of wear debris in the sliding interface, ion treatment of the alloy greatly improves wear performance of the mating UHMWPE component. 11 refs., 11 figs., 2 tabs.

  3. Synergistic effect of nanotopography and bioactive ions on peri-implant bone response

    PubMed Central

    Su, Yingmin; Komasa, Satoshi; Li, Peiqi; Nishizaki, Mariko; Chen, Luyuan; Terada, Chisato; Yoshimine, Shigeki; Nishizaki, Hiroshi; Okazaki, Joji

    2017-01-01

    Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone–implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics. PMID:28184162

  4. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  5. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements

    NASA Astrophysics Data System (ADS)

    Bennett, N. S.; Wong, C. S.; McNally, P. J.

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  6. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements.

    PubMed

    Bennett, N S; Wong, C S; McNally, P J

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)-a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  7. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    NASA Astrophysics Data System (ADS)

    Ahmed, Qazi Salman; Bashir, Shazia; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm2 was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 106 ions/cm2 to 1.8 × 108 ions/cm2 controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 104 to 1.82 × 104 K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  8. Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation.

    PubMed

    Liu, Tao; Liu, Peng; Zhang, Lian; Zhou, Yu-Fan; Yu, Xiao-Fei; Zhao, Jin-Hua; Wang, Xue-Lin

    2013-02-25

    We report the fabrication of a planar waveguide in polycrystalline zinc sulfide by 6.0 MeV C ions implantation with a fluence of 5 × 10¹⁴ ion/cm² at room temperature. The near-field light intensity profiles in the visible and near-infrared bands are measured by the end-face coupling method with different laser sources. Investigation of the Raman spectra demonstrates that the microstructure of the polycrystalline zinc sulfide has no significant change after C ion implantation. The absorption spectra show that the implantation processes have no influence on the visible and infrared bands.

  9. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    NASA Astrophysics Data System (ADS)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  10. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bratushka, S. N.; Beresnev, V. M.; Levintant-Zayonts, N.

    2013-12-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references.

  11. Integrated high-voltage modulator for plasma immersion ion implantation with an RF plasma

    NASA Astrophysics Data System (ADS)

    Rogozin, A. I.; Astrelin, V. T.; Richter, E.; Möller, W.

    2003-08-01

    The present investigation focuses on further development of the plasma based high-voltage modulator for plasma immersion ion implantation devices. The modulator produces high-voltage pulses using grid controlled extraction of electrons from the plasma, which is used for the ion implantation. The operation features of the modulator in connection with a radio-frequency plasma are described. The device is applied to nitrogen ion implantations of stainless steel. The results indicate considerable hardness improvement, which confirms the practical utility of the high-voltage modulator.

  12. New optical properties of MgO after MeV metal ion implantation

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Williams, E. K.; Sarkisov, S. S.; Poker, D. B.; Hensley, D. K.

    1999-06-01

    The implantation of metal ions into single crystals of MgO(100) followed by thermal annealing leads to an increase in absorption of ultra violet and visible light. Metal ions of Au, Sn, Ag, Cu and Ti were implanted at a depth of a few thousand Angstroms followed by thermal annealing. MgO samples implanted with He and Si ions at greater depths were used to study the optical effects and thermal annealing of radiation damage. The influence of bombardment fluence and heat treatment on the size of the metal clusters and on the fraction of atoms in clusters were measured using absorption photospectrometry.

  13. Optical characteristics of Cu-nanocluster layers assembled by ion implantation

    SciTech Connect

    Haglund, R.F. Jr.; Yang, L. . Dept. of Physics and Astronomy); Magruder, R.H. III; Wittig, J.E. . Dept. of Materials Science and Engineering); Zuhr, R.A. )

    1991-01-01

    We have generated cluster layers in solid insulating substrates by implanting Cu ions into fused silica, creating thin layers ({approximately} 150 nm) of nonoclusters over a diameter of order 2 cm. Transmission electron microscopy shows that the size and size distribution can be controlled by the parameters of the ion implantation. We report measurements of the optical properties and nonlinear index of the refraction on these unusual solid-phase cluster materials as a function of total implanted-ion dose. 7 refs., 8 figs.

  14. Ion Implantation Defects in Silicon and the Performance of Micron and Submicron Devices.

    DTIC Science & Technology

    1983-01-31

    AD-R124 497 ION IMPLANTATION DEFECTS IN SILICON AND THE PERFORMANC / OF MICRON AND SUB..(U) ILLINOIS UNIV AT URBANA COOMRNTED SCIENCE LAB B G...TEST CHART -NATINAC. BURMA OF STANWM-1*3-A ION IMPLANTATION DEFECTS IN SILICON AND THE PERFORMANCE OF MICRON AND SUBMICRON DEVICES FINAL REPORT B. G...NUMUER FINAL £7 /7_ _ _ _ _ _ _ 4. TITLE (an Swe) IL TYPE OF REPORT & PERIOD COVERED ION IMPLANTATION DEFECTS IN SILICON AND THE Final 6/80-1/16/83

  15. Long-range effect of ion implantation of Raex and Hardox steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  16. Heavy-ion sources: The Star, or the Cinderella, of the ion-implantation firmament? (invited)

    NASA Astrophysics Data System (ADS)

    Freeman, Harry

    2000-02-01

    The Star, because of the invaluable contribution which the heavy-ion source has already made to the successful development of semiconductor implantation. And the Star, too, because it is evident that the key characteristics of such sources, which are now used on a quite routine industrial basis—their reliability, their ease of operation and, above all, their extraordinary versatility—have still not been fully exploited. This ensures that there is still scope, at least in the short term, for further optimization, which will go some way to meet the increasingly stringent industrial doping requirements. The Cinderella, because of my belief that these heavy-ion sources have now contributed to the successful operation of ion implanters so well, and for so long, that their present level of performance is mistakenly taken for granted. The result has been a paucity of meaningful research and development. Despite this, in this article I aim to show that, like Cinderella, who was so neglected that her true merit was long overlooked, there is the prospect too of achieving the significantly larger improvements in beam quality which the semiconductor industry will eventually be seeking.

  17. Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications.

    PubMed

    Wang, Xue-jin; Liu, Hui-ying; Ren, Xiang; Sun, Hui-yan; Zhu, Li-ying; Ying, Xiao-xia; Hu, Shu-hai; Qiu, Ze-wen; Wang, Lang-ping; Wang, Xiao-feng; Ma, Guo-wu

    2015-12-01

    As an attractive technique for the improvement of biomaterials, Plasma immersion ion implantation (PIII) has been applied to modifying the titanium material for dental implant application. The present study investigated the cytocompatibility and early osseointegration of fluoride-ion-implanted titanium (F-Ti) surface and implants, both characterizing in their composition of titanium oxide and titanium fluoride. The cytocompatibility of F-Ti was evaluated in vitro by using scanning electron microscope, Cell Counting Kit-8 assay, alkaline phosphatase activity assay, and quantitative real-time polymerase chain reaction. The results showed that the F-Ti weakened the effects that Porphyromonas gingivalis exerted on the MG-63 cells in terms of morphology, proliferation, differentiation, and genetic expression when MG-63 cells and Porphyromonas gingivalis were co-cultured on the surface of F-Ti. Meanwhile, the osteogenic activity of F-Ti implants was assessed in vivo via evaluating the histological morphology and estimating histomorphometric parameters. The analysis of toluidine blue staining indicated that the new bone was more mature in subjects with F-Ti group, which exhibited the Haversian system, and the mean bone-implant contact value of F-Ti group was slightly higher than that of cp-Ti group (p>0.05). Fluorescence bands were wider and brighter in the F-Ti group, and the intensity of fluorochromes deposited at the sites of mineralized bone formation was significantly higher for F-Ti surfaces than for cp-Ti surfaces, within the 2nd, 3rd and 4th weeks (p<0.05). An indication is that the fluoride modified titanium can promote cytocompatibility and early osseointegration, thus providing a promising alternative for clinical use.

  18. Development of silicon carbide substrates by carbonization and ion implantation of single-crystalline substrates

    NASA Astrophysics Data System (ADS)

    Morales Sanchez, Francisco Miguel

    Mechanisms of formation involved in both thin films and crystalline precipitates of silicon carbide (SiC) are studied in this Ph. D. thesis. SiC is fabricated starting from single-crystalline silicon (Si) substrates by carbonization or by ion implantation. The characterization of these structures allows to gather data and better physical and chemical understanding of these systems. The main objectives are (i) the fabrication and characterization of SiC and other interesting crystalline phases obtained from Si wafers and (ii) to demonstrate that these products are a viable way for using them as templates, compliant, seed or buffer layers in SiC or III-N overgrowth by epitaxial growth techniques. These approaches let the consecution of a crystalline quality enough to the development of devices. Indeed, their use allow a significant reduction of the high defect density present in III-N or SiC alloys compared to their quality when directly grown on Si. Therefore, long life are foreseen for electronic devices that could use these substrates. This is the limit needed for the beginning of their industrial production and commercialization. Samples studied in this work are framed inside three groups: (1) Silicon Carbide and other phases (Silicon Nitride (Si3N4) and carbon nitride (C3N4)) synthesized by Silicon ion implantation, (2) Silicon Carbide synthesized by Si carbonisation and (3) Silicon Carbide and Gallium Nitride heteroepitaxial growth on carbonized Si. All these structures are fabricated by techniques derived from classic (i) Ion Beam Induced Crystallization (IBIC), (ii) Chemical Vapour Deposition (CVD) or (iii) Molecular Beam Epitaxy (MBE). Structural characterizations are carried out mainly by (i) Scanning Electron Microscopy (SEM), (ii) Transmission Electron Microscopy (TEM), (iii) Fourier Transform Infra Red Spectrometry (FTIR) and other techniques.

  19. The effect of sodium-ion implantation on the properties of titanium.

    PubMed

    Baszkiewicz, J; Krupa, D; Kozubowski, J A; Rajchel, B; Lewandowska-Szumieł, M; Barcz, A; Sobczak, J W; Kosiński, A; Chróścicka, A

    2008-09-01

    This paper deals with the surface modification of titanium by sodium-ion implantation and with the effect of this modification on structure, corrosion resistance, bioactivity and cytocompatibility. The Na ions were implanted with doses of 1 x 10(17) and 4 x 10(17) ions/cm(2) at an energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary-ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure--by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C, after exposure in SBF for various times. The surfaces of the samples were examined by optical microscopy, by scanning electron microscopy (SEM-EDS), and by atomic force microscopy (AFM). Biocompatibility of the modified surface was evaluated in vitro in a culture of the MG-63 cell line and human osteoblast cells. The TEM results indicate that the surface layers formed during the implantation of Na-ions are amorphous. The results of the electrochemical examinations obtained for the Na-implanted titanium samples indicate that the implantation increases corrosion resistance. Sodium-ion implantation improves bioactivity and does not reduce biocompatibility.

  20. Ion-implanted PLZT ceramics - A new high-sensitivity image storage medium

    NASA Astrophysics Data System (ADS)

    Peercy, P. S.; Land, C. E.

    1981-06-01

    Studies of photoferroelectric (PFE) image storage in H, He, and Ar, and more recently, Ar + Ne implanted PLZT reveal that the photosensitivity can be significantly increased by ion implantation into the image storage surface. For example, the photosensitivity after coimplantation of Ar + Ne is increased by about four orders of magnitude over that of unimplanted PLZT. The increase in photosensitivity is controlled by implantation-produced disorder which results in marked decreases in dark conductivity and dielectric constant and changes in the effective photoconductivity of the implanted layer. In this paper the effects of Ar and Ar + Ne implantation are presented along with a phenomenological model which describes the photosensitivity enhancement obtained by ion implantation.

  1. Ion implantation to reduce wear on polyethylene prosthetic devices. Rept. for Aug 89-Jan 91

    SciTech Connect

    Not Available

    1991-05-01

    Researchers studied the use of ion implantation to improve the wear performance of ultra high molecular weight polyethylene (UHMWPE). UHMWPE samples were implanted with high energy ions, tested for wear performance, and compared to unimplanted control samples. Surface friction and hardness measurements, Raman scattering, Rutherford backscattering (RBS), water contact angle, and film transfer tests were performed to characterize the surface property changes of implanted UHMWPE samples. Results indicated a 90% reduction in wear on implanted UHMWPE disks. Implantation increased surface microhardness and surface energy. The Raman spectrum revealed a diamond-like signature, indicting carbon bonds of a different nature than those found in unimplanted polyehtylene. Photographic analysis of pins used in wear testing revealed differences between implanted and unimplanted samples in the polyethylene film transferred in the initial stages of wear from the disk to the pin.

  2. IonRock: software for solving strain gradients of ion-implanted semiconductors by X-ray diffraction measurements and evolutionary programming

    NASA Astrophysics Data System (ADS)

    Bleicher, Lucas; Sasaki, José Marcos; Orloski, Renata Villela; Cardoso, Lisandro Pavie; Hayashi, Marcelo Assaoka; Swart, Jacobus Willibrordus

    2004-07-01

    We present a program that uses an optimization algorithm to fit rocking curves of ion-implanted semiconductors. This is an inverse problem that cannot be solved by simple methods. However, using recursion formulae for rocking curve calculations and a model of ion distribution after implantation, it is possible to fit experimental data with a general-purpose optimization method. In our case, we use a modified version of the genetic algorithm, which has been shown to be a good technique for this problem. The program also calculates rocking curves for a given ion profile, such as those generated by ion implantation simulation programs. Program summaryTitle of program: IonRock, version 1.0 Catalogue identifier: ADTP Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTP Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with Windows95 or later version Operating systems: Windows95/98/2000/NT/XP Programming language used: C++ Memory required to execute with typical data: about 4 MB No. of bytes in distributed program, including test data, etc.: 2 742 530 No of lines in distributed program, including test data etc.: 49 988 Distribution format: tar gzip file Nature of physical problem: strain determination on ion implanted zinc-blend structure semiconductors Method of solution: adapted version of the Genetic Algorithm meta-heuristic Restrictions on the complexity of the problem: strain determination is related to the strain generated by interstitial ions, which causes the left-side distortions on the rocking curve Typical running time: on an Athlon PC computer the computing time for solving the strain gradient using 16 layers takes from 10 to 30 minutes

  3. Effect of splinting in accuracy of two implant impression techniques.

    PubMed

    de Avila, Erica Dorigatti; de Matos Moraes, Fernanda; Castanharo, Sabrina Maria; Del'Acqua, Marcelo Antonialli; de Assis Mollo, Francisco

    2014-12-01

    Because there is no consensus in the literature about the need for a splint between copings, the aim of this study was to evaluate, in vitro, the accuracy of 2 impression techniques for implant-supported prostheses. A master cast was fabricated with four parallel implant abutment analogs and a passive framework. Two groups with 5 casts each were formed: Group 1 (squared impression copings with no splint: S) and Group 2 (splinted squared impression copings, using metal drill burs and Pattern resin: SS). The impression material used was polyvinyl siloxane with open trays for standard preparation of the casts. For each cast, the framework was positioned, and a titanium screw was tightened with 10 N·cm torque in analog A, after which measurements of the abutment-framework interface gaps were performed at analogs C and D. This process was repeated for analog D. These measurements were analyzed using software. A one-way analysis of variance (ANOVA) with a confidence interval of 95% was used to analyze the data. Significant differences were detected between S and SS in relation to the master cast (P ≤ 0.05). The median values of the abutment-framework interface gaps were as follows: master cast: 39.64 μm; squared impression copings with no splint: 205.86 μm; splinted squared impression copings: 99.19 μm. Under the limitations of this study, the technique presented for Group 2 produces better results compared with the technique used for Group 1.

  4. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Nho, Young-Chang

    2010-12-07

    A noncytotoxic procedure for the spatial organization of multiple cell types remains as a major challenge in tissue engineering. In this study, a simple and biocompatible micropatterning method of multiple cell types on a polymer surface is developed by using ion implantation. The cell-resistant Pluronic surface can be converted into a cell-adhesive one by ion implantation. In addition, cells show different behaviors on the ion-implanted Pluronic surface. Thus this process enables the micropatterning of two different cell types on a polymer substrate. The micropatterns of the Pluronic were formed on a polystyrene surface. Primary cells adhered to the spaces of the bare polystyrene regions separated by the implanted Pluronic patterns. Secondary cells then adhered onto the implanted Pluronic patterns, resulting in micropatterns of two different cells on the polystyrene surface.

  5. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    NASA Astrophysics Data System (ADS)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  6. Spin-dependent recombination at arsenic donors in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Otsuka, Manabu; Matsuoka, Takashi; Vlasenko, Leonid S.; Vlasenko, Marina P.; Brandt, Martin S.; Itoh, Kohei M.

    2014-09-01

    Spin-dependent transport processes in thin near-surface doping regions created by low energy ion implantation of arsenic in silicon are detected by two methods, spin-dependent recombination using microwave photoconductivity and electrically detected magnetic resonance monitoring the direct current through the sample. The high sensitivity of these techniques allows the observation of the magnetic resonance, in particular, of As in weak magnetic fields and at low resonance frequencies (40-1200 MHz), where high-field-forbidden transitions between the magnetic sublevels can be observed due to the mixing of electron and nuclear spin states. Several implantation-induced defects are present in the samples studied and act as spin readout partner. We explicitly demonstrate this by electrically detected electron double resonance experiments and identify a pair recombination of close pairs formed by As donors and oxygen-vacancy centers in an excited triplet state (SL1) as the dominant spin-dependent process in As-implanted Czochralski-grown Si.

  7. Spin-dependent recombination at arsenic donors in ion-implanted silicon

    SciTech Connect

    Franke, David P. Brandt, Martin S.; Otsuka, Manabu; Matsuoka, Takashi; Itoh, Kohei M.; Vlasenko, Leonid S.; Vlasenko, Marina P.

    2014-09-15

    Spin-dependent transport processes in thin near-surface doping regions created by low energy ion implantation of arsenic in silicon are detected by two methods, spin-dependent recombination using microwave photoconductivity and electrically detected magnetic resonance monitoring the direct current through the sample. The high sensitivity of these techniques allows the observation of the magnetic resonance, in particular, of As in weak magnetic fields and at low resonance frequencies (40–1200 MHz), where high-field-forbidden transitions between the magnetic sublevels can be observed due to the mixing of electron and nuclear spin states. Several implantation-induced defects are present in the samples studied and act as spin readout partner. We explicitly demonstrate this by electrically detected electron double resonance experiments and identify a pair recombination of close pairs formed by As donors and oxygen-vacancy centers in an excited triplet state (SL1) as the dominant spin-dependent process in As-implanted Czochralski-grown Si.

  8. Integration of a particle monitor into the control system for an ion implanter

    NASA Astrophysics Data System (ADS)

    Myers, Steven; McCarron, David; Blake, Julian

    1993-04-01

    The value of in situ particle monitors for both manufacturing process control and process development in the semiconductor industry is receiving considerable recognition. This paper discusses the integration of a high yield technology (HYT) sensor into the control system of an Baton high current ion implanter. The automatic triggering of the particle monitor during the various phases of the implant process and the autoclean cycle provides a definite representation of the machine state and the effect of processing over time. Utilizing existing features of the control system, specific thresholds can be associated with each implant process through its process recipe. By regular monitoring of the particle counter, these thresholds are used to anticipate the need for cleaning the process chamber, or if indicated, gracefully bring the current process to an immediate halt. A dedicated history log preserves detailed data for generating summary statistics and the complete data set of a particular process or overall machine performance. Future uses of this tool with the control system point toward statistical process control applications and intelligent self modifying process cycles. The presentation will include data from a system on which an HYT sensor was employed as a full time process monitor using modified SPC techniques for analysis.

  9. A technique to eliminate subgingival cement adhesion to implant abutments by using polytetrafluoroethylene tape.

    PubMed

    Hess, Timothy A

    2014-08-01

    Residual excess cement adhered subgingivally to an implant abutment has the potential to cause periimplant mucositis or periimplant disease. This article describes a procedure in which polytetrafluoroethylene (PTFE) tape is used to protect dental cements from adhering to the implant abutment. This technique ensures complete removal of cement from the implant abutment after seating of the crown.

  10. Adherent diamond like carbon coatings on metals via plasma source ion implantation

    SciTech Connect

    Walter, K.C.; Nastasi, M.; Munson, C.P.

    1996-12-01

    Various techniques are currently used to produce diamond-like carbon (DLC) coatings on various materials. Many of these techniques use metallic interlayers, such as Ti or Si, to improve the adhesion of a DLC coating to a ferrous substrate. An alternative processing route would be to use plasma source ion implantation (PSII) to create a carbon composition gradient in the surface of the ferrous material to serve as the interface for a DLC coating. The need for interlayer deposition is eliminated by using a such a graded interfaces PSII approach has been used to form adherent DLC coatings on magnesium, aluminum, silicon, titanium, chromium, brass, nickel, and tungsten. A PSII process tailored to create a graded interface allows deposition of adherent DLC coatings even on metals that exhibit a positive heat of formation with carbon, such as magnesium, iron, brass and nickel.

  11. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  12. X-Ray Rocking Curve and Ferromagnetic Resonance Investigations of Ion-Implanted Crystals

    NASA Astrophysics Data System (ADS)

    Speriosu, Virgil Simon

    A kinematical model for general Bragg case x-ray diffraction in nonuniform films is presented. The model incorporates depth-dependent strain and structure factor. Profiles of strain and structure factor are obtained by fitting experimental rocking curves. The method is applicable to ion-implanted, diffused and multilayer crystalline structures such as heterojunctions. A comparison is made between profiles of strain and incoherent atomic displacements obtained from rocking curves and Rutherford backscattering spectrometry in Ne('+) -implanted Gd(,3)Ga(,5)O(,12). The ranges of sensitivity of the two techniques overlap for about one decade in implantation dose up to the amorphous threshold. The two techniques are in excellent agreement on the near-surface strain, but differ significantly at depths below (TURNEQ)500A. The profiles of incoherently displaced atoms agree within a factor of two. The rocking curve method is combined with analysis of ferromagnetic resonance spectra for characterization of Gd,Tm,Ga:YIG films implanted with Ne('+), He('+), and H(,2)('+) over a wide range of doses. Profiles of normal strain, lateral strain and damage were obtained. Magnetic profiles were compared with the strain profiles. The local change in uniaxial anisotropy field (DELTA)H(,k) with increasing strain shows an initially linear rise for both He('+) and Ne('+), in agreement with the magnetostriction effect. For strain values greater than (TURNEQ)1.5%, (DELTA)H(,k) saturates and decreases to nearly zero when the material becomes paramagnetic. For H(,2)('+) implantation the total (DELTA)H(,k) consists of a magnetostrictive contribution due to strain and of a comparable excess contribution associated with the local concentration of hydrogen. With increasing annealing temperature the excess (DELTA)H(,k) diminishes and above 400(DEGREES)C the only component of (DELTA)H(,k) is magnetostrictive. For all three species the behavior of the saturation magnetization 4(pi)M, the exchange

  13. Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.

  14. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    SciTech Connect

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  15. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-01

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm-2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600-900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  16. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  17. Versatile permanent planar implant technique utilizing Iodine-125 seeds imbedded in gelfoam

    SciTech Connect

    Marchese, M.J.; Nori, D.; Anderson, L.L.; Hilaris, B.S.

    1984-05-01

    Tumors attached or adjacent to critical structures can often not be completely resected or resected with adequate surgical margins. Sites involving major blood vessels, the vertebral column or the brain with small residual tumors or suspicious margins often present technical difficulties for standard I-125 or Ir-192 implants. A relatively simple, accurate and inexpensive implant method is decribed using I-125 seeds imbedded in gelfoam to implant permanently into small residual tumors or suspicious margins where standard implant techniques may be unsatisfactory. A method for planning the treatment dose for such an implant is described. Cases involving paraspinal and brain tumors are reported to illustrate the technique.

  18. Alternative technique for calcium phosphate coating on titanium alloy implants

    PubMed Central

    Le, Van Quang; Pourroy, Geneviève; Cochis, Andrea; Rimondini, Lia; Abdel-Fattah, Wafa I; Mohammed, Hadeer I; Carradò, Adele

    2014-01-01

    As an alternative technique for calcium phosphate coating on titanium alloys, we propose to functionalize the metal surface with anionic bath containing chlorides of palladium or silver as activators. This new deposition route has several advantages such as controlled conditions, applicability to complex shapes, no adverse effect of heating, and cost effectiveness. A mixture of hydroxyapatite and calcium phosphate hydrate is deposited on the surface of Ti–6Al–4V. Calcium phosphate coating is built faster compared with the one by Simulated Body Fluid. Cell morphology and density are comparable to the control one; and the results prove no toxic compound is released into the medium during the previous seven days of immersion. Moreover, the cell viability is comparable with cells cultivated with the virgin medium. These experimental treatments allowed producing cytocompatible materials potentially applicable to manufacture implantable devices for orthopedic and oral surgeries. PMID:24646569

  19. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  20. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation.

    PubMed

    Li, X Y; Zhang, J L; Zhu, S W

    2011-09-23

    Thermostable α-amylase is of great importance in the starch fermentation industry; it is extensively used in the manufacture of beverages, baby foods, medicines, and pharmaceuticals. Bacillus amyloliquefaciens produces thermostable α-amylase; however, production of thermostable α-amylase is limited. Ion-beam implantation is an effective method for mutation breeding in microbes. We conducted ion-beam implantation experiments using two different ions, Ar(+) and N(+), to determine the survival rate of and dose effect on a high α-amylase activity strain of B. amyloliquefaciens that had been isolated from soil samples. N(+) implantation resulted in a higher survival rate than Ar(+) implantation. The optimum implantation dose was 2.08 × 10(15) ions/cm(2). Under this implantation condition, we obtained a thermally and genetically stable mutant α-amylase strain (RL-1) with high enzyme activity for degrading α-amylase. Compared to the parental strain (RL), the RL-1 strain had a 57.1% increase in α-amylase activity. We conclude that ion implantation in B. amyloliquefaciens can produce strains with increased production of thermostable α-amylase.

  1. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  2. Optimized Axillary Vein Technique versus Subclavian Vein Technique in Cardiovascular Implantable Electronic Device Implantation: A Randomized Controlled Study

    PubMed Central

    Liu, Peng; Zhou, Yi-Feng; Yang, Peng; Gao, Yan-Sha; Zhao, Gui-Ru; Ren, Shi-Yan; Li, Xian-Lun

    2016-01-01

    Background: The conventional venous access for cardiovascular implantable electronic device (CIED) is the subclavian vein, which is often accompanied by high complication rate. The aim of this study was to assess the efficacy and safety of optimized axillary vein technique. Methods: A total of 247 patients undergoing CIED implantation were included and assigned to the axillary vein group or the subclavian vein group randomly. Success rate of puncture and complications in the perioperative period and follow-ups were recorded. Results: The overall success rate (95.7% vs. 96.0%) and one-time success rate (68.4% vs. 66.1%) of punctures were similar between the two groups. In the subclavian vein group, pneumothorax occurred in three patients. The subclavian gaps of three patients were too tight to allow operation of the electrode lead. In contrast, there were no puncture-associated complications in the axillary vein group. In the patient follow-ups, two patients in the subclavian vein group had subclavian crush syndrome and both of them received lead replacement. The incidence of complications during the perioperative period and follow-ups of the axillary vein group and the subclavian vein group was 1.6% (2/125) and 8.2% (10/122), respectively (χ2 = 5.813, P = 0.016). Conclusion: Optimized axillary vein technique may be superior to the conventional subclavian vein technique for CIED lead placement. Trial Registration: www.clinicaltrials.gov, NCT02358551; https://clinicaltrials.gov/ct2/show/NCT02358551?term=NCT02358551& rank=1. PMID:27823994

  3. Effect of bias voltage on coating homogeneity in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2016-11-01

    The paper presents research results demonstrating the influence of bias on the homogeneity of plasma immersion ion implantation. The research results allow the conclusion that plasma immersion ion implantation can be used to advantage for surface modification of medical materials, e.g., nickel-titanium (NiTi) alloys. In particular, doing of NiTi with silicon at pulsed bias provides highly homogeneous surface treatment.

  4. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  5. Ferromagnetic GeMn thin film prepared by ion implantation and ion beam induced epitaxial crystallization annealing

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Niu, H.; Yan, D. C.; Hsieh, H. H.; Lee, C. P.; Chi, C. C.

    2012-06-01

    Ferromagnetic GeMn was prepared by Mn implantation followed by ion beam-induced epitaxial crystallization annealing. The damage caused by Mn implantation was repaired by subsequent helium ion irradiation. Various structural analyses were performed and Mn ions were found to incorporate uniformly into the Ge lattice without the formation of any secondary phases. The remnant magnetic moment exhibited room temperature ferromagnetism. Anomalous Hall effect and field dependent magnetization were measured at the same time at room temperature indicating spin polarized free carrier transport. Additional measurement using x-ray magnetic circular dichroism also revealed that the carriers were spin-polarized.

  6. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    PubMed

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn(2+) and Mg(2+) concentrations in rBMSCs by promoting the influx of Zn(2+) and Mg(2+) and inhibiting the outflow of Zn(2+), and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg(2+) ions from Zn/Mg-PIII increased Mg(2+) influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  7. Balancing incident heat and ion flow for process optimization in plasma based ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Manova, D.; Rauschenbach, B.

    2002-06-01

    Plasma based ion implantation at elevated temperatures is a technology often used to obtain thick surface layers of several µm by thermally activated diffusion, e.g. nitrogen in steel, titanium or aluminium. By lowering the pulse voltage at constant temperature, the current density can be increased at a constant heat flow. However, an upper limit is given by the ratio of the diffusion rate transporting the implanted ions from the surface towards the bulk and the sputter yield. This sputtering of the surface dominates for very high current densities and limits the maximum achievable layer thickness. Different maximum current densities were found for the four investigated systems - nitrogen in different steel grades, aluminium and titanium, as well as oxygen in titanium - reflecting the varying diffusivities. Additional requirements, besides the maximum current density, as a conformal treatment for complex objects containing small holes or trenches, as well as short heating times, can be solved most effectively by pulsed voltages in the range of 2-5 kV and an additional heating of the sample. The problem of a sample cooling time of several hours after the treatment is recognized. A partial solution would be to increase the gas pressure during the cooling phase for a more effective heat dissipation.

  8. Enhancement of ferromagnetism in C ion implanted CeO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Chand, F.; Asokan, K.

    2017-03-01

    This investigation reports on room temperature ferromagnetism in pristine and C ion implanted CeO2 thin films deposited on Si (111) substrates by the radio frequency (RF)-sputtering method. X-ray diffraction analysis shows that the face-centered cubic (FCC) structure corresponds to CeO2. The Raman spectra further confirm the formation of phase and also indicate the presence of defects, mainly oxygen vacancies, in these films. The presence of C is evident from Rutherford backscattering studies. Atomic force microscopy images indicate that the surface roughness values of the films reduce after C ion implantation. It is observed that the magnetic properties in CeO2 thin films are enhanced by C ion implantation. The saturation magnetization of the pristine film increases from ∼7 emu cm‑3 to ∼27 emu cm‑3 for a fluence of 6 × 1016 ions cm‑2. It is also observed that the coercivity values change after C ion implantation and reduce for a film with an ion fluence of 6 × 1016 ions cm‑2 compared with other films. Mechanisms such as the F-center exchange (FCE) model are considered when attempting to understand the enhanced ferromagnetism of C ion implanted CeO2 thin films.

  9. Fabrication of composite based on GeSi with Ag nanoparticles using ion implantation

    NASA Astrophysics Data System (ADS)

    Batalov, R. I.; Vorobev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Bayazitov, R. M.; Lyadov, N. M.; Osin, Yu. N.; Stepanov, A. L.

    2016-12-01

    Comparative analysis of the structural and optical properties of composite layers fabricated with the aid of implantation of single-crystalline silicon ( c-Si) using Ge+ (40 keV/1 × 1017 ions/cm2) and Ag+ (30 keV/1.5 × 1017 ions/cm2) ions and sequential irradiation using Ge+ and Ag+ ions is presented. The implantation of the Ge+ ions leads to the formation of Ge: Si fine-grain amorphous surface layer with a thickness of 60 nm and a grain size of 20-40 nm. The implantation of c-Si using Ag+ ions results in the formation of submicron porous amorphous a-Si structure with a thickness of about 50 nm containing ion-synthesized Ag nanoparticles. The penetration of the Ag+ ions in the Ge: Si layer stimulates the formation of pores with Ag nanoparticles with more uniform size distribution. The reflection spectra of the implanted Ag: Si and Ag: GeSi layers exhibit a sharp decrease in the intensity in the UV (220-420 nm) spectral interval relative to the intensity of c-Si by more than 50% owing to the amorphization and structuring of surface. The formation of Ag nanoparticles in the implanted layers gives rise to a selective band of the plasmon resonance at a wavelength of about 820 nm in the optical spectra. Technological methods for fabrication of a composite based on GeSi with Ag nanoparticles are demonstrated in practice.

  10. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    SciTech Connect

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-07-02

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C{sub 1}, C{sub 2}, and C{sub 4} at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  11. A novel approach to microbial breeding--low-energy ion implantation.

    PubMed

    Gu, Shao-Bin; Li, Shi-Chang; Feng, Hui-Yun; Wu, Ying; Yu, Zeng-Liang

    2008-02-01

    Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.

  12. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  13. Synchrotron x-ray multiple diffraction in the study of Fe+ ion implantation in Si(0 0 1)

    NASA Astrophysics Data System (ADS)

    dos Santos, A. O.; Lang, R.; de Menezes, A. S.; Meneses, E. A.; Amaral, L.; Reboh, S.; Cardoso, L. P.

    2009-10-01

    In this work, x-ray multiple diffraction has been used as a three-dimensional high-resolution probe to study the Fe+ ion implantation process in Si(0 0 1). The semiconducting β-FeSi2 crystallographic phase has been synthesized by Fe ion co-implantation in Si(0 0 1) followed by ion-beam-induced epitaxial crystallization (IBIEC) and thermal treatment. This phase was clearly detected by the conventional techniques, micro-Raman scattering spectroscopy, transmission electron microscopy (TEM) and grazing incidence x-ray diffraction. Synchrotron radiation rocking curves (ω-scans) and mapping of the Bragg surface diffraction (BSD) of the Si matrix, as-implanted, after the IBIEC process and thermally treated, have enabled the detection of co-implanted regions formation that present distinct lattices in comparison with the matrix one clearly observed by TEM. Also, the compressive strain of both regions in depth by rocking curve and in-plane has been determined by using BSD, which is one order of magnitude smaller.

  14. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  15. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  16. In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications.

    PubMed

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Although magnesium (Mg) is a unique biodegradable metal which possesses mechanical property similar to that of the natural bone and can be an attractive material to be used as orthopedic implants, its quick corrosion rate restricts its actual clinical applications. To control its rapid degradation, we have modified the surface of magnesium implant using fluoridated hydroxyapatite (FHA: Ca10(PO4)6OH2-xFx) through the combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) techniques, which was presented in our previous paper. In this article, the biocompatibility examinations were conducted on the coated AZ91 magnesium alloy by implanting it into the greater trochanter area of rabbits. The results of the in vivo animal test revealed a significant enhancement in the biocompatibility of FHA/MAO coated implant compared to the uncoated one. By applying the FHA/MAO coating on the AZ91 implant, the amount of weight loss and magnesium ion release in blood plasma decreased. According to the histological results, the formation of the new bone increased and the inflammation decreased around the implant. In addition, the implantation of the uncoated AZ91 alloy accompanied by the release of hydrogen gas around the implant; this release was suppressed by applying the coated implant. Our study exemplifies that the surface coating of magnesium implant using a bioactive ceramic such as fluoridated hydroxyapatite may improve the biocompatibility of the implant to make it suitable as a commercialized biomedical product.

  17. The Effect of Annealing at 1500 C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    SciTech Connect

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-10-07

    The transport of silver in CVD {beta}-SiC has been studied using ion implantation. Silver ions were implanted in {beta}-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 {micro}m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion.

  18. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  19. Transition metal swift heavy ion implantation on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Ali, A. Ashraf; Kumar, J.; Ramakrishnan, V.; Asokan, K.

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E2 (TO) and the A1 (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  20. Production yield of rare-earth ions implanted into an optical crystal

    SciTech Connect

    Kornher, Thomas Xia, Kangwei; Kolesov, Roman; Reuter, Rolf; Villa, Bruno; Wrachtrup, Jörg; Kukharchyk, Nadezhda; Wieck, Andreas D.; Siyushev, Petr; Stöhr, Rainer; Schreck, Matthias; Becker, Hans-Werner

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  1. Setting up of a low temperature in-situ ion implantation and channeling facility at Kalpakkam

    SciTech Connect

    Sundaravel, B.; Saravanan, K.; Panigrahi, B. K.; Nair, K. G. M.

    2011-07-15

    A simple low temperature ion implantation and ion channeling facility has been set up. Low temperatures upto 70 K has been obtained on a goniometer sample holder by connecting to a continuous flow Helium cryostat with a copper braid. Charge integration is carried out with a transmission Faraday cup with 10 mm diameter aperture and four Faraday cups for performing ion implantation and an electron suppressed 1.5 mm aperture with a TEM grid of 60% beam transmission for ion beam analysis. Typical low temperature ion implantation and channeling experiments have been carried out. Stabilization at intermediate temperatures by controlling the heater at the sample holder and improvement of the achievable lowest temperature by having liquid nitrogen cooled heat shield are in progress.

  2. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  3. An Auger Sputter Profiling Study of Nitrogen and Oxygen Ion Implantations in Two Titanium Alloys

    SciTech Connect

    Barton, B. D., Pope, L. E., Wittberg, T. N.

    1989-07-31

    Samples of two titanium alloys, Ti-6A1-4V and Ti-15V-3Cr-3Sn-3A1, were ion implanted with a combination of nitrogen (N+) and oxygen (O+). For each alloy, implantation parameters were chosen to give implanted nitrogen concentrations of approximately 10 or 50 atomic percent, from a depth of 100 nanometers to a depth of 400 nanometers. In all but one case, dual energy (200 keV and 90 keV) implantations of nitrogen were used to give a relatively uniform nitrogen concentration to a depth of 300 nanometers. In each case, oxygen was implanted at 35 keV, following the nitrogen implantation, to give an oxygen-enriched region near the surface. The implanted samples were then examined by Auger electron spectroscopy (AES) combined with argon ion sputtering. In order to determine the stoichiometry of the nitrogen implanted regions, it was necessary to determine the N (KVV) contribution to the overlapping N (KVV) and Ti (LMM) Auger transitions. It was also necessary to correct for the ion-bombardment-induced compositional changes which have been described in an earlier study of titanium nitride thin films. The corrected AES depth profiles were in good agreement with theoretical predictions.

  4. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation.

    PubMed

    Huang, Lu; Zhu, Chao; Muntele, Claudiu I; Zhang, Tao; Liaw, Peter K; He, Wei

    2015-02-01

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 10(15)ions/cm(2) to (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other.

  5. Corrosion resistance and antithrombogenic behavior of La and Nd ion implanted stainless steels

    SciTech Connect

    Jing, F. J.; Jin, F. Y.; Liu, Y. W.; Wan, G. J.; Liu, X. M.; Zhao, X. B.; Fu, R. K. Y.; Leng, Y. X.; Huang, N.; Chu, Paul K.

    2006-09-15

    Lanthanide ions such as lanthanum (La) and neodymium (Nd) were implanted into 316 stainless steel samples using metal vapor vacuum arc to improve the surface corrosion resistance and antithrombogenic properties. X-ray photoelectron spectroscopy shows that lanthanum and neodymium exist in the +3 oxidation state in the surface layer. The corrosion properties of the implanted and untreated control samples were investigated utilizing electrochemical tests and our results show that La and Nd implantations enhance the surface corrosion resistance. In vitro activated partial thromboplastin time (APTT) tests were used to evaluate the antithrombogenic properties. The APTT time of the implanted samples was observed to be prolonged compared to that of the unimplanted stainless steel control. La and Nd ion implantations can be used to improve the surface corrosion resistance and biomedical properties of 316 stainless steels.

  6. Critical problems of ion implantation in processing small geometry integrated devices

    NASA Astrophysics Data System (ADS)

    Tokuyama, Takashi

    1989-02-01

    A brief review is described on the critical problems of ion implantation in processing small geometry integrated devices. The commonly recognized critical paths of the technology, i.e. formation of shallow junctions, impurity doping of vertical side walls, shadowing and the scattering effect of the incident beam are discussed based on recent data. Discussion is also given of the annealing behavior and residual defects of small and isolated implanted regions, and the considerable difference from those of the continuous implanted layers is shown. These problems are more or less related to the fundamental principles of implantation that impurities are doped by the incidence of energetic ions. Based on these facts, attempts are made to estimate the final size of the future devices to which implantation can be applied.

  7. Dynamics of Faceted Nanoparticles Formation in a Crystalline Matrix During Ion Implantation Processing.

    PubMed

    Li, Kun-Dar

    2016-02-01

    The faceted nanoparticle synthesized by ion implantation, such as Zn, Cu or Ag nanoparticles, is one of the promising materials for the next generation of optical devices. To understand and better control the manufacturing processes of ion implantation, a theoretical model is applied to investigate the formation and evolution of faceted nanoparticles under various experimental conditions of implantation processing. In this study, the mechanisms of the anisotropic interfacial energy and kinetics with different ion distributions are taken into consideration to demonstrate the role of the crystallographic symmetry, ion energy and temperature on the faceted nanoparticles formation in a crystalline matrix. As presented in the numerical results, the morphological shape of the nanoparticles is mainly affected by the crystallographic symmetry, while the distribution of the precipitates is principally determined by the ion energy. For the condition of high-temperature implantation, a high mobility of ions causes the characteristic length of nanostructures to increase and creates a coarsening morphology of nanoparticles. It is attributed to a longer diffusion distance during the nucleation and growth processes. This model can be widely used for the predictions of the nanostructures formation with various ion implantation processes.

  8. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  9. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria; González-Martín, M. Luisa

    2014-08-01

    316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5-5 × 1016 ions/cm2; angle of incidence: 45-90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  10. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  11. Techniques for processing eyes implanted with a retinal prosthesis for localized histopathological analysis: Part 2 Epiretinal implants with retinal tacks.

    PubMed

    Nayagam, David A X; Durmo, Irfan; McGowan, Ceara; Williams, Richard A; Shepherd, Robert K

    2015-02-14

    Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histological processes, particularly in consideration for the delicate nature of the surrounding tissue. Here we describe techniques for assessing the health of the eye directly adjacent to a retinal implant secured epiretinally with a metal tack. Retinal prostheses feature electrode arrays in contact with eye tissue. The most commonly used location for implantation is the epiretinal location (posterior chamber of the eye), where the implant is secured to the retina with a metal tack that penetrates all the layers of the eye. Previous methods have not been able to assess the proximal ocular tissue with the tack in situ, due to the inability of traditional histological techniques to cut metal objects. Consequently, it has been difficult to assess localized damage, if present, caused by tack insertion. Therefore, we developed a technique for visualizing the tissue around a retinal tack and implant. We have modified an established technique, used for processing and visualizing hard bony tissue around a cochlear implant, for the soft delicate tissues of the eye. We orientated and embedded the fixed eye tissue, including the implant and retinal tack, in epoxy resin, to stabilise and protect the structure of the sample. Embedded samples were then ground, polished, stained, and imaged under various magnifications at incremental depths through the sample. This technique allowed the reliable assessment of eye tissue integrity and cytoarchitecture adjacent to the metal tack.

  12. Techniques for Processing Eyes Implanted with a Retinal Prosthesis for Localized Histopathological Analysis: Part 2 Epiretinal Implants with Retinal Tacks

    PubMed Central

    Nayagam, David A.X.; Durmo, Irfan; McGowan, Ceara; Williams, Richard A.; Shepherd, Robert K.

    2015-01-01

    Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histological processes, particularly in consideration for the delicate nature of the surrounding tissue. Here we describe techniques for assessing the health of the eye directly adjacent to a retinal implant secured epiretinally with a metal tack. Retinal prostheses feature electrode arrays in contact with eye tissue. The most commonly used location for implantation is the epiretinal location (posterior chamber of the eye), where the implant is secured to the retina with a metal tack that penetrates all the layers of the eye. Previous methods have not been able to assess the proximal ocular tissue with the tack in situ, due to the inability of traditional histological techniques to cut metal objects. Consequently, it has been difficult to assess localized damage, if present, caused by tack insertion. Therefore, we developed a technique for visualizing the tissue around a retinal tack and implant. We have modified an established technique, used for processing and visualizing hard bony tissue around a cochlear implant, for the soft delicate tissues of the eye. We orientated and embedded the fixed eye tissue, including the implant and retinal tack, in epoxy resin, to stabilise and protect the structure of the sample. Embedded samples were then ground, polished, stained, and imaged under various magnifications at incremental depths through the sample. This technique allowed the reliable assessment of eye tissue integrity and cytoarchitecture adjacent to the metal tack. PMID:25798628

  13. Ion implantation for high performance III-V JFETS and HFETS

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-06-01

    Ion implantation has been an enabling technology for realizing many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing for GaAs JFETs (joint field effect transistors), AlGaAs/GaAs HFETs (heterostructure field effect transistors), and InGaP or InAlP-barrier HFETs. The GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs are reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to absence of the deep donor level. An optimized P co- implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

  14. Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Öztürk, O.

    2009-05-01

    Nitrogen ion implantation can be used to improve surface mechanical properties (hardness, wear, friction) of stainless steels by modifying the near-surface layers of these materials. In this study, a medical grade FeCrNi alloy (316L stainless steel plate) was implanted with 85 keV nitrogen ions to a high fluence of 1 × 1018N2+ /cm2 at a substrate temperature <200 °C in an industrial implantation facility. The N implanted layer microstructures, thicknesses and strengths were studied by a combination of X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS), atomic force microscopy (AFM) and nanohardness measurements. AFM was also used for the surface roughness analysis of the implanted as well as polished materials. The CEMS analysis indicate that the N implanted layer is ∼200 nm thick and is composed of ε-(Fe,Cr,Ni)2+xN-like nitride phase with mainly paramagnetic characteristics. The nanohardness measurements clearly indicate an enhanced hardness behaviour for the N implanted layer. It is found that the implanted layer hardness is increased by a factor of 1.5 in comparison to that of the substrate material. The increased hardness resulting from nitrogen implantation is attributed to the formation of ε nitride phase.

  15. Synergistic Effects of Iodine and Silver Ions Co-Implanted in 6H-SiC

    SciTech Connect

    Kuhudzai, Remeredzai J.; Malherbe, Johan; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, Arun; Zhu, Zihua; Nandasiri, Manjula I.

    2015-10-23

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behavior has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 ºC for 30 hours in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  16. Mini-dental implant insertion with the auto-advance technique for ongoing applications.

    PubMed

    Balkin, B E; Steflik, D E; Naval, F

    2001-01-01

    The clinical and histological results of two cases demonstrating retrieved Sendax mini-dental implants in two different patients is the focus of this report. The mini-dental implants were inserted using the auto-advance technique and loaded immediately. The implants were retrieved at 4 months following insertion and at 5 months following insertion and were prepared and reviewed histologically. Clinically, the implants had no mobility, with no apparent exudate or bleeding upon probing, prior to removal. At the time explant procedures were performed, the mini-dental implants had provided immediate support for prostheses during the integration of traditional root-form endosteal implants. Upon explantation, the mini-dental implants were in a state of health and functioning in their intended purpose. Histologically, the bone appeared to be integrated to the surface of the implant at the light microscope level, and the bone appeared to be relatively mature and healthy in the areas observed, more so than one would expect in this amount of time from insertion of mini-dental implants with immediate loading. A discussion of the purposes and technique used for insertion and removal of these mini-dental implants is discussed. This is the first human histological report on the auto-advance technique with immediate loading of mini-dental implants, demonstrating feasibility in ongoing applications.

  17. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  18. Plasma source ion implantation to increase the adhesion of subsequently deposited coatings

    SciTech Connect

    Wood, B.P.; Walter, K.C.; Taylor, T.N.

    1997-10-01

    In Plasma Source Ion Implantation (PSII) an object is placed in a plasma and pulse biased to a high negative potential, so as to implant the plasma ions into the surface of the object. Although ion implantation, by itself, can yield desirable surface modification, it is even more useful as a method of creating a functionally graded interface between the substrate material and a subsequently deposited coating, which may be produced by altering operating conditions on the same plasma source. Although this interfacial region is very thin - as little as 20 nm - it can greatly increase the adhesion of the deposited coatings. We present here a description of this process, and compare a simulation of the graded interface with an XPS depth profile of the interfacial region for erbium metal implanted into steel.

  19. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    NASA Astrophysics Data System (ADS)

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-01

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of ˜2 μm depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  20. Synthesis of (SiC){sub 3}N{sub 4} thin films by ion implantation

    SciTech Connect

    Uslu, C.; Lee, D.H.; Berta, Y.; Park, B.; Thadhani, N.N.; Poker, D.B.

    1993-12-31

    We have investigated the synthesis of carbon-silicon-nitride compounds by ion implantation. In these experiments, 100 keV nitrogen ions were implanted into polycrystalline {beta}-SiC (cubic phase) at various substrate temperatures and ion doses. These thin films were characterized by x-ray diffraction with a position-sensitive detector, transmission electron microscopy with chemical analysis, and Rutherford backscattering spectroscopy. The as-implanted samples show a buried amorphous layer at a depth of 170 nm. Peak concentration of nitrogen saturates at approximately 45 at. % with doses above {approximately} 9.0 {times} 10{sup 17} N/cm{sup 2} at 860{degree}C. These results suggest formation of a new phase by nitrogen implantation into {beta}-SiC.

  1. A new approach for transition metal free magnetic SiC: Defect induced magnetism after self-ion implantation

    NASA Astrophysics Data System (ADS)

    Kummari, Venkata Chandra Sekhar

    SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence of low fluence low energy silicon and carbon implantation on the creation of defects in n-type 4H-SiC. The characterization of the defects in these implanted samples was performed using the techniques, RBS-channeling and Raman spectroscopy. We have also utilized these characterization techniques to analyze defects created in much deeper layers of the SiC due to implantation of high energy nitrogen ions. The experimentally determined depths of the Si damage peaks due to low energy (60 keV) Si and C ions with low fluences (< 1015 cm-2) are consistent with the SRIM-2011 simulations. From RBS-C Si sub-lattice measurements for different fluences (1.1x1014 cm-2 to 3.2x1014 cm-2 ) of Si

  2. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; Clark, R.

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  3. Comparison of ion milling techniques for cross-sectional TEM of semiconductors

    NASA Astrophysics Data System (ADS)

    Luck, J. T.; Boggs, C. W.; Pennycook, S. J.

    1985-03-01

    The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving with the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.

  4. Selective nucleation induced by defect nanostructures: A way to control cobalt disilicide precipitation during ion implantation

    SciTech Connect

    Fortuna, F.; Nguyen, M.-A.; Ruault, M.-O.; Kirk, M. A.; Borodin, V. A.; Ganchenkova, M. G.

    2012-12-15

    In this paper, we show a way to control cobalt disilicide precipitation during Co ion implantation at high temperatures (650 Degree-Sign C) by affecting radiation defects involved in precipitate nucleation and growth. We demonstrate that the relative shares of different precipitate types nucleated by implantation are strongly affected by defect microstructures deliberately created in investigated samples prior to cobalt implantation. Especially interesting is the effect of a dense ensemble of extremely small (1-3 nm) cavities, which promotes the formation of a relatively uniform layer of coherent cobalt disilicide precipitates with a narrow size distribution. In order to better understand the mechanism of the microstructural influence on the precipitate nucleation modes during Co implantation, we investigate the disilicide precipitation using different implantation setups and compare the results with those for cavity-free Si specimens implanted in similar conditions.

  5. Design and implementation of a web application to estimate the surface density of implanted ions in solid substrates

    NASA Astrophysics Data System (ADS)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2017-01-01

    In the present research a web application is designed and implemented allowing us to calculate the dose of implanted ions on solid substrates from experimental parameters (repetition rate and pulse duration of current, potential difference, work pressure and treatment time) and current pulses acquired during start-up and shutdown of high voltage electrical discharges at low pressures. By physical and mathematical processing, it is achieved at first estimate the value of the ionic charge, and then the areal density. This study will provide more accurate and suitable developments in relation to applications of ion implantation as an alternative technique to increase the service life of the surfaces of the materials used in various industrial sectors developments.

  6. A Simple Technique for Fabricating a Screw-Retained/Cemented Implant-Supported Crown.

    PubMed

    Helvey, Gregg A

    2017-03-01

    Many factors figure into the long-term success of an implant-supported restoration. While some are uncontrollable, others are manageable. The cement-retained implant-supported restoration is easier to fabricate, while the screw-retained implant-supported restoration involves more complicated, timeconsuming laboratory procedures. Most research has found the screw-retained restoration has had more minimal complications than the cement-retained counterpart. This article describes a simple, low-cost technique of converting a cement-retained implant crown to a screw-retained implant crown, which allows for easy retrievability and eliminates a number of laboratory steps and costs.

  7. Buried superconducting layers comprised of magnesium diboride nanocrystals formed by ion implantation

    NASA Astrophysics Data System (ADS)

    Zhai, H. Y.; Christen, H. M.; White, C. W.; Budai, J. D.; Lowndes, D. H.; Meldrum, A.

    2002-06-01

    Superconducting layers of MgB2 were formed on Si substrates using techniques that are widely used and accepted in the semiconductor industry. Mg ions were implanted into boron films deposited on Si or Al2O3 substrates. After a thermal processing step, buried superconducting layers comprised of MgB2 nanocrystals were obtained which exhibit the highest Tc reported so far for MgB2 on silicon (Tconsetapproximately33.6 K, DeltaTc=0.5 K, as measured by current transport). These results show that our approach is clearly applicable to the fabrication of superconducting devices that can be operated at much higher temperatures (approximately20 K) than the current Nb technology (approximately6 K) while their integration with silicon structures remains straight-forward.

  8. Oxygen plasma immersion ion implantation treatment to enhance data retention of tungsten nanocrystal nonvolatile memory

    SciTech Connect

    Wang, Jer-Chyi Chang, Wei-Cheng; Lai, Chao-Sung; Chang, Li-Chun; Ai, Chi-Fong; Tsai, Wen-Fa

    2014-03-15

    Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding the W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.

  9. Enhanced cytocompatibility and reduced genotoxicity of polydimethylsiloxane modified by plasma immersion ion implantation.

    PubMed

    Tong, Liping; Zhou, Wenhua; Zhao, Yuetao; Yu, Xuefeng; Wang, Huaiyu; Chu, Paul K

    2016-12-01

    Polydimethylsiloxane(PDMS) is a common industrial polymer with advantages such as ease of fabrication, tunable hardness, and other desirable properties, but the basic (-OSi(CH3)2-)n structure in PDMS is inherently hydrophobic thereby hampering application to biomedical engineering. In this study, plasma immersion ion implantation (PIII) is conducted on PDMS to improve the biological properties. PIII forms wrinkled "herringbone" patterns and abundant O-containing functional groups on PDMS to alter the surface hydrophilicity. The biocompatibility of the modified PDMS is assessed with Chinese hamster ovarian cells and compared to that of the untreated PDMS. Our results reveal that the PDMS samples after undergoing PIII have better cytocompatibility and lower genotoxicity. PIII which is a non-line-of-sight technique extends the application of PDMS to the biomedical field.

  10. Immediate Dental Implant Placements Using Osteotome Technique: A Case Report and Literature Review

    PubMed Central

    Al-Almaie, Saad

    2016-01-01

    This clinical case describes the effect of the osteotome technique on the osseointegration of a mandibular dental implant in a 42-year-old female patient with dento-alveolar bony defects and to review the literature regarding immediate implant placement using osteotome technique. The amount of bone expansion at the alveolar ridge and the marginal bone resorption from the time of implant placement to one year after the implant’s functional loading were recorded clinically. The esthetic outcome for the restored implant (the gingival margin) was achieved one years after the implant’s functional loading. The surgical and prosthetic sites for the implant showed no postoperative complications, and no infection or wound dehiscence was recorded during the follow-up period. The osteotome technique is good for the purpose for which it was introduced, and its advantages with immediate implant placement include reduced surgical trauma and a shorter treatment time. PMID:27583046

  11. Impact of Ion Implantation on Licorice (Glycyrrhiza uralensis Fisch) Growth and Antioxidant Activity Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Liu, Jingnan; Tong, Liping; Shen, Tongwei; Li, Jie; Wu, Lijun; Yu, Zengliang

    2007-06-01

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14× (2.6×1015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance.

  12. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  13. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  14. Broadband luminescence of Cu nanoparticles fabricated in SiO2 by ion implantation.

    PubMed

    Nguyen, Truong Khang; Le, Khai Q; Canimoglu, Adil; Can, Nurdogan

    2016-09-01

    In this study, we investigate optical properties of metal nanoparticle crystals fabricated by implanting copper (Cu) ions into single silica (SiO2) crystals with 400keV at various ion doses. The Cu implanted SiO2 (SiO2:Cu) crystal produces a broadband luminescence emission, ranging from blue to yellow, and having a blue luminescence peak at 546nm. Such anomalous luminescence emission bands suggest that the ion implantation may give rise to aggregation of Cu nanoparticles in the host matrix. The boundary element method-based modelling of a given Cu nanoparticle aggregation was employed to justify the broadband luminescence emission. Formation of Cu nanoparticles in SiO2 is predicted through their optical absorption data. The experimental results are compared with results of Mie calculations and we observe that the higher ion dose produces the larger particle size.

  15. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  16. Radiation Hardening of Ni-Ti Alloy Under Implantation of Inert Gases Heavy Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Satpaev, D.; Gyngazova, M.

    2016-02-01

    The consistent patterns of changes in nano- and micro-hardness of Ni-Ti alloy with the shape memory effect after implantation of 40Ar8+ and 84Kr15+ ions depending on phase composition and implantation parameters have been experimentally studied. It has been shown that softening by 4 and 14% near the surface of the two-phase Ni-Ti alloy after implantation of 40Ar8+ and 84Kr15+ ions is connected with the differences in the nanostructure. Hardening of the near-surface layer of this alloy maximum by 118% at h = ∼3 pm and single-phase alloy in the entire region of the 40Ar8+ and 84Kr15+ ions range and in the out-range (h > Rp) area have been detected. The role of the current intensity of the ions beam in the change of nanohardness for the two-phase Ni-Ti alloy has been established.

  17. Patterned ion beam implantation of Co ions into a SiO2 thin film via ordered nanoporous alumina masks.

    PubMed

    Guan, Wei; Ghatak, Jay; Peng, Yong; Peng, Nianhua; Jeynes, Chris; Inkson, Beverley; Möbus, Günter

    2012-02-03

    Spatially patterned ion beam implantation of 190 keV Co(+) ions into a SiO(2) thin film on a Si substrate has been achieved by using nanoporous anodic aluminum oxide with a pore diameter of 125 nm as a mask. The successful synthesis of periodic embedded Co regions using pattern transfer is demonstrated for the first time using cross-sectional (scanning) transmission electron microscopy (TEM) in combination with analytical TEM. Implanted Co regions are found at the correct relative lateral periodicity given by the mask and at a depth of about 120 nm.

  18. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  19. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone.

    PubMed

    Bilhan, H; Geckili, O; Mumcu, E; Bozdag, E; Sünbüloğlu, E; Kutay, O

    2010-12-01

    Achievement of primary stability during surgical placement of dental implants is one of the most important factors for successful osseointegration depending on various anatomical, surgical and implant-related factors. Resonance frequency analysis (RFA) has been shown as a non-invasive and objective technique for measuring the stability of implants. The aim of this study was to evaluate the effect of some surgical and implant-related factors in enhancing primary stability and to estimate a correlation between RFA and insertion torque (IT) in proximal regions of cow ribs representing cancellous bone. Fifteen implant beds were prepared in the most proximal region of six fresh cow ribs. Ninety implants with three different shapes and two different diameters were placed with two different surgical techniques, and the primary stability was compared using RFA and IT. Significantly higher RFA and IT values were achieved when under-dimensioned drilling was used as the surgical method (P<0·01); significantly higher IT values were obtained with the use of wider implants (P<0·01) and partially conical Astra Tech implants showed the highest IT values (P<0·01). When all the implants were considered, significant correlations between the IT and RFA values were noted (%40·6, P<0·05). Partially conical implants with a wide diameter to be placed with the modified surgical technique proposed appear to be useful in enhancing the primary stability in cancellous bone.

  20. Silicon defects characterization for low temperature ion implantation and RTA process

    NASA Astrophysics Data System (ADS)

    Martirani Paolillo, Diego; Margutti, Giovanni; De Biase, Marco; Barozzi, Mario; Giubertoni, Damiano; Spaggiari, Claudio

    2015-12-01

    In the last years a lot of effort has been directed in order to reduce silicon defects eventually formed during the ion implantation/anneal sequence used in the fabrication of CMOS devices. In this work we explored the effect of ion implant dose rate and temperature on the formation of silicon defects for high fluence 49BF2 implantations. The considered processes (implantation and annealing) conditions are those typically used to form the source/drain regions of p-channel transistors in the submicron technology node and will be detailed in the document. Characterization of implant damage and extended silicon defects left after anneal has been performed by TEM. Dopant distribution and dopant activation has been investigated by SIMS and SRP analysis. We have verified that implant dose rate and temperature modulate the thickness of the amorphous silicon observed after implant, as well as the concentrations of silicon defects left after anneal. Effect of high dose rate low temperature implantation on product device was also evaluated, showing a reduction of leakage current on p-channel transistors. Experimental set up, results and possible explanation will be reported and discussed in the paper.