Sample records for ion implanted amorphous

  1. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  2. Surface modification by carbon ion implantation for the application of ni-based amorphous alloys as bipolar plate in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan

    2011-04-01

    Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.

  3. Au5+ ion implantation induced structural phase transitions probed through structural, microstructural and phonon properties in BiFeO3 ceramics, using synergistic ion beam energy

    NASA Astrophysics Data System (ADS)

    Dey, Ranajit; Bajpai, P. K.

    2018-04-01

    Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol-gel method was investigated. These BFO samples were implanted by 15.8 MeV ions of Au5+ at various ion fluence ranging from 1 × 1014 to 5 × 1015 ions/cm2. Effect of Au5+ ions' implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds' formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8 MeV Au5+ ions at a fluence of 5 × 1015 ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8 MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.

  4. Atomistic simulation of damage accumulation and amorphization in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio; Claverie, Alain

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions.more » We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.« less

  5. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-08-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag+ ions at different ion fluences ranging from 1 × 1014 to 5 × 1015 ions/cm2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV-Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag+-implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 1014 ions/cm2. Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  6. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    NASA Astrophysics Data System (ADS)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  7. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  8. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  9. Threshold irradiation dose for amorphization of silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenonmore » ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.« less

  10. Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hugh; Todorov, Stan; Colombeau, Benjamin

    2012-11-06

    We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channelmore » rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.« less

  11. Structural analysis of ion-implanted chemical-vapor-deposited diamond by transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.

    1997-04-01

    A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.

  12. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  13. Examining metallic glass formation in LaCe:Nb by ion implantation

    DOE PAGES

    Sisson, Richard; Reinhart, Cameron; Bridgman, Paul; ...

    2017-01-01

    In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film ofmore » La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.« less

  14. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  15. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.

    2005-05-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances andmore » surface mechanical properties and possible mechanisms are suggested.« less

  16. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  17. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  18. Mechanical properties and structure evolution of single-crystalline silicon irradiated by 1 MeV Au+ and Cu+ ions

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Zhu, Fei; Ling, Yunhan; Liu, Kezhao; Hu, Yin; Pan, Qifa; Chen, Limin; Zhang, Zhengjun

    2018-05-01

    Mechanical and structural evolutions of single-crystalline silicon irradiated by a series of doses 1 MeV Au+ ions and Cu+ ions are characterized by Surface laser-acoustic wave spectroscopy by (LA wave), Rutherford backscattering spectrometry and channeling (RBS/C) and transmission electron microscopy (TEM). The behavior of implanted Au+ and Cu+ ions was also simulated by using Stopping and range of ions in matter (SRIM) software package, respectively. It is demonstrated that LA wave and RBS could be applied for accurate evaluation of the TEM observed amorphous layer's thickness. The modified mechanical properties depend on the species and the dose of implantation. For 1 MeV Au+ ions, the threshold dose of completely amorphous is 5 × 1014 atoms/cm2, while the one for Cu+ ions is 5 × 1015 atoms/cm2. Upon completely amorphous, the young's modulus and layer density decreased significantly while saturated with the dose increasing sequentially.

  19. Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.

    2013-01-01

    Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.

  20. Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung

    2009-11-01

    Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.

  1. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  2. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  3. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  4. Effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion implantations on crystallinity and retained B dose in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Yoji; Shibahara, Kentaro; Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527

    2012-01-15

    The effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion (B{sub 36}H{sub y}{sup +}) implantations on Si crystallinity and the retained B dose in Si were investigated using B{sub 18}H{sub x} bombardment and compared with the effects of B{sup +} implantation. Crystallinity was estimated for the implantation dose using molecular dynamic simulations (MDSs) and was quantified using the optical thickness obtained from spectroscopic ellipsometry. The authors focused on the crystallinity at a low B dose and compared the amorphized zones predicted by MDS for B{sub 18}H{sub x}{sup +} implantation with those measured using transmission electron microscopy; themore » predicted and measured results were in reasonable agreement. The authors then used their understanding of B{sub 18}H{sub x} bombardment to discuss the process for the generation of larger amorphized zones and thicker amorphized layers, as observed in B{sub 36}H{sub y}{sup +} implantation. The retained B dose and the sputtering were examined with secondary ion mass spectroscopy, focusing on a comparison of the retained B and the sputtering of Si and SiO{sub 2} surfaces. The retained B dose was lower for B{sub 18}H{sub x}{sup +} and B{sub 36}H{sub y}{sup +} implantations, with and without surface SiO{sub 2}, than for B{sup +} implantation, although no sputtering was observed. The reduction of the retained B dose was more severe in the samples with SiO{sub 2}. The origin of the differences between Si and SiO{sub 2} surfaces was considered to be Si melting; this was predicted by the MDSs, and observed indirectly as flat B profiles in the Si region. To examine the effects of both crystallinity and retained B dose on the electrical characteristics, the sheet resistance (R{sub S}) was measured. The R{sub S} for B{sub 18}H{sub x}{sup +} implantation was lower than that for B{sup +} implantation at both B doses studied. Additionally, the B{sub 36}H{sub y}{sup +} implantation under conditions that produced a thicker amorphized layer led to lower R{sub S} than B{sub 18}H{sub x}{sup +} implantation. These results indicate that both the amorphized layer and the amorphized zone contribute to the activation of more B atoms.« less

  5. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

  6. Reflectivity modification of polymethylmethacrylate by silicon ion implantation

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Ivanov, Victor; Faulques, Eric

    2008-05-01

    The effect of silicon ion implantation on the optical reflection of bulk polymethylmethacrylate (PMMA) was examined in the visible and near UV. A low-energy (30 and 50 keV) Si + beam at fluences in the range from 10 13 to 10 17 cm -2 was used for ion implantation of PMMA. The results show that a significant enhancement of the reflectivity from Si +-implanted PMMA occurs at appropriate implantation energy and fluence. The structural modifications of PMMA by the silicon ion implantation were characterized by means of photoluminescence and Raman spectroscopy. Formation of hydrogenated amorphous carbon (HAC) layer beneath the surface of the samples was established and the corresponding HAC domain size was estimated.

  7. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    NASA Astrophysics Data System (ADS)

    Friedland, E.

    2017-01-01

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  8. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  9. Compositional dependence of defect mobility and damage buildup in Al xGa 1- xAs

    NASA Astrophysics Data System (ADS)

    Stonert, A.; Turos, A.; Nowicki, L.; Breeger, B.; Wendler, E.; Wesch, W.

    2001-04-01

    Defect transformations at low temperatures in ion implanted Al xGa 1- xAs (0⩽ x⩽1) ternary compounds were studied. Experiments consisted of ion implantation with 150 keV N or 200 keV Ar ions with different doses at temperatures between 18 and 77 K, and in situ RBS/channeling measurements at selected temperatures. An important recovery stage attributed to the defect mobility in the Ga(Al) sublattice was revealed near 280 K. For x>0.5 this stage was largely suppressed. Instead, a continuous damage recovery at low temperatures was observed. It was noticed that defect recombination can also be produced upon prolonged storage at the implantation temperature. For AlAs ( x=1) the 280 K stage disappeared completely and only a small defect recovery at low temperatures was noticed. Upon N- or Ar-ion bombardment, after an incubation period, a sharp crystalline-to-amorphous transition appeared. The amorphization dose increases with increasing x and is a factor of 10 higher for x=0.96 than that for x=0. A further increase of the dose by a factor of 15 was required to amorphize AlAs ( x=1).

  10. The effects of ion implantation on the tribology of perfluoropolyether-lubricated 440C stainless steel couples

    NASA Technical Reports Server (NTRS)

    Shogrin, Bradley; Jones, William R., Jr.; Wilbur, Paul J.; Pilar, Herrera-Fierro; Williamson, Don L.

    1995-01-01

    The lubricating lifetime of thin films of a perfluoropolyether (PFPE) based on hexafluoropropene oxide in the presence of ion implanted 440C stainless steel is presented. Stainless steel discs, either unimplanted or implanted with N2, C, Ti, Ti + N2, or Ti + C had a thin film of PFPE (60-400 A) applied to them reproducibly (+/- 20 percent) and uniformly (+/- 15 percent) using a device developed for this study. The lifetimes of these films were quantified by measuring the number of sliding-wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unimplanted couple. The tests were performed in a dry nitrogen atmosphere (less than 1 percent RH) at room temperature using a 3 N normal load with a relative sliding speed of 0.05 m/s. The lubricated lifetime of the 440C couple was increased by an order of magnitude by implanting the disc with Ti. Ranked from most to least effective, the implanted species were: Ti; Ti+C; unimplanted; N2; C approximately equals Ti+N2. The mechanism postulated to explain these results involves the formation of a passivating or reactive layer which inhibits or facilitates the production of active sites. The corresponding surface microstructures induced by ion implantation, obtained using x-ray diffraction and conversion electron Mossbauer spectroscopy, ranked from most to least effective in enhancing lubricant lifetime were: amorphous Fe-Cr-Ti; amorphous Fe-Cr-Ti-C + TiC; unimplanted; epsilon-(Fe,Cr)(sub x)N, x = 2 or 3; amorphous Fe-Cr-C approximately equals amorphous Fe-Cr-Ti-N.

  11. Phase transformations induced by spherical indentation in ion-implanted amorphous silicon

    NASA Astrophysics Data System (ADS)

    Haberl, B.; Bradby, J. E.; Ruffell, S.; Williams, J. S.; Munroe, P.

    2006-07-01

    The deformation behavior of ion-implanted (unrelaxed) and annealed ion-implanted (relaxed) amorphous silicon (a-Si) under spherical indentation at room temperature has been investigated. It has been found that the mode of deformation depends critically on both the preparation of the amorphous film and the scale of the mechanical deformation. Ex situ measurements, such as Raman microspectroscopy and cross-sectional transmission electron microscopy, as well as in situ electrical measurements reveal the occurrence of phase transformations in all relaxed a-Si films. The preferred deformation mode of unrelaxed a-Si is plastic flow, only under certain high load conditions can this state of a-Si be forced to transform. In situ electrical measurements have revealed more detail of the transformation process during both loading and unloading. We have used ELASTICA simulations to obtain estimates of the depth of the metallic phase as a function of load, and good agreement is found with the experiment. On unloading, a clear change in electrical conductivity is observed to correlate with a "pop-out" event on load versus penetration curves.

  12. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  13. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  14. Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaotie; Rudawski, Nicholas G.; Appleton, Bill R.

    2016-07-14

    In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si{sup −} plus C{sup −} and Au{sup +} ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphousmore » and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.« less

  15. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  16. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    NASA Astrophysics Data System (ADS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  17. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  18. Ion irradiation damage in ilmenite at 100 K

    USGS Publications Warehouse

    Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A.; Nord, G.L.

    1997-01-01

    A natural single crystal of ilmenite (FeTiO3) was irradiated at 100 K with 200 keV Ar2+. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He+ ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 ?? 1015 Ar2+/cm2, considerable near-surface He+ ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 nm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO3) and spinel (MgAl2O4) to explore factors that may influence radiation damage response in oxides.

  19. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  20. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliviero, E.; David, M. L.; Beaufort, M. F.

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less

  1. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  2. Boron depth profiles and residual damage following rapid thermal annealing of low-temperature BSi molecular ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Wang, S. C.

    2007-08-01

    The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.

  3. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  4. Maskless nano-implant of 20 keV Ga+ in bulk Si(1 0 0) substrates

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; D'Arrigo, G.; Mio, A. M.; Rimini, E.; Spinella, C.; Peto, L.; Nadzeyka, A.; Bauerdick, S.

    2014-12-01

    Multidirectional SPEG (Solid Phase Epitaxial Growth) of silicon has been investigated in micro and nanoamorphous structures generated on a crystalline substrate by a nano-sized ion beam, Gaussian shaped and with a standard deviation of about 5 nm. The 20 keV Ga+ ions were implanted at a fluence of 5 × 1014 ions cm-2 in a bulk Si(1 0 0) single crystal. Two structures were used for the implants: circular regions of 100 nm and 1 μm diameters respectively and straight lines 10 nm in width and few microns in length along (1 0 0) or (1 1 0) directions. The lateral spread of ions has been taken into account in the damage estimation. Transmission Electron Microscopy indicates that the structures are made of an amorphous core surrounded by a defective and filamentary shell. The recovery of the damaged outer regions promptly occurs during the early stages of the thermal treatment at 500-600 °C for all the structures. By prolonging annealing time, re-crystallization of the amorphous cores is achieved too by the movement of the underneath crystal-amorphous interface. The re-growth is almost defects free when the contribution of the crystalline seed below the structures is present, defective and twin mediated if it misses as in the thinnest regions of the specimen.

  5. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  6. Solar Ion Processing of Itokawa Grains: Reconciling Model Predictions with Sample Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, Roy; Keller, L. P.

    2014-01-01

    Analytical TEM observations of Itokawa grains reported to date show complex solar wind ion processing effects in the outer 30-100 nm of pyroxene and olivine grains. The effects include loss of long-range structural order, formation of isolated interval cavities or "bubbles", and other nanoscale compositional/microstructural variations. None of the effects so far described have, however, included complete ion-induced amorphization. To link the array of observed relationships to grain surface exposure times, we have adapted our previous numerical model for progressive solar ion processing effects in lunar regolith grains to the Itokawa samples. The model uses SRIM ion collision damage and implantation calculations within a framework of a constant-deposited-energy model for amorphization. Inputs include experimentally-measured amorphization fluences, a Pi steradian variable ion incidence geometry required for a rotating asteroid, and a numerical flux-versus-velocity solar wind spectrum.

  7. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  8. Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4

    DOE PAGES

    Mirzaei, S.; Kremer, F.; Feng, R.; ...

    2017-03-14

    SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less

  9. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ionmore » fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 /times/ 10/sup 14/ cm/sup /minus/2/) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuo, Y.S.; Smith, E.B.; Deb, S.K.

    A Kaufman ion beam source was used to implant hydrogen atoms into glow-discharge-deposited amorphous silicon materials in which the hydrogen content had been driven out by heating. We found that the hydrogen atoms introduced by this low-energy (less than 700 eV) ion implantation method bonded predominantly as SiH. An air mass one, photo-to-dark-conductivity ratio as high as 5.6 x 10/sup 5/ has been obtained with hydrogen-implanted materials. No light-induced reduction of the photo- and dark conductivities has been observed in these materials after 20 h of AMl illumnination.

  11. Ion implantation in group III-nitride semiconductors: a tool for doping and defect studies

    NASA Astrophysics Data System (ADS)

    Zolper, J. C.

    1997-06-01

    Ion implantation is a flexible process technology for introducing an array of doping or compensating impurities into semiconductors. As the crystal quality of the group III-nitride materials continues to improve, ion implantation is playing an enabling role in exploring new dopant species and device structures. In this paper we review the recent developments in ion implantation processing of these materials with a particular emphasis on how this technology has brought new understanding to this materials system. In particular, the use of ion implantation to characterize impurity luminescence, doping, and compensation in III-nitride materials is reviewed. In addition, we address the nature of implantation induced damage in GaN which demonstrates a very strong resistance to amorphization while at the same time forming damage that is not easily removed by thermal annealing. Finally, we review the coupling of implantation with high temperature rapid thermal annealing to better understand the thermal stability of these materials and the redistribution properties of the common dopant (Si, O, Be, Mg, Ca, and Zn).

  12. Raman Scattering Studies on Ag Nanocluster Composites Formed by Ion Implantation into Silica

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Jiang, Chang Zhong; Fu, De Jun; Fu, Qiang

    2005-12-01

    Highly-pure amorphous silica slides were implanted by 200 keV Ag ions with doses ranged from 1× 1016 to 2× 1017 ions/cm2. Optical absorption spectra show that Ag nanoclusters with various sizes have been formed. Enhancement of surface enhanced Raman scattering signal by a factor up to about 103 was obtained by changing the Ag particle size. The silica was damaged by the implanted Ag ions, and the large compression stress on the silica leads to the shift of Raman peaks. New bands at 1368 and 1586 cm-1, which are attributed to the vibration of Ag-O bond and O2 molecules in silica, are observed in the samples with doses higher than 1× 1017 ions/cm2.

  13. Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.

    2017-07-01

    Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.

  14. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less

  15. The parameter influence of ion irradiation on the distribution profile of the defect in silicon films

    NASA Astrophysics Data System (ADS)

    Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.

    2017-09-01

    As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.

  16. Depth profiling of high energy nitrogen ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals

    NASA Astrophysics Data System (ADS)

    Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.

    2012-03-01

    This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.

  17. Effect of structural transformation of C+-ion implanted PMMA into quasi-continuous carbonaceous layer on its optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat

    2018-02-01

    The samples of Polymethylmethacrylate (PMMA) have been implanted with 500 keV C+-ions at different ion fluences ranging from 9.3 × 1013 to 8.4 × 1014 ions/cm2. The structural modifications are examined by Fourier Transform Infrared and Raman spectral studies. For the investigation of optical, electrical and surface morphological properties of implanted samples UV-Visible spectrometer, four probe apparatus and optical microscope have been employed. The FTIR spectra confirmed the cleavage of chemicals bonds as a consequence of polymer chain scission, whereas, Raman studies revealed the transformation of PMMA structure into quasi-continuous amorphous carbon with increasing ion fluences. A continuous reduction has been observed in the optical band gap of PMMA from 3.16 to 1.42 eV. Moreover, the refractive index, extinction coefficient and electrical conductivity of implanted PMMA are found to be an increasing function of the ion fluence. The micrographic images revealed the signatures of ion-induced defects like cracking, dehydrogenation, stress and swelling on the surface of PMMA. These implanted samples have a potential to be used in the field of optical communications and thin plastic flexible electronics.

  18. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    NASA Astrophysics Data System (ADS)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  19. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Fei; Zhang, Bei; Liu, Huixian; Jia, Guangyi; Liu, Changlong

    2012-11-01

    Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm-2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm-2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm-2.

  20. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radek, M.; Bracht, H., E-mail: bracht@uni-muenster.de; Johnson, B. C.

    2015-08-24

    The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that themore » SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.« less

  1. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  2. Growth of rutile TiO2 nanorods in Ti and Cu ion sequentially implanted SiO2 and the involved mechanisms

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Liu, Xiaoyu; Wang, Xiaohu; Dai, Haitao; Liu, Changlong

    2018-01-01

    TiO2 in nanoscale exhibits unique physicochemical and optoelectronic properties and has attracted much more interest of the researchers. In this work, TiO2 nanostructures are synthesized in amorphous SiO2 slices by implanting Ti ions, or sequentially implanting Ti and Cu ions combined with annealing at high temperature. The morphology, structure, spatial distribution and optical properties of the formed nanostructures have been investigated in detail. Our results clearly show that the thermal growth of TiO2 nanostructures in SiO2 substrate is significantly enhanced by presence of post Cu ion implantation, which depends strongly on the applied Cu ion fluence, as well as the annealing atmosphere. Due to the formation of Cu2O in the substrate, rutile TiO2 nanorods of large size have been well fabricated in the Ti and Cu sequentially implanted SiO2 after annealing in N2 atmosphere, in which Cu2O plays a role as a catalyst. Moreover, the sample with well-fabricated TiO2 nanorods exhibits a narrowed band gap, an enhanced optical absorption in visible region, and catalase-/peroxidase-like catalytic characteristics. Our findings provide an effective route to fabricate functional TiO2 nanorods in SiO2 via ion implantation.

  3. Effect of substrate temperature on implantation doping of Co in CdS nanocrystalline thin films.

    PubMed

    Chandramohan, S; Kanjilal, A; Sarangi, S N; Majumder, S; Sathyamoorthy, R; Hong, C-H; Som, T

    2010-07-01

    We demonstrate doping of nanocrystalline CdS thin films with Co ions by ion implantation at an elevated temperature of 573 K. The modifications caused in structural and optical properties of these films are investigated. Co-doping does not lead to amorphization or formation of any secondary phase precipitate for dopant concentrations in the range of 0.34-10.8 at.% used in the present study. However, we observe a systematic reduction in the d-spacing with increasing cobalt concentration. Optical band gap of CdS does not show any obvious change upon Co-doping. In addition, implantation gives rise to grain growth and increase in the surface roughness. The results are discussed in the light of ion-matter interaction in the keV regime.

  4. Atypical self-activation of Ga dopant for Ge nanowire devices.

    PubMed

    Zeiner, Clemens; Lugstein, Alois; Burchhart, Thomas; Pongratz, Peter; Connell, Justin G; Lauhon, Lincoln J; Bertagnolli, Emmerich

    2011-08-10

    In this Letter we report the atypical self-activation of gallium (Ga) implanted by focused ion beam (FIB) into germanium nanowires (Ge-NWs). By FIB implantation of 30 keV Ga(+) ions at room temperature, the Ge-NW conductivity increases up to 3 orders of magnitude with increasing ion fluence. Cu(3)Ge heterostructures were formed by diffusion to ensure well-defined contacts to the NW and enable two point I/V measurements. Additional four point measurements prove that the conductivity enhancement emerges from the modification of the wires themselves and not from contact property modifications. The Ga distribution in the implanted Ge-NWs was measured using atom probe tomography. For high ion fluences, and beginning amorphization of the NWs, the conductivity decreases exponentially. Temperature dependent conductivity measurements show strong evidence for an in situ doping of the Ge-NWs without any further annealing. Finally the feasibility of improving the device performance of top-gated Ge-NW MOSFETs by FIB implantation was shown.

  5. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.

    PubMed

    Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-27

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  6. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    NASA Astrophysics Data System (ADS)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  7. Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor

    2017-02-01

    Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. Formore » irradiation to 1E21 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.« less

  8. Understanding heterogeneity in Genesis diamond-like carbon film using SIMS analysis of implants

    DOE PAGES

    Jurewicz, Amy J. G.; Burnett, Don S.; Rieck, Karen D.; ...

    2017-07-05

    An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 μm thick, amorphous, anhydrous, and had a high ratio of sp 3–sp 2 bonds (>50%). For 27 months of exposure to space at the first We passively irradiated lagrange point, the collectors, with SW (H fluence ~2 × 10 16 ions cm -2; He fluence ~8 × 10 14 ions cm -2). The radiation damage caused by the implanted H ionsmore » peaked at 12–14 nm below the surface of the film and that of He about 20–23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg ( 25Mg and 26Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 10 14 ions cm -2. Furthermore, the shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 μm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure.« less

  9. Understanding heterogeneity in Genesis diamond-like carbon film using SIMS analysis of implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurewicz, Amy J. G.; Burnett, Don S.; Rieck, Karen D.

    An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 μm thick, amorphous, anhydrous, and had a high ratio of sp 3–sp 2 bonds (>50%). For 27 months of exposure to space at the first We passively irradiated lagrange point, the collectors, with SW (H fluence ~2 × 10 16 ions cm -2; He fluence ~8 × 10 14 ions cm -2). The radiation damage caused by the implanted H ionsmore » peaked at 12–14 nm below the surface of the film and that of He about 20–23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg ( 25Mg and 26Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 10 14 ions cm -2. Furthermore, the shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 μm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure.« less

  10. The solid film lubrication by carbon ion implantation into α-Al 2O 3

    NASA Astrophysics Data System (ADS)

    Jun, Tian; Qizu, Wang; Qunji, Xue

    1998-10-01

    Improvement in tribological performance by C +110 keV implantation can be achieved by having a more graphite-like carbon structure on Al 2O 3. It was shown that fracture toughness and critical peeling load increased for a fluence of 5 × 10 17C +/cm 2 because of residual compression stress and amorphism of surface. The testing in a different implantation dose indicated that the friction and wear mechanism in Optimol fretting wear machine (SRV) was a combination of surface structure and its abrasive wear. Raman shift shows that the amorphous graphite with 5 × 10 17-1 × 10 18 C +/cm 2 implantation dose was formed on Al 2O 3 surface, so that it reduced friction coefficient and wear of Al 2O 3, also it is noticed that the failure of lubrication due to graphite-like film wear is much earlier in the implantation sample with 1 × 10 17C +/cm 2 dose.

  11. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    PubMed

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-09-01

    Specimens of polymethylmethacrylate (PMMA) have been implanted with 400 keV Cr+ ions at different ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The possible chemical reactions involved in the nucleation of conjugated carbonaceous clusters in implanted PMMA are discussed. Furthermore, impact of formation of carbonaceous clusters on structural, optical, electrical and morphological properties of implanted PMMA has been examined. The structural modifications in implanted PMMA are observed by Raman spectroscopy. The variation in optical band gap and Urbach energy is measured using UV-visible spectroscopic analysis. The effects of Cr+ ion implantation on electrical and morphological properties are investigated by four-probe apparatus and atomic force microscopy, respectively. The Raman spectroscopic analysis confirmed the formation of carbonaceous clusters with the transformation of implanted layer of PMMA into amorphous carbon. Simultaneously, the optical band gap of implanted PMMA has reduced from 3.13 to 0.85 eV. The increase in Urbach energy favors the decline in band gap together with the structural modification in implanted PMMA. As a result of Cr+ ion implantation, the electrical conductivity of PMMA has improved from 2.14 ± 0.06 × 10-10 S/cm (pristine) to 7.20 ± 0.36 × 10-6 S/cm. The AFM images revealed a decrease in surface roughness with an increment in ion fluence up to 5 × 1014 ions/cm2. The modification in the electrical, optical and structural properties makes the PMMA a promising candidate for its future utilization, as a semiconducting and optically active material, in various fields like plastic electronics and optoelectronic devices.

  13. Hydrogen ion-driven permeation in carbonaceous films

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.

  14. Ion implantation disorder in strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; Picraux, S. T.; Peercy, P. S.; Myers, D. R.; Biefeld, R. M.; Dawson, L. R.

    Cantilever beam bending and RBS channeling measurements have been used to examine implantation induced disorder and stress buildup in InO 2GaO 8As/GaAs SLS structures. The critical fluence for saturation of compressive stress occurs prior to amorphous layer formation and is followed by stress relief. For all the ions the maximum ion induced stress scales with energy density into atomic processes and stress relief occurs above approximately 1x10 to the 20th keV/1 cubic cm. Stress relief is more pronounced for the SLSs than for bulk GaAs. Stress relief may lead to slip or other forms of inelastic material flow in SLSs, which would be undesirable for active regions in device applications. Such material flow may be avoided by limiting maximum fluences or by multiple step or simultaneous implantation and annealing for high fluences.

  15. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy.

    PubMed

    Jie, Jin; Shao, Tianmin

    2017-10-19

    M50 bearing steels were alternately implanted with Ti⁺ and N⁺ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 10 17 ions/cm², and Ti-implantation at an energy of about 40-90 keV and a fluence of 2 × 10 17 ions/cm². The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials.

  16. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy

    PubMed Central

    Jie, Jin; Shao, Tianmin

    2017-01-01

    M50 bearing steels were alternately implanted with Ti+ and N+ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 1017 ions/cm2, and Ti-implantation at an energy of about 40–90 keV and a fluence of 2 × 1017 ions/cm2. The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials. PMID:29048360

  17. Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms

    NASA Astrophysics Data System (ADS)

    Shen, Ming-Yi

    The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level with a lower wafer dose can be achieved. In addition, the leakage current might also be reduced due to less undesired dopants in the channel. However, the twin defects from the problematic Si{111} recrystallization is well-known to cause excessive leakage current to the FinFET. This drawback can offset the benefits of the high dose rate I/I mentioned above. This work produced the first attempt at simulating the electrical impact of twin defects on advanced-node (10 nm) FinFET device performance. It was found that the high dose-rate I/I causes more twin defects in the silicon fin, and the physical locations of these defects were close to the channel. The defects undesirably induced trap-assisted band-to-band tunneling near the drain, which increased the leakage current. This issue could be mitigated by using asymmetrical gate overlap/underlap design or thicker spacer for SDE I/I so that the twin defects are not located in the depletion region near the drain.

  18. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  19. Studies on Amorphizing Silicon Using Silicon Ion Implantation.

    DTIC Science & Technology

    1985-04-01

    for removal from their lattice site, relax or recombine with their original or other vacant lattice site. This effect is also temperature sensitive...The results should be comparable since the samples were oriented to appear like a random lattice target to the incoming ion beam. At the Avionics...times greater than 10- seconds after the impinging ion has come to Il rest. Thus any displaced atoms which relax back onto a lattice site or are able

  20. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    NASA Astrophysics Data System (ADS)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation in combination with two-step annealing is effective in fabricating ultra-shallow junctions.

  1. Predictive process simulation of cryogenic implants for leading edge transistor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossmann, Hans-Joachim; Zographos, Nikolas; Park, Hugh

    2012-11-06

    Two cryogenic implant TCAD-modules have been developed: (i) A continuum-based compact model targeted towards a TCAD production environment calibrated against an extensive data-set for all common dopants. Ion-specific calibration parameters related to damage generation and dynamic annealing were used and resulted in excellent fits to the calibration data-set. (ii) A Kinetic Monte Carlo (kMC) model including the full time dependence of ion-exposure that a particular spot on the wafer experiences, as well as the resulting temperature vs. time profile of this spot. It was calibrated by adjusting damage generation and dynamic annealing parameters. The kMC simulations clearly demonstrate the importancemore » of the time-structure of the beam for the amorphization process: Assuming an average dose-rate does not capture all of the physics and may lead to incorrect conclusions. The model enables optimization of the amorphization process through tool parameters such as scan speed or beam height.« less

  2. Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedraza, D.F.; Mansur, L.K.

    1985-01-01

    A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less

  3. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  4. Structural and chemical alteration of crystalline olivine under low energy He+ irradiation

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Carrez, Ph.; Leroux, H.; Cordier, P.; Jones, A. P.; Borg, J.; Quirico, E.; Raynal, P. I.; d'Hendecourt, L.

    2001-03-01

    We present the results of irradiation experiments on crystalline olivine with He+ ions at energies of 4 and 10 keV and fluences varying from 5 1016 to 1018 ions/cm2. The aim of these experiments is to simulate ion implantation into interstellar grains in shocks in the ISM. Irradiated samples were analysed by transmission electron microscopy (TEM). The irradiation causes the amorphization of the olivine, at all He+ fluences considered. The thickness of the amorphized region is 40 +/- 15 nm and 90 +/- 10 nm for the 4 keV and 10 keV experiments, respectively. The amorphization of the olivine occurs in conjunction with an increase in the porosity of the material due to the formation of bubbles. In addition, the amorphized layer is deficient in oxygen and magnesium. We find that the O/Si and Mg/Si ratios decrease as the He+ fluence increases. These experiments show that the irradiation of dust in supernova shocks can efficiently alter the dust structure and composition. Our result are consistent with the lack of crystalline silicates in the interstellar medium and also with the compositional evolution observed from olivine-type silicates around evolved stars to pyroxene-type silicates around protostars.

  5. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE PAGES

    Huang, Lu; Tian, Mengkun; Wu, Dong; ...

    2017-11-24

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  6. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lu; Tian, Mengkun; Wu, Dong

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  7. Dynamic defect annealing in wurtzite MgZnO implanted with Ar ions

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Wendler, E.; Du, X. L.; Kuznetsov, A. Yu.; Svensson, B. G.

    2015-09-01

    Successful implementation of ion beams for modification of ternary ZnO-based oxides requires understanding and control of radiation-induced defects. Here, we study structural disorder in wurtzite ZnO and MgxZn1-xO (x ⩽ 0.3) samples implanted at room and 15 K temperatures with Ar ions in a wide fluence range (5 × 1012-3 × 1016 cm-2). The samples were characterized by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The results show that all the samples exhibit high radiation resistance and cannot be rendered amorphous even for high ion fluences. Increasing the Mg content leads to some damage enhancement near the surface region; however, irrespective of the Mg content, the fluence dependence of bulk damage in the samples displays the so-called IV-stage evolution with a reverse temperature effect for high ion fluences.

  8. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  9. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    NASA Astrophysics Data System (ADS)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  10. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching

    NASA Astrophysics Data System (ADS)

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-01

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  11. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching.

    PubMed

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-19

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  12. Deuterium permeation behaviors in tungsten implanted with nitrogen

    NASA Astrophysics Data System (ADS)

    Liang, Chuan-hui; Wang, Dongping; Jin, Wei; Lou, Yuanfu; Wang, Wei; Ye, Xiaoqiu; Chen, Chang-an; Liu, Kezhao; Xu, Haiyan; Wang, Xiaoying; Kleyn, Aart W.

    2018-07-01

    Surface modification of tungsten due to the cooling species nitrogen seeded in the divertor region, i.e., by nitrogen ion implantation or re-deposition, is considered to affect the permeation behavior of H isotopes. This work focuses on the effect of nitrogen ion implantation into tungsten (W-N) on the deuterium gas-driven permeation behavior. For comparison, both permeation in tungsten implanted with W ion (W-W) and without implantation (pristine W) are studied. These three samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photo-electron spectroscopy (XPS). The SEM results revealed that the W-W sample has various voids on the surface, and the W-N sample has a rough surface with pretty fine microstructures. These are different from the pristine W sample with a smooth and compact surface. The XRD patterns show the disappearance of crystallinity on both W-W and W-N sample surfaces. It indicates that the ion implantation process results in an almost complete conversion from crystalline to amorphous in the sample surfaces. The sputter-depth profiling XPS spectra show that the implanted nitrogen prefers to form a 140 nm thick tungsten nitride layer. In permeation experiments, it was found that the D permeability is temperature dependent. Interestingly, the W-N sample presented a lower D permeability than the W-W sample, but higher than the pristine W sample. Such behavior implies that tungsten nitride acts as a permeation barrier, while defects created by ions implantation can promote permeability. The possible permeation mechanism correlated with sample surface composition and microstructure is consequently discussed in this work.

  13. Solar Ion Processing of Itokawa Grains: Constraints on Surface Exposure Times

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.

    2015-01-01

    Analytical TEM observations obtained to date reveal that a significant sub-population of grains returned from the surface of asteroid Itokawa have had their outer 30-100 nm processed by space weathering effects. Although the effects include some surface deposition of condensed impact vapor and isolated impact melt splashes, much of the width of the space weathered outer margins or "rims" on grains is derived from solar wind processing of the original host grain. Similar to what has long been reported for some lunar grains, the ion-processed rims on Itokawa grains exhibit varing degrees and depths of penetration of atomic-displacement ion damage, resulting in complete amorphization for some rims (particularly in plagioclase), or formation of highly defective but still crystalline structures in others (particularly in pyroxene and olivine). Possibly different from lunar grains, however, is the presence of isolated internal cavities or voids in Itokawa grain rims, which may be implantation "bubbles" due to accumulating implanted solar wind H and/or He. For a given mineral exposed at a particular set of long term solar wind conditions, the level of ion damage in a given grain rim, the depth of damage penetration represented by the rim width, and the formation or lack of formation of implantation bubbles can all be linked to the time spent by the grain in an uncovered state on the topmost, space-exposed, regolith surface. For the lunar case, we have previously shown that with reasonable assumptions about solar wind characteristics over time, a model can be developed to estimate this exposure time based on the width of amorphous rims on lunar grains. Here we report on an expansion of the model to cover exposure time information contained in the array of solar ion-induced features in Itokawa grains.

  14. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    NASA Astrophysics Data System (ADS)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  15. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  16. Ion-beam-induced damage formation in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rischau, C. W.; Schnohr, C. S.; Wendler, E.

    2011-06-01

    Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less

  17. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.

    2014-12-01

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.

  18. Scanning electron microscopy of the surfaces of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  19. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  20. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in; Kanjilal, A.

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used inmore » our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.« less

  1. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Oreshko, A. P.

    2016-03-15

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2–5)-keV helium ions to a dose of D = 6 × 10{sup 15}–5 × 10{sup 17} cm{sup –2} have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ(z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 10{sup 16} cm{sup –2} leads to the formation of a 20- to 30-nm-thick amorphizedmore » surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.« less

  2. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (1018 cm-2): Their structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bondar, O. V.; Borba, S. O.; Abadias, G.; Konarski, P.; Plotnikov, S. V.; Beresnev, V. M.; Kassenova, L. G.; Drodziel, P.

    2016-10-01

    Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N+ ions, 1018 cm-2, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N+ implantation, which is expected to have beneficial effect on the wear properties.

  3. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  4. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichel, Christian, E-mail: christian.reichel@ise.fraunhofer.de; National Renewable Energy Laboratory; Feldmann, Frank

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells.more » Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.« less

  5. Iodine assisted retainment of implanted silver in 6H-SiC at high temperatures

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; van der Berg, N. G.; Msimanga, M.; Malherbe, J. B.; Kuhudzai, R. J.

    2014-09-01

    The effect of high temperature thermal annealing on the retainment and diffusion behaviour of iodine (I) and silver (Ag) both individually and co-implanted into 6H-SiC has been investigated using RBS, RBS-C and heavy ion ERDA (Elastic Recoil Detection Analysis). Iodine and silver ions at 360 keV were both individually and co-implanted into 6H-SiC at room temperature to fluences of the order of 1 × 1016 cm-2. RBS analyses of the as-implanted samples indicated that implantation of Ag and of I and co-implantation of 131I and 109Ag at room temperature resulted in complete amorphization of 6H-SiC from the surface to a depth of about 290 nm for the co-implanted samples. Annealing at 1500 °C for 30 h (also with samples annealed at 1700 °C for 5 h) caused diffusion accompanied by some loss of both species at the surface with some iodine remaining in the iodine implanted samples. In the Ag implanted samples, the RBS spectra showed that all the Ag disappeared. SEM images showed different recrystallization behaviour for all three sets of samples, with larger faceted crystals appearing in the SiC samples containing iodine. Heavy Ion ERDA analyses showed that both 109Ag and 131I remained in the co-implanted SiC samples after annealing at 1500 °C for 30 h. Therefore, iodine assisted in the retainment of silver in SiC even at high temperature.

  6. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  7. Diffusion and recrystallization of B implanted in crystalline and pre-amorphized Ge in the presence of F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, William, E-mail: william.hsu@utexas.edu; Kim, Taegon; Chou, Harry

    2016-07-07

    Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B{sup +} implantation, the use of the heavier BF{sub 2}{sup +} ions or even BF{sup +} is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B{sup +}, BF{sup +}, and BF{sub 2}{sup +} implants in crystalline and pre-amorphized Ge, employing rapid thermal annealingmore » at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF{sup +}, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p{sup +}/n junctions formed by BF{sup +} implantation was evaluated.« less

  8. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  9. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  10. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in <110> and <100> silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  11. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures

    PubMed Central

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Lundsgaard Hansen, John; Nylandsted Larsen, Arne; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-01-01

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing. PMID:28773172

  12. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures.

    PubMed

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-07-17

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.

  13. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  14. Area laser crystallized LTPS TFTs with implanted contacts for active matrix OLED displays

    NASA Astrophysics Data System (ADS)

    Persidis, Efstathios; Baur, Holger; Pieralisi, Fabio; Schalberger, Patrick; Fruehauf, Norbert

    2008-03-01

    We have developed a four mask low temperature poly-Si (LTPS) TFT process for p- and n-channel devices. Our PECVD deposited amorphous silicon is recrystallized to polycrystalline silicon with single area excimer laser crystallization while formation of drain and source is carried out with self aligned ion beam implantation. We have investigated implantation parameters, suitability of various metallizations as well as laser activation and annealing procedures. To prove the potential capability of our devices, which are suitable for conventional and inverted OLEDs alike, we have produced several functional active matrix backplanes implementing different pixel circuits. Our active matrix backplane process has been customized to drive small molecules as well as polymers, regardless if top or bottom emitting.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  16. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less

  17. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    NASA Astrophysics Data System (ADS)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  18. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: girs@ispms.tsc.ru; Meisner, L. L., E-mail: lm@ispms.tsc.ru

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  20. Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences.

    PubMed

    Olivares, José; Crespillo, Miguel L; Caballero-Calero, Olga; Ynsa, María D; García-Cabañes, Angel; Toulemonde, Marcel; Trautmann, Christina; Agulló-López, Fernando

    2009-12-21

    Heavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm). They propagate ordinary and extraordinary modes with low losses keeping a high nonlinear optical response (SHG) that makes them useful for many applications. Complementary RBS/C data provide consistent values for the partial amorphization and refractive index change at the surface. The proposed method is based on ion-induced damage caused by electronic excitation and essentially differs from the usual implantation technique using light ions (H and He) of MeV energies. It implies the generation of a buried low-index layer (acting as optical barrier), made up of amorphous nanotracks embedded into the crystalline lithium niobate crystal. An effective dielectric medium approach is developed to describe the index profiles of the waveguides. This first test demonstration could be extended to other crystalline materials and could be of great usefulness for mid-infrared applications.

  1. Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.

    NASA Astrophysics Data System (ADS)

    Liou, Lih-Yeh

    Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  2. Hydroxyapatite coating on PEEK implants: biomechanical and histological study in a rabbit model

    PubMed Central

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyether ether ketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups 9 for observation at 6 or 18 weeks post surgery. MicroCT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. PMID:27524073

  3. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    PubMed

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Zhu; Li, Bing-Sheng; Zhang, Li

    2017-05-01

    Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The < 0001> -oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1× 1017 cm-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV. Supported by the National Natural Science Foundation of China under Grant No 11475229.

  5. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  6. Nanoindentation of silicon implanted with hydrogen: effect of implantation dose on silicon’s mechanical properties and nanoindentation-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Goncharova, Lyudmila V.; Wong, Sing Fai

    2017-07-01

    Implantation of hydrogen in single-crystal silicon (c-Si) is known to affect its machining. However, very little is reported on the material and mechanical properties of hydrogen-implanted silicon (Si). In this article, near-surface regions (~0-500 nm) of lightly doped (1 0 0) Si were modified by varying the hydrogen concentration using ion implantation. The maximum hydrogen concentration was varied from ~4  ×  1020 to ~3.2  ×  1021 cm-3. The implanted Si was investigated by nanoindentation. From the dynamic nanoindentation test, it was found that in hydrogen-implanted Si hardness is increased significantly, while the elastic modulus is reduced. The nanoindentation-induced Si phase transformation was studied under different load/unload rates and loads. Raman spectroscopy revealed that the hydrogen implantation tends to suppress Si-XII and Si-III phases and facilitates amorphous Si formation during the unloading stage of nanoindentation. Both the mechanical properties and phase transformations were qualitatively related not only to the hydrogen concentration, but also to the implantation-generated defects and strain.

  7. Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1996-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6) mm(exp 3) N(exp -1) m(exp -1). Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum.

  8. Thermal stability of a slab waveguide implemented by α particles implantation in potassium lithium tantalate niobate

    NASA Astrophysics Data System (ADS)

    Gumennik, Alexander; Agranat, Aharon J.; Shachar, Igal; Hass, Michael

    2005-12-01

    A slab waveguide was fabricated in a potassium lithium tantalate niobate crystal by the implantation of He2+ ions at 2.26 MeV. The waveguide profile and loss were evaluated by measuring the dark mode TE spectrum using the prism coupling method at λ=1.3μm. The implantation generated amorphous cladding layer 5μm below the surface of the crystal with a refractive index lower by 3.9% then that of the substrate. The propagation loss of the waveguided modes was found to be 0.1-0.2dB/cm. Thermal stability of the waveguide was obtained by isothermal annealing at 351 and 446 °C. Following the annealing the waveguide index profile remained unchanged when subjected to annealing at 150 °C for one week.

  9. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    NASA Astrophysics Data System (ADS)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  10. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).

  11. Integration of Indium Phosphide Based Devices with Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Wayne Huai

    2011-12-01

    Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the transfer process and test functionality following transfer. Passive devices (photodetectors) as well as active transistors were transferred and fabricated on various substrates. The transferred device layers were either implanted through with a blanket implant or protected with an ion-mask during implantation. Results demonstrate the viability of the double-flip ion-cut process in achieving very high electron mobility (˜2800 cm2V-1s-1) transistors on plastic flexible substrates.

  12. Radiation effects in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Boduch, Philippe; Dartois, Emmanuel; de Barros, Ana L. F.; da Silveira, Enio F.; Domaracka, Alicja; Lv, Xue-Yang; Palumbo, Maria Elisabetta; Pilling, Sergio; Rothard, Hermann; Seperuelo Duarte, Eduardo; Strazzulla, Giovanni

    2015-07-01

    The interaction of heavy ions with astrophysical ices was studied at different beamlines of GANIL by infrared absorption spectroscopy. This allowed simulating in the laboratory the physico-chemical modifications induced in icy objects in space, exposed to radiation fields such as the solar wind, magnetospheric particles and interstellar cosmic rays. We briefly discuss sputtering, destruction and formation of molecules, amorphization and compaction, implantation, and finally the formation of organic molecules. This latter topic is related to the question of the initial conditions for the emergence of life.

  13. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  14. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    PubMed

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  15. Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite.

    PubMed

    Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A

    2013-12-01

    The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Scanning transmission electron microscopy (STEM) study on surface modified CVD diamond/Si(111) film post implanted Fe-B and NiFe-B related to GMR properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, Setyo, E-mail: setyo-p@batan.go.id, E-mail: purwantosetyo@yahoo.com; Dimyati, A., E-mail: arbi-dimyati@hotmail.com; Iskandar, R.

    Nanostructure investigation on the post implantation by Fe-B and NiFe-B on CVD diamond/Si(111) film have been studied by means of STEM related to their GMR phenomena. Two samples were investigated carefully, firstly sample is post NiFe-B at E=70keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as A-E3D1). Secondly, is post FeB at E=20 keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as B-E1D1). Based on FPP measurement at room temperature (RT) and H{sub applied} = 8 kOe, A-E3D1 sample has MR ratio almost 80% and MR ratio in B-E1D1 sample is 45%. Based on STEM-EDX investigation, there are two aspectsmore » of how MR ratio of A-E3D1 more higher than those of B-E1D1. Firstly, surface nanostructure on the top of A-E3D1 film is more grazing than on the top of B-E1D1. Analysis with Scanning Transmission Electron Microscope (STEM) equipped with Electron Energy Loss Spectroscopy (EELS) the growth of amorphous carbon layer on top of the implanted diamond film with thickness around 100 nm and only 20 nm on the no implanted sample have observed. Boron atoms were found inside the carbon amorphous layer distributed homogenously. Secondly, oxygen content at the interface between diamond film and silicon substrate in sample A-E3D1 was lower than those in B-E1D1 sample. This condition gives the resistance value in A-E3D1 lower than value in B-E1D1. This result is close to the Raman Spectroscopy data measurement which obviously suggests changes on the Raman spectrum due to implantation related to Oxygen excitation from B-E1D1 sample.« less

  17. Effects of thermal annealing on the structural and optical properties of carbon-implanted SiO2.

    PubMed

    Poudel, P R; Paramo, J A; Poudel, P P; Diercks, D R; Strzhemechny, Y M; Rout, B; McDaniel, F D

    2012-03-01

    Amorphous carbon (a-C) nanoclusters were synthesized by the implantation of carbon ions (C-) into thermally grown silicon dioxide film (-500 nm thick) on a Si (100) wafer and processed by high temperature thermal annealing. The carbon ions were implanted with an energy of 70 keV at a fluence of 5 x 10(17) atoms/cm2. The implanted samples were annealed at 1100 degrees C for different time periods in a gas mixture of 96% Ar+4% H2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and High Resolution Transmission Electron Microscopy (HRTEM) were used to study the structural properties of both the as-implanted and annealed samples. HRTEM reveals the formation of nanostructures in the annealed samples. The Raman spectroscopy also confirms the formation of carbon nano-clusters in the samples annealed for 10 min, 30 min, 60 min and 90 min. No Raman features originating from the carbon-clusters are observed for the sample annealed further to 120 min, indicating a complete loss of implanted carbon from the SiO2 layer. The loss of the implanted carbon in the 120 min annealed sample from the SiO2 layer was also observed in the XPS depth profile measurements. Room temperature photoluminescence (PL) spectroscopy revealed visible emissions from the samples pointing to carbon ion induced defects as the origin of a broad 2.0-2.4 eV band, and the intrinsic defects in SiO2 as the possible origin of the -2.9 eV bands. In low temperature photoluminescence spectra, two sharp and intense photoluminescence lines at -3.31 eV and -3.34 eV appear for the samples annealed for 90 min and 120 min, whereas no such bands are observed in the samples annealed for 10 min, 30 min, and 60 min. The Si nano-clusters forming at the Si-SiO2 interface could be the origin of these intense peaks.

  18. Nickel silicide formation in silicon implanted nickel

    NASA Astrophysics Data System (ADS)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si<100>∥Ni<100> and Ni3Si<110>∥Ni<110> for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  19. The Reduction of TED in Ion Implanted Silicon

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh

    2008-11-01

    The leading challenge in the continued scaling of junctions made by ion implantation and annealing is the control of the undesired transient enhanced diffusion (TED) effect. Spike annealing has been used as a means to reduce this effect and has proven successful in previous nodes. The peak temperature in this process is typically 1050 °C and the time spent within 50 °C of the peak is of the order of 1.5 seconds. As technology advances along the future scaling roadmap, further reduction or elimination of the enhanced diffusion effect is necessary. We have shown that raising the peak temperature to 1175 °C or more and reduction of the anneal time at peak temperature to less than a millisecond is effective in eliminating enhanced diffusion. We show that it is possible to employ a sequence of millisecond anneal followed by spike anneal to obtain profiles that do not exhibit gradient degradation at the junction and have junction depth and sheet resistance appropriate to the needs of future technology nodes. We have implemented millisecond annealing using a carbon dioxide laser to support high-volume manufacturing of 65 nm microprocessors and system-on-chip products. We further show how the use of molecular ion implantation to produce amorphousness followed by laser annealing to produce solid phase epitaxial regrowth results in junctions that meet the shallow depth and abruptness requirements of the 32 nm node.

  20. Complex damage distribution behaviour in cobalt implanted rutile TiO2 (1 1 0) lattice

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Ojha, Sunil; Kanjilal, D.; Varma, Shikha

    2017-11-01

    The present work investigates the radiation damage, amorphization and structural modifications that are produced by ion-solid interactions in TiO2 crystals during 200 keV Cobalt ion implantation. RBS/C and GIXRD have been utilized to evaluate the damage in the host lattice as a function of ion fluence. Multiple scattering formalism has been applied to extract the depth dependent damage distributions in TiO2(1 1 0). The results have been compared with the MC simulations performed using SRIM-2013. RBS/C results delineate a buried amorphous layer at a low fluence. Surprisingly, ion induced dynamic activation produces a recovery in this damage at higher fluences. This improvement interestingly occurs only in deep regions (60-300 nm) where a systematic lowering in damage with fluence is observed. Formation of Co-Ti-O phases and generation of stress in TiO2 lattice can also be responsible for this improvement in deep regions. In contrast, surface region (0-60 nm) indicates a gradual increase in damage with fluence. Such a switch in the damage behavior creates a cross point in damage profiles at 60 nm. Surface region is a sink of vacancies whereas deep layers are interstitial rich. However, these regions are far separated from each other resulting in an intermediate (100-150 nm) region with a significant dip (valley) in damage which can be characterized by enhanced recombination of point defects. The damage profiles thus indicate a very complex behavior. MC simulations, however, present very different results. They depict a damage profile that extends to a depth of only 150 nm, which is only about half of the damage- width observed here via RBS/C. Moreover, MC simulations do not indicate presence of any valley like structure in the damage profile. The complex nature of damage distribution observed here via RBS/C may be related to the high ionic nature of the chemical bonds in the TiO2 lattice.

  1. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO 2-δ Films

    DOE PAGES

    Cortie, David L.; Khaydukov, Yury; Keller, Thomas; ...

    2017-02-23

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming themore » pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0, with a minor fraction of Co 2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co 0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.« less

  2. Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.

    PubMed

    Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung

    2010-05-01

    We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.

  3. N+ ion-target interactions in PPO polymer: A structural characterization

    NASA Astrophysics Data System (ADS)

    Das, A.; Dhara, S.; Patnaik, A.

    1999-01-01

    N + ion beam induced effects on the spin coated amorphous poly(2,6-dimethyl phenylene oxide) (PPO) films in terms of chemical structure and electronic and vibrational properties were investigated using Fourier Transform Infrared spectroscopy (FTIR) and Ultraviolet-Visible (UV-VIS) spectroscopy. Both techniques revealed that the stability of PPO was very weak towards 100 keV N + ions revealing the threshold fluence to be 10 14 ions/cm 2 for fragmentation of the polymer. FTIR analysis showed disappearance of all characteristic IR bands at a total fluence of 10 14 ions/cm 2 except for the band CC at 1608 cm -1 which was found to shift to a lower wave number along with an enhancement in the full width half maximum (FWHM) value with increasing fluence. A new bond appeared due to oxidation as a shoulder at 1680 cm -1 in FTIR spectra indicating the presence of CO type bond as a result of N + implantation on PPO films. The optical band gap ( Eg) deduced from absorption spectra, was observed to decrease from 4.4 to 0.5 eV with fluence. The implantation induced carbonaceous clusters, determined using Robertson's formula for the optical band gap, were found to consist of ˜160 fused hexagonal aromatic rings at the maximum energy fluence. An enhanced absorption coefficient as a function of fluence indicated incorporation of either much larger concentration of charge carriers or their mobility than that of the pristine sample. Calculated band tail width from Urbach band tail region for the implanted samples pointed the band edge sharpness to be strongly dependent on fluence indicating an increased disorder with increasing fluence.

  4. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, K. J.; Institute for Materials Research; Sundaravel, B.

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of themore » UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.« less

  5. Amorphization due to electronic energy deposition in defective strontium titanate

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Liu, Peng; ...

    2017-01-27

    The synergistic interaction of electronic energy loss by ions with ion-induced defects created by elastic nuclear scattering processes has been investigated for single crystal SrTiO 3. An initial pre-damaged defect state corresponding to a relative disorder level of 0.10–0.15 sensitizes the SrTiO 3 to amorphous track formation along the ion path of 12 and 20 MeV Ti, 21 MeV Cl and 21 MeV Ni ions, where Ti, Cl and Ni ions otherwise do not produce amorphous or damage tracks in pristine SrTiO 3. The electronic stopping power threshold for amorphous ion track formation is found to be 6.7 keV/nm formore » the pre-damaged defect state studied in this work. Lastly, these results suggest the possibility of selectively producing nanometer scale, amorphous ion tracks in thin films of epitaxial SrTiO 3.« less

  6. Threshold switching in SiGeAsTeN chalcogenide glass prepared by As ion implantation into sputtered SiGeTeN film

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin

    2017-12-01

    A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.

  7. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off the surface. The size of wear particles is related to the extent of wear rates.

  8. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    PubMed

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  9. Formation of carbon nitride — a novel hard coating

    NASA Astrophysics Data System (ADS)

    Chubaci, J. F. D.; Ogata, K.; Fujimoto, F.; Watanabe, S.; Biersack, J. P.

    1996-08-01

    Increasing efforts have been reported on the formation of carbon nitride. Vapor deposition and simultaneous ion bombardment from accelerators or plasmas (IBAD) proved to be a successful technique for the preparation of this material. In our preparation, the properties of the films were controlled by varying the nitrogen ion energy and the flux composition ratio {C}/{N}. The deposited films with high nitrogen incorporation ( {C}/{N} = 0.6 ˜ 0.7 ) and low implantation energies (< 1.0 keV) showed high Knoop hardnesses of up to 63 GPa. XPS and FT-IR measurements indicated a high fraction of triple bonded CN. X-ray diffraction showed an amorphous structure. Computer simulations by the dynamic TRIM code are used to study the formation parameters, nitrogen ion energy and {C}/{N} ratio. This turned on to be useful in understanding the formation process of the carbon nitride films grown on silicon wafers, fused silica and tungsten carbide substrates.

  10. He-irradiation effects on glass-ceramics for joining of SiC-based materials

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Casalegno, V.; Ghigo, G.; Moskalewicz, T.; Czyrska-Filemonowicz, A.; Ferraris, M.

    2016-04-01

    CaO-Al2O3 (CA) and SiO2-Al2O3-Y2O3 (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV 4He+ ions at an average temperature of 75 °C up to a fluence of almost 2.3·1018 cm-2. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY).

  11. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  12. Structural evolution in Ar+ implanted Si-rich silicon oxide

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Karwasz, G. P.; Mariotto, G.; Zecca, A.; Ferragut, R.; Folegati, P.; Dupasquier, A.; Ottaviani, G.; Tonini, R.

    2003-12-01

    Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.

  13. Ion-sculpting of nanopores in amorphous metals, semiconductors, and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, H. Bola; Madi, Charbel S.; Aziz, Michael J.

    2010-06-28

    We report the closure of nanopores to single-digit nanometer dimensions by ion sculpting in a range of amorphous materials including insulators (SiO{sub 2} and SiN), semiconductors (a-Si), and metallic glasses (Pd{sub 80}Si{sub 20})--the building blocks of a single-digit nanometer electronic device. Ion irradiation of nanopores in crystalline materials (Pt and Ag) does not cause nanopore closure. Ion irradiation of c-Si pores below 100 deg. C and above 600 deg. C, straddling the amorphous-crystalline dynamic transition temperature, yields closure at the lower temperature but no mass transport at the higher temperature. Ion beam nanosculpting appears to be restricted to materials thatmore » either are or become amorphous during ion irradiation.« less

  14. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  15. Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4.

    PubMed

    Fagerlund, S; Massera, J; Moritz, N; Hupa, L; Hupa, M

    2012-07-01

    This work studied the influence of sintering temperature on the phase composition, compression strength and in vitro properties of implants made of bioactive glass S53P4. The implants were sintered within the temperature range 600-1000°C. Over the whole temperature range studied, consolidation took place mainly via viscous flow sintering, even though there was partial surface crystallization. The mechanical strength of the implants was low but increased with the sintering temperature, from 0.7 MPa at 635°C to 10 MPa at 1000°C. Changes in the composition of simulated body fluid (SBF), the immersion solution, were evaluated by pH measurements and ion analysis using inductively coupled plasma optical emission spectrometry. The development of a calcium phosphate layer on the implant surfaces was verified using scanning electron microscopy-electron-dispersive X-ray analysis. When immersed in SBF, a calcium phosphate layer formed on all the samples, but the structure of this layer was affected by the surface crystalline phases. Hydroxyapatite formed more readily on amorphous and partially crystalline implants containing both primary Na(2)O·CaO·2SiO(2) and secondary Na(2)Ca(4)(PO(4))(2)SiO(4) crystals than on implants containing only primary crystals. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Integration of an Axcelis Optima HD Single Wafer High Current Implanter for p- and n-S/D Implants in an Existing Batch Implanter Production Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kontratenko, Serguei; Krimbacher, Bernhard

    2008-11-03

    This paper is focused on the integration and qualification of an Axcelis Optima HD single wafer high current spot beam implanter in an existing 200 mm production line with different types of Axcelis batch implanters for high current applications. Both the design of the beamline and the beam shape are comparable between single wafer and batch high current spot beam implanters. In contrast to the single wafer high current ribbon beam implanter, energy contamination is not a concern for the considered spot beam tool because the drift mode can be used down to energies in the 2 keV region. Themore » most important difference between single wafer and batch high current implanters is the significantly higher dose rate and, therefore, the higher damage rate for the single wafer tool due to the different scanning architecture. The results of the integration of high dose implantations, mainly for p- and n-S/D formation, for DRAM 110 nm without pre-amorphization implantation (PAI), CMOS Logic from around 250 nm down to 90 nm without and with PAI, are presented and discussed. Dopant concentration profile analysis using SIMS was performed for different technologies and implantation conditions. The impurity activation was measured using sheet resistance and in some cases spreading resistance technique was applied. The amorphous layer thickness was measured using TEM. Finally, device data are presented in combination with dose, energy and beam current variations. The results have shown that the integration of implantation processes into crystalline structure without PAI is more complex and time consuming than implantations into amorphous layer where the damage difference due to the different dose rates is negligible.« less

  17. Amorphization of Ta2O5 under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.

    2017-09-01

    Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.

  18. Anisotropic expansion and amorphization of Ga2O3 irradiated with 946 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2016-05-01

    The structural response of β-Ga2O3 to irradiation-induced electronic excitation was investigated. A polycrystalline pellet of this material was irradiated with 946 MeV Au ions and the resulting structural modifications were characterized using in situ X-ray diffraction analysis at various ion fluences, up to 1 × 1013 cm-2. Amorphization was induced, with the accumulation of the amorphous phase following a single-impact mechanism in which each ion produces an amorphous ion track along its path. Concurrent with this phase transformation, an increase in the unit cell volume of the material was observed and quantified using Rietveld refinement. This unit cell expansion increased as a function of ion fluence before saturating at 1.8%. This effect is attributed to the generation of defects in an ion track shell region surrounding the amorphous track cores. The unit cell parameter increase was highly anisotropic, with no observed expansion in the [0 1 0] direction. This may be due to the structure of β-Ga2O3, which exhibits empty channels of connected interstitial sites oriented in this direction.

  19. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  20. Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique

    NASA Astrophysics Data System (ADS)

    Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.

    2018-04-01

    Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.

  1. Ultra-Shallow Junctions Fabrication by Plasma Immersion Implantation on PULSION registered Followed by Laser Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume

    In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less

  2. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE PAGES

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu; ...

    2017-06-20

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  3. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  4. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.

    2016-10-01

    Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less

  5. Formation of Ge nanoparticles in SiO xN y by ion implantation and thermal annealing

    DOE PAGES

    Mirzaei, Sahar; Kremer, F.; Sprouster, D. J.; ...

    2015-10-20

    Germanium nanoparticles embedded within dielectric matrices hold much promise for applications in optoelectronic and electronic devices. Here we investigate the formation of Ge nanoparticles in amorphous SiO 1.67N 0.14 as a function of implanted atom concentration and thermal annealing temperature. Using x-ray absorption spectroscopy and other complementary techniques, we show Ge nanoparticles exhibit significant finite-size effects such that the coordination number decreases and structural disorder increases as the nanoparticle size decreases. While the composition of SiO 1.67N 0.14 is close to that of SiO 2, we demonstrate that the addition of this small fraction of N yields a much reducedmore » nanoparticle size relative to those formed in SiO 2 under comparable implantation and annealing conditions. We attribute this difference to an increase in an atomic density and a much reduced diffusivity of Ge in the oxynitride matrix. Finally, these results demonstrate the potential for tailoring Ge nanoparticle sizes and structural properties in the SiO xN y matrices by controlling the oxynitride stoichiometry.« less

  6. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.

    PubMed

    Choi, Ji-Seub; Lee, Hoi-Jin; Ha, Jong-Keun; Cho, Kwon-Koo

    2018-09-01

    Sn is one of the promising anode material for lithium-ion and sodium-ion batteries because of Sn has many advantages such as a high theoretical capacity of 994 mAh/g, inexpensive, abundant and nontoxic. However, Sn-based anodes have a critical problem from pulverization of the particles due to large volume change (>300% in lithium-ion battery and 420% in the sodium-ion battery) during alloying/dealloying reaction. To overcome this problem, we fabricate Sn/C particle of core/shell structure. Sn powder was produced by pulsed wire explosion in liquid media, and amorphous carbon coating process was prepared by hydrothermal synthesis. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 413 mAh/g and 452 mAh/g after 40 cycles in lithium half-cell test. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 240 mAh/g and 487 mAh/g after 40 cycles in sodium half-cell test. Amorphous carbon coating contributed to the improvement of capacity in lithium and sodium battery systems. And the effect of amorphous carbon coating in sodium battery system was superior to that in lithium battery system.

  7. Ion migration in crystalline and amorphous HfOX

    NASA Astrophysics Data System (ADS)

    Schie, Marcel; Müller, Michael P.; Salinga, Martin; Waser, Rainer; De Souza, Roger A.

    2017-03-01

    The migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000 ≤T /K ≤2000 . Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions.

  8. Amorphization induced by focused ion beam milling in metallic and electronic materials.

    PubMed

    Huh, Yoon; Hong, Ki Jung; Shin, Kwang Soo

    2013-08-01

    Focused ion beam (FIB) milling using high-energy gallium ions is widely used in the preparation of specimens for transmission electron microscopy (TEM). However, the energetic ion beam induces amorphization on the edge of specimens during milling, resulting in a mischievous influence on the clearness of high-quality transmission electron micrographs. In this work, the amorphization induced by the FIB milling was investigated by TEM for three kinds of materials, metallic materials in bulk shape, and semiconductive and electronic ceramic materials as a substrate for the deposition of thin films.

  9. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.

    PubMed

    Ahn, J M; Lee, J H; Choi, S W; Kim, W E; Omn, K S; Park, S K; Kim, W G; Roh, J R; Min, B G

    1998-03-01

    The moving actuator type total artificial heart (TAH) developed in the Seoul National University has numerous design improvements based upon the digital signal processor (DSP). These improvements include the implantability of all electronics, an automatic control algorithm, and extension of the battery run-time in connection with an amorphous silicon solar system (SS). The implantable electronics consist of the motor drive, main processor, intelligent Li ion battery management (LIBM) based upon the DSP, telemetry system, and transcutaneous energy transmission (TET) system. Major changes in the implantable electronics include decreasing the temperature rise by over 21 degrees C on the motor drive, volume reduction (40 x 55 x 33 mm, 7 cell assembly) of the battery pack using a Li ion (3.6 V/cell, 900 mA.h), and improvement of the battery run-time (over 40 min) while providing the cardiac output (CO) of 5 L/min at 100 mm Hg afterload when the external battery for testing is connected with the SS (2.5 W, 192.192, 1 kg) for the external battery recharge or the partial TAH drive. The phase locked loop (PLL) based telemetry system was implemented to improve stability and the error correction DSP algorithm programmed to achieve high accuracy. A field focused light emitting diode (LED) was used to obtain low light scattering along the propagation path, similar to the optical property of the laser and miniature sized, mounted on the pancake type TET coils. The TET operating resonance frequency was self tuned in a range of 360 to 410 kHz to provide enough power even at high afterloads. An automatic cardiac output regulation algorithm was developed based on interventricular pressure analysis and carried out in several animal experiments successfully. All electronics have been evaluated in vitro and in vivo and prepared for implantation of the TAH. Substantial progress has been made in designing a completely implantable TAH at the preclinical stage.

  11. Pulsed laser annealing of high-dose Ag+-ion implanted Si layer

    NASA Astrophysics Data System (ADS)

    Batalov, R. I.; Nuzhdin, V. I.; Valeev, V. F.; Vorobev, V. V.; Osin, Yu N.; Ivlev, G. D.; Stepanov, A. L.

    2018-01-01

    The formation of a crystalline composite Ag:Si material with Ag nanoparticles by low-energy (E  =  30 keV) high-dose (D  =  1.5  ×  1017 ion cm-2) Ag+ implantation into a monocrystalline c-Si substrate followed by nanosecond pulsed laser annealing (PLA) is demonstrated. Compared to traditional thermal annealing, PLA allows us to perform local heating of the sample both for its depth and area, and eliminate implantation-induced defects more efficiently, due to rapid liquid-phase recrystallization. Moreover, dopant diffusion during a nanosecond laser pulse is mainly limited by the molten region, where the dopant diffusion coefficient is several orders of magnitude higher than in the solid state. During PLA by a ruby laser (λ  =  0.694 µm), the optical probing of the irradiated zone at λ  =  1.064 µm with registration of time-dependent reflectivity R(t) was carried out. By scanning electron microscopy, it was established that Ag+ implantation leads to the creation of a thin amorphous Ag:Si layer of porous structure, containing Ag nanoparticles with sizes of 10-30 nm. PLA with energy density W  =  1.2-1.8 J cm-2 results in the melting of the implanted layer (d ~ 60 nm) and the topmost layers of the c-Si substrate (d  <  400 nm), followed by the rapid recrystallization of the Si matrix containing Ag nanoparticles with dominate sizes of 5-15 nm and some fraction of larger particles of 40-60 nm. Energy dispersive x-ray (EDX) spectroscopy did not show a noticeable change of Ag atomic concentration in the implanted layer after PLA. Spectral dependence R(λ) of Ag:Si layers showed the partial recovery of c-Si bands with maxima at 275 and 365 nm with simultaneous weakening of plasmon band for Ag nanoparticles in Si at 835 nm.

  12. Formation Timescales of Amorphous Rims on Lunar Grains Derived From ARTEMIS Observations

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Farrell, W. M.; Halekas, J. S.

    2018-01-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.

  13. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Wang, H.; Zhang, Yanwen

    2010-01-01

    Irradiation induced amorphization in nanocrystalline and single crystal 3C-SiC has been studied using 1 MeV Si+ ions under identical irradiation conditions at room temperature and 400 K. The disordering behavior has been characterized using in-situ ion channeling and ex-situ x-ray diffraction methods. The results show that, compared to single crystal 3C-SiC, full amorphization of small 3C-SiC grains (~3.8 nm in size) at room temperature occurs at a slightly lower dose. Grain size decreases with increasing dose until a fully amorphized state is attained. The amorphization dose increases at 400 K relative to room temperature. However, at 400 K, the dosemore » for amorphization for 2.0 nm grains is about a factor of 4 and 8 smaller than for 3.0 nm grains and bulk single crystal 3C-SiC, respectively. The behavior is attributed to the dominance of defect-stimulated interfacial amorphization.« less

  14. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Wang, Haiyan; Kim, Ickchan

    2010-11-23

    Irradiation induced amorphization in nanocrystalline and single crystal 3C-SiC has been studied using 1 MeV Si+ ions under the identical irradiation conditions at room temperature and 400 K. The disordering behavior has been characterized using in-situ ion channeling and ex-situ x-ray diffraction methods. The results show that, compared to single crystal 3C-SiC, full amorphization of small 3C-SiC grains (~3.8 nm in size) occurs at a slightly lower dose at room temperature. For grains with sizes of 3.0 - 3.8 nm, the amorphization dose is lower at room temperature than 400 K. A significantly lower dose for amorphization of smaller grainsmore » (2.0 nm in size) is observed at 400 K. The behavior has been interpreted based on the competition between the interface and interior amorphization.« less

  15. Charged particle space weathering rates at the Moon derived from ARTEMIS observations

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Farrell, W. M.; Halekas, J. S.

    2017-12-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the ARTEMIS spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface and convolve this flux with ion irradiation-induced vacancy production rates calculated using the Stopping Range of Ions in Matter (SRIM) model. From this, we calculate the formation timescales for amorphous rim production as a function of depth and compare to laboratory experiments and observations of lunar soil. Our analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains. We also present the hypothesis that ion beam-induced epitaxial crystallization is responsible for the discrepancy between observational and experimental results of the formation time of <100 nm amorphous rims.

  16. Combined binary collision and continuum mechanics model applied to focused ion beam milling of a silicon membrane

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard

    2015-06-01

    Many experiments indicate the importance of stress and stress relaxation upon ion implantation. In this paper, a model is proposed that is capable of describing ballistic effects as well as stress relaxation by viscous flow. It combines atomistic binary collision simulation with continuum mechanics. The only parameters that enter the continuum model are the bulk modulus and the radiation-induced viscosity. The shear modulus can also be considered but shows only minor effects. A boundary-fitted grid is proposed that is usable both during the binary collision simulation and for the spatial discretization of the force balance equations. As an application, the milling of a slit into an amorphous silicon membrane with a 30 keV focused Ga beam is studied, which demonstrates the relevance of the new model compared to a more heuristic approach used in previous work.

  17. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  18. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  19. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  20. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    PubMed

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  2. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.

    PubMed

    Jung, Sung Chul; Jung, Dae Soo; Choi, Jang Wook; Han, Young-Kyu

    2014-04-03

    Despite the exceptionally large capacities in Li ion batteries, Si has been considered inappropriate for applications in Na ion batteries. We report an atomic-level study on the applicability of a Si anode in Na ion batteries using ab initio molecular dynamics simulations. While crystalline Si is not suitable for alloying with Na atoms, amorphous Si can accommodate 0.76 Na atoms per Si atom, corresponding to a specific capacity of 725 mA h g(-1). Bader charge analyses reveal that the sodiation of an amorphous Si electrode continues until before the local Na-rich clusters containing neutral Na atoms are formed. The amorphous Na0.76Si phase undergoes a volume expansion of 114% and shows a Na diffusivity of 7 × 10(-10) cm(2) s(-1) at room temperature. Overall, the amorphous Si phase turns out quite attractive in performance compared to other alloy-type anode materials. This work suggests that amorphous Si might be a competitive candidate for Na ion battery anodes.

  3. One-Step Fast-Synthesized Foamlike Amorphous Co(OH)2 Flexible Film on Ti Foil by Plasma-Assisted Electrolytic Deposition as a Binder-Free Anode of a High-Capacity Lithium-Ion Battery.

    PubMed

    Li, Tao; Nie, Xueyuan

    2018-05-23

    This research prepared an amorphous Co(OH) 2 flexible film on Ti foil using plasma-assisted electrolytic deposition within 3.5 min. Amorphous Co(OH) 2 structure was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Its areal capacity testing as the binder and adhesive-free anode of a lithium-ion battery shows that the cycling capacity can reach 2000 μAh/cm 2 and remain at 930 μAh/cm 2 after 50 charge-discharge cycles, which benefits from the emerging Co(OH) 2 active material and amorphous foamlike structure. The research introduced a new method to synthesize amorphous Co(OH) 2 as the anode in a fast-manufactured low-cost lithium-ion battery.

  4. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  5. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  6. Ion beam enhanced etching of LiNbO 3

    NASA Astrophysics Data System (ADS)

    Schrempel, F.; Gischkat, Th.; Hartung, H.; Kley, E.-B.; Wesch, W.

    2006-09-01

    Single crystals of z- and x-cut LiNbO 3 were irradiated at room temperature and 15 K using He +- and Ar +-ions with energies of 40 and 350 keV and ion fluences between 5 × 10 12 and 5 × 10 16 cm -2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He +-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO 3 in the case of Ar +-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He +- and Ar +-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min -1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO 3 are discussed.

  7. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  8. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology.

    PubMed

    Llobet, J; Rius, G; Chuquitarqui, A; Borrisé, X; Koops, R; van Veghel, M; Perez-Murano, F

    2018-04-02

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  9. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    NASA Astrophysics Data System (ADS)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  10. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  11. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    PubMed

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-05

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  12. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Pascal J.; Institut Interdisciplinaire d'Innovation Technologique; Canut, Bruno

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first timemore » such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.« less

  13. Formation Timescales of Amosphous Rims on Lunar Grains Derived from ARTEMIS Observations

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Farrell, W. M.; Halekas, Jasper S.

    2018-01-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.

  14. Laser-induced thermo-lens in ion-implanted optically-transparent polymer

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Ivanov, Victor G.; Hadjichristov, Georgi B.

    2009-10-01

    A strong laser-induced thermo-lens (LITL) effect is found in optically-transparent ion-implanted polymer upon irradiation by a cw laser with a power up to 100 mW (λ = 532 nm). The effect is observed in bulk polymethylmethacrylate (PMMA) implanted with silicon ions (Si+). A series of PMMA specimens is examined, subjected to low-energy (50 keV) Si+ implantation at various dosages in the range from 1014 to 1017 ions/cm2. The thermo-lensing is unambiguously attributed to the modification of the subsurface region of the polymer upon the ion implantation. Having a gradient refractive-index in-depth profile, the subsurface organic-carbonaceous layer produced in the polymer by ion implantation, is responsible for the LITL effect observed in reflection geometry. The LITL occurs due to optical absorption of the ion-implanted layer of a thickness of about 100 nm buried in a depth ~ 100 nm, and subsequent laser-induced change in the refractive index of the Si+-implanted PMMA. Being of importance as considering photonic applications of ion-implanted optically-transparent polymers, the LITL effect in Si+-implanted PMMA is studied as a function of the implant dose, the incident laser power and incidence angle, and is linked to the structure formed in this ion-implanted plastic.

  15. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.

    PubMed

    Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter

    2017-01-01

    It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.

  16. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  17. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  18. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  19. Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.

    PubMed

    Santavirta, Seppo

    2003-12-01

    Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses showed no measurable wear or detectable delamination after 15,000,000 test cycles corresponding to 15 years of clinical use. The present work clearly shows that wear is one of the basic problems with totally replaced hips. Diamond coating of the bearing surfaces appears to be an attractive solution to improve longevity of the totally replaced hip.

  20. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  1. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  2. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors.

    PubMed

    Zhao, Xu; Wang, Hong-En; Cao, Jian; Cai, Wei; Sui, Jiehe

    2017-09-26

    A carbon-free MoO 2 nanosheet with amorphous/crystalline hybrid domain was synthesized, and demonstrated to be an efficient host material for lithium-ion capacitors. Discrepant crystallinity in MoO 2 shows unique boundaries, which can improve Li-ion diffusion through the electrode. Improved rate capacities and cycling stability open the door to design of high-performance lithium ion capacitor bridging batteries and supercapacitors.

  3. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  4. Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Pupikova, H.; Malinský, P.; Slepička, P.; Švorčík, V.

    2017-09-01

    The ion irradiation leads to deep structural and compositional changes in the irradiated polymers. Ni+ ions implanted polymers were investigated from the structural and compositional changes point of view and their optical properties were investigated. Polyimide (PI) foils were implanted with 1.0 MeV Ni+ ions at room temperature with fluencies of 1.0 × 1013-1.0 × 1015 cm-2 and two different ion implantation currents densities (3.5 and 7.2 nA/cm2). Rutherford Back-Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA) were used for determination of oxygen and hydrogen escape in implanted PI. Atomic Force Microscopy (AFM) was used to follow surface roughness modification after the ion implantation and UV-Vis spectroscopy was employed to check the optical properties of the implanted PI. The implanted PI structural changes were analysed using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). High energy Ni-ion implantation causes only a minor release of hydrogen and oxygen close to the polymer sub-surface region in about 60 nm thick layer penetrated by the ion beam; especially at ion fluencies below 1.0 × 1014 cm-2. The mostly pronounced structural changes of the Ni implanted PI were found for the samples implanted above ion fluence 1.0 × 1015 cm-2 and at the ion current density 7.2 nA/cm2, where the optical band gap significantly decreases and the reduction of more complex structural unit of PI monomer was observed.

  5. Damage buildup in Ar-ion-irradiated 3 C-SiC at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.

    Above room temperature, the accumulation of radiation damage in 3 C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3 C-SiC irradiated with 500 keV Ar ions in the temperature range of 25–250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage–depth profiles becomes anomalous, with the damage peak narrowing and moving tomore » larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. Here, in contrast to the results of previous studies, 3 C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ~2×10 13 cm -2 s -1, revealing a dominant role of defect interaction dynamics at elevated temperatures.« less

  6. Damage buildup in Ar-ion-irradiated 3 C-SiC at elevated temperatures

    DOE PAGES

    Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.; ...

    2015-09-14

    Above room temperature, the accumulation of radiation damage in 3 C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3 C-SiC irradiated with 500 keV Ar ions in the temperature range of 25–250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage–depth profiles becomes anomalous, with the damage peak narrowing and moving tomore » larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. Here, in contrast to the results of previous studies, 3 C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ~2×10 13 cm -2 s -1, revealing a dominant role of defect interaction dynamics at elevated temperatures.« less

  7. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Chang Seouk; School of Mechanical Engineering, Pusan National University, Pusan 609-735; Lee, Byoung-Seob

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation withmore » an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.« less

  8. Development of pulsed processes for the manufacture of solar cells. Quarterly progress report No. 3, April--July 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    Third quarter results under a program to develop ion implantation and specialized, associated processes necessary to achieve automated production of silicon solar cells are described. An ion implantation facility development for solar cell production is described, and a design for an automated production implanter is presented. Also, solar cell development efforts using combined ion implantation and pulsed energy techniques are discussed. Cell performance comparisons have also been made in which junctions and back surface fields were prepared by diffusion and ion implantation. A model is presented to explain the mechanism of ion implantation damage annealing using pulsed energy sources. Functionalmore » requirements have been determined for a pulsed electron beam processor for annealing ion implantation damage at a rate compatible with a 100 milliampere ion implanter. These rates result in a throughput of 100 megawatts of solar cell product per year.« less

  9. Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating.

    PubMed

    Jaatinen, Jarkko J P; Korhonen, Rami K; Pelttari, Alpo; Helminen, Heikki J; Korhonen, Hannu; Lappalainen, Reijo; Kröger, Heikki

    2011-08-01

    Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance. We placed AD-coated and non-coated titanium implants (R(a) ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface. 4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group. We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings.

  10. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  11. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  12. Ion beam induced defects in solids studied by optical techniques

    NASA Astrophysics Data System (ADS)

    Comins, J. D.; Amolo, G. O.; Derry, T. E.; Connell, S. H.; Erasmus, R. M.; Witcomb, M. J.

    2009-08-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I3- structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I3- and I5- aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show evidence of a strained lattice after the proton bombardment and recovery after long period storage. The effects are attributed to the annealing of the defects produced.

  13. Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: Applications to Dy{sub 70}Zr{sub 30} and DyCo{sub 3.4} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Nóbrega, E. P.; Ribeiro, P. O.

    We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphousmore » magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.« less

  14. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  15. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  16. Radiation-induced amorphization of Langasite La3Ga5SiO14

    NASA Astrophysics Data System (ADS)

    Yao, Tiankai; Lu, Fengyuan; Zhang, Haifeng; Gong, Bowen; Ji, Wei; Zuo, Lei; Lian, Jie

    2018-03-01

    Single crystals of Langasite La3Ga5SiO14 (LGS) were irradiated by 1 MeV Kr2+ ions at temperature range from 298 to 898 K in order to simulate the damage effect of neutron radiation on Langasite, a candidate sensor material proposed as high temperature and pressure sensors in nuclear reactors. The microstructure evolution of LGS as functions of irradiation dose and temperature was followed by in-situ TEM observation through electron diffraction pattern. LGS is found to be sensitive to ion beam irradiation-induced amorphization from displacive heavy ions with a low critical dose of ∼0.5 ± 0.2 dpa (neutron fluence of (1.6 ± 0.6) × 1019 neutrons/cm2) at room temperature. The critical amorphization temperature, Tc, is determined to be 910 ± 10 K. Under simultaneous ionizing electron (300 keV, 45 nA) and displacive heavy ion irradiations (1-MeV Kr2+ and flux of 6.25 × 1011 ions/cm2·s), LGS displayed greater stability of crystal structure against amorphization, possibly due to the electron radiation-induced recovery of displacive damage by heavy ions.

  17. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  18. Evaluation of stabilization techniques for ion implant processing

    NASA Astrophysics Data System (ADS)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.

  19. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  20. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces

    PubMed Central

    Knaack, Gretchen L.; McHail, Daniel G.; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F.; Dumas, Theodore C.; Pancrazio, Joseph J.

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation. PMID:27445672

  1. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.

    PubMed

    Knaack, Gretchen L; McHail, Daniel G; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F; Dumas, Theodore C; Pancrazio, Joseph J

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation.

  2. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  3. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.

    PubMed

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei

    2013-09-11

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.

  4. Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang

    2013-08-14

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less

  5. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    NASA Astrophysics Data System (ADS)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  6. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  7. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    PubMed

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  10. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  11. Heavy ion irradiations on synthetic hollandite-type materials: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ming, E-mail: mtang@lanl.gov; Tumurugoti, Priyatham; Clark, Braeden

    2016-07-15

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phasemore » hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. - Graphical abstract: 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. This is also the first time that the critical amorphization fluence of single phase hollandite compounds were determined at a fluence of around 3.25×10{sup 14} Kr/cm{sup 2} by in situ 1 MeV Kr ion irradiation. Display Omitted.« less

  12. The influence of nitrogen implantation on the electrical properties of amorphous IGZO

    NASA Astrophysics Data System (ADS)

    Zhan, S. L.; Zhao, M.; Zhuang, D. M.; Fu, E. G.; Cao, M. J.; Guo, L.; Ouyang, L. Q.

    2017-09-01

    In this study, nitrogen (N) implantation was adopted to regulate the carrier concentration and the Hall mobility of amorphous Indium Gallium Zinc Oxide (a-IGZO) films. The Hall Effect measurement demonstrates that the increase of implantation fluence can decrease the carrier concentration of a-IGZO by three orders to 1016 cm-3, which attributes to the reduction of oxygen defects. The addition of nitrogen atoms can result in the increase of Hall mobility to 9.93 cm2/V s with the subsequent decrease to 6.49 cm2/V s, which reflects the reduction of the average potential barrier height (φ0) to be 22.0 meV with subsequent increase to 74.8 meV in the modified percolation model. The results indicate that nitrogen can serve as an effective p-type dopants and oxygen defect suppressors. N-implantation with an appropriate fluence can effectively improve the Hall mobility and reduce the carrier concentration simultaneously.

  13. Ion beam modification of topological insulator bismuth selenide

    DOE PAGES

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; ...

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi 2Se 3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi 2Se 3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi 2Se 3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allowmore » better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  14. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  15. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  16. Optical reflectivity study of silicon ion implanted poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Stefanov, Ivan L.; Florian, Bojana I.; Blaskova, Gergana D.; Ivanov, Victor G.; Faulques, Eric

    2009-11-01

    The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si +) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si + implantation on the reflectivity of two PMMA materials is examined in the dose range from 10 14 to 10 17 ions/cm 2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si + implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.

  17. Optical characterization of poly(methyl methacrylate) implanted with low energy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Kumar, Vijay; Goyal, Parveen Kumar; Kumar, Shyam

    2012-12-01

    The samples of poly(methyl methacrylate) (PMMA) were subjected to 100 keV N+ and Ar+ ion implantation up to a maximum fluence of 2 × 1016 ions/cm2. The effect of ion implantation on the optical energy gap and the refractive index has been studied through UV-visible spectroscopy. The results clearly indicate a decrease in the values of optical energy gap and an increase in the values of refractive index as an effect of ion implantation corresponding to both of the ions. It has also been observed that the changes induced by the implanted ions are more pronounced for N+ ions in comparison to Ar+ ions. This variation has been correlated with the calculated ranges of these ions in PMMA polymer using Stopping and Range of Ions in Matter (SRIM) code. Finally, an attempt has been made to correlate all the observed changes with the induced structural changes as revealed through Raman spectroscopy.

  18. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  19. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  20. Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Visco, A. M.; Campo, N.

    2004-10-01

    Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.

  1. Low energy implantation of boron with decaborane ions

    NASA Astrophysics Data System (ADS)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  2. An approach to tune the amplitude of surface ripple patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Tanuj; Kanjilal, D.; Kumar, Ashish

    An approach is presented to tune the amplitude of ripple patterns using ion beam. By varying the depth location of amorphous/crystalline interface, ripple patterns of different amplitude with similar wavelength were grown on the surface of Si (100) using 50 keV Ar{sup +} beam irradiation. Atomic force microscopy study demonstrates the tuning of amplitude of ripples patterns for wide range. Rutherford backscattering channeling measurement was performed to measure the depth location of amorphous/crystalline interface. It is postulated that the ion beam stimulated solid flow inside the amorphous layer controls the wavelength, whereas mass rearrangement at amorphous/crystalline interface controls the amplitude.

  3. Oxide formation and anodic polarization behavior of thin films of amorphous and crystalline FeCrP alloys prepared by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Demaree, J. D.; Was, G. S.; Sorensen, N. R.

    1991-07-01

    An experimental program has been conducted to determine the effect of phosphorus on the corrosion and passivation behavior of FeCrP alloys. Chemically homogeneous 60 nm films of Fe10Cr xP ( x from 0 to 35 at.%) were prepared by multilayer evaporation followed by ion beam mixing with Kr + ions. Films with a phosphorus content of at least 25 at.% were found to be entirely amorphous, while films with 15 at.% P consisted of both amorphous and bcc phases. Recrystallization of the amorphous phase was accomplished by heating the samples to 450°C in a purified argon flow furnace. Electrochemical polarization tests in an acid solution have shown the Fe10Cr xP films to be more corrosion resistant than Fe10Cr, with the corrosion resistance increasing with the amount of P present. The corrosion resistance is not significantly affected when the amorphous films are recrystallized, indicating that the behavior is chemically controlled and not a result of the amorphous structure. When examined by XPS, the phosphorus appears to enhance passivation by encouraging Cr enrichment in the oxide and by incorporating in the oxide as phosphate.

  4. Effect of C-implantation on Nerve-Cell Attachment to Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kitamura, Tsuyoshi; Hattori, Mitsutaka; Yamada, Tetsuya; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    The surfaces of the polystyrene films spin-coated on glass were modified by carbon negative-ion implantation with various ion doses from 1×1014 to 3×1016 ions/cm2 at 5 and 10 keV. The implantation conditions with and without a pattering mask were for investigation of the cell-attachment properties and for evaluation of surface physical properties of contact angle, respectively. The contact angles of modified surface were investigated by pure water drop and air bubble method. The lowest angle value of the implanted films at 5 and 10 keV were approximately 72° at 3×1015 ions/cm2 after dipping in the de-ionized water for 2 hours. The lowering of contact angles on C-implanted surfaces when increase the ion dose is due to formation of the OH and C-O bonds. Nerve-cell-attachment properties of modified surface were investigated by the nerve-like cell of rat adrenal pheochromocytoma (PC12h) in vitro. After 2 days culture of the PC12h cells, no cells attached on the polystyrene films implanted with low ion dose from 1×1014 to 3×1014 ions/cm2. On the polystyrene films implanted with the dose order of 1015 ions/cm2, the cells selectively attached only on the implanted region. Whereas on the surfaces implanted with high dose such as 1×1016 and 3×1016 ions/cm2 mostly cells attached on the implanted region, and some attached on the unimplanted region, as well as cells were abnormal in shape and large size. Therefore, the suitable dose implantation for the selective-attachment of nerve-cells on the polystyrene films implanted at 5 and 10 keV were obtained around the dose order of 1015 ions/cm2, and the best condition for the selective attachment properties was at 3×1015 ions/cm2 corresponding to the lowest contact angle.

  5. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

  6. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  7. New materials based on polylactide modified with silver and carbon ions

    NASA Astrophysics Data System (ADS)

    Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.

    2015-11-01

    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.

  8. Expansion and melting of Xe nanocrystals in Si

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan

    2006-12-01

    Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.

  9. Enhancement of Ag nanoparticles concentration by prior ion implantation

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Wang, Jun; Liu, Changlong

    2017-09-01

    Thermally grown SiO2 layer on Si substrates were singly or sequentially implanted with Zn or Cu and Ag ions at the same fluence of 2 × 1016/cm2. The profiles of implanted species, structure, and spatial distribution of the formed nanoparticles (NPs) have been characterized by the cross-sectional transmission electron microscope (XTEM) and Rutherford backscattering spectrometry (RBS). It is found that pre-implantation of Zn or Cu ions could suppress the self sputtering of Ag atoms during post Ag ion implantation, which gives rise to fabrication of Ag NPs with a high density. Moreover, it has also been demonstrated that the suppressing effect strongly depends on the applied energy and mobility of pre-implanted ions. The possible mechanism for the enhanced Ag NPs concentration has been discussed in combination with SRIM simulations. Both vacancy-like defects acting as the increased nucleation sites for Ag NPs and a high diffusivity of prior implanted ions in SiO2 play key roles in enhancing the deposition of Ag implants.

  10. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  11. Group III impurities Si interstitials interaction caused by ion irradiation

    NASA Astrophysics Data System (ADS)

    Romano, L.; Piro, A. M.; De Bastiani, R.; Grimaldi, M. G.; Rimini, E.

    2006-01-01

    The off-lattice displacement of substitutional impurities (B, Ga) in Si caused by irradiation with energetic light ion beams has been investigated. Samples have been prepared by solid phase epitaxy (SPE) of pre-amorphized Si subsequently implanted with B and Ga at a concentration of about 1 × 1020 at/cm3 confined in a 300 nm thick surface region. The off-lattice displacement of the impurities was induced at room temperature (RT) by irradiation with high energy (>600 keV) light ion beams (H, He) and detected by the channelling technique along different axes, using the 11B(p,α)8Be reaction and standard RBS, for B and Ga, respectively. The normalized channelling yield χ of the impurity signal increases with the ion fluence, indicating a progressive off-lattice displacement of the dopant during irradiation, until it saturates at χF < 1 suggesting a non-random displacement of the dopant. Although the precise value of χF depends on the channelling direction and dopant species, the off-lattice displacement rate, deduced from the χ versus interstitial fluence curve, only depends on the excess of Si self-interstitials (SiI) generated by the irradiating beam through a parameter σ that can be interpreted as an effective cross-section for the impurity-SiI interaction.

  12. Surface characterization and biodegradation behavior of magnesium implanted poly(L-lactide/caprolactone) films

    NASA Astrophysics Data System (ADS)

    Sokullu, Emel; Ersoy, Fulya; Yalçın, Eyyup; Öztarhan, Ahmet

    2017-11-01

    Biopolymers are great source for medical applications such as drug delivery, wound patch, artificial tissue studies etc., food packaging, cosmetic applications etc. due to their biocompatibility and biodegradability. Particularly, the biodegradation ability of a biomaterial makes it even advantageous for the applications. The more tunable the biodegradation rate the more desired the biopolymers. There are many ways to tune degradation rate including surface modification. In this study ion implantation method applied to biopolymer surface to determine its effect on biodegradation rate. In this study, surface modification of poly(L-lactide/caprolactone) copolymer film is practiced via Mg-ion-implantation using a MEVVA ion source. Mg ions were implanted at a fluence of 1 × 1015 ions/cm2 and ion energy of 30 keV. Surface characterization of Mg-ion-implanted samples is examined using Atomic Force Microscopy, Raman spectroscopy, contact angle measurement and FT-IR Spectroscopy. These analyses showed that the surface become more hydrophilic and rougher after the ion implantation process which is advantageous for cell attachment on medical studies. The in vitro enzymatic degradation of Mg-implanted samples was investigated in Lipase PS containing enzyme solution. Enzymatic degradation rate was examined by mass loss calculation and it is shown that Mg-implanted samples lost more than 30% of their weight while control samples lost around 20% of their weight at the end of the 16 weeks. The evaluation of the results confirmed that Mg-ion-implantation on poly(L-lactide/caprolactone) films make the surface rougher and more hydrophilic and changes the organic structure on the surface. On the other hand, ion implantation has increased the biodegradation rate.

  13. Development of vertical compact ion implanter for gemstones applications

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  14. Amorphous mesoporous GeO x anode for Na-ion batteries with high capacity and long lifespan.

    PubMed

    Shen, Kangze; Lin, Ning; Xu, Tianjun; Han, Ying; Qian, Yitai

    2018-01-01

    It is recently demonstrated that amorphous Ge anode shows higher reversible Na-ion storage capacity (590 mA h g -1 ) than crystallized Ge anode (369 mA h g -1 ). Here, amorphous GeO x anode is prepared by a simple wet-chemistry reduction route at room temperature. The obtained amorphous GeO x shows a porous hierarchical architecture, accompanied with a Brunauer-Emmett-Teller surface area of 159 m 2  g -1 and an average pore diameter of 14 nm. This unique structure enables the GeO x anode to enhance the Na-ion/electron diffusion rate, and buffer the volume change. As anode for Na-ion battery, high reversible capacity over 400 mA h g -1 , fine rate capability with a capacity of 200 mA h g -1 maintained at 3.0 A g -1 and long-term cycling stability with 270 mA h g -1 even over 1000 cycles at 1.0 A g -1 are obtained.

  15. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  16. Gene expression profiles in promoted-growth rice seedlings that germinated from the seeds implanted by low-energy N+ beam

    PubMed Central

    Ya, Huiyuan; Chen, Qiufang; Wang, Weidong; Chen, Wanguang; Qin, Guangyong; Jiao, Zhen

    2012-01-01

    The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. PMID:22843621

  17. Evaluation of electron beam stabilization for ion implant processing

    NASA Astrophysics Data System (ADS)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  18. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  19. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion

  20. Localization of carbon atoms and extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions

    NASA Astrophysics Data System (ADS)

    Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.

    2013-02-01

    The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.

  1. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface.

    PubMed

    Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A

    2011-10-31

    Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.

  3. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163Ho ions

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Ranitzsch, P. C.-O.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-05-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163Ho using MMCs having the radioactive 163Ho ions implanted in the absorber. The isotope 163Ho decays through electron capture to 163Dy and features the smallest known QEC value. This peculiarity makes 163Ho a very interesting candidate to investigate the value of the electron neutrino mass by the analysis of the energy spectrum. The implantation of 163Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. Moreover the performance of the detector prototype having the 163Ho ions implanted in the absorber is already close to the requirements needed for an experiment with sub-eV sensitivity to the electron neutrino mass. Based on these results, an optimized detector design for future 163Ho experiments is presented.

  4. Nano-scale phase transformation in Ti-implanted austenitic 301 stainless steel.

    PubMed

    Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro

    2003-01-01

    Phase-transformation behaviours were investigated for austenitic 301 stainless steel during implantation at room temperature with 300 keV Ti ions to fluences of 8 x 10(19) to approximately 3 x 10(21) ions m(-2) by means of transmission electron microscopy. The cross-sectional specimen was prepared using a focused ion beam. Plan observation of the implanted specimen showed that phase transformation from gamma-phase to alpha-phase was induced by implantation to a fluence of 3 x 10(20) Ti ions m(-2). The nucleation of the irradiation (implantation)-induced phase increased with the increase of the dose. The orientation relationship between the gamma matrix and the induced alpha martensitic phase was identified as (011)alpha//(111)gamma and [11-1]alpha//[10-1], close to the Kurdjumov-Sachs relationship. Cross-sectional observation after implantation to a fluence of 5 x 10(20) ions m(-2) showed that phase transformation mostly nucleated near the surface and occurred in the higher the concentration gradient of the implanted ion, i.e. a higher stress concentration takes place and this stress introduced by the implanted ions acts as a driving force for the transformation.

  5. Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)

    NASA Astrophysics Data System (ADS)

    Zhou, Huan

    Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.

  6. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  7. Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Tao, Ye; Guo, Deliang

    2012-09-01

    TiN coatings were deposited on the substrates of cemented carbide (WC-TiC-Co) by Magnetic Filter Arc Ion Plating (MFAIP) and then implanted with vanadium through Metal Vacuum Vapor Arc (MEVVA) ion source with the doses of 1 × 1017 and 5 × 1017 ions/cm2 at 40 kV. The microstructures and chemical compositions of the V-implanted TiN coatings were investigated using Glancing Incidence X-ray Diffraction (GIXRD) and X-ray Photoelectron Spectroscopy (XPS), together with the mechanical and tribological properties of coatings were characterized using nano-indentation and ball-on-disk tribometer. It was found that the diffraction peaks of the V-implanted TiN coatings at the doses of 5 × 1017 ions/cm2 shifted to higher angles and became broader. The hardness and elastic modulus of TiN coatings increased after V ion implantation. The wear mechanism for both un-implanted and V-implanted TiN coatings against GCr15 steel ball was adhesive wear, and the V-implanted TiN coatings had a lower friction coefficient as well as a better wear resistance

  8. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  9. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  10. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  11. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  12. Nanocrystalline zirconia can be amorphized by ion irradiation.

    PubMed

    Meldrum, A; Boatner, L A; Ewing, R C

    2002-01-14

    Nanocrystalline composites are finding applications in high-radiation environments due to their excellent mechanical and electronic properties. We show, however, that at the smallest particle sizes, radiation damage effects can be so strongly enhanced that under the right conditions, materials that have never been made amorphous can become highly susceptible to irradiation-induced amorphization. Because light-weight, high-strength nanocomposites are potential materials for spacecraft shielding and sensor systems, these fundamental results have significant implications for the design and selection of materials to be used in environments where a large ion flux will be encountered.

  13. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  14. Diffusion of lithium ions in amorphous and crystalline PEO3:LiCF3SO3 polymer electrolytes: ab initio calculations and simulations

    NASA Astrophysics Data System (ADS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel; Wang, Sanwu

    The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline phase can conduct ions. In this work, we use ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined with first-principles density functional theory. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3has higher ionic conductivity than the crystalline phase. This work was supported by NASA Grant No. NNX13AN01A and by Tulsa Institute of Alternative Energy and Tulsa Institute of Nanotechnology. This research used resources of XSEDE, NERSC, and the Tandy Supercomputing Center.

  15. Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-02-01

    In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.

  16. Effect of elastic collisions and electronic excitation on lattice structure of NiTi bulk intermetallic compound irradiated with energetic ions

    NASA Astrophysics Data System (ADS)

    Ochi, M.; Kojima, H.; Hori, F.; Kaneno, Y.; Semboshi, S.; Saitoh, Y.; Okamoto, Y.; Ishikawa, N.; Iwase, A.

    2018-07-01

    NiTi bulk intermetallic compound with the B19‧ structure was irradiated with 1 MeV He, 5 MeV Al, 16 MeV Au and 200 MeV Xe ions, and the change in lattice structure near the surface by the ion bombardment was investigated by using the grazing incidence X-ray diffraction (GIXD) and the extended X-ray absorption fine structure (EXAFS). The lattice structure transformation by the irradiation strongly depends on ion species and/or energies. For the 1 MeV He irradiation, the lattice structure changed from B19‧ to the A2 structure, but did not show an amorphization even after the high fluence irradiation. For the 5 MeV Al irradiation, the samples are partially amorphized. For the 16 MeV Au irradiation, the lattice structure of the NiTi samples changed nearly completely from the B19‧ structure to the amorphous state via the A2 structure. The value of dpa (displacement per atom) which is needed for the amorphization is, however, much smaller than the case of the Al ion irradiation. For the 200 MeV Xe ion irradiation, the lattice structure completely changed to the A2 structure even by a small ion fluence. The dependence of the lattice structure transformation on elastic collisions (dpa), the spectrum of the primary knock-on (PKA) atoms and the density of energy deposited through electronic excitation was discussed.

  17. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  18. A negative ion beam application to artificial formation of neuron network in culture

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Sato, Hiroko; Baba, Takahiro; Gotoh, Yasuhito; Ishikawa, Junzo

    2000-02-01

    A negative ion beam modification of the biocompatibility of polystyrene surface was investigated for the artificial formation of neuron network in culture with respect to negative ion species. Negative ions of silver, copper or carbon were implanted in nontreated polystyrene (NTPS) dishes at conditions of 20 keV and 3×1015ions/cm2 through a mask with many slits of 60 μm in width. For the surface wettability, the contact angle of ion-implanted NTPS was about 75° for silver-negative ions, which was lower than 86° of the original NTPS. For carbon implantation, on the contrary, the contact angles did not change from the original value. In culture experiment using neuron cells of PC-12h (rat adrenal pheochromocytoma), the cells cultured with serum medium in two days showed the cell attachment and growth in number only at the ion-implanted region on NTPS for all ion species. In another two days in culture with nonserum medium including a nerve growth factor, the outgrowth of neural protrusions was also observed only at the ion-implanted region for all ion species. There was a difference in number of attached cells for ion species. The silver-negative ion-implanted NTPS had a large effect for cell attachment compared with other two ion species. This reason is considered to be due to the lowest contract angles among them.

  19. Microstructural evolution of ion-irradiated sol–gel-derived thin films

    DOE PAGES

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...

    2017-07-17

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  20. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  1. Hydrogenated amorphous carbon coatings on implants drastically reduce biofilm formation and water permeation

    NASA Astrophysics Data System (ADS)

    Bernsmann, Falk; Laube, Norbert; Baldsiefen, Gerhard; Castellucci, Mattia

    2014-11-01

    Inflammations and crystalline bacterial biofilms (encrustations) remain a major complication in long-term artificial urinary tract drainage. To solve this problem we present urological implants with coatings made of amorphous hydrogenated carbon (a-C:H) that show excellent protection from encrustation in-vitro as well as in-vivo. Part of the success of a-C:H coatings is attributed to their ability to act as a diffusion barrier between an implant and the body, which prevents leaching of solvents from polymeric implants. To further enhance their barrier properties a-C:H coatings are combined with parylene coatings to develop diffusion-barrier multilayer coatings with a total thickness between 0.2 μm and 0.8 μm. The combination of the two types of coatings leads to a reduction of water diffusion by a factor of up to ten with respect to uncoated 25 μm thick polyimide sub-strates. The diffusion of water vapour from a controlled atmospheric pressure chamber through coated foils to a vacuum chamber is measured in a custom-built device.

  2. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  3. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  4. Temperature-Dependent Helium Ion-Beam Mixing in an Amorphous SiOC/Crystalline Fe Composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2016-10-31

    Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873more » K, the Fe marker layer broke down and RBS could no longer be used to quantitatively examine the amount of ion mixing. The results indicate that the Fe/SiOC nanocomposite is thermally stable and tends to demix in the temperature range from 473 to 673 K. For application of this composite structure at temperatures of 873 K or higher, layer stability is a key consideration.« less

  5. Impact of He and H relative depth distributions on the result of sequential He+ and H+ ion implantation and annealing in silicon

    NASA Astrophysics Data System (ADS)

    Cherkashin, N.; Daghbouj, N.; Seine, G.; Claverie, A.

    2018-04-01

    Sequential He++H+ ion implantation, being more effective than the sole implantation of H+ or He+, is used by many to transfer thin layers of silicon onto different substrates. However, due to the poor understanding of the basic mechanisms involved in such a process, the implantation parameters to be used for the efficient delamination of a superficial layer are still subject to debate. In this work, by using various experimental techniques, we have studied the influence of the He and H relative depth-distributions imposed by the ion energies onto the result of the sequential implantation and annealing of the same fluence of He and H ions. Analyzing the characteristics of the blister populations observed after annealing and deducing the composition of the gas they contain from FEM simulations, we show that the trapping efficiency of He atoms in platelets and blisters during annealing depends on the behavior of the vacancies generated by the two implants within the H-rich region before and after annealing. Maximum efficiency of the sequential ion implantation is obtained when the H-rich region is able to trap all implanted He ions, while the vacancies it generated are not available to favor the formation of V-rich complexes after implantation then He-filled nano-bubbles after annealing. A technological option is to implant He+ ions first at such an energy that the damage it generates is located on the deeper side of the H profile.

  6. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  7. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.

    PubMed

    Wang, Yixian; Tian, Wei; Wang, Luhai; Zhang, Haoran; Liu, Jialiang; Peng, Tingyue; Pan, Lei; Wang, Xiaobo; Wu, Mingbo

    2018-02-14

    Amorphous carbon is regarded as a promising alternative to commercial graphite as the lithium-ion battery anode due to its capability to reversibly store more lithium ions. However, the structural disorder with a large number of defects can lead to low electrical conductivity of the amorphous carbon, thus limiting its application for high power output. Herein, ultrathin amorphous carbon nanosheets were prepared from petroleum asphalt through tuning the carbonization temperature in a molten-salt medium. The amorphous nanostructure with expanded carbon interlayer spacing can provide substantial active sites for lithium storage, while the two-dimensional (2D) morphology can facilitate fast electrical conductivity. As a result, the electrodes deliver a high reversible capacity, outstanding rate capability, and superior cycling performance (579 and 396 mAh g -1 at 2 and 5 A g -1 after 900 cycles). Furthermore, full cells consisting of the carbon anodes coupled with LiMn 2 O 4 cathodes exhibit high specific capacity (608 mAh g -1 at 50 mA g -1 ) and impressive cycling stability with slow capacity loss (0.16% per cycle at 200 mA g -1 ). The present study not only paves the way for industrial-scale synthesis of advanced carbon materials for lithium-ion batteries but also deepens the fundamental understanding of the intrinsic mechanism of the molten-salt method.

  8. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  9. Microfabrication Method using a Combination of Local Ion Implantation and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Han, Jin; Kim, Jong-Wook; Lee, Hiwon; Min, Byung-Kwon; Lee, Sang Jo

    2009-02-01

    A new microfabrication method that combines localized ion implantation and magnetorheological finishing is proposed. The proposed technique involves two steps. First, selected regions of a silicon wafer are irradiated with gallium ions by using a focused ion beam system. The mechanical properties of the irradiated regions are altered as a result of the ion implantation. Second, the wafer is processed by using a magnetorheological finishing method. During the finishing process, the regions not implanted with ion are preferentially removed. The material removal rate difference is utilized for microfabrication. The mechanisms of the proposed method are discussed, and applications are presented.

  10. Metal ion levels in patients with stainless steel spinal instrumentation.

    PubMed

    McPhee, I Bruce; Swanson, Cheryl E

    2007-08-15

    Case-control study. To determine whether metal ion concentrations are elevated in patients with spinal instrumentation. Studies have shown that serum and urinary levels of component metal ions are abnormally elevated in patients with total joint arthroplasties. Little is known of metal ion release and concentrations in patients with spinal instrumentation. The study group consisted of patients who had undergone spinal instrumentation for various spinal disorders with a variety of stainless steel implants, 5 to 25 years previously. A group of volunteers without metal implants were controls. All subjects were tested for serum nickel, blood chromium, and random urine chromium/creatinine ratio estimation. The study group consisted of 32 patients with retained implants and 12 patients whose implants had been removed. There were 26 unmatched controls. There was no difference in serum nickel and blood chromium levels between all 3 groups. The mean urinary chromium/creatinine ratio for patients with implants and those with implants removed was significantly greater than controls (P < 0.001). The difference between study subgroups was not significant (P = 0.16). Of several patient and instrumentation variables, only the number of couplings approached significance for correlation with the urine chromium excretion (P = 0.07). Spinal implants do not raise the levels of serum nickel and blood chromium. There is evidence that metal ions are released from spinal implants and excreted in urine. The excretion of chromium in patients with spinal implants was significantly greater than normal controls although lower where the implants have been removed. The findings are consistent with low-grade release of ions from implants with rapid clearance, thus maintaining normal serum levels. Levels of metal ions in the body fluids probably do not reach a level that causes late side-effect; hence, routine removal of the implants cannot be recommended.

  11. Evaluation of lattice displacement in Mg - Implanted GaN by Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishikata, N.; Kushida, K.; Nishimura, T.; Mishima, T.; Kuriyama, K.; Nakamura, T.

    2017-10-01

    Evaluation of lattice displacement in Mg-ion implanted GaN is studied by combining elastic recoil detection analysis (ERDA), Rutherford backscattering spectroscopy (RBS) and Photoluminescence (PL) measurements. Mg-ion implantation into GaN single crystal wafer is performed with energies of 30 keV (ion fluence; 3.5 × 1014 cm-2) and 60 keV (6.5 × 1014 cm-2) at room temperature. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration for un-implanted and as-implanted GaN is 3.1 × 1014 cm-2 and 6.1 × 1014 cm-2 at around 265 nm in depth. χmin (the ratio of aligned and random yields) near the surface of the 〈0 0 0 1〉 direction for Ga is 1.61% for un-implanted and 2.51% for Mg-ion implanted samples. On the other hand, the value of χmin for N is 10.08% for un-implanted and 11.20% for Mg-ion implanted samples. The displacement concentration of Ga and N estimated from these χmin values is 4.01 × 1020 cm-3 and 5.46 × 1020 cm-3, respectively. This suggests that Ga vacancy (VGa), N vacancy (VN), Ga interstitial (Gai), and N interstitial (Ni) is introduced in Mg-ion implanted GaN. A strong emission at around 400 nm in as-implanted GaN is related to a VN donor and some acceptor pairs. It is suggested that the origin of the very high resistivity after the Mg-ion implantation is attributed to the carrier compensation effect due to the deep level of Ni as a non-radiative center.

  12. MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Hong; Man, Yuhong; Yang, Jingang; Xie, Jiale; Xu, Maowen

    2017-10-01

    MoO2 nanosheets embedded in the amorphous carbon matrix (MoO2/C) are successfully synthesized via a facile hydrothermal method and investigated as an anode for sodium-ion batteries. Because of the efficient ion transport channels and good volume change accommodation, MoO2/C delivers a discharge/charge capacity of 367.8/367.0 mAh g-1 with high coulombic efficiency (99.4%) after 100 cycles at a current density of 50 mA g-1.

  13. Applications of amorphous track models in radiation biology

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.

  14. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  15. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  16. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  17. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    sf.Th. 82-0 327 11,y 604.)___ _ 4 . TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Ion Implantation Studies of Titanium Metal Suf s 6 ...AD-A113 7ag GEORGIA INST OF TECH ATLANTA SCHOOL OF PHYSICS FIG 11/ 6 ION IMPLANTATION STUDOIES OF TITANIUM METAL SURtFACES. (U) 1901 J R STEVENSON. K...LL0 kpproved ror 82 4 ±s~rutic iui.~o 82r-~~ ION IMPLANTATION STUDIES OF TITANIUM METAL SURFACES SECURITY CLASSIFICATION OIOF THIS PAGE (0fen Date

  18. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less

  19. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  20. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  1. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  2. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  3. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  4. Measurement of Damage Profiles from Solar Wind Implantation

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.

    2007-01-01

    NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were single crystal 6H silicon carbide. (The others were polycrystalline CVD diamond and amorphous carbon that were not examined in the work.) The ion damaged SiC samples from the concentrator were studied in comparison to the flight Si from the bulk array to understand differences in the extent of the damage.

  5. Study of the effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation on stainless steel samples

    NASA Astrophysics Data System (ADS)

    Pillaca, E. J. D. M.; Ueda, M.; Oliveira, R. M.; Pichon, L.

    2014-08-01

    Effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation (PIII) have been investigated. This magnetic configuration when used in PIII allows obtaining high nitrogen plasma density close to the ion implantation region. Consequently, high ions dose on the target is possible to be achieved compared with standard PIII. In this scenario, nitrogen and carbon ions were implanted simultaneously on stainless steel, as measured by GDOES and detected by X-ray diffraction. Carbon-tape disposed on the sample-holder was sputtered by intense bombardment of nitrogen ions, being the source of carbon atoms in this experiment. The implantation of both N and C caused changes on sample morphology and improvement of the tribological properties of the stainless steel.

  6. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  7. Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

    NASA Astrophysics Data System (ADS)

    Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.

    2015-11-01

    The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

  8. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  9. The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.

    2017-04-01

    The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.

  10. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  11. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  12. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure, radiation-induced amorphization is more easily attained. This is consistent with an increasingly exothermic trend in the enthalpies of formation of pyrochlores from the oxides, that is, the greater the thermochemical stability of the pyrochlore structure, the more likely it will be amorphized upon radiation damage rather than recover to a disordered fluorite structure.

  13. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  14. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  15. Fabrication of amorphous diamond films

    DOEpatents

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  16. Heavy doping of CdTe single crystals by Cr ion implantation

    NASA Astrophysics Data System (ADS)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  17. FTIR study of silicon carbide amorphization by heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C-SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C-SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  18. He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Karatchevtseva, Inna; Davis, Joel; Ionescu, Mihail

    2014-10-01

    Sodalite, a candidate ceramic for the immobilisation of pyroprocessing nuclear waste, showed no observable lattice dilatation in grazing incidence X-ray diffraction when irradiated with up to 1017 5 MeV He ions/cm2. However micro-Raman scattering showed considerable spectral broadening characteristic of radiation damage near the end of the ∼22 μm He range. Partial amorphism plus nepheline formation was observed in grazing incidence X-ray diffraction when sodalite was irradiated by 1016 12 MeV Au ions/cm2. Nepheline appeared less susceptible to 12 MeV Au ion damage than sodalite, with ∼25% less amorphous fraction at 1016 ions/cm2.

  19. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less

  20. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  1. Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm

    2012-02-01

    We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  3. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  4. Development of ion implanted gallium arsenide transistors

    NASA Technical Reports Server (NTRS)

    Hunsperger, R.; Baron, R.

    1972-01-01

    Techniques were developed for creating bipolar microwave transistors in GaAs by ion implantation doping. The electrical properties of doped layers produced by the implantation of the light ions Be, Mg, and S were studied. Be, Mg, and S are suitable for forming the relatively deep base-collector junction at low ion energies. The electrical characteristics of ion-implanted diodes of both the mesa and planar types were determined. Some n-p-n planar transistor structures were fabricated by implantation of Mg to form the base regions and Si to form the emitters. These devices were found to have reasonably good base-collector and emitter-base junctions, but the current gain beta was small. The low was attributable to radiative recombination in the base region, which was extremely wide.

  5. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  6. Simulations of Proton Implantation in Silicon Carbide (SiC)

    DTIC Science & Technology

    2016-03-31

    ions in matter (SRIM); transport of ions in matter (TRIM); ion energy; implant depth; defect generation; vacancy; backscattered ions; sputtering...are computer simulations based on transport of ions in matter (TRIM), and stopping and range of ions in matter (SRIM). TRIM is a Monte Carlo

  7. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  8. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  9. Modification of Wetting Properties of PMMA by Immersion Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mireault, N.; Ross, G. G.

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the formation of new chemical functions such as -OOH, -COOH and C=C. These observations provide a good explanation for the strong increase of the wetting properties of the PMMA surfaces.

  10. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  11. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  12. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  13. Space Plasma Ion Processing of the Lunar Soil: Modeling of Radiation-Damaged Rim Widths on Lunar Grains

    NASA Technical Reports Server (NTRS)

    Chamberlin, S.; Christoffersen, R.; Keller, L.

    2007-01-01

    Chemically and microstructurally complex altered rims around grains in the finest size fraction (<20 micron) of the lunar regolith are the result of multi-stage processes involving both solar ion radiation damage and nanoscale deposition of impact or sputter-derived vapors. The formation of the rims is an important part of the space weathering process, and is closely linked to key changes in optical reflectance and other bulk properties of the lunar surface. Recent application of field-emission scanning transmission electron microscope techniques, including energy dispersive X-ray spectral imaging, is making it easier to unravel the "nano-stratigraphy" of grain rims, and to delineate the portions of rims that represent Radiation-Amorphized (RA) host grain from overlying amorphous material that represents vapor/sputter deposits. For the portion of rims formed by host grain amorphization (henceforth called RA rims), we have been investigating the feasibility of using Monte Carlo-type ion-atom collision models, combined with experimental ion irradiation data, to derive predictive numerical models linking the width of RA rims to the grain s integrated solar ion radiation exposure time.

  14. Structural properties of H-implanted InP crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocchi, C.; Franzosi, P.; Lazzarini, L.

    1993-07-01

    H has been implanted in InP crystals at the energy E [equals] 100 keV and at different doses ranging from [sigma] [equals] 1 x 10[sup 13] to [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2]. The depth dependence of the elastic lattice strain has been investigated by high resolution X-ray diffractometry. The implantation produces a lattice dilation. The strain increases with increasing depth, reaches the maximum at about 0.75 [mu]m, and then decreases rapidly; moreover the maximum strain is proportional to the dose. No extended crystal defects have been detected by transmission electron microscopy up to [sigma] <1 x 10[supmore » 16] cm[sup [minus]2] a buried amorphous layer 28 nm in thickness has been observed at the same depth where the strain is maximum. The thickness of the amorphous layer increases by further increasing the dose and reaches a value of about 0.18 [mu]m for [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2].« less

  15. Formation of Porous Germanium Layers by Silver-Ion Implantation

    NASA Astrophysics Data System (ADS)

    Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.

    2018-04-01

    We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.

  16. Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

    NASA Astrophysics Data System (ADS)

    Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.

    2015-07-01

    This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.

  17. Neon ion beam induced pattern formation on amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Hofsäss, Hans; Zhang, Kun

    2018-02-01

    We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.

  18. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Banerjee, Ipsita; Kumta, Prashant N

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  20. Fluorinated polyurethane scaffolds for 19F magnetic resonance imaging

    PubMed Central

    Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J. C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Polymers are increasingly employed in implant materials. To reduce the incidence of complications, which in the case of vascular grafts include incorrect placement and restenosis, materials are needed which allow for image-guided implantation, as well as for accurate and efficient postoperative implant imaging. We here describe amorphous fluorinated polymers based on thermoplastic polyurethane (19F-TPU), and show that are useful starting materials for developing tissue-engineered vascular grafts which can be detected using 19F MRI. PMID:28413258

  1. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  2. Role of stresses in annealing of ion-implantation damage in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshan, K.; EerNisse, E.P.

    Recent results showing a crystallographic orientation dependence of growth kinetics, secondary defects, and stress relief in annealing of ion-implanted Si are shown to be self-consistent if interpreted in terms of the influence of stresses upon annealing processes. The stress influence proposed is microplastic shear which is induced in (112) directions on (111) planes inclined to the implant surface by the biaxial stress created in the implant region by ion-implantation damage. The shear stresses are shown to be dependent on crystallographic orientation in a manner consistent with the model.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  4. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  5. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  6. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, R.H.; Zhang, S.

    1997-01-14

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

  7. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  8. Passivated contact formation using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Stradins, Pauls; Nemeth, William

    2018-05-29

    Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.

  9. Synthesis, thermal stability and the effects of ion irradiation in amorphous Si-O-C alloys

    NASA Astrophysics Data System (ADS)

    Colón Santana, Juan A.; Mora, Elena Echeverría; Price, Lloyd; Balerio, Robert; Shao, Lin; Nastasi, Michael

    2015-05-01

    Amorphous films of Si-O-C alloys were synthesized via sputtering deposition at room temperature. These alloys were characterized using grazing incidence diffraction, both as a function of temperature and irradiation dose. It was found that the material retained its amorphous structure, both at high temperatures (up to 1200 °C) and ion irradiation doses up to 1.0 dpa. The depth profile from photoemission spectroscopy provided evidence of the oxidation state of these alloys and their atomic composition. The studies suggest that Si-O-C alloys might belong to a group of radiation tolerant materials suitable for applications in reactor-like harsh environments.

  10. Electronic excitation effects on nanoparticle formation in insulators under heavy-ion implantation

    NASA Astrophysics Data System (ADS)

    Kishimoto, N.; Plaksin, O. A.; Masuo, K.; Okubo, N.; Umeda, N.; Takeda, Y.

    2006-01-01

    Kinetic processes of nanoparticle formation by ion implantation was studied for the insulators of a-SiO2, LiNbO3, MgO · 2.4(Al2O3) and PMMA, either by changing ion flux or by using a co-irradiation technique of ions and photons. Under Cu-implantation of 60 keV Cu-, nanoparticles spontaneously formed without thermal annealing, indicating radiation-induced diffusion of implants. The high-flux implantation caused instable behaviors of nanoparticle morphology in a-SiO2, LiNbO3 and PMMA, i.e. enhanced atomic rearrangement or loss of nanoparticles. The spinel MgO · 2.4(Al2O3) also showed nanoparticle precipitation at 60 keV, but the precipitation tendency is less than the others. Combined irradiation of 3 MeV Cu ions and photons of 2.3 eV or 3.5 eV indicates that the electronic excitation during ion implantation significantly enhances nanoparticle precipitation, greatly depending on photon energy and fluence. The selectivity for photons can be applied to control nanoparticle precipitation.

  11. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  12. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  13. Crater function moments: Role of implanted noble gas atoms

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2018-04-01

    Spontaneous pattern formation by energetic ion beams is usually explained in terms of surface-curvature dependent sputtering and atom redistribution in the target. Recently, the effect of ion implantation on surface stability has been studied for nonvolatile ion species, but for the case of noble gas ion beams it has always been assumed that the implanted atoms can be neglected. In this work, we show by molecular dynamics (MD) and Monte Carlo (MC) simulations that this assumption is not valid in a wide range of implant conditions. Sequential-impact MD simulations are performed for 1-keV Ar, 2-keV Kr, and 2-keV Xe bombardments of Si, starting with a pure single-crystalline Si target and running impacts until sputtering equilibrium has been reached. The simulations demonstrate the importance of the implanted ions for crater-function estimates. The atomic volumes of Ar, Kr, and Xe in Si are found to be a factor of two larger than in the solid state. To extend the study to a wider range of energies, MC simulations are performed. We find that the role of the implanted ions increases with the ion energy although the increase is attenuated for the heavier ions. The analysis uses the crater function formalism specialized to the case of sputtering equilibrium.

  14. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  15. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  16. Persistent photoconductivity in oxygen-ion implanted KNbO3 bulk single crystal

    NASA Astrophysics Data System (ADS)

    Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.

    2016-12-01

    Persistent Photoconductivity (PPC) in oxygen-ion implanted KNbO3 ([001] oriented bulk single crystals; perovskite structure; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the degradation of its crystallinity caused by the phase transition. The residual hydrogens in un-implanted samples are estimated to be 5×1014 cm-2 from elastic recoil detection analysis (ERDA). A multiple-energy implantation of oxygen ions into KNbO3 is performed using energies of 200, 400, and 600 keV (each ion fluence:1.0×1014 cm-2). The sheet resistance varies from >108 Ω/□ for an un-implanted sample to 1.9×107 Ω/□ for as-implanted one, suggesting the formation of donors due to hydrogen interstitials and oxygen vacancies introduced by the ion implantation. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green, red, and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy.

  17. Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; Ridgway, M. C.; Kluth, P.

    2018-04-01

    The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 2.2 GeV Au ions with 1.0 μm thick amorphous SiN x :H and SiO x :H layers are determined using small angle x-ray scattering measurements. The resulting density profiles resembles an under-dense core surrounded by an over-dense shell with a smooth transition between the two regions, consistent with molecular-dynamics simulations. For amorphous SiN x :H, the density variations show a radius of 4.2 nm with a relative density change three times larger than the value determined for amorphous SiO x :H, with a radius of 5.5 nm. Complementary infrared spectroscopy measurements exhibit a damage cross-section comparable to the core dimensions. The morphology of the density variations results from freezing in the local viscous flow arising from the non-uniform temperature profile in the radial direction of the ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to be the main driving force rather than the presence of a density anomaly.

  18. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafermore » high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.« less

  19. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Ma, Jingming; Feng, Chun; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2009-02-01

    In the process of the fermentation of steroid C11α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar+) and nitrogen ion (N+). The results showed that the optimal ion implantation was N+ with an optimum dose of 2.08 × 1015 ions/cm2, with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation.

  20. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  1. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less

  2. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  3. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  4. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.

    PubMed

    Dey, Sanchita; Drazin, John W; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Castro, Ricardo H R

    2015-01-13

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.

  5. Radiation Tolerance of Nanocrystalline Ceramics: Insights from Yttria Stabilized Zirconia

    PubMed Central

    Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; Valdez, James A.; Holesinger, Terry G.; Uberuaga, Blas P.; Castro, Ricardo H. R.

    2015-01-01

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr+, 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces. PMID:25582769

  6. Radiation tolerance of nanocrystalline ceramics: Insights from yttria stabilized zirconia

    DOE PAGES

    Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; ...

    2015-01-13

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr⁺, 400 keV) is inversely proportional to the grain size. HAADF imagesmore » suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.« less

  7. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  8. The center for production of single-photon emitters at the electrostatic-deflector line of the Tandem accelerator of LABEC (Florence)

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Stefano; Sciortino, Silvio; Gelli, Nicla; Flatae, Assegid M.; Gorelli, Federico; Santoro, Mario; Chiari, Massimo; Czelusniac, Caroline; Massi, Mirko; Taccetti, Francesco; Agio, Mario; Giuntini, Lorenzo

    2018-05-01

    The line for the pulsed beam of the 3 MeV Tandetron accelerator at LABEC (Florence) has been upgraded for ion implantation experiments aiming at the fabrication of single-photon emitters in a solid-state matrix. A system based on Al attenuators has been calibrated in order to extend the energy range of the implanted ions from MeV down to the tens of keV. A new motorized XY stage has been installed in the implantation chamber for achieving ultra-fine control on the position of each implanted ion, allowing to reach the scale imposed by lateral straggling. A set-up for the activation of the implanted ions has been developed, based on an annealing furnace operating under controlled high-vacuum conditions. The first experiments have been performed with silicon ions implanted in diamond and the luminescent signal of the silicon-vacancy (SiV) center, peaked at 738 nm, has been observed for a wide range of implantation fluences (108 ÷ 1015 cm-2) and implantation depths (from a few nm to 2.4 μm). Studies on the efficiency of the annealing process have been performed and the activation yield has been measured to range from 1% to 3%. The implantation and annealing facility has thus been tuned for the production of SiV centers in diamond, but is in principle suitable for other ion species and solid-state matrices.

  9. Long-range effect of ion implantation of Raex and Hardox steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  10. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity.

    PubMed

    Tokuda, Shingo; Obata, Akiko; Kasuga, Toshihiro

    2009-05-01

    A poly(lactic acid) (PLA)/siloxane/calcium carbonate composite membrane containing mercapto groups (PSC-SH) with antibacterial ability and excellent bone-forming ability was prepared using 3-mercaptopropyltrimethoxysilane for application in guided bone regeneration. Mercapto groups were reported to adsorb silver ions, which are well known to show antibacterial activity. Ionic silicon species were reported to stimulate the proliferation of osteoblasts. A PSC-SH membrane with a thickness of about 10 microm shows high flexibility. The PLA in PSC-SH was converted from the crystalline phase to the amorphous phase due to dispersion of condensed siloxane clusters. The amount of mercapto group on PSC-SH surface was estimated to be about 55 nmol mm(-2) by quantitative analysis using the thiol-disulfide exchange reaction. PSC-SH adsorbed silver ions on its surface after being soaked in 6 microM silver acetate aqueous solution for 1 min. The adsorbed silver ions were seen by X-ray photoelectron spectroscopy to form SAg and SO3Ag bonds. A trace amount of ionic silicon species was released from the membrane after soaking in culture medium. PSC-SH with adsorbed silver ions showed good antibacterial activity and cellular compatibility in tests conducted with Staphylococcus aureus and mouse osteoblast-like cells, respectively. Antibacterial activity is expected to occur during the implantation operation by the silver ions but not to remain in the body for a long period, as the ions were present on the surface of the membrane but not inside the structure. The membrane should be useful as a biodegradable material with antibacterial activity and bone-forming ability.

  11. Ion implantation of indium gallium arsenide

    NASA Astrophysics Data System (ADS)

    Almonte, Marlene Isabel

    The ternary compound In0.53Ga0.47As, lattice-matched to Inp, is a semiconductor alloy of technological importance for numerous electronic and optoelectronic device applications. One of these applications includes photodiodes to be developed for the 1.3--1.55 mum wavelength range where silica fibers have their lowest optical loss. With a rapid increase in its use there is an essential need to understand the effects of ion implantation of this alloy semiconductor for implant isolation purposes in which highly resistive layers are required. Due to the small band gap (0.75 eV at 300K) of In0.53Ga0.47As, the estimated maximum resistivity is of the order of 1000 O-cm. Implant isolation can be achieved by the implantation of either inert noble gas ions or electrically active ions. Ion bombardment with inert species introduces defects which trap charge carriers. In the case of implant isolation by electrically active ions, the implanted impurities form an electronic level located close to the middle of the bandgap. Studies of the effects of implantation in In0.53Ga0.47 As due to damage by implantation of Ne+ ions and to compensation by implantation of Fe+ ions are reported in this thesis. The former only involves lattice damage related effects while the latter leads to damage and dopant induced compensation. From the Ne+ implantation results it appears that the damage related energy levels in In0.53 Ga0.47M produced by ion bombardment of chemically inactive species, are not sufficiently deep to lead to effective isolation. A higher resistivity of the order of 770 O-cm is achieved with Fe+ implantation, indicating that Fe introduces an energy level deep in the bandgap. The changes in the electrical properties of the layers are correlated to the lattice damage (damage induced effects) and/or the diffusion of the compensating dopants (dopant induced compensation). Structural characterization of the layers is performed with channeling Rutherford Backscattering Spectrometry (RBS). The distribution of the compensating dopants in the as-implanted and annealed layers is examined by Secondary Ion Mass Spectrometry (SIMS). SIMS analysis shows Fe out-diffusion which results in the loss of the semi-insulating electrical characteristics. To further our understanding of Fe diffusion in In0.53Ga0.47As, the diffusion coefficient of Fe is measured for the first time. The diffusivity of Fe was measured to be 4 x 10-13 cm2 s-1 at 550°C. The thermal stability of these damage and compensation induced effects producing implant isolation is discussed in detail.

  12. Modification of electrical properties of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Peter Anand

    Ion implantation or deposition can be used to modify the bulk electrical properties of topological insulators. More particularly, ion implantation or deposition can be used to compensate for the non-zero bulk conductivity due to extrinsic charge carriers. The direct implantation of deposition/annealing of dopants allows better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation or deposition enables the fabrication of inhomogeneously doped structures, enabling new types of device designs.

  13. Hardness depth profile of lattice strained cemented carbide modified by high-energy boron ion implantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.

    1991-07-01

    The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.

  14. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    PubMed

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  15. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  16. The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

    NASA Astrophysics Data System (ADS)

    Mishra, Mukesh; Alwarappan, Subbiah; Kanjilal, Dinakar; Mohanty, Tanuja

    2018-03-01

    Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D' and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D' and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

  17. Amorphization reaction in thin films of elemental Cu and Y

    NASA Astrophysics Data System (ADS)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  18. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires.

    PubMed

    Krishnan, Manu; Saraswathy, Seema; Sukumaran, Kalathil; Abraham, Kurian Mathew

    2013-01-01

    To evaluate the changes in surface roughness and frictional features of 'ion-implanted nickel titanium (NiTi) and titanium molybdenum alloy (TMA) arch wires' from its conventional types in an in-vitro laboratory set up. 'Ion-implanted NiTi and low friction TMA arch wires' were assessed for surface roughness with scanning electron microscopy (SEM) and 3 dimensional (3D) optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS) values in nanometers and Frictional Forces (FF) in grams. Mean values of RMS and FF were compared by Student's 't' test and one way analysis of variance (ANOVA). SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm) and 48.90% for TMA groups (463.28 to 236.35 nm) from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  19. Influence of ion-implanted profiles on the performance of GaAs MESFET's and MMIC amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlidis, D.; Cazaux, J.L.; Graffeuil, J.

    1988-04-01

    The RF small-signal performance of GaAs MESFET's and MMIC amplifiers as a function of various ion-implanted profiles is theoretically and experimentally investigated. Implantation energy, dose, and recess depth influence are theoretically analyzed with the help of a specially developed device simulator. The performance of MMIC amplifiers processed with various energies, doses, recess depths, and bias conditions is discussed and compared to experimental characteristics. Some criteria are finally proposed for the choice of implantation conditions and process in order to optimize the characteristics of ion-implanted FET's and to realize process-tolerant MMIC amplifiers.

  20. Microstructural and opto-electrical properties of chromium nitride films implanted with vanadium ions

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.

    2012-07-01

    We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.

  1. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  2. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  3. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  4. Effects of He implantation on radiation induced segregation in Cu-Au and Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Iwase, A.; Rehn, L. E.; Baldo, P. M.; Funk, L.

    Effects of He implantation on radiation induced segregation (RIS) in Cu-Au and Ni-Si alloys were investigated using in situ Rutherford backscattering spectrometry during simultaneous irradiation with 1.5-MeV He and low-energy (100 or 400-keV) He ions at elevated temperatures. RIS during single He ion irradiation, and the effects of pre-implantation with low-energy He ions, were also studied. RIS near the specimen surface, which was pronounced during 1.5-MeV He single-ion irradiation, was strongly reduced under low-energy He single-ion irradiation, and during simultaneous irradiation with 1.5-MeV He and low-energy He ions. A similar RIS reduction was also observed in the specimens pre-implanted with low-energy He ions. The experimental results indicate that the accumulated He atoms cause the formation of small bubbles, which provide additional recombination sites for freely migrating defects.

  5. Note on the artefacts in SRIM simulation of sputtering

    NASA Astrophysics Data System (ADS)

    Shulga, V. I.

    2018-05-01

    The computer simulation program SRIM, unlike other well-known programs (MARLOWE, TRIM.SP, etc.), predicts non-zero values of the sputter yield at glancing ion bombardment of smooth amorphous targets and, for heavy ions, greatly underestimates the sputter yield at normal incidence. To understand the reasons for this, the sputtering of amorphous silicon bombarded with different ions was modeled here using the author's program OKSANA. Most simulations refer to 1 keV Xe ions, and angles of incidence cover range from 0 (normal incidence) to almost 90°. It has been shown that SRIM improperly simulates the initial stage of the sputtering process. Some other artefacts in SRIM calculations of sputtering are also revealed and discussed.

  6. Synergistic effect of nanotopography and bioactive ions on peri-implant bone response

    PubMed Central

    Su, Yingmin; Komasa, Satoshi; Li, Peiqi; Nishizaki, Mariko; Chen, Luyuan; Terada, Chisato; Yoshimine, Shigeki; Nishizaki, Hiroshi; Okazaki, Joji

    2017-01-01

    Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone–implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics. PMID:28184162

  7. Electro-optical detection of THz radiation in Fe implanted LiNbO3

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Ni, Hongwei; Zhan, Weiting; Yuan, Jie; Wang, Ruwu

    2013-01-01

    In this letter, the authors present first observation of terahertz generation from Fe implantation of LiNbO3 crystal substrate. LiNbO3 single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Fe ion implantation were implanted into LiNbO3 single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulsed centered at 800 nm were focused onto the samples. Terahertz was generated via optical rectification. The findings suggest that under the investigated implantation parameter, a spectral component in excess of 0.44 THz emission were found from Fe ion implantation of LiNbO3.

  8. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  9. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    NASA Astrophysics Data System (ADS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  10. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    PubMed

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  11. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  12. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  13. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  14. Development and experimental study of large size composite plasma immersion ion implantation device

    NASA Astrophysics Data System (ADS)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  15. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Saleemi, Farhat; Rafique, M. Shahid; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-11-01

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag+) ion beam to various ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The effect of Ag+ ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of sbnd Cdbnd Csbnd carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 1015 ions/cm2). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag+ implanted PMMA has increased from 2.14 × 10-10 (pristine) to 9.6 × 10-6 S/cm.

  16. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  17. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  18. Compositional transformations in ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Abdul-Kader, A. M.; Turos, A.; Grambole, D.; Jagielski, J.; Piątkowska, A.; Madi, N. K.; Al-Maadeed, M.

    2005-10-01

    Changes of surface layer composition produced by ion bombardment of polyethylene and polypropylene samples were studied. These materials are under consideration for load bearing surfaces in biological and technical applications. To improve their tribological properties, surface layers are usually modified by ionizing radiation. Therefore, to study the mechanism of transformations induced by ion beam bombardment selected polymers were implanted with H, He and Ar ions to the fluences ranging from 1 × 1013 to 2 × 1016/cm2. RBS and NRA techniques were applied for sample analysis. Important hydrogen release was observed with increasing ion dose and was correlated with the ion stopping power. Another important effect observed was the rapid oxidation of samples, which apparently occurs after exposure of implanted samples to the air. Up to 10 at.% of oxygen can be incorporated in the implanted layer.

  19. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  20. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE PAGES

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  1. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less

  2. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-07

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less

  3. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  4. A role for ion implantation in quantum computing

    NASA Astrophysics Data System (ADS)

    Jamieson, David N.; Prawer, Steven; Andrienko, Igor; Brett, David A.; Millar, Victoria

    2001-04-01

    We propose to create arrays of phosphorus atoms in silicon for quantum computing using ion implantation. Since the implantation of the ions is essentially random, the yield of usefully spaced atoms is low and therefore some method of registering the passage of a single ion is required. This can be accomplished by implantation of the ions through a thin surface layer consisting of resist. Changes to the chemical and/or electrical properties of the resist will be used to mark the site of the buried ion. For chemical changes, the latent damage will be developed and the atomic force microscope (AFM) used to image the changes in topography. Alternatively, changes in electrical properties (which obviate the need for post-irradiation chemical etching) will be used to register the passage of the ion using scanning tunneling microscopy (STM), the surface current imaging mode of the AFM. We address the central issue of the contrast created by the passage of a single ion through resist layers of PMMA and C 60.

  5. Low-temperature positron annihilation study of B+-ion implanted PMMA

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T. S.; Tsmots, V. M.; Voloshanska, S. Ya.; Šauša, O.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Y. N.; Stepanov, A. L.

    2014-08-01

    Temperature dependent positron annihilation lifetime spectroscopy (PALS) measurements in the range of 50-300 K are carried out to study positronium formation in 40 KeV B+-ion implanted polymethylmethacrylate (B:PMMA) with two ion doses of 3.13 × 1015 and 3.75 × 1016 ions/cm2. The investigated samples show the various temperature trends of ortho-positronium (o-Ps) lifetime τ3 and intensity I3 in PMMA before and after ion implantation. Two transitions in the vicinity of ˜150 and ˜250 K, ascribed to γ and β transitions, respectively, are observed in the PMMA and B:PMMA samples in consistent with reference data for pristine sample. The obtained results are compared with room temperature PALS study of PMMA with different molecular weight (Mw) which known from literature. It is found that B+-ion implantation leads to decreasing Mw in PMMA at lower ion dose. At higher ion dose the local destruction of polymeric structure follows to broadening of lifetime distribution (hole size distribution).

  6. Development of the ion source for cluster implantation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Dugin, S. N.; Oks, E. M.; Gushenets, V. I.; Hershcovitch, A.; Jonson, B.; Poole, H. J.

    2014-02-01

    Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.

  7. Determination of migration of ion-implanted Ar and Zn in silica by backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Szilágyi, E.; Bányász, I.; Kótai, E.; Németh, A.; Major, C.; Fried, M.; Battistig, G.

    2015-03-01

    It is well known that the refractive indices of lots of materials can be modified by ion implantation, which is important for waveguide fabrication. In this work the effect of Ar and Zn ion implantation on silica layers was investigated by Rutherford Backscattering Spectrometry (RBS) and Spectroscopic Ellipsometry (SE). Silica layers produced by chemical vapour deposition technique on single crystal silicon wafers were implanted by Ar and Zn ions with a fluence of 1-2 ×1016 Ar/cm2 and 2.5 ×1016 Zn/cm2, respectively. The refractive indices of the implanted silica layers before and after annealing at 300°C and 600°C were determined by SE. The migration of the implanted element was studied by real-time RBS up to 500°C. It was found that the implanted Ar escapes from the sample at 300°C. Although the refractive indices of the Ar-implanted silica layers were increased compared to the as-grown samples, after the annealing this increase in the refractive indices vanished. In case of the Zn-implanted silica layer both the distribution of the Zn and the change in the refractive indices were found to be stable. Zn implantation seems to be an ideal choice for producing waveguides.

  8. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  9. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  10. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  11. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  12. 2.7 MeV Ar11+ ion irradiation induced structural evolution in Lu2(Ti2-xLux)O7-x/2 pyrochlores

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Liu, C. G.; Zhang, K. Q.; Xia, Y.; Chen, L. J.; Liu, H.; Li, Y. H.

    2015-11-01

    This paper aims to study the radiation effects of nonstoichiometric pyrochlore series Lu2(Ti2-xLux)O7-x/2 (x = 0-0.667). Polycrystalline Lu2(Ti2-xLux)O7-x/2 samples were irradiated with 2.7 MeV Ar11+ ions up to a fluence of 8 × 1014 ions/cm2. The irradiated samples were characterized using grazing incidence X-ray diffraction technique. The results reveal that Lu2(Ti2-xLux)O7-x/2 samples undergo significant amorphization and lattice swelling upon irradiation. Specifically, the amorphization process is predominantly driven by ballistic nuclear energy deposition of Ar11+ ions at this energy regime, which can be well described by a direct-impact/defect-stimulated model. Both the amorphization fraction and the relative variation of lattice parameter decrease with increasing x, showing a strong dependence on the chemical composition. The results are then discussed in the framework of the structural disorder and recovery ability from damage, applying an atomic layer model.

  13. Radiation damage in Tb-implanted CaF 2 observed by channeling and luminescence measurements

    NASA Astrophysics Data System (ADS)

    Aono, K.; Kumagai, M.; Iwaki, M.; Aoyagi, Y.; Namba, S.

    1993-06-01

    The effects of 100 keV Tb ion implantation in CaF 2 single crystals have been investigated using Rutherford backscattering/channeling technique and luminescence spectra during ion implantation, depending on ion doses. Terbium ions were implanted into (111)-cut CaF 2 single crystals in random directions with doses ranging from 1 × 10 13 to 1 × 10 17 Tb +/cm 2 at -100°C, 25°C and 100°C. The luminescence signals were measured by 100 keV Ar ion beam irradiation at room temperature to Tb-implanted specimens in order to detect the ionic state of Tb. Two broad emission peaks (near 380 and 545 nm) in visible regions were observed, originating from Tb 3+ in CaF 2. The same luminescence was also observed even during Tb implantation to CaF 2. The luminescence near 380 nm is identified as an emission of 5D 3→ 7F 6 and that near 545 nm is 5D 4→ 7F 5. The emission peak intensities depend on ion dose. Channeling measurements suggest that most of the Tb atoms occupy substitutional lattice sites. Intensities of luminescence and Tb depth profiles depend on the target temperature. In conclusion, implanted Tb atoms occupy Ca lattice sites and emit green luminescence light.

  14. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  15. High-dose boron and silver ion implantation into PMMA probed by slow positrons: Effects of carbonization and formation of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T.; Iida, K.; Nagashima, Y.; Kuczumow, A.; Šauša, O.; Nuzhdin, V.; Valeev, V.; Stepanov, A. L.

    2017-01-01

    The Doppler broadening slow positron beam spectroscopy (SPBS) data for the previously observed effect of carbonization in high-dose (>1016 ion/cm2) 40 keV boron-ion-implanted polymethylmethacrylate (B:PMMA) and another one obtained for the effect of formation of metal nanoparticles in high-dose 30 keV silver-ion-implanted polymer (Ag:PMMA) are compared. Following to the Doppler broadening SPBS results, a difference in the high-dose ion-irradiation-induced processes in B:PMMA and Ag:PMMA is detected.

  16. Selective alkane activation with single-site atoms on amorphous support

    DOEpatents

    Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo

    2015-11-24

    The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.

  17. The effects on γ-LiAlO2 induced by nuclear energy losses during Ga ions implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Song, Hong-Lian; Qiao, Mei; Yu, Xiao-Fei; Wang, Tie-Jun; Wang, Xue-Lin

    2017-09-01

    To explore the evolution of γ-LiAlO2 under ion irradiation at low energy, we implanted Ga ions of 30, 80 and 150 keV at fluences of 1 × 1014 and 1 × 1015 ions/cm2 in z-cut γ-LiAlO2 samples, respectively. The implantation resulted in damage regions dominated by nuclear energy losses at depth of 232 Å, 514 Å, and 911 Å beneath the surface, respectively, which was simulated by the Stopping and Range of Ions in Matter program. The irradiated γ-LiAlO2 were characterized with atomic force microscope, Raman spectroscopy, X-ray diffraction and Rutherford backscattering in a channeling mode for morphology evolution, structure information and damage profiles. The interesting and partly abnormal results showed the various behaviors in modification of surface by Ga ions implantation.

  18. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  19. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  20. Absence of single critical dose for the amorphization of quartz under ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Pakarinen, O. H.; Backholm, M.; Djurabekova, F.; Nordlund, K.; Keinonen, J.; Wang, T. S.

    2018-01-01

    In this work, we first simulated the amorphization of crystalline quartz under 50 keV 23 Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eVṡatom-1 . We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eVṡatom-1 . The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.

  1. Absence of single critical dose for the amorphization of quartz under ion irradiation.

    PubMed

    Zhang, S; Pakarinen, O H; Backholm, M; Djurabekova, F; Nordlund, K; Keinonen, J; Wang, T S

    2018-01-10

    In this work, we first simulated the amorphization of crystalline quartz under 50 keV [Formula: see text]Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eV⋅[Formula: see text]. We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eV⋅[Formula: see text]. The continued evolution of the [Formula: see text] structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.

  2. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  3. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.; Hijazi, H.; Meyer, H. M.; Cianciolo, V.; Meyer, F. W.

    2014-11-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R&D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 1016 cm-2, where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5-6.2 × 1016 cm-2. Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities.

  4. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less

  6. Preshock region acceleration of implanted cometary H(+) and O(+)

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.

    1988-01-01

    A self-consistent, three-fluid model of plasma transport and implanted ion acceleration in the unshocked solar wind is presented. The solar wind plasma is depleted by charge exchange with the expanding cometary exosphere, while implanted protons and heavy ions are produced by photoionization and charge transfer and lost by charge exchange. A generalized transport equation describing convection, adiabatic and diffusive velocity change, and the appropriate production terms is used to describe the evolution of the two cometary ion components, while the moments of the Boltzmann equation are used to calculate the solar wind density and pressure. The flow velocity is obtained self-consistently by combining the conservation equations of the three ion species. The results imply that second-order Fermi acceleration can explain the implanted spectra observed in the unshocked solar wind. Comparison of measured and calculated distribution indicates that spatial diffusion of implanted ions probably plays an important role in forming the energetic particle environment in the shock vicinity.

  7. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  8. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  9. Role of atomic-level defects and electronic energy loss on amorphization in LiNbO3 single crystals

    NASA Astrophysics Data System (ADS)

    Sellami, N.; Crespillo, M. L.; Xue, H.; Zhang, Y.; Weber, W. J.

    2017-08-01

    Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO3 has been irradiated with 0.9 MeV Si+ and 8 MeV O3+, which are representative of regimes where nuclear (S n) and electronic (S e) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si+ ions to create different pre-existing damage states. Below the threshold (S e,th  =  5-6 keV nm-1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O3+ ions, with nearly constant S e of about 3 keV nm-1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with the increasing amount of pre-existing damage. These results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic device applications.

  10. Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN

    NASA Astrophysics Data System (ADS)

    Tsuge, Hirofumi; Ikeda, Kiyoji; Kato, Shigeki; Nishimura, Tomoaki; Nakamura, Tohru; Kuriyama, Kazuo; Mishima, Tomoyoshi

    2017-10-01

    Optical characteristics of Mg-ion implanted GaN layers with various fluence ranges were evaluated. Mg ion implantation was performed twice at energies of 30 and 60 keV on n-GaN layers. The first implantation at 30 keV was performed with three different fluence ranges of 1.0 × 1014, 1.0 × 1015 and 5.0 × 1015 cm-2. The second implantation at an energy of 60 keV was performed with a fluence of 6.5 × 1013 cm-2. After implantation, samples were annealed at 1250 °C for 1 min under N2 atmosphere. Photoluminescence (PL) spectrum of the GaN layer with the Mg ion implantation at the fluence range of 1.0 × 1014 cm-2 at 30 keV was similar to the one of Mg-doped p-GaN layers grown by MOVPE (Metal-Organic Vapor Phase Epitaxy) on free-standing GaN substrates and those at the fluence ranges over 1.0 × 1015 cm-2 were largely degraded.

  11. Ion penetration depth in the plant cell wall

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.

    2003-05-01

    This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.

  12. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  13. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  14. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.

  15. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-03-01

    A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  16. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  17. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  18. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries.

    PubMed

    Xie, Wenhe; Li, Suyuan; Wang, Suiyan; Xue, Song; Liu, Zhengjiao; Jiang, Xinyu; He, Deyan

    2014-11-26

    N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers were prepared via a facile approach. The core composite nanofibers were first made by electrospinning technology, then the shells were conformally coated using the chemical bath deposition and subsequent carbonization with polydopamine as a carbon source. When applied as a binder-free self-supported anode for lithium ion batteries, the coaxial nanofibers displayed an enhanced electrochemical storage capacity and excellent rate performance. The morphology of the interwoven nanofibers was maintained even after the rate cycle test. The superior electrochemical performance originates in the structural stability of the N-doped amorphous carbon shells formed by carbonizing polydopamine.

  19. Cd ion implantation in AlN

    NASA Astrophysics Data System (ADS)

    Miranda, S. M. C.; Franco, N.; Alves, E.; Lorenz, K.

    2012-10-01

    AlN thin films were implanted with cadmium, to fluences of 1 × 1013 and 8 × 1014 at/cm2. The implanted samples were annealed at 950 °C under flowing nitrogen. Although implantation damage in AlN is known to be extremely stable the crystal could be fully recovered at low fluences. At high fluences the implantation damage was only partially removed. Implantation defects cause an expansion of the c-lattice parameter. For the high fluence sample the lattice site location of the ions was studied by Rutherford Backscattering/Channelling Spectrometry. Cd ions are found to be incorporated in substitutional Al sites in the crystal and no significant diffusion is seen upon thermal annealing. The observed high solubility limit and site stability are prerequisite for using Cd as p-type dopant in AlN.

  20. Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films

    NASA Astrophysics Data System (ADS)

    Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha

    2013-02-01

    Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.

  1. Extended Lindhard-Scharf-Schiott Theory for Ion Implantation Profiles Expressed with Pearson Function

    NASA Astrophysics Data System (ADS)

    Suzuki, Kunihiro

    2009-04-01

    Ion implantation profiles are expressed by the Pearson function with first, second, third, and fourth moment parameters of Rp, ΔRp, γ, and β. We derived an analytical model for these profile moments by solving a Lindhard-Scharf-Schiott (LSS) integration equation using perturbation approximation. This analytical model reproduces Monte Carlo data that were well calibrated to reproduce a vast experimental database. The extended LSS theory is vital for instantaneously predicting ion implantation profiles with any combination of incident ions and substrate atoms including their energy dependence.

  2. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  3. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  4. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  5. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  6. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    NASA Astrophysics Data System (ADS)

    Ward, L. P.; Purushotham, K. P.; Manory, R. R.

    2016-02-01

    Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 1016 ions cm-2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti2N phase was observed with Cr implantation.

  7. Lattice modification in KTiOPO4 by hydrogen and helium sequentially implantation in submicrometer depth

    NASA Astrophysics Data System (ADS)

    Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran

    2016-05-01

    We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO4). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 1016 cm-2, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO4 crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantation produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO4 surface from blistering.

  8. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Ahmad, Naeem; Rizwan, Muhammad; Khan, Salah Ud-Din; Ali, Fekri Abdulraqeb Ahmed; Zhu, Jianjun

    2018-02-01

    Gallium nitride (GaN) thin film was deposited onto a sapphire substrate and then implanted with 250 keV Mn ions at two different doses of 2 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The as-grown and post-implantation-thermally-annealed samples were studied in detail using x-ray photoelectron spectroscopy (XPS). The XPS peaks of Ga 3 d, Ga 2 p, N 1 s, Mn 2 p and C 1 s were recorded in addition to a full survey of the samples. The doublet peaks of Ga 2 p for pure GaN were observed blue-shifted when compared with elemental Ga, and appeared further shifted to higher energies for the implanted samples. These observations point to changes in the bonds and the chemical environment of the host as a result of ion implantation. The results revealed broadening of the N 1 s peak after implantation, which is interpreted in terms of the presence of N-Mn bonds in addition to N-Ga bonds. The XPS spectra of Mn 2 p recorded for ion-implanted samples indicated splitting of Mn 2 p 1/2 and Mn 2 p 3/2 peaks higher than that for metallic Mn, which helps rule out the possibility of clustering and points to substitutional doping of Mn. These observations provide a framework that sheds light on the local environment of the material for understanding the mechanism of magnetic exchange interactions in Mn:GaN based diluted magnetic semiconductors.

  9. P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2018-02-01

    Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.

  10. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    NASA Astrophysics Data System (ADS)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  11. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE PAGES

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.; ...

    2017-12-19

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  12. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  13. Ion beam induced amorphization and bond breaking in Zn2SiO4:Eu3+ nanocrystalline phosphor.

    PubMed

    Sunitha, D V; Nagabhushana, H; Singh, Fouran; Sharma, S C; Dhananjaya, N; Nagabhushana, B M; Chakradhar, R P S

    2012-05-01

    This paper reports on the ionoluminescence (IL) of Zn(2)SiO(4):Eu(3+) nanophosphors bombarded with 100 MeV Si(7+) ions with fluences in the range (3.91-21.48)×10(12) ions cm(-2). The prominent IL emission peaks recorded at 580, 590, 612, 650 and 705 nm are attributed to the luminescence centers activated by Eu(3+) ions. It is observed that IL intensity decreases and saturates with increase of Si(7+) ion fluence. Fourier transform infrared (FT-IR) studies confirm surface/bulk amorphization for a fluence of (3.91-21.48)×10(13) ions cm(-2). These results show degradation of SiO (2ν(3)) bonds present on the surface of the sample and/or due to lattice disorder produced by dense electronic excitation under heavy ion irradiation. These results are discussed in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Ion implantation for manufacturing bent and periodically bent crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to producemore » X-ray beams.« less

  15. Ion beam synthesis of ZrC{sub x}O{sub y} nanoparticles in cubic zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velişa, Gihan, E-mail: gihan@tandem.nipne.ro; Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele; Mylonas, Stamatis

    2016-04-28

    {110}-oriented yttria-stabilized zirconia single crystals have been implanted with low-energy C ions in an axial direction, at room temperature and at 550 °C. Room temperature ion implantation generated a damage layer that contains the expected dislocation loop clusters. Strikingly, the high temperature implantation produced zirconium oxycarbide nanoparticles (ZrC{sub x}O{sub y}) at a shallow depth in the yttria-stabilized cubic zirconia crystal, with a diameter in the range of 4–10 nm. Moreover, in the high concentration region of implanted C ions, between 100 and 150 nm below the surface, a number of large precipitates, up to 20 nm, were observed.

  16. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Goto, Ken; Morikawa, Yoji; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao; Higashiwaki, Masataka

    2018-06-01

    A vertical β-Ga2O3 metal–oxide–semiconductor field-effect transistor featuring a planar-gate architecture is presented. The device was fabricated by an all-ion-implanted process without requiring trench etching or epitaxial regrowth. A Mg-ion-implanted current blocking layer (CBL) provided electrical isolation between the source and the drain except at an aperture opening through which drain current was conducted. Successful transistor action was realized by gating a Si-ion-implanted channel above the CBL. Thermal diffusion of Mg induced a large source–drain leakage current through the CBL, which resulted in compromised off-state device characteristics as well as a reduced peak extrinsic transconductance compared with the results of simulations.

  17. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  18. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.

    2007-01-01

    As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.

  19. Less-Costly Ion Implantation of Solar Cells

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1984-01-01

    Experiments point way toward more relaxed controls over ion-implanation dosage and uniformity in solar-cell fabrication. Data indicate cell performance, measured by output current density at fixed voltage, virtually same whether implant is particular ion species or broad-beam mixture of several species.

  20. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the filmsmore » are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.« less

  1. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    PubMed

    Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian

    2016-11-02

    Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 115 Xe/nm2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the dose range from 6 to 20 dpa. A transformation of homonuclear C-C bonds from sp3 to sp2 hybridization is observed in themore » irradiated films, which may be partly responsible for the observed grain size saturation. The results from this study may have a significant impact on synthesis of nanograins in amorphous SiC and other similar materials with effective control of grain size and density by ion irradiation.« less

  3. A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; van Huis, M. A.; van Veen, A.

    2002-05-01

    Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2. The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of Tmax=1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3×10 11 s -1.

  4. Down to 2 nm Ultra Shallow Junctions : Fabrication by IBS Plasma Immersion Ion Implantation Prototype PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles

    Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less

  5. Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

    NASA Astrophysics Data System (ADS)

    Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.

    2013-04-01

    Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.

  6. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, K.N.; Wells, R.P.; Craven, G.E.

    1996-12-24

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.

  7. TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy

    2016-01-01

    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies.

  8. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  9. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...

    2018-03-20

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  10. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in; Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{supmore » 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.« less

  11. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less

  12. Formation of inorganic electride thin films via site-selective extrusion by energetic inert gas ions

    NASA Astrophysics Data System (ADS)

    Miyakawa, Masashi; Toda, Yoshitake; Hayashi, Katsuro; Hirano, Masahiro; Kamiya, Toshio; Matsunami, Noriaki; Hosono, Hideo

    2005-01-01

    Inert gas ion implantation (acceleration voltage 300kV) into polycrystalline 12CaO.7Al2O3 (C12A7) films was investigated with fluences from 1×1016 to 1×1017cm-2 at elevated temperatures. Upon hot implantation at 600°C with fluences greater than 1×1017cm-2, the obtained films were colored and exhibited high electrical conductivity in the as-implanted state. The extrusion of O2- ions encaged in the crystallographic cages of C12A7 crystal, which leaves electrons in the cages at concentrations up to ˜1.4×1021cm-3, may cause the high electrical conductivity. On the other hand, when the fluence is less than 1×1017cm-2, the as-implanted films are optically transparent and electrically insulating. The conductivity is enhanced and the films become colored by irradiating with ultraviolet light due to the formation of F +-like centers. The electrons forming the F+-like centers are photo released from the encaged H- ions, which are presumably derived from the preexisting OH- groups. The induced electron concentration is proportional to the calculated displacements per atom, which suggests that nuclear collision effects of the implanted ions play a dominant role in forming the electron and H- ion in the films. The hot ion implantation technique provides a nonchemical process for preparing electronic conductive C12A7 films.

  13. Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments

    PubMed Central

    Mändl, Stephan

    2009-01-01

    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes.

  14. Friction wear and auger analysis of iron implanted with 1.5-MeV nitrogen ions

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Jones, W. R., Jr.

    1982-01-01

    The effect of implantation of 1.5-MeV nitrogen ions on the friction and wear characteristics of pure iron sliding against steel was studied in a pin-on disk apparatus. An implantation dose of 5 x 10 to the 17th power ions/sq cm was used. Small reductions in initial and steady-state wear rates were observed for nitrogen-implanted iron riders as compared with unimplanted controls. Auger electron spectroscopy revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 15 at. % at a depth of 8 x 10 to the -7th m. A similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration, thus giving no evidence for diffusion of nitrogen beyond the implanted range.

  15. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated biomedical implants such as 316 L, DSS and Ti6Al4V.

  16. The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy

    NASA Astrophysics Data System (ADS)

    Romanov, I. Yu.; Gushchina, N. V.; Ovchinnikov, V. V.; Makhinko, F. F.; Stepanov, A. V.; Medvedev, A. I.; Starodubtsev, Yu. N.; Belozerov, V. Ya.; Loginov, B. A.

    2018-02-01

    Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm-2, irradiation time 2 s, ion-beam short-duration heating up to 350°C, which is 150°C lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.

  17. Erbium ion implantation into different crystallographic cuts of lithium niobate

    NASA Astrophysics Data System (ADS)

    Nekvindova, P.; Svecova, B.; Cajzl, J.; Mackova, A.; Malinsky, P.; Oswald, J.; Kolistsch, A.; Spirkova, J.

    2012-02-01

    Single crystals like lithium niobate are frequently doped with optically active rare-earth or transition-metal ions for a variety of applications in optical devices such as solid-state lasers, amplifiers or sensors. To exploit the potential of the Er:LiNbO 3, one must ensure high intensity of the 1.5 μm luminescence as an inevitable prerequisite. One of the important factors influencing the luminescence properties of a lasing ion is the crystal field of the surrounding, which is inevitably determined by the crystal structure of the pertinent material. From that point it is clear that it cannot be easy to affect the resulting luminescence properties - intensity or position of the luminescence band - without changing the structure of the substrate. However, there is a possibility to utilise a potential of the ion implantation of the lasing ions, optionally accompanied with a sensitising one, that can, besides the doping, also modify the structure of the treated area od the crystal. This effect can be eventually enhanced by a post-implantation annealing that may help to recover the damaged structure and hence to improve the desired luminescence. In this paper we are going to report on our experiments with ion-implantation technique followed with subsequent annealing could be a useful way to influence the crystal field of LN. Optically active Er:LiNbO 3 layers were fabricated by medium energy implantation under various experimental conditions. The Er + ions were implanted at energies of 330 and 500 keV with fluences ranging from 1.0 × 10 15 to 1.0 × 10 16 ion cm -2 into LiNbO 3 single-crystal cuts of both common and special orientations. The as-implanted samples were annealed in air and oxygen at two different temperatures (350 and 600 °C) for 5 h. The depth concentration profiles of the implanted erbium were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He + ions. The photoluminescence spectra of the samples were measured to determine the emission of 1.5 μm. It has been shown that the projected range Rp of the implanted erbium depends on the beam energies of implantation. The concentration of the implanted erbium corresponds well with the fluence and is similar in all of the cuts of lithium niobate used. What was different were the intensities of the 1.5 μm luminescence bands not only before and after the annealing but also in various types of the crystal cuts. The cut perpendicular to the cleavage plane <10-14> exhibited the best luminescence properties for all of the experimental conditions used. In order to study the damage introduced by the implantation process, the influence of the annealing procedure on the recovery of the host lattice was examined by RBS/channelling. The RBS/channelling method serves to determine the disorder density in the as-implanted surface layer.

  18. Effects of CPII implantation on the characteristics of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Chi; Weng, Ko-Wei; Chao, Ching-Hsun; Lien, Shui-Yang; Han, Sheng; Chen, Tien-Lai; Lee, Ying-Chieh; Shih, Han-Chang; Wang, Da-Yung

    2009-05-01

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 10 17 ions/cm 2 and 2 × 10 17 ions/cm 2, respectively.

  19. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  20. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  1. Implanted neural network potentials: Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Onat, Berk; Cubuk, Ekin D.; Malone, Brad D.; Kaxiras, Efthimios

    2018-03-01

    Modeling the behavior of materials composed of elements with different bonding and electronic structure character for large spatial and temporal scales and over a large compositional range is a challenging problem. Cases in point are amorphous alloys of Si, a prototypical covalent material, and Li, a prototypical metal, which are being considered as anodes for high-energy-density batteries. To address this challenge, we develop a methodology based on neural networks that extends the conventional training approach to incorporate pre-trained parts that capture the character of different components, into the overall network; we refer to this model as the "implanted neural network" method. We show that this approach works well for the Si-Li amorphous alloys for a wide range of compositions, giving good results for key quantities like the diffusion coefficients. The method is readily generalizable to more complicated situations that involve two or more different elements.

  2. Characterisation of slab waveguides, fabricated in CaF2 and Er-doped tungsten-tellurite glass by MeV energy N+ ion implantation, using spectroscopic ellipsometry and m-line spectroscopy

    NASA Astrophysics Data System (ADS)

    Bányász, I.; Berneschi, S.; Lohner, T.; Fried, M.; Petrik, P.; Khanh, N. Q.; Zolnai, Z.; Watterich, A.; Bettinelli, M.; Brenci, M.; Nunzi-Conti, G.; Pelli, S.; Righini, G. C.; Speghini, A.

    2010-05-01

    Slab waveguides were fabricated in Er-doped tungsten-tellurite glass and CaF2 crystal samples via ion implantation. Waveguides were fabricated by implantation of MeV energy N+ ions at the Van de Graaff accelerator of the Research Institute for Particle and Nuclear Physics, Budapest, Hungary. Part of the samples was annealed. Implantations were carried out at energies of 1.5 MeV (tungsten-tellurite glass) and 3.5 MeV (CaF2). The implanted doses were between 5 x 1012 and 8 x 1016 ions/cm2. Refractive index profile of the waveguides was measured using SOPRA ES4G and Woollam M-2000DI spectroscopic ellipsometers at the Research Institute for Technical Physics and Materials Science, Budapest. Functionality of the waveguides was tested using a home-made instrument (COMPASSO), based on m-line spectroscopy and prism coupling technique, which was developed at the Materials and Photonics Devices Laboratory (MDF Lab.) of the Institute of Applied Physics in Sesto Fiorentino, Italy. Results of both types of measurements were compared to depth distributions of nuclear damage in the samples, calculated by SRIM 2007 code. Thicknesses of the guiding layer and of the implanted barrier obtained by spectroscopic ellipsometry correspond well to SRIM simulations. Irradiationinduced refractive index modulation saturated around a dose of 8 x 1016 ions/cm2 in tungsten-tellurite glass. Annealing of the implanted waveguides resulted in a reduction of the propagation loss, but also reduced the number of supported guiding modes at the lower doses. We report on the first working waveguides fabricated in an alkali earth halide crystal implanted by MeV energy medium-mass ions.

  3. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  4. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  5. Radiation damage in dielectric and semiconductor single crystals (direct observation)

    NASA Astrophysics Data System (ADS)

    Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.

    1998-11-01

    The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.

  6. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  7. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  8. Ion Implantation with in-situ Patterning for IBC Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graff, John W.

    2014-10-24

    Interdigitated back-side Contact (IBC) solar cells are the highest efficiency silicon solar cells currently on the market. Unfortunately the cost to produce these solar cells is also very high, due to the large number of processing steps required. Varian believes that only the combination of high efficiency and low cost can meet the stated goal of $1/Wp. The core of this program has been to develop an in-situ patterning capability for an ion implantation system capable of producing patterned doped regions for IBC solar cells. Such a patterning capable ion implanter can reduce the number of process steps required tomore » manufacture IBC cells, and therefore significantly reduce the cost. The present program was organized into three phases. Phase I was to select a patterning approach and determine the patterning requirements for IBC cells. Phase II consists of construction of a Beta ion implantation system containing in-situ patterning capability. Phase III consists of shipping and installation of the ion implant system in a customer factory where it will be tested and proven in a pilot production line.« less

  9. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants.

    PubMed

    Sridhar, Sathyanarayanan; Wilson, Thomas G; Palmer, Kelli L; Valderrama, Pilar; Mathew, Mathew T; Prasad, Shalini; Jacobs, Michael; Gindri, Izabelle M; Rodrigues, Danieli C

    2015-10-01

    Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages. © 2015 Wiley Periodicals, Inc.

  10. Short communication on " In-situ TEM ion irradiation investigations on U 3Si 2 at LWR temperatures"

    DOE PAGES

    Miao, Yinbin; Harp, Jason; Mo, Kun; ...

    2016-11-21

    Here, the radiation-induced amorphization of U 3Si 2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 10 15 ions/cm 2 to examine their amorphization behavior under light water reactor (LWR) conditions. U 3Si 2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  11. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  12. Interplay between atomic disorder, lattice swelling and defect energy in ion-irradiation-induced amorphization of SiC

    DOE PAGES

    Debelle, Aurelien; Boulle, Alexandre; Chartier, Alain; ...

    2014-11-25

    We present a combination of experimental and computational evaluations of disorder level and lattice swelling in ion-irradiated materials. Information obtained from X-ray diffraction experiments is compared to X-ray diffraction data generated using atomic-scale simulations. The proposed methodology, which can be applied to a wide range of crystalline materials, is used to study the amorphization process in irradiated SiC. Results show that this process can be divided into two steps. In the first step, point defects and small defect clusters are produced and generate both large lattice swelling and high elastic energy. In the second step, enhanced coalescence of defects andmore » defect clusters occurs to limit this increase in energy, which rapidly leads to complete amorphization.« less

  13. The role of amorphous precursors in the crystallization of La and Nd carbonates

    NASA Astrophysics Data System (ADS)

    Vallina, Beatriz; Rodriguez-Blanco, Juan Diego; Brown, Andrew P.; Blanco, Jesus A.; Benning, Liane G.

    2015-07-01

    Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion.Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01497b

  14. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  15. Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.

    2016-02-01

    We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.

  16. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  17. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  18. Nanoscale fabrication using single-ion impacts

    NASA Astrophysics Data System (ADS)

    Millar, Victoria; Pakes, Chris I.; Cimmino, Alberto; Brett, David; Jamieson, David N.; Prawer, Steven D.; Yang, Changyi; Rout, Bidhudutta; McKinnon, Rita P.; Dzurak, Andrew S.; Clark, Robert G.

    2001-11-01

    We describe a novel technique for the fabrication of nanoscale structures, based on the development of localized chemical modification caused in a PMMA resist by the implantation of single ions. The implantation of 2 MeV He ions through a thin layer of PMMA into an underlying silicon substrate causes latent damage in the resist. On development of the resist we demonstrate the formation within the PMMA layer of clearly defined etched holes, of typical diameter 30 nm, observed using an atomic force microscope employing a carbon nanotube SPM probe in intermittent-contact mode. This technique has significant potential applications. Used purely to register the passage of an ion, it may be a useful verification of the impact sites in an ion-beam modification process operating at the single-ion level. Furthermore, making use of the hole in the PMMA layer to perform subsequent fabrication steps, it may be applied to the fabrication of self-aligned structures in which surface features are fabricated directly above regions of an underlying substrate that are locally doped by the implanted ion. Our primary interest in single-ion resists relates to the development of a solid-state quantum computer based on an array of 31P atoms (which act as qubits) embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. A single-ion resist would permit an accurate verification of 31P implantation sites. Subsequent metalisation of the latent damage may allow the fabrication of self-aligned metal gates above buried phosphorous atoms.

  19. Effects of H-implantation on the optical stability under photo-irradiation of urushi films

    NASA Astrophysics Data System (ADS)

    Awazu, Kaoru; Nishimura, Yoshinori; Ichikawa, Tachio; Sakamoto, Makoto; Watanabe, Hiroshi; Iwaki, Masaya

    1993-06-01

    A study has been made of the effects of H-implantation on the optical stability under photo-irradiation of urushi films. Urushi films of 43 μm in thickness were lacquered on glass plates. Implantation of H +, H 2+, C +, N + and O + ions were performed with an energy of 150 keV and doses of 1 × 10 14 and 1 × 10 15 ions/cm 2 at room temperature. The beam current density used was approximately 1 μA/cm 2 to prevent specimens from heating. The photo-irradiation onto the surfaces of urushi films was carried out to radiative exposure of 190 MJ/m 2, using a Suga sunshine weather meter. The gloss, transmittance and haze of implanted and photo-irradiated urushi films have been investigated in conjunction with chemical bonding states of carbon at the urushi surfaces. Ion implantation induces the surface carbonization of urushi films to inhibit the change in gloss and haze by photo-irradiation. It is concluded that ion implantation is useful for improving the optical stability under photo-irradiation of urushi films.

  20. High definition surface micromachining of LiNbO 3 by ion implantation

    NASA Astrophysics Data System (ADS)

    Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.

    2010-10-01

    High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).

Top