Sample records for ion implanted si

  1. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  2. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  3. Laser-induced thermo-lens in ion-implanted optically-transparent polymer

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Ivanov, Victor G.; Hadjichristov, Georgi B.

    2009-10-01

    A strong laser-induced thermo-lens (LITL) effect is found in optically-transparent ion-implanted polymer upon irradiation by a cw laser with a power up to 100 mW (λ = 532 nm). The effect is observed in bulk polymethylmethacrylate (PMMA) implanted with silicon ions (Si+). A series of PMMA specimens is examined, subjected to low-energy (50 keV) Si+ implantation at various dosages in the range from 1014 to 1017 ions/cm2. The thermo-lensing is unambiguously attributed to the modification of the subsurface region of the polymer upon the ion implantation. Having a gradient refractive-index in-depth profile, the subsurface organic-carbonaceous layer produced in the polymer by ion implantation, is responsible for the LITL effect observed in reflection geometry. The LITL occurs due to optical absorption of the ion-implanted layer of a thickness of about 100 nm buried in a depth ~ 100 nm, and subsequent laser-induced change in the refractive index of the Si+-implanted PMMA. Being of importance as considering photonic applications of ion-implanted optically-transparent polymers, the LITL effect in Si+-implanted PMMA is studied as a function of the implant dose, the incident laser power and incidence angle, and is linked to the structure formed in this ion-implanted plastic.

  4. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  5. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  6. Optical reflectivity study of silicon ion implanted poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Stefanov, Ivan L.; Florian, Bojana I.; Blaskova, Gergana D.; Ivanov, Victor G.; Faulques, Eric

    2009-11-01

    The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si +) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si + implantation on the reflectivity of two PMMA materials is examined in the dose range from 10 14 to 10 17 ions/cm 2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si + implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.

  7. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  8. Low energy implantation of boron with decaborane ions

    NASA Astrophysics Data System (ADS)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  9. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  10. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  11. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  12. X-ray photoelectron study of Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Balabanov, S.; Bischoff, L.; Krastev, V.; Stefanov, P.; Avramova, I.

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  13. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  14. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    NASA Astrophysics Data System (ADS)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  15. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  16. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    NASA Astrophysics Data System (ADS)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation in combination with two-step annealing is effective in fabricating ultra-shallow junctions.

  17. Enhancement of Ag nanoparticles concentration by prior ion implantation

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Wang, Jun; Liu, Changlong

    2017-09-01

    Thermally grown SiO2 layer on Si substrates were singly or sequentially implanted with Zn or Cu and Ag ions at the same fluence of 2 × 1016/cm2. The profiles of implanted species, structure, and spatial distribution of the formed nanoparticles (NPs) have been characterized by the cross-sectional transmission electron microscope (XTEM) and Rutherford backscattering spectrometry (RBS). It is found that pre-implantation of Zn or Cu ions could suppress the self sputtering of Ag atoms during post Ag ion implantation, which gives rise to fabrication of Ag NPs with a high density. Moreover, it has also been demonstrated that the suppressing effect strongly depends on the applied energy and mobility of pre-implanted ions. The possible mechanism for the enhanced Ag NPs concentration has been discussed in combination with SRIM simulations. Both vacancy-like defects acting as the increased nucleation sites for Ag NPs and a high diffusivity of prior implanted ions in SiO2 play key roles in enhancing the deposition of Ag implants.

  18. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  19. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichel, Christian, E-mail: christian.reichel@ise.fraunhofer.de; National Renewable Energy Laboratory; Feldmann, Frank

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells.more » Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.« less

  20. Synergistic Effects of Iodine and Silver Ions Co-Implanted in 6H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhudzai, Remeredzai J.; Malherbe, Johan; Hlatshwayo, T. T.

    2015-10-23

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behavior has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag inmore » the co-implanted samples after annealing at 1500 ºC for 30 hours in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.« less

  1. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  2. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  3. Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun

    2017-08-01

    In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.

  4. Growth of rutile TiO2 nanorods in Ti and Cu ion sequentially implanted SiO2 and the involved mechanisms

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Liu, Xiaoyu; Wang, Xiaohu; Dai, Haitao; Liu, Changlong

    2018-01-01

    TiO2 in nanoscale exhibits unique physicochemical and optoelectronic properties and has attracted much more interest of the researchers. In this work, TiO2 nanostructures are synthesized in amorphous SiO2 slices by implanting Ti ions, or sequentially implanting Ti and Cu ions combined with annealing at high temperature. The morphology, structure, spatial distribution and optical properties of the formed nanostructures have been investigated in detail. Our results clearly show that the thermal growth of TiO2 nanostructures in SiO2 substrate is significantly enhanced by presence of post Cu ion implantation, which depends strongly on the applied Cu ion fluence, as well as the annealing atmosphere. Due to the formation of Cu2O in the substrate, rutile TiO2 nanorods of large size have been well fabricated in the Ti and Cu sequentially implanted SiO2 after annealing in N2 atmosphere, in which Cu2O plays a role as a catalyst. Moreover, the sample with well-fabricated TiO2 nanorods exhibits a narrowed band gap, an enhanced optical absorption in visible region, and catalase-/peroxidase-like catalytic characteristics. Our findings provide an effective route to fabricate functional TiO2 nanorods in SiO2 via ion implantation.

  5. Optical properties of Si+ implanted PMMA

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.

    2010-04-01

    In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.

  6. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  7. The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.

    2017-04-01

    The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.

  8. Role of stresses in annealing of ion-implantation damage in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshan, K.; EerNisse, E.P.

    Recent results showing a crystallographic orientation dependence of growth kinetics, secondary defects, and stress relief in annealing of ion-implanted Si are shown to be self-consistent if interpreted in terms of the influence of stresses upon annealing processes. The stress influence proposed is microplastic shear which is induced in (112) directions on (111) planes inclined to the implant surface by the biaxial stress created in the implant region by ion-implantation damage. The shear stresses are shown to be dependent on crystallographic orientation in a manner consistent with the model.

  9. Reflectivity modification of polymethylmethacrylate by silicon ion implantation

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Ivanov, Victor; Faulques, Eric

    2008-05-01

    The effect of silicon ion implantation on the optical reflection of bulk polymethylmethacrylate (PMMA) was examined in the visible and near UV. A low-energy (30 and 50 keV) Si + beam at fluences in the range from 10 13 to 10 17 cm -2 was used for ion implantation of PMMA. The results show that a significant enhancement of the reflectivity from Si +-implanted PMMA occurs at appropriate implantation energy and fluence. The structural modifications of PMMA by the silicon ion implantation were characterized by means of photoluminescence and Raman spectroscopy. Formation of hydrogenated amorphous carbon (HAC) layer beneath the surface of the samples was established and the corresponding HAC domain size was estimated.

  10. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  11. Electrical properties of PMMA ion-implanted with low-energy Si+ beam

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Gueorguiev, V. K.; Ivanov, Tz E.; Marinov, Y. G.; Ivanov, V. G.; Faulques, E.

    2010-01-01

    The electrical properties of polymethylmethacrylate (PMMA) after implantation with silicon ions accelerated to an energy of 50 keV are studied under DC electric bias field. The electrical response of the formed material is examined as a function of Si+ fluence in the range 1014 - 1017 cm-2. The carbonaceous subsurface region of the Si+-implanted PMMA displays a significant DC conductivity and a sizable field effect that can be used for electronic applications.

  12. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  13. Iodine assisted retainment of implanted silver in 6H-SiC at high temperatures

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; van der Berg, N. G.; Msimanga, M.; Malherbe, J. B.; Kuhudzai, R. J.

    2014-09-01

    The effect of high temperature thermal annealing on the retainment and diffusion behaviour of iodine (I) and silver (Ag) both individually and co-implanted into 6H-SiC has been investigated using RBS, RBS-C and heavy ion ERDA (Elastic Recoil Detection Analysis). Iodine and silver ions at 360 keV were both individually and co-implanted into 6H-SiC at room temperature to fluences of the order of 1 × 1016 cm-2. RBS analyses of the as-implanted samples indicated that implantation of Ag and of I and co-implantation of 131I and 109Ag at room temperature resulted in complete amorphization of 6H-SiC from the surface to a depth of about 290 nm for the co-implanted samples. Annealing at 1500 °C for 30 h (also with samples annealed at 1700 °C for 5 h) caused diffusion accompanied by some loss of both species at the surface with some iodine remaining in the iodine implanted samples. In the Ag implanted samples, the RBS spectra showed that all the Ag disappeared. SEM images showed different recrystallization behaviour for all three sets of samples, with larger faceted crystals appearing in the SiC samples containing iodine. Heavy Ion ERDA analyses showed that both 109Ag and 131I remained in the co-implanted SiC samples after annealing at 1500 °C for 30 h. Therefore, iodine assisted in the retainment of silver in SiC even at high temperature.

  14. Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.

    2013-01-01

    Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.

  15. Crater function moments: Role of implanted noble gas atoms

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2018-04-01

    Spontaneous pattern formation by energetic ion beams is usually explained in terms of surface-curvature dependent sputtering and atom redistribution in the target. Recently, the effect of ion implantation on surface stability has been studied for nonvolatile ion species, but for the case of noble gas ion beams it has always been assumed that the implanted atoms can be neglected. In this work, we show by molecular dynamics (MD) and Monte Carlo (MC) simulations that this assumption is not valid in a wide range of implant conditions. Sequential-impact MD simulations are performed for 1-keV Ar, 2-keV Kr, and 2-keV Xe bombardments of Si, starting with a pure single-crystalline Si target and running impacts until sputtering equilibrium has been reached. The simulations demonstrate the importance of the implanted ions for crater-function estimates. The atomic volumes of Ar, Kr, and Xe in Si are found to be a factor of two larger than in the solid state. To extend the study to a wider range of energies, MC simulations are performed. We find that the role of the implanted ions increases with the ion energy although the increase is attenuated for the heavier ions. The analysis uses the crater function formalism specialized to the case of sputtering equilibrium.

  16. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less

  17. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    NASA Astrophysics Data System (ADS)

    Ciurea, Magdalena Lidia; Lazanu, Sorina

    2014-10-01

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  18. Effects of trench profile and self-aligned ion implantation on electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs using bottom protection p-well

    NASA Astrophysics Data System (ADS)

    Seok, Ogyun; Ha, Min-Woo; Kang, In Ho; Kim, Hyoung Woo; Kim, Dong Young; Bahng, Wook

    2018-06-01

    The effects of a trench profile and self-aligned ion implantation on the electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs employing a bottom protection p-well (BPW) were investigated to improve blocking capability by simulation studies. The trench profile and thickness of a SiO2 spacer during self-aligned ion implantation for BPW affect electrons flow through a trench gate as well as E-field concentration at the gate insulator on a trench bottom. At trench angle higher than 84° and a SiO2 spacer thicker than 0.2 µm showed that the Al concentration penetrated into the trench sidewall during ion implantation is less than 0.3% in comparison with the background doping concentration in a drift region. Under the optimum conditions with a trench angle of 90° and 0.2-µm-thick SiO2 spacer, a high breakdown voltage of 1.45 kV with a low E-field peak in the gate insulator was achieved.

  19. Radiation Hardened Silicon-on-Insulator Structures with N+ Ion Modified Buried SiO2 Layer

    NASA Astrophysics Data System (ADS)

    Tyschenko, I. E.; Popov, V. P.

    2009-12-01

    Radiation-resistant silicon-on-insulator structures were produced by N+ ion implantation into thermally grown SiO2 film and subsequent hydrogen transfer of the Si layer to the nitrogen-implanted substrate under conditions of vacuum wafer bonding. Accumulation of the carriers in the buried SiO2 was investigated as a function of fluence of nitrogen ions in the range (1-6)×1015 cm2 and as a function of total radiation dose ranging from 104 to 107 rad (Si). It was found that the charge generated near the nitrided bonding interface was reduced by a factor of four compared to the thermal SiO2/Si interface.

  20. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  1. Oxygen-related vacancy-type defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.

    2003-10-01

    Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.

  2. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  3. Formation of mono-layered gold nanoparticles in shallow depth of SiO 2 thin film by low-energy negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.

    2006-01-01

    Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.

  4. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  5. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures

    PubMed Central

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Lundsgaard Hansen, John; Nylandsted Larsen, Arne; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-01-01

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing. PMID:28773172

  6. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures.

    PubMed

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-07-17

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.

  7. Simulations of Proton Implantation in Silicon Carbide (SiC)

    DTIC Science & Technology

    2016-03-31

    ions in matter (SRIM); transport of ions in matter (TRIM); ion energy; implant depth; defect generation; vacancy; backscattered ions; sputtering...are computer simulations based on transport of ions in matter (TRIM), and stopping and range of ions in matter (SRIM). TRIM is a Monte Carlo

  8. Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaotie; Rudawski, Nicholas G.; Appleton, Bill R.

    2016-07-14

    In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si{sup −} plus C{sup −} and Au{sup +} ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphousmore » and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.« less

  9. Effects of He implantation on radiation induced segregation in Cu-Au and Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Iwase, A.; Rehn, L. E.; Baldo, P. M.; Funk, L.

    Effects of He implantation on radiation induced segregation (RIS) in Cu-Au and Ni-Si alloys were investigated using in situ Rutherford backscattering spectrometry during simultaneous irradiation with 1.5-MeV He and low-energy (100 or 400-keV) He ions at elevated temperatures. RIS during single He ion irradiation, and the effects of pre-implantation with low-energy He ions, were also studied. RIS near the specimen surface, which was pronounced during 1.5-MeV He single-ion irradiation, was strongly reduced under low-energy He single-ion irradiation, and during simultaneous irradiation with 1.5-MeV He and low-energy He ions. A similar RIS reduction was also observed in the specimens pre-implanted with low-energy He ions. The experimental results indicate that the accumulated He atoms cause the formation of small bubbles, which provide additional recombination sites for freely migrating defects.

  10. Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4

    DOE PAGES

    Mirzaei, S.; Kremer, F.; Feng, R.; ...

    2017-03-14

    SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less

  11. Nanocrystalline SiC and Ti 3SiC 2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Jiang, Weilin

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti 3SiC 2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti 3SiC 2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti 3SiC 2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti 3SiC 2,more » SiC, and a dual-phase nanocomposite of Ti 3SiC 2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti 3SiC 2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti 3SiC 2 occurs during ion implantation at 873 K. Cs in Ti 3SiC 2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti 3SiC 2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.« less

  12. Microstructure investigations of U3Si2 implanted by high-energy Xe ions at 600 °C

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Kim, Yeon Soo; Zhu, Shaofei; Yacout, Abdellatif M.

    2018-05-01

    The microstructure investigations on a high-energy Xe-implanted U3Si2 pellet were performed. The promising accident tolerant fuel (ATF) candidate, U3Si2, was irradiated by 84 MeV Xe ions at 600 °C at Argonne Tandem Linac Accelerator System (ATLAS). The characterizations of the Xe implanted sample were conducted using advanced transmission electron microscopy (TEM) techniques. An oxidation layer was observed on the sample surface after irradiation under the ∼10-5 Pa vacuum. The study on the oxidation layer not only unveils the readily oxidation behavior of U3Si2 under high-temperature irradiation conditions, but also develops an understanding of its oxidation mechanism. Intragranular Xe bubbles with bimodal size distribution were observed within the Xe deposition region of the sample induced by 84 MeV Xe ion implantation. At the irradiation temperature of 600 °C, the gaseous swelling strain contributed by intragranular bubbles was found to be insignificant, indicating an acceptable fission gas behavior of U3Si2 as a light water reactor (LWR) fuel operating at such a temperature.

  13. The reduction of critical H implantation dose for ion cut by incorporating B-doped SiGe/Si superlattice into Si substrate

    NASA Astrophysics Data System (ADS)

    Xue, Zhongying; Chen, Da; Jia, Pengfei; Wei, Xing; Di, Zengfeng; Zhang, Miao

    2016-11-01

    An approach to achieve Si or SiGe film exfoliation with as low as 3 × 1016/cm2 H implantation dose was investigated. Two intrinsic Si0.75Ge0.25/Si samples, merged with B-doped Si0.75Ge0.25 layer and B-doped Si0.75Ge0.25/Si superlattice (SL) layer respectively, were used to study the formation of crack after 3 × 1016/cm2 H implantation and annealing. For the sample into which B doped Si0.75Ge0.25 layer is incorporated, only few discrete cracks are observed along both sides of the B doped Si0.75Ge0.25 layer; on the contrary, a continuous (100) oriented crack is formed in the B-doped Si0.75Ge0.25/Si SL layer, which means ion cut can be achieved using this material with 3 × 1016/cm2 H implantation. As the SIMS profiles confirm that hydrogen tends to be trapped at B-doped SiGe/Si interface, the formation of continuous crack in SL layer can be ascribed to the more efficient hydrogen trapping by the multiple B-doped SiGe/Si interfaces.

  14. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van

    2016-01-18

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySimore » was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R{sub sh n-type} = 95 Ω/□ and R{sub sh p-type} = 120 Ω/□). An efficiency of 19.2% (V{sub oc} = 673 mV, J{sub sc} = 38.0 mA/cm{sup 2}, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V{sub OC} of 696 mV was also measured.« less

  15. Controlled spontaneous emission in erbium-doped microphotonic materials

    NASA Astrophysics Data System (ADS)

    Kalkman, Jeroen

    2005-03-01

    Erbium is a rare-earth metal that, when incorporated in a solid, can emit light at a wavelength of 1.5 μm. It plays a key role in current day telecommunication technology as the principle ingredient of optical fiber amplifiers. In this thesis the control of the Er spontaneous emission in three different types of microphotonic materials is described. Part I of this thesis focuses on the effect of a metallo-dielectric interface on the spontaneous emission of optical emitters in silica glass. It is shown that Er ions near a Ag interface can couple to surface plasmons (SPs) via a near-field interaction. By coupling SPs out into the far field, large changes in the Er photoluminescence emission distribution, spectra, and polarization can be observed. The excitation of SPs also results in an increase of the Er photoluminescence decay rate. The observed decay rates are in good agreement with calculations based on a classical dipole oscillator model. From the change in photoluminescence decay rate of Si nanocrystals near a Ag interface it is shown that Si nanocrystals can efficiently excite SPs and have an internal quantum efficiency of 77 %. Part II focuses on the effect of a microcavity on the spontaneous emission of Er and describes how ion implantation can be used to dope dielectric microresonators with optically active Er ions. The fabrication and characterization of an Er ion-implanted silica microsphere resonator is described that shows lasing at 1.5 μm when pumped above its lasing threshold. Ion implantation is also used to dope toroidal microcavities on a Si chip with Er. The microtoroids are doped by either pre-implantation into the SiO2 base material, or by post-implantation in a fully fabricated microtoroid. The optical activation of Er ions in the microtoroid is investigated and Er lasing at 1.5 μm is observed for both types of microcavities with the lowest threshold (4.5 μW) for the pre-implanted microtoroids. Part III describes the fabrication of an Er-doped Si-inverse opal photonic crystal. These photonic crystals can potentially have a photonic bandgap that can fully inhibit the spontaneous emission of on optical emitter. Fabrication criteria are derived for such a photonic crystal, based on the lattice parameter, filling fraction, and Si refractive index. In the opal photonic crystal composed of both Si and SiO2 we show that Er ions can be selectively excited in both the Si and SiO2 part of the photonic crystal by changing the excitation wavelength and/or the measurement temperature.

  16. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing.

    PubMed

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-12-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3×10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 °C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  17. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    PubMed Central

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO2 films implanted by different doses of Si+ ions. Room-temperature PL from 400-nm-thick SiO2 films implanted to a dose of 3×1016 cm−2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950–1150 °C) and duration (5–20 s). The reported approach of implanting silicon into SiO2 films followed by RTA may be effective for tuning Si-based photonic devices. PMID:27878029

  18. Electronic excitation effects on nanoparticle formation in insulators under heavy-ion implantation

    NASA Astrophysics Data System (ADS)

    Kishimoto, N.; Plaksin, O. A.; Masuo, K.; Okubo, N.; Umeda, N.; Takeda, Y.

    2006-01-01

    Kinetic processes of nanoparticle formation by ion implantation was studied for the insulators of a-SiO2, LiNbO3, MgO · 2.4(Al2O3) and PMMA, either by changing ion flux or by using a co-irradiation technique of ions and photons. Under Cu-implantation of 60 keV Cu-, nanoparticles spontaneously formed without thermal annealing, indicating radiation-induced diffusion of implants. The high-flux implantation caused instable behaviors of nanoparticle morphology in a-SiO2, LiNbO3 and PMMA, i.e. enhanced atomic rearrangement or loss of nanoparticles. The spinel MgO · 2.4(Al2O3) also showed nanoparticle precipitation at 60 keV, but the precipitation tendency is less than the others. Combined irradiation of 3 MeV Cu ions and photons of 2.3 eV or 3.5 eV indicates that the electronic excitation during ion implantation significantly enhances nanoparticle precipitation, greatly depending on photon energy and fluence. The selectivity for photons can be applied to control nanoparticle precipitation.

  19. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    DOE PAGES

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; ...

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermalmore » exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.« less

  20. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  1. Effects of positive ion implantation into antireflection coating of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.

    1971-01-01

    The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.

  2. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less

  3. Ag out-surface diffusion in crystalline SiC with an effective SiO 2 diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, H. Y.; Zhu, Z.

    2015-05-07

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope ( 110mAg) through the SiC coating layer is a safety concern. In order to understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. Our results suggestmore » little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO 2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  4. Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration ofmore » buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  5. Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.

    2008-05-01

    The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.

  6. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  7. Effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion implantations on crystallinity and retained B dose in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Yoji; Shibahara, Kentaro; Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527

    2012-01-15

    The effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion (B{sub 36}H{sub y}{sup +}) implantations on Si crystallinity and the retained B dose in Si were investigated using B{sub 18}H{sub x} bombardment and compared with the effects of B{sup +} implantation. Crystallinity was estimated for the implantation dose using molecular dynamic simulations (MDSs) and was quantified using the optical thickness obtained from spectroscopic ellipsometry. The authors focused on the crystallinity at a low B dose and compared the amorphized zones predicted by MDS for B{sub 18}H{sub x}{sup +} implantation with those measured using transmission electron microscopy; themore » predicted and measured results were in reasonable agreement. The authors then used their understanding of B{sub 18}H{sub x} bombardment to discuss the process for the generation of larger amorphized zones and thicker amorphized layers, as observed in B{sub 36}H{sub y}{sup +} implantation. The retained B dose and the sputtering were examined with secondary ion mass spectroscopy, focusing on a comparison of the retained B and the sputtering of Si and SiO{sub 2} surfaces. The retained B dose was lower for B{sub 18}H{sub x}{sup +} and B{sub 36}H{sub y}{sup +} implantations, with and without surface SiO{sub 2}, than for B{sup +} implantation, although no sputtering was observed. The reduction of the retained B dose was more severe in the samples with SiO{sub 2}. The origin of the differences between Si and SiO{sub 2} surfaces was considered to be Si melting; this was predicted by the MDSs, and observed indirectly as flat B profiles in the Si region. To examine the effects of both crystallinity and retained B dose on the electrical characteristics, the sheet resistance (R{sub S}) was measured. The R{sub S} for B{sub 18}H{sub x}{sup +} implantation was lower than that for B{sup +} implantation at both B doses studied. Additionally, the B{sub 36}H{sub y}{sup +} implantation under conditions that produced a thicker amorphized layer led to lower R{sub S} than B{sub 18}H{sub x}{sup +} implantation. These results indicate that both the amorphized layer and the amorphized zone contribute to the activation of more B atoms.« less

  8. Effects of thermal annealing on the structural and optical properties of carbon-implanted SiO2.

    PubMed

    Poudel, P R; Paramo, J A; Poudel, P P; Diercks, D R; Strzhemechny, Y M; Rout, B; McDaniel, F D

    2012-03-01

    Amorphous carbon (a-C) nanoclusters were synthesized by the implantation of carbon ions (C-) into thermally grown silicon dioxide film (-500 nm thick) on a Si (100) wafer and processed by high temperature thermal annealing. The carbon ions were implanted with an energy of 70 keV at a fluence of 5 x 10(17) atoms/cm2. The implanted samples were annealed at 1100 degrees C for different time periods in a gas mixture of 96% Ar+4% H2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and High Resolution Transmission Electron Microscopy (HRTEM) were used to study the structural properties of both the as-implanted and annealed samples. HRTEM reveals the formation of nanostructures in the annealed samples. The Raman spectroscopy also confirms the formation of carbon nano-clusters in the samples annealed for 10 min, 30 min, 60 min and 90 min. No Raman features originating from the carbon-clusters are observed for the sample annealed further to 120 min, indicating a complete loss of implanted carbon from the SiO2 layer. The loss of the implanted carbon in the 120 min annealed sample from the SiO2 layer was also observed in the XPS depth profile measurements. Room temperature photoluminescence (PL) spectroscopy revealed visible emissions from the samples pointing to carbon ion induced defects as the origin of a broad 2.0-2.4 eV band, and the intrinsic defects in SiO2 as the possible origin of the -2.9 eV bands. In low temperature photoluminescence spectra, two sharp and intense photoluminescence lines at -3.31 eV and -3.34 eV appear for the samples annealed for 90 min and 120 min, whereas no such bands are observed in the samples annealed for 10 min, 30 min, and 60 min. The Si nano-clusters forming at the Si-SiO2 interface could be the origin of these intense peaks.

  9. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application

    NASA Astrophysics Data System (ADS)

    Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming

    2018-02-01

    Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.

  10. High-fluence ion implantation in silicon carbide for fabrication of a compliant substrate

    NASA Astrophysics Data System (ADS)

    Lioubtchenko, Mikhail

    GaN and related nitrides are promising materials for applications as UV/blue light emitters and in high-power, high-temperature electonic devices. Unfortunately, the vast potential of these materials cannot be realized effectively due to a large density of threading dislocations, arising from large lattice mismatch between GaN and utilized substrates. Therefore, a new approach to the heteroepitaxial growth is desirable, and a compliant substrate might help to remedy the situation. A modified model for the compliant substrate consisting of the compliant membrane glued to a thick handling substrate by a soft layer was proposed. We have chosen 6H-SiC as a starting substrate and ion implantation as a means of creating a buried layer. High fluence ion implantation of different species in 6H-SiC was performed at elevated temperatures and damage removal/accumulation was studied. It was found that temperatures around 1600°C are necessary to successfully recrystallize the radiation damage for Ti, Ga, Si and C implantations, but no damage removal was monitored for In implantation. In order to minimize the damage produced during ion implantation, it was decided to employ a multistep process in which each implantation step was followed by annealing. This approach was realized for 125 keV Ti++ and 300 keV Ga+ implantations up to a total dose of 1.8 x 1017 cm--2. Ti-implanted substrates were shown to retain good quality in the top layer, whereas Ga implantation preserves the quality of the near-surface region only at lower doses. The implanted species concentration was monitored after each step using Rutherford Backscattering (RBS). GaN films were grown on the prepared substrates and a control SiC sample by MOCVD. TEM and photoluminescence measurements have demonstrated that the quality of GaN films improves upon growth on compliant substrates.

  11. Nickel silicide formation in silicon implanted nickel

    NASA Astrophysics Data System (ADS)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si<100>∥Ni<100> and Ni3Si<110>∥Ni<110> for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  12. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ionmore » fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 /times/ 10/sup 14/ cm/sup /minus/2/) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs.« less

  13. Fabrication and characterisation of embedded metal nanostructures by ion implantation with nanoporous anodic alumina masks

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Peng, Nianhua; Jeynes, Christopher; Ghatak, Jay; Peng, Yong; Ross, Ian M.; Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter

    2013-07-01

    Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO2 and Si3N4 substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.

  14. Displacement damage dose and implantation temperature effects on the trapping and release of deuterium implanted into SiC

    NASA Astrophysics Data System (ADS)

    Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.

    2017-09-01

    Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.

  15. Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

    NASA Astrophysics Data System (ADS)

    Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.

    2013-04-01

    Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.

  16. Nanoindentation of silicon implanted with hydrogen: effect of implantation dose on silicon’s mechanical properties and nanoindentation-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Goncharova, Lyudmila V.; Wong, Sing Fai

    2017-07-01

    Implantation of hydrogen in single-crystal silicon (c-Si) is known to affect its machining. However, very little is reported on the material and mechanical properties of hydrogen-implanted silicon (Si). In this article, near-surface regions (~0-500 nm) of lightly doped (1 0 0) Si were modified by varying the hydrogen concentration using ion implantation. The maximum hydrogen concentration was varied from ~4  ×  1020 to ~3.2  ×  1021 cm-3. The implanted Si was investigated by nanoindentation. From the dynamic nanoindentation test, it was found that in hydrogen-implanted Si hardness is increased significantly, while the elastic modulus is reduced. The nanoindentation-induced Si phase transformation was studied under different load/unload rates and loads. Raman spectroscopy revealed that the hydrogen implantation tends to suppress Si-XII and Si-III phases and facilitates amorphous Si formation during the unloading stage of nanoindentation. Both the mechanical properties and phase transformations were qualitatively related not only to the hydrogen concentration, but also to the implantation-generated defects and strain.

  17. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform InfraRed spectroscopy (FTIR) for SiOCH samples. Finally the benefit of this new patterning approach will be presented on 3D patterns structures.

  18. Plasma Immersion Ion Implantation for Interdigitated Back Passivated Contact (IBPC) Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo

    2016-11-21

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam-line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures grown on n-Cz wafers with PH3more » PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by photoluminescence and SIMS depth profiles. Initial IBPC cell results are presented.« less

  19. Strain analysis of SiGe microbridges

    NASA Astrophysics Data System (ADS)

    Anthony, Ross; Gilbank, Ashley; Crowe, Iain; Knights, Andrew

    2018-02-01

    We present the analysis of UV (325 nm) Raman scattering spectra from silicon-germanium (SiGe) microbridges where the SiGe has been formed using the so-called "condensation technique". As opposed to the conventional condensation technique in which SiGe is grown epitaxially, we use high-dose ion implantation of Ge ions into SOI as a means to introduce the initial Ge profile. The subsequent oxidation both repairs implantation induced damage, and forms epitaxial Ge. Using Si-Si and Si-Ge optical phonon modes, as well as the ratio of integrated intensities for Ge-Ge and Si-Si, we can determine both the composition and strain of the material. We show that although the material is compressively strained following condensation, by fabricating microbridge structures we can create strain relaxed or tensile strained structures, with subsequent interest for photonic applications.

  20. Au Colloids Formed by Ion Implantation in Muscovite Mica Studied by Vibrational and Electronic Spectroscopes and Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Tung, Y. S.; Henderson, D. O.; Mu, R.; Ueda, A.; Collins, W. E.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.

    1997-01-01

    Au was implanted into the (001) surface of Muscovite mica at an energy of 1.1 MeV and at doses of 1, 3, 6, and 10 x 10(exp 16) ions/cu cm. Optical spectra of the as-implanted samples revealed a peak at 2.28 eV (545 nm) which is attributed to the surface plasmon absorption of Au colloids. The infrared reflectance measurements show a decreasing reflectivity with increasing ion dose in the Si-O stretching region (900-1200 /cm). A new peak observed at 967 /cm increases with the ion dose and is assigned to an Si-O dangling bond. Atomic force microscopy images of freshly cleaved samples implanted with 6 and 10 x 10(exp 16) ions/sq cm indicated metal colloids with diameters between 0.9- 1.5 nm. AFM images of the annealed samples showed irregularly shaped structures with a topology that results from the fusion of smaller colloids.

  1. Surface damage studies of ETFE polymer bombarded with low energy Si ions (⩽100 keV)

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush

    2007-08-01

    Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer.

  2. The center for production of single-photon emitters at the electrostatic-deflector line of the Tandem accelerator of LABEC (Florence)

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Stefano; Sciortino, Silvio; Gelli, Nicla; Flatae, Assegid M.; Gorelli, Federico; Santoro, Mario; Chiari, Massimo; Czelusniac, Caroline; Massi, Mirko; Taccetti, Francesco; Agio, Mario; Giuntini, Lorenzo

    2018-05-01

    The line for the pulsed beam of the 3 MeV Tandetron accelerator at LABEC (Florence) has been upgraded for ion implantation experiments aiming at the fabrication of single-photon emitters in a solid-state matrix. A system based on Al attenuators has been calibrated in order to extend the energy range of the implanted ions from MeV down to the tens of keV. A new motorized XY stage has been installed in the implantation chamber for achieving ultra-fine control on the position of each implanted ion, allowing to reach the scale imposed by lateral straggling. A set-up for the activation of the implanted ions has been developed, based on an annealing furnace operating under controlled high-vacuum conditions. The first experiments have been performed with silicon ions implanted in diamond and the luminescent signal of the silicon-vacancy (SiV) center, peaked at 738 nm, has been observed for a wide range of implantation fluences (108 ÷ 1015 cm-2) and implantation depths (from a few nm to 2.4 μm). Studies on the efficiency of the annealing process have been performed and the activation yield has been measured to range from 1% to 3%. The implantation and annealing facility has thus been tuned for the production of SiV centers in diamond, but is in principle suitable for other ion species and solid-state matrices.

  3. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching

    NASA Astrophysics Data System (ADS)

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-01

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  4. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching.

    PubMed

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-19

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  5. Evidence of low injection efficiency for implanted p-emitters in bipolar 4H-SiC high-voltage diodes

    NASA Astrophysics Data System (ADS)

    Matthus, Christian D.; Huerner, Andreas; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar

    2018-06-01

    In this study, the influence of the emitter efficiency on the forward current-voltage characteristics, especially the conductivity modulation of bipolar SiC-diodes was analyzed. It was determined that the emitter efficiency of p-emitters formed by ion implantation is significantly lower compared to p-emitters formed by epitaxy. In contrast to comparable studies, experimental approach was arranged that the influence of the quality of the drift-layer or the thickness of the emitter on the conductivity modulation could be excluded for the fabricated bipolar SiC-diodes of this work. Thus, it can be established that the lower emitter injection efficiency is mainly caused by the reduced electron lifetime in p-emitters formed by ion implantation. Therefore, a significant enhancement of the electron lifetime in implanted p-emitters is mandatory for e.g. SiC-MPS-diodes where the functionality of the devices depends significantly on the injection efficiency.

  6. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  7. Patterned microstructures formed with MeV Au implantation in Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.

    2006-09-01

    Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.

  8. Structural and optical properties of silicon layers with InSb and InAs nanocrystals formed by ion-beam synthesis

    NASA Astrophysics Data System (ADS)

    Komarov, F.; Vlasukova, L.; Greben, M.; Milchanin, O.; Zuk, J.; Wesch, W.; Wendler, E.; Togambaeva, A.

    2013-07-01

    We have studied the formation of InSb and InAs precipitates with sizes of several nanometers in Si and SiO2/Si by means of implantation of (Sb + In) or (As + In) ions with energies from 170 to 350 keV and fluencies from 2.8 to 3.5 × 1016 cm-2 at 500 °C and subsequent annealing at 1050-1100 °C for 3-30 min. RBS, TEM/TED, RS and PL techniques were employed to characterize the implanted layers. A broad band in the region of 1.2-1.6 μm has been registered in the low-temperature PL spectra of both (Sb + In) and (As + In) implanted and annealed silicon crystals. It was shown that structural and optical properties of oxidized silicon crystals strongly depend on type of implanted species in silicon crystals.

  9. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayedh, H. M.; Svensson, B. G.; Hallén, A.

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced Cmore » atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.« less

  10. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    DOE PAGES

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; ...

    2016-06-01

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO 2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm -2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nmmore » thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iV oc) values of 730 mV with J o values of 2 fA/cm 2. Samples doped with B 2H 6 gave iV oc values of 690 mV and J o values of 24 fA/cm 2, outperforming BF 3 doping, which gave iV oc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.« less

  11. Phase transformations induced by spherical indentation in ion-implanted amorphous silicon

    NASA Astrophysics Data System (ADS)

    Haberl, B.; Bradby, J. E.; Ruffell, S.; Williams, J. S.; Munroe, P.

    2006-07-01

    The deformation behavior of ion-implanted (unrelaxed) and annealed ion-implanted (relaxed) amorphous silicon (a-Si) under spherical indentation at room temperature has been investigated. It has been found that the mode of deformation depends critically on both the preparation of the amorphous film and the scale of the mechanical deformation. Ex situ measurements, such as Raman microspectroscopy and cross-sectional transmission electron microscopy, as well as in situ electrical measurements reveal the occurrence of phase transformations in all relaxed a-Si films. The preferred deformation mode of unrelaxed a-Si is plastic flow, only under certain high load conditions can this state of a-Si be forced to transform. In situ electrical measurements have revealed more detail of the transformation process during both loading and unloading. We have used ELASTICA simulations to obtain estimates of the depth of the metallic phase as a function of load, and good agreement is found with the experiment. On unloading, a clear change in electrical conductivity is observed to correlate with a "pop-out" event on load versus penetration curves.

  12. Graphene on silicon dioxide via carbon ion implantation in copper with PMMA-free transfer

    NASA Astrophysics Data System (ADS)

    Lehnert, Jan; Spemann, Daniel; Hamza Hatahet, M.; Mändl, Stephan; Mensing, Michael; Finzel, Annemarie; Varga, Aron; Rauschenbach, Bernd

    2017-06-01

    In this work, a synthesis method for the growth of low-defect large-area graphene using carbon ion beam implantation into metallic Cu foils is presented. The Cu foils (1 cm2 in size) were pre-annealed in a vacuum at 950 °C for 2 h, implanted with 35 keV carbon ions at room temperature, and subsequently annealed at 850 °C for 2 h to form graphene layers with the layer number controlled by the implantation fluence. The graphene was then transferred to SiO2/Si substrates by a PMMA-free wet chemical etching process. The obtained regions of monolayer graphene are of ˜900 μm size. Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and optical microscopy performed at room temperature demonstrated a good quality and homogeneity of the graphene layers, especially for monolayer graphene.

  13. Superconducting properties of ion-implanted gold-silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.

    The superconducting properties of thin Au{sub x}Si{sub 1{minus}x}, films prepared by ion beam implantation and ion beam mixing are studied. The films are prepared by evaporation of single Au layers on Si substrates and mixing them with Si, Ar, or Xe, or by Xe beam mixing of alternate multilayers of Au and Si sputtered on Al{sub 2}O{sub 3} substrates. The superconducting transition temperature and upper critical fields are determined by measuring the temperature and magnetic field dependence of resistivity. Temperatures as low as 20mK and magnetic fields as high as 8 T were used. Superconductivity in these films is discussedmore » in connection with metastable metallic phases that are reportedly produced in the Au-Si system by high quenching rate preparation techniques like quenching from the vapor or the melt or ion implantation. Preliminary structural studies provide evidence for the existence of these phases and near-edge X-ray absorption and X-ray photoelectron spectroscopy measurements indicate a metallic type of bonding from which compound formation is inferred. The quality of the films is strongly dependent on the conditions of implantation. The maximum superconducting transition temperature attained is about 1.2 K. The upper critical fields have a maximum of 6T. An unusual double transition in the field dependence of resistivity is observed at low temperatures. The effect is very pronounced at compositions near x = 0.5 where the maximum {Tc} occurs. A model is presented to explain this result which invokes the properties of the metastable metallic phases and assumes the formation of more than two such phases in the same sample as the implantation dose increases. The Si-Au interface plays an important role in understanding the model and in interpreting the results of this thesis in general.« less

  14. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less

  15. Characterization of Defects in N-type 4H-SiC After High-Energy N Ion Implantation by RBS-Channeling and Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kummari, Venkata C.; Reinert, Tilo; Jiang, Weilin

    Implantation with 1 MeV N ions was performed at room temperature in n-type 4H-SiC(0001) to four implantation fluences (or doses in dpa (displacements per atom) at the damage peak) of 1.5×1013(0.0034), 7.8×1013(0.018), 1.5×1014(0.034), and 7.8×1014(0.18) ions/cm2, respectively. The evolution of disorder was studied using Rutherford backscattering spectrometry in channeling mode (RBS-C) and Raman spectroscopy. The disorder in the Si sub-lattice was found to be less than 10% for the dpa of 0.0034 and 0.0178 and increased to 40% and 60% for the dpa of 0.034 and 0.178 respectively. Raman Spectroscopy was performed using a green laser of wavelength 532 nmmore » as excitation source. The normalized Raman Intensity, In shows disorder of 41%, 69%, 77% and 100% for the dpa of 0.0034, 0.017, 0.034 and 0.178 respectively. In this paper, the characterizations of the defects produced due to the Nitrogen implantation in 4H-SiC are presented and the results are discussed.« less

  16. An origin of orange (2 eV) photoluminescence in SiO{sub 2} films implanted with high Si{sup +}-ion doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyschenko, I. E., E-mail: tys@isp.nsc.ru

    2015-09-15

    The photoluminescence and photoluminescence excitation spectra of SiO{sub 2} films implanted with high (3 at %) Si{sup +}-ion doses are studied in relation to the temperature of postimplantation annealing. It is shown that two photoluminescence bands with peaks at 2.7 and 2 eV are dominant in the spectra. As the annealing temperature is increased, the relation between the intensities of the 2.7 and 2 eV bands changes in favor of the former one. Both of the photoluminescence bands have their main excitation peak at the energy 5.1 eV. The excitation spectrum of the ∼2-eV band exhibits also peaks at 3.8more » and 4.6 eV. It is concluded that, in the implanted SiO{sub 2} films, the orange photoluminescence band originates from radiative transitions between levels of centers associated with a deficiency of oxygen (≡Si–Si≡ or =Si:) and the levels of nonbridging oxygen (≡Si–O•)« less

  17. Investigation of radiation hardened SOI wafer fabricated by ion-cut technique

    NASA Astrophysics Data System (ADS)

    Chang, Yongwei; Wei, Xing; Zhu, Lei; Su, Xin; Gao, Nan; Dong, Yemin

    2018-07-01

    Total ionizing dose (TID) effect on Silicon-on-Insulator (SOI) wafers due to inherent buried oxide (BOX) is a significant concern as it leads to the degradation of electrical properties of SOI-based devices and circuits, even failures of the systems associated with them. This paper reports the radiation hardening implementation of SOI wafer fabricated by ion-cut technique integrated with low-energy Si+ implantation. The electrical properties and radiation response of pseudo-MOS transistors are analyzed. The results demonstrate that the hardening process can significantly improve the TID tolerance of SOI wafers by generating Si nanocrystals (Si-NCs) within the BOX. The presence of Si-NCs created through Si+ implantation is evidenced by high-resolution transmission electron microscopy (HR-TEM). Under the pass gate (PG) irradiation bias, the anti-radiation properties of H-gate SOI nMOSFETs suggest that the radiation hardened SOI wafers with optimized Si implantation dose can perform effectively in a radiation environment. The radiation hardening process provides an excellent way to reinforce the TID tolerance of SOI wafers.

  18. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  19. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  20. Effects of boron implantation on silicon dioxide passivated HgCdTe

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Marks, J.; Knudsen, J. F.; Downing, R. G.; To, G. A.

    The influence of boron ion implants on the optical and physical properties of photochemically deposited SiO2 films on Hg(O.7)Cd(O.3)Te and silicon has been investigated. The distributions of the boron atoms between the SiO2 film and substrate have been determined by a non-destructive neutron depth profiling method. The implants produce an apparent densification of the SiO2 films, which is accompanied by an increase in refractive index and changes in the infrared vibrational spectra for these films.

  1. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  2. Introduction of Si/SiO{sub 2} interface states by annealing Ge-implanted films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marstein, E.S.; Gunnaes, A.E.; Olsen, A.

    2004-10-15

    Nanocrystals embedded in SiO{sub 2} films are the subject of a number of recent works, mainly because of their potential usefulness in the fabrication of optoelectronic devices and nanocrystal memory structures. One interesting method for the fabrication of such nanocrystals is the ion implantation of segregating species into SiO{sub 2} films followed by heat treatment in order to induce nanocrystal formation. This method is both relatively simple and also compatible with the current MOS (metal-oxide-semiconductor) device technology. An unintentional effect can occur during the fabrication of nanocrystals using this method, namely a significant diffusion of the implanted species during annealing,more » away from the regions with the highest concentration. The Si/SiO{sub 2} interface can be exposed to this diffusion flux. This can result in an altered interface and have a significant influence on electronic devices. Here, we report on ion implantation of Ge into SiO{sub 2} on Si followed by annealing under conditions, resulting in Ge accumulation at the Si/SiO{sub 2} interface as determined by secondary-ion mass spectroscopy analysis, transmission electron microscopy with energy dispersive analysis of x-rays, and Rutherford backscattering spectrometry. The accumulation of Ge at the Si/SiO{sub 2} interface has also been reported before. The resulting effect on the electronic structure of the interface is a priori unknown. We have fabricated MOS capacitors on the sample structures and their capacitance-voltage characteristics were measured and analyzed. We measure an interface state density around 1x10{sup 12} cm{sup -2}, which is high compared to standard Si MOS devices. We discuss the results in terms of the previous electrical measurements on Ge-oxide interfaces and SiGe interfaces, which also can yield a high interface state density. The specific conditions we report result in a sufficiently low Ge concentration that nanocrystals are not segregated in the SiO{sub 2} film, while Ge still accumulates at the Si/SiO{sub 2} interface after annealing.« less

  3. Development of ion implanted gallium arsenide transistors

    NASA Technical Reports Server (NTRS)

    Hunsperger, R.; Baron, R.

    1972-01-01

    Techniques were developed for creating bipolar microwave transistors in GaAs by ion implantation doping. The electrical properties of doped layers produced by the implantation of the light ions Be, Mg, and S were studied. Be, Mg, and S are suitable for forming the relatively deep base-collector junction at low ion energies. The electrical characteristics of ion-implanted diodes of both the mesa and planar types were determined. Some n-p-n planar transistor structures were fabricated by implantation of Mg to form the base regions and Si to form the emitters. These devices were found to have reasonably good base-collector and emitter-base junctions, but the current gain beta was small. The low was attributable to radiative recombination in the base region, which was extremely wide.

  4. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  5. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com; Lavoie, Christian; Jordan-Sweet, Jean

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  6. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Kim, Young-Min

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitutionmore » of Si for Al.« less

  7. Ion implantation enhanced metal-Si-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  8. Gettering of Residual Impurities by Ion Implantation Damage in Poly-AlN UV Diode Detectors

    NASA Astrophysics Data System (ADS)

    Khan, A. H.; Stacy, T.; Meese, J. M.

    1996-03-01

    UV diode detectors have been fabricated from oriented polycrystalline AlN grown on (111) n-type 3-15Ω-cm Si substrates by CVD using AlCl3 and ammonia with a hydrogen carrier gas at 760-800C, 40-45 torr and gas flow rates of 350, 120, and 120 sccm for hydrogen, ammonia and hydrogen over heated AlCl_3. Half of the AlN film of thickness 1.5-2.0 microns was masked off prior to ion implantation. Samples were ion-implanted at 5 kV with methane, nitrogen and argon to a dose of 5-6 x 10^18 ions/cm^2. The AlN was contacted with sputtered Au while the Si was contacted with evaporated Al. No annealing was performed. Rectification was obtained as a result of radiation damage in the AlN. SIMs analysis showed a reduction of oxygen, hydrogen, chlorine and carbon by several orders of magnitude and to a depth of several microns in the ion implanted samples compared to the masked samples. The quantum efficiency was 16nm uncorrected for reflection from the AlN and thin metal contact.

  9. Formation of donors in germanium–silicon alloys implanted with hydrogen ions with different energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokotilo, Yu. M., E-mail: Pokotilo@bsu.by; Petukh, A. N.; Litvinov, V. V.

    2016-08-15

    The distributions of hydrogen-containing donors in Ge{sub 1–x}Si{sub x} (0 ≤ x ≤ 0.06) alloys implanted with hydrogen ions with an energy of 200 and 300 keV and a dose of 1 × 10{sup 15} cm{sup –2} are studied. It is established that, at the higher ion energy, the limiting donor concentration after postimplantation heat treatment (275°C) is attained within ~30 min and, at the lower energy, within ~320 min. In contrast to donors formed near the surface, a portion of hydrogen-containing donors formed upon the implantation of ions with the higher energy possess the property of bistability. The limitingmore » donor concentration is independent of the ion energy, but decreases from 1.3 × 10{sup 16} to 1.5 × 10{sup 15} cm{sup –3}, as the Si impurity content in the alloy is increased from x = 0.008 to x = 0.062. It is inferred that the observed differences arise from the participation of the surface in the donor formation process, since the surface significantly influences defect-formation processes involving radiation-induced defects, whose generation accompanies implantation.« less

  10. DIFFUSION OF MAGNESIUM AND MICROSTRUCTURES IN Mg+ IMPLANTED SILICON CARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Edwards, Danny J.; Jung, Hee Joon

    2014-08-28

    Following our previous reports [ 1- 3], further isochronal annealing (2 hrs.) of the monocrystalline 6H-SiC and polycrystalline CVD 3C-SiC was performed at 1573 and 1673 K in Ar environment. SIMS data indicate that observable Mg diffusion in 6H-SiC starts and a more rapid diffusion in CVD 3C-SiC occurs at 1573 K. The implanted Mg atoms tend to diffuse deeper into the undamaged CVD 3C-SiC. The microstructure with Mg inclusions in the as-implanted SiC has been initially examined using high-resolution STEM. The presence of Mg in the TEM specimen has been confirmed based on EDS mapping. Additional monocrystalline 3C-SiC samplesmore » have been implanted at 673 K to ion fluence 3 times higher than the previous one. RBS/C analysis has been performed before and after thermal annealing at 1573 K for 12 hrs. Isothermal annealing at 1573 K is being carried out and Mg depth profiles being measured. Microstructures in both the as-implanted and annealed samples are also being examined using STEM.« less

  11. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, K. J.; Institute for Materials Research; Sundaravel, B.

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of themore » UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.« less

  12. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  13. Ion-implanted Si-nanostructures buried in a SiO{sub 2} substrate studied with soft-x-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.; Rubensson, J.E.; Eisebitt, S.

    1997-04-01

    In recent years silicon nanostructures have gained great interest because of their optical luminescence, which immediately suggests several applications, e.g., in optoelectronic devices. Nanostructures are also investigated because of the fundamental physics involved in the underlying luminescence mechanism, especially attention has been drawn to the influence of the reduced dimensions on the electronic structure. The forming of stable and well-defined nanostructured materials is one goal of cluster physics. For silicon nanostructures this goal has so far not been reached, but various indirect methods have been established, all having the problem of producing less well defined and/or unstable nanostructures. Ion implantationmore » and subsequent annealing is a promising new technique to overcome some of these difficulties. In this experiment the authors investigate the electronic structure of ion-implanted silicon nanoparticles buried in a stabilizing SiO{sub 2} substrate. Soft X-ray emission (SXE) spectroscopy features the appropriate information depth to investigate such buried structures. SXE spectra to a good approximation map the local partial density of occupied states (LPDOS) in broad band materials like Si. The use of monochromatized synchrotron radiation (MSR) allows for selective excitation of silicon atoms in different chemical environments. Thus, the emission from Si atom sites in the buried structure can be separated from contributions from the SiO{sub 2} substrate. In this preliminary study strong size dependent effects are found, and the electronic structure of the ion-implanted nanoparticles is shown to be qualitatively different from porous silicon. The results can be interpreted in terms of quantum confinement and chemical shifts due to neighboring oxygen atoms at the interface to SiO{sub 2}.« less

  14. Pulsed laser annealing of high-dose Ag+-ion implanted Si layer

    NASA Astrophysics Data System (ADS)

    Batalov, R. I.; Nuzhdin, V. I.; Valeev, V. F.; Vorobev, V. V.; Osin, Yu N.; Ivlev, G. D.; Stepanov, A. L.

    2018-01-01

    The formation of a crystalline composite Ag:Si material with Ag nanoparticles by low-energy (E  =  30 keV) high-dose (D  =  1.5  ×  1017 ion cm-2) Ag+ implantation into a monocrystalline c-Si substrate followed by nanosecond pulsed laser annealing (PLA) is demonstrated. Compared to traditional thermal annealing, PLA allows us to perform local heating of the sample both for its depth and area, and eliminate implantation-induced defects more efficiently, due to rapid liquid-phase recrystallization. Moreover, dopant diffusion during a nanosecond laser pulse is mainly limited by the molten region, where the dopant diffusion coefficient is several orders of magnitude higher than in the solid state. During PLA by a ruby laser (λ  =  0.694 µm), the optical probing of the irradiated zone at λ  =  1.064 µm with registration of time-dependent reflectivity R(t) was carried out. By scanning electron microscopy, it was established that Ag+ implantation leads to the creation of a thin amorphous Ag:Si layer of porous structure, containing Ag nanoparticles with sizes of 10-30 nm. PLA with energy density W  =  1.2-1.8 J cm-2 results in the melting of the implanted layer (d ~ 60 nm) and the topmost layers of the c-Si substrate (d  <  400 nm), followed by the rapid recrystallization of the Si matrix containing Ag nanoparticles with dominate sizes of 5-15 nm and some fraction of larger particles of 40-60 nm. Energy dispersive x-ray (EDX) spectroscopy did not show a noticeable change of Ag atomic concentration in the implanted layer after PLA. Spectral dependence R(λ) of Ag:Si layers showed the partial recovery of c-Si bands with maxima at 275 and 365 nm with simultaneous weakening of plasmon band for Ag nanoparticles in Si at 835 nm.

  15. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  16. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Zhu; Li, Bing-Sheng; Zhang, Li

    2017-05-01

    Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The < 0001> -oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1× 1017 cm-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV. Supported by the National Natural Science Foundation of China under Grant No 11475229.

  17. Thin film resists for registration of single-ion impacts

    NASA Astrophysics Data System (ADS)

    Millar, V.; Pakes, C. I.; Prawer, S.; Rout, B.; Jamieson, D. N.

    2005-06-01

    We demonstrate registration of the location of the impact site of single ions using a thin film polymethyl methacrylate resist on a SiO2/Si substrate. Carbon nanotube-based atomic force microscopy is used to reveal craters in the surface of chemically developed films, consistent with the development of latent damage induced by single-ion impacts. The responses of thin PMMA films to the implantation of He+ and Ga+ ions indicate the role of electronic and nuclear energy loss mechanisms at the single-ion level.

  18. Pressure-induced transformations of nitrogen implanted into silicon

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. D.; Misiuk, A.; Barcz, A.; Richter, H.

    2006-03-01

    Czochralski (CZ) Si samples implanted with nitrogen, with doses 1017 ion/cm2 and 1018 ion/cm2, at 140 keV, were studied by means of Fourier transform infrared spectroscopy after annealing at 1130 °C/5 h under different hydrostatic pressures, from 1 bar to 10.7 kbar. It has been found for each pressure applied, that the increased nitrogen dose leads to transformation of the broadband spectra to the fine structure ones, corresponding to crystalline silicon nitride. The spectral position of observed sharp peaks in the investigated pressure region is red shifted in comparison to that for the peaks of crystalline silicon oxynitride found recently by other investigators in nitrogen-containing poly-Si as well as in a residual melt of nitrogen-doped CZ-Si. The application of the pressure during annealing results in further red shift of the nitrogen-related bands. The observed decrease of frequency of vibrational bands is explained in terms of the pressure induced lowered incorporation of oxygen into growing oxynitride phase. Secondary ion mass spectrometry data reveal the decrease of oxygen content in implanted layer with increasing pressure during annealing.

  19. Bubble morphology in U 3Si 2 implanted by high-energy Xe ions at 300 °C

    DOE PAGES

    Miao, Yinbin; Harp, Jason; Mo, Kun; ...

    2017-08-02

    The microstructure modifications of a high-energy Xe implanted U 3Si 2, a promising accident tolerant fuel candidate, were characterized and are reported upon. The U 3Si 2 pellet was irradiated at Argonne Tandem Linac Accelerator System (ATLAS) by an 84 MeV Xe ion beam at 300 °C. The irradiated specimen was then investigated using a series of transmission electron microscopy (TEM) techniques. A dense distribution of bubbles were observed near the range of the 84 MeV Xe ions. Xe gas was also found to accumulate at multiple types of sinks, such as dislocations and grain boundaries. Bubbles aggregated at thosemore » sinks are slightly larger than intragranular bubbles in lattice. At 300 °C, the gaseous swelling strain is limited as all the bubbles are below 10 nm, implying the promising fission gas behavior of U 3Si 2 under normal operating conditions in light water reactors (LWRs).« less

  20. Bubble morphology in U3Si2 implanted by high-energy Xe ions at 300 °C

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Zhu, Shaofei; Yao, Tiankai; Lian, Jie; Yacout, Abdellatif M.

    2017-11-01

    The microstructure modifications of a high-energy Xe implanted U3Si2, a promising accident tolerant fuel candidate, were characterized and are reported upon. The U3Si2 pellet was irradiated at Argonne Tandem Linac Accelerator System (ATLAS) by an 84 MeV Xe ion beam at 300 °C. The irradiated specimen was then investigated using a series of transmission electron microscopy (TEM) techniques. A dense distribution of bubbles were observed near the range of the 84 MeV Xe ions. Xe gas was also found to accumulate at multiple types of sinks, such as dislocations and grain boundaries. Bubbles aggregated at those sinks are slightly larger than intragranular bubbles in lattice. At 300 °C, the gaseous swelling strain is limited as all the bubbles are below 10 nm, implying the promising fission gas behavior of U3Si2 under normal operating conditions in light water reactors (LWRs).

  1. Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.

    PubMed

    Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M

    1999-08-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.

  2. The evolution of vacancy-type defects in silicon-on-insulator structures studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Nash, D.; Edwardson, C. J.; Knights, A. P.; Gwilliam, R. M.

    2011-07-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been applied to the study of the formation and evolution of vacancy-type defect structures in silicon (Si) and the 1.5 μm thick Si top layer of silicon-on-insulator (SOI) samples. The samples were implanted with 2 MeV Si ions at fluences between 1013 and 1015 cm-2, and probed in the as-implanted state and after annealing for 30 min at temperatures between 350 and 800 °C. In the case of SOI the ions were implanted such that their profile was predominantly in the insulating buried oxide layer, and thus their ability to combine with vacancies in the top Si layer, and that of other interstitials beyond the buried oxide, was effectively negated. No measurable differences in the positron response to the evolution of small clusters of n vacancies (Vn, n ˜ 3) in the top Si layer of the Si and SOI samples were observed after annealing up to 500 °C; at higher temperatures, however, this response persisted in the SOI samples as that in Si decreased toward zero. At 700 and 800 °C the damage in Si was below detectable levels, but the VEPAS response in the top Si layer in the SOI was consistent with the development of nanovoids.

  3. Microstructural and opto-electrical properties of chromium nitride films implanted with vanadium ions

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.

    2012-07-01

    We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.

  4. Ion implantation for manufacturing bent and periodically bent crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to producemore » X-ray beams.« less

  5. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Goto, Ken; Morikawa, Yoji; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao; Higashiwaki, Masataka

    2018-06-01

    A vertical β-Ga2O3 metal–oxide–semiconductor field-effect transistor featuring a planar-gate architecture is presented. The device was fabricated by an all-ion-implanted process without requiring trench etching or epitaxial regrowth. A Mg-ion-implanted current blocking layer (CBL) provided electrical isolation between the source and the drain except at an aperture opening through which drain current was conducted. Successful transistor action was realized by gating a Si-ion-implanted channel above the CBL. Thermal diffusion of Mg induced a large source–drain leakage current through the CBL, which resulted in compromised off-state device characteristics as well as a reduced peak extrinsic transconductance compared with the results of simulations.

  6. Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier

    NASA Astrophysics Data System (ADS)

    Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.

    2018-04-01

    We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.

  7. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories

    NASA Astrophysics Data System (ADS)

    Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.

    2018-01-01

    We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.

  8. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  9. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.

    PubMed

    Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-07-07

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.

  10. Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerci, S.; Serincan, U.; Dogan, I.

    2006-10-01

    Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 deg. C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. Whilemore » the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.« less

  11. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.

    2014-12-01

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.

  12. Threshold irradiation dose for amorphization of silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenonmore » ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.« less

  13. Ion implantation in group III-nitride semiconductors: a tool for doping and defect studies

    NASA Astrophysics Data System (ADS)

    Zolper, J. C.

    1997-06-01

    Ion implantation is a flexible process technology for introducing an array of doping or compensating impurities into semiconductors. As the crystal quality of the group III-nitride materials continues to improve, ion implantation is playing an enabling role in exploring new dopant species and device structures. In this paper we review the recent developments in ion implantation processing of these materials with a particular emphasis on how this technology has brought new understanding to this materials system. In particular, the use of ion implantation to characterize impurity luminescence, doping, and compensation in III-nitride materials is reviewed. In addition, we address the nature of implantation induced damage in GaN which demonstrates a very strong resistance to amorphization while at the same time forming damage that is not easily removed by thermal annealing. Finally, we review the coupling of implantation with high temperature rapid thermal annealing to better understand the thermal stability of these materials and the redistribution properties of the common dopant (Si, O, Be, Mg, Ca, and Zn).

  14. Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.

    NASA Astrophysics Data System (ADS)

    Wong, Justin Wai-Chow

    1987-09-01

    Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.

  15. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO 2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm -2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nmmore » thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iV oc) values of 730 mV with J o values of 2 fA/cm 2. Samples doped with B 2H 6 gave iV oc values of 690 mV and J o values of 24 fA/cm 2, outperforming BF 3 doping, which gave iV oc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surodin, S. I., E-mail: surodin.bsn@mail.ru; Nikolitchev, D. E.; Kryukov, R. N.

    The concentration profiles of species in silicon subjected to gallium and nitrogen co-implantation and subsequent annealing have been investigated by the method of X-ray photoelectron spectroscopy combined with the layer-by-layer ion etching of the implanted layer. It is shown that practically entire implanted gallium undergoes out-diffusion, but the preliminary implantation of nitrogen for the synthesis of a barrier SiN{sub x} layer makes it possible to avoid the essential loss of gallium. In this case, about 14 % of implanted gallium bond to nitrogen. The obtained data are discussed from the viewpoint of the possibility of ion synthesis of GaN inclusionsmore » in silicon matrix.« less

  18. Threshold switching in SiGeAsTeN chalcogenide glass prepared by As ion implantation into sputtered SiGeTeN film

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin

    2017-12-01

    A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.

  19. Structural and electrical properties of Se-hyperdoped Si via ion implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Yuan, Ye; Heller, R.; Berencén, Y.; Böttger, R.; Rebohle, L.; Skorupa, W.; Helm, M.; Zhou, S.

    2018-06-01

    We report on the hyperdoping of silicon with selenium obtained by ion implantation followed by flash lamp annealing. It is shown that the degree of crystalline lattice recovery of the implanted layers and the Se substitutional fraction depend on the pulse duration and energy density of the flash. While the annealing at low energy densities leads to an incomplete recrystallization, annealing at high energy densities results in a decrease of the substitutional fraction of impurities. The electrical properties of the implanted layers are well-correlated with the structural properties resulting from different annealing processing.

  20. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2014-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  1. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2011-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  2. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less

  4. Formation and local heating effects on the vibrational properties of H2* defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Vendamani, V. S.; Pathak, A. P.; Kanjilal, D.; Rao, S. V. S. Nageswara

    2018-04-01

    We report a successful formation of Si-H related complexes under low temperature (LT) proton implantation. H2* defect is one of the Si-H related defects, which is stable at around 600 K. The absorption line of H2* defect is around 1830 cm-1 and has been investigated by Fourier transform infrared spectroscopy (FTIR). The intensity variations in the absorption spectrum has been observed for samples implanted at 1 µA and 8 µA beam currents. It is found that, the formation of H2* defect tends towards saturation level at higher implanted fluencies. This observation might be the effect of ion induced annealing during proton implantation. In addition, Elastic recoil detection analysis (ERDA) has been performed to find out the concentration and desorption of hydrogen in proton implanted Si samples. In conclusion, this work demonstrates the importance of H passivation on the device stability/deterioration performance.

  5. Improved depth profiling with slow positrons of ion implantation-induced damage in silicon

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.

    2003-10-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.

  6. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  7. Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm

    2012-02-01

    We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Quantitative Analysis of Etching Rate Profiles for 11B+-Implanted Si3N4 Film

    NASA Astrophysics Data System (ADS)

    Nakata, Jyoji; Kajiyama, Kenji

    1983-01-01

    Etching rate enhancement for 11B+-implanted Si3N4 film was investigated both experimentally and theoretically. The etching solution was concentrated H3PO4 at ˜165°C Film thicknesses were precisely measured by ellipsometry. Enhancement resulted from Si-N bond breaking. This was confirmed by a decrease of infrared absorption at a 12.0 μm wavelength for Si-N bond vibration. Main and additional peaks were observed in the etching rate profile. The former was due to nuclear damage and was well represented by the calculated etching rate profile deduced from the nuclear deposited energy density distribution. The latter existed in the surface region only when the ion projected range was shorter than the film thickness. This peak was possibly caused by charge accumulation in the insulating Si3N4 film during 11B+ implantation.

  9. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  10. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  11. Investigation on thermodynamics of ion-slicing of GaN and heterogeneously integrating high-quality GaN films on CMOS compatible Si(100) substrates.

    PubMed

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Runchun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2017-11-08

    Die-to-wafer heterogeneous integration of single-crystalline GaN film with CMOS compatible Si(100) substrate using the ion-cutting technique has been demonstrated. The thermodynamics of GaN surface blistering is in-situ investigated via a thermal-stage optical microscopy, which indicates that the large activation energy (2.5 eV) and low H ions utilization ratio (~6%) might result in the extremely high H fluence required for the ion-slicing of GaN. The crystalline quality, surface topography and the microstructure of the GaN films are characterized in detail. The full width at half maximum (FWHM) for GaN (002) X-ray rocking curves is as low as 163 arcsec, corresponding to a density of threading dislocation of 5 × 10 7  cm -2 . Different evolution of the implantation-induced damage was observed and a relationship between the damage evolution and implantation-induced damage is demonstrated. This work would be beneficial to understand the mechanism of ion-slicing of GaN and to provide a platform for the hybrid integration of GaN devices with standard Si CMOS process.

  12. Lattice sites of ion-implanted Mn, Fe and Ni in 6H-SiC

    NASA Astrophysics Data System (ADS)

    Costa, A. R. G.; Wahl, U.; Correia, J. G.; David-Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Pereira, L. M. C.

    2018-01-01

    Using radioactive isotopes produced at the CERN-ISOLDE facility, the lattice location of the implanted transition metal (TM) ions 56Mn, 59Fe and 65Ni in n-type single-crystalline hexagonal 6H-SiC was studied by means of the emission channeling technique. TM probes on carbon coordinated tetrahedral interstitial sites (T C) and on substitutional silicon sites (S Si,h+k ) were identified. We tested for but found no indication that the TM distribution on S Si sites deviates from the statistical mixture of 1/3 hexagonal and 2/3 cubic sites present in the 6H crystal. The TM atoms partially disappear from T C positions during annealing at temperatures between 500 °C and 700 °C which is accompanied by an increase on S Si and random sites. From the temperature associated with these site changes, interstitial migration energies of 1.7-2.7 eV for Mn and Ni, and 2.3-3.2 eV for Fe were estimated. TM lattice locations are compared to previous results obtained in 3C-SiC using the same technique.

  13. Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi

    2017-09-01

    Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.

  14. Reduction in Susceptibility of MOS Devices to Radiation- and Electrically-Induced Defects

    DTIC Science & Technology

    2012-05-01

    current density of 150 nA/cm2 for a time varying between 5 and 60 sec. Following implantation , the PMMA was etched off, and circular Al dots (2.67 x 10...calculations showing location of He ions implanted at 5.2 keV through 70 nm of PMMA on 35.6 nm SiO2. We have done TRIM calculations for energies...Instability (NBTI) and to radiation damage could be reduced. To that end, two techniques were attempted. In the first attempt, helium ions were implanted

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuo, Y.S.; Smith, E.B.; Deb, S.K.

    A Kaufman ion beam source was used to implant hydrogen atoms into glow-discharge-deposited amorphous silicon materials in which the hydrogen content had been driven out by heating. We found that the hydrogen atoms introduced by this low-energy (less than 700 eV) ion implantation method bonded predominantly as SiH. An air mass one, photo-to-dark-conductivity ratio as high as 5.6 x 10/sup 5/ has been obtained with hydrogen-implanted materials. No light-induced reduction of the photo- and dark conductivities has been observed in these materials after 20 h of AMl illumnination.

  16. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    PubMed

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  17. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  18. Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns

    NASA Astrophysics Data System (ADS)

    Naczas, Sebastian

    Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before (Group-A) or after (Group-B) post-H-implantation annealing. As evidenced by transmission electron microscopy, Group-A samples exhibited an array of large-sized nanocavities in hexagon-like shape, whereas a narrow band of sphere-shaped nanocavities of small size was present below the surface in Group-B samples. These Si samples with pre-existing nanocavities were further implanted with Ag ions in the surface region and post-Ag-implantation annealing was conducted in the temperature range between 600 and 900 °C. Measurements based on RBS revealed much different behaviors for Ag redistribution and defect accumulation in these two sets of samples. Compared to the case for Group-B Si, Group-A Si exhibited a lower concentration of residual defects and a slower kinetics in Ag diffusion as well. The properties of nanocavities, e.g., their depth distribution, size, and even shape, are believed to be responsible for the observed disparities between the samples with and without surface oxides, including an interesting contrast of surface vs. bulk diffusion phenomena for implanted Ag atoms. Based on this thesis work, we believe that this approach is promising for achieving monolithically integrated room-temperature light emitting devices based on Er-doped Si, if the properties (e.g., density/size/type of nanoparticles) of these novel Si nanostructures could be further optimized in future studies.

  19. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  20. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  1. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.

    PubMed

    Habicht, S; Zhao, Q T; Feste, S F; Knoll, L; Trellenkamp, S; Ghyselen, B; Mantl, S

    2010-03-12

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.

  2. Specific features of the current–voltage characteristics of SiO{sub 2}/4H-SiC MIS structures with phosphorus implanted into silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhaylova, A. I., E-mail: m.aleksey.spb@gmail.com; Afanasyev, A. V.; Ilyin, V. A.

    The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.

  3. The effect of fluence on the magnetic properties of superparamagnetic iron-nickel nanoparticles in SiO2 made by dual Ni and Fe low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Williams, G. V. M.; Prakash, T.; Kennedy, J.

    2017-10-01

    Superparamagnetic Ni1-yFey nanoparticles were made in a SiO2 film by 10 keV ion beam implantation of Ni followed by Fe with a Ni fluence of 4 × 1016 at.cm-2 and a Fe fluence fraction of 0.47. Nearly all of the moments magnetically ordered, which was not reported for an implanted film made with a Fe fluence fraction of 0.56 and half the Ni fluence. The temperature dependence of the saturation moment is remarkably similar for low and high Ni fluences where there is also the presence of very thin spin-disordered shells. The higher Ni fluence leads to a significant enhancement of the susceptibility by a factor of 9 when compared with the lower fluence sample. This enhancement is likely to be due to a larger magnetically ordered volume fraction.

  4. Structural evolution in Ar+ implanted Si-rich silicon oxide

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Karwasz, G. P.; Mariotto, G.; Zecca, A.; Ferragut, R.; Folegati, P.; Dupasquier, A.; Ottaviani, G.; Tonini, R.

    2003-12-01

    Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.

  5. The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

    NASA Astrophysics Data System (ADS)

    Mishra, Mukesh; Alwarappan, Subbiah; Kanjilal, Dinakar; Mohanty, Tanuja

    2018-03-01

    Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D' and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D' and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

  6. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less

  7. Properties of arsenic-implanted Hg1-xCdxTe MBE films

    NASA Astrophysics Data System (ADS)

    Izhnin, Igor I.; Voitsekhovskii, Alexandr V.; Korotaev, Alexandr G.; Fitsych, Olena I.; Bonchyk, Oleksandr Yu.; Savytskyy, Hrygory V.; Mynbaev, Karim D.; Varavin, Vasilii S.; Dvoretsky, Sergey A.; Yakushev, Maxim V.; Jakiela, Rafal; Trzyna, Malgorzata

    2017-01-01

    Defect structure of arsenic-implanted Hg1-xCdxTe films (x=0.23-0.30) grown with molecular-beam epitaxy on Si substrates was investigated with the use of optical methods and by studying the electrical properties of the films. The structural perfection of the films remained higher after implantation with more energetic arsenic ions (350 keV vs 190 keV). 100%-activation of implanted ions as a result of post-implantation annealing was achieved, as well as the effective removal of radiation-induced donor defects. In some samples, however, activation of acceptor-like defects not related to mercury vacancies as a result of annealing was observed, possibly related to the effect of the substrate.

  8. Fabrication of large area Si cylindric drift detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; Kraner, H.W.; Li, Z.

    1993-04-01

    Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less

  9. Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.

    2017-08-01

    P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.

  10. Plasma-Based Surface Modification and Corrosion in High Temperature Environments

    DTIC Science & Technology

    2009-02-05

    supercritical water, molten salts, supercritical carbon dioxide (KAPL), and helium have been designed and built Room temperature corrosion tests for...coatings such as diamond-like carbon (DLC) and Si-DLC, performed at < 5kV) 4 Energetic ion mixing of thin nano-multilayers Enhancing coating-substrate...Nitrogen ion implantation of 17-7PH stainless steel (with Alison Gas Turbines ) Also a 11% decrease in erosion rate for the N+ implanted sample

  11. Effect of nitrogen segregation on TED and loss of phosphorus in CZ-Si

    NASA Astrophysics Data System (ADS)

    Fujiwara, N.; Saito, K.; Nakabayashi, Y.; Osuman, H. I.; Toyonaga, K.; Matsumoto, S.; Sato, Y.

    2002-01-01

    Transient enhanced diffusion (TED) and dose loss (pile-up) are investigated for phosphorus-implanted samples covered with both oxide and nitride films. P ions were implanted into p-type (1 0 0) CZ-Si (dose 5×10 13 cm-3, 100 keV) through a chemical vapor deposition (CVD) Si 3N 4 film. For a half of samples, Si 3N 4 was etched off and SiO 2 films were grown by CVD. Both samples were annealed for 20-360 min at 700 °C. Diffusivity of P and the dose loss were estimated based on the secondary-ion mass spectrometry (SIMS) P profiles. Both Si/Si 3N 4 and Si/SiO 2 interfaces were investigated with transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). There is no significant difference in P diffusivity between the SiO 2 and Si 3N 4 films for the present annealing condition of 700 °C for 20-360 min. Regarding dose loss, a distinct different behavior was observed. In case of the SiO 2 cover film, amount of dose decreases with the annealing time. On the other hand, amount of dose decrease with annealing time up to 180 min, but is recovered for more than 180 min in case of the Si 3N 4 cover film. From TEM and EELS analyses, it is found that nitrogen segregates at the Si/Si 3N 4 interface, resulting in recovery of dose loss.

  12. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Lee, Benjamin G.; Fogel, Derek

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  14. Effect of an increase in the density of collision cascades on the efficiency of the generation of primary displacements during the ion bombardment of Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karabeshkin, K. V., E-mail: yanikolaus@yandex.ru; Karaseov, P. A.; Titov, A. I.

    2016-08-15

    The depth distributions of structural damage induced in Si at room temperature by the implantation of P and PF{sub 4} with energies from 0.6 to 3.2 keV/amu are experimentally studied in a wide range of doses. It is found that, in all cases, the implantation of molecular PF{sub 4} ions forms practically single-mode defect distributions, with maximum at the target surface. This effect is caused by an increase in the generation of primary defects at the surface of the target. Individual cascades formed by atoms comprising molecule effectively overlap in the surface vicinity; this overlap gives rise to nonlinear processesmore » in combined cascades due to a high density of displacements in such cascades. Quantitative estimation of increase of effectiveness of point defect generation by PF{sub 4} ions in respect to P ions is done on the base of experimental data.« less

  15. First Results From A Multi-Ion Beam Lithography And Processing System At The University Of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gila, Brent; Appleton, Bill R.; Fridmann, Joel

    2011-06-01

    The University of Florida (UF) have collaborated with Raith to develop a version of the Raith ionLiNE IBL system that has the capability to deliver multi-ion species in addition to the Ga ions normally available. The UF system is currently equipped with a AuSi liquid metal alloy ion source (LMAIS) and ExB filter making it capable of delivering Au and Si ions and ion clusters for ion beam processing. Other LMAIS systems could be developed in the future to deliver other ion species. This system is capable of high performance ion beam lithography, sputter profiling, maskless ion implantation, ion beammore » mixing, and spatial and temporal ion beam assisted writing and processing over large areas (100 mm2)--all with selected ion species at voltages from 15-40 kV and nanometer precision. We discuss the performance of the system with the AuSi LMAIS source and ExB mass separator. We report on initial results from the basic system characterization, ion beam lithography, as well as for basic ion-solid interactions.« less

  16. Titanium doped silicon layers with very high concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olea, J.; Toledano-Luque, M.; Pastor, D.

    2008-07-01

    Ion implantation of Ti into Si at high doses has been performed. After laser annealing the maximum average of substitutional Ti atoms is about 10{sup 18} cm{sup -3}. Hall effect measurements show n-type samples with mobility values of about 400 cm{sup 2}/V s at room temperature. These results clearly indicate that Ti solid solubility limit in Si has been exceeded by far without the formation of a titanium silicide layer. This is a promising result toward obtaining of an intermediate band into Si that allows the design of a new generation of high efficiency solar cell using Ti implanted Simore » wafers.« less

  17. He-irradiation effects on glass-ceramics for joining of SiC-based materials

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Casalegno, V.; Ghigo, G.; Moskalewicz, T.; Czyrska-Filemonowicz, A.; Ferraris, M.

    2016-04-01

    CaO-Al2O3 (CA) and SiO2-Al2O3-Y2O3 (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV 4He+ ions at an average temperature of 75 °C up to a fluence of almost 2.3·1018 cm-2. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY).

  18. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  19. Measurement of Damage Profiles from Solar Wind Implantation

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.

    2007-01-01

    NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were single crystal 6H silicon carbide. (The others were polycrystalline CVD diamond and amorphous carbon that were not examined in the work.) The ion damaged SiC samples from the concentrator were studied in comparison to the flight Si from the bulk array to understand differences in the extent of the damage.

  20. Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ravi Prasad, G. V.; Pelicon, P.; Mitchell, L. J.; McDaniel, F. D.

    2003-08-01

    GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.

  1. Electrical Characteristics of GaAs MESFET Fabrication by Ion Implantation of Si or Se

    DTIC Science & Technology

    1993-10-04

    only the z-component of the polarization vector is non-zero, given by - dao . Since all the stress tensors are independent of z, the effective charge...GaAs," Stanford University, 1990. [381 Jong-Lam Lee , Jin Sup Kim, Hyung Moo Park, and Dong Sung Ma, "Depth Pro- files on Ion Implantation Induced Vacancy...February 1990. [40] Yao- Tsung Tsai and Timothy A. Grotjohn, "Source and Drain Resistance Studies of Short Channel MESFET’s Using Two-Dimensional Device

  2. Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Shtel’makh, K. F.; Kalyadin, A. E.

    2015-12-15

    Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data.more » For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.« less

  3. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less

  4. Formation of Ge nanoparticles in SiO xN y by ion implantation and thermal annealing

    DOE PAGES

    Mirzaei, Sahar; Kremer, F.; Sprouster, D. J.; ...

    2015-10-20

    Germanium nanoparticles embedded within dielectric matrices hold much promise for applications in optoelectronic and electronic devices. Here we investigate the formation of Ge nanoparticles in amorphous SiO 1.67N 0.14 as a function of implanted atom concentration and thermal annealing temperature. Using x-ray absorption spectroscopy and other complementary techniques, we show Ge nanoparticles exhibit significant finite-size effects such that the coordination number decreases and structural disorder increases as the nanoparticle size decreases. While the composition of SiO 1.67N 0.14 is close to that of SiO 2, we demonstrate that the addition of this small fraction of N yields a much reducedmore » nanoparticle size relative to those formed in SiO 2 under comparable implantation and annealing conditions. We attribute this difference to an increase in an atomic density and a much reduced diffusivity of Ge in the oxynitride matrix. Finally, these results demonstrate the potential for tailoring Ge nanoparticle sizes and structural properties in the SiO xN y matrices by controlling the oxynitride stoichiometry.« less

  5. Resonance ultrasonic vibrations in Cz-Si wafers as a possible diagnostic technique in ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Ostapenko, S.; Anundson, R.; Tvinnereim, M.; Belyaev, A.; Anthony, M.

    2001-07-01

    The semiconductor industry does not have effective metrology for well implants. The ability to measure such deep level implants will become increasingly important as we progress along the technology road map. This work explores the possibility of using the acoustic whistle effect on ion implanted silicon wafers. The technique detects the elastic stress and defects in silicon wafers by measuring the sub-harmonic f/2 resonant vibrations on a wafer induced via backside contact to create standing waves, which are measured by a non-contact ultrasonic probe. Preliminary data demonstrates that it is sensitive to implant damage, and there is a direct correlation between this sub-harmonic acoustic mode and some of the implant and anneal conditions. This work presents the results of a feasibility study to assess and quantify the correspondent whistle effect to implant damage, residual damage after annealing and intrinsic defects.

  6. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  7. Electronic stopping powers for heavy ions in SiC and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Xue, H.; Zhang, Y., E-mail: Zhangy1@ornl.gov

    2014-01-28

    Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less

  8. Electronic Stopping Powers For Heavy Ions In SiC And SiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Zhang, Y.; Zhu, Zihua

    2014-01-24

    Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO2, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less

  9. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  10. Gallium-Doped Poly-Si:Ga/SiO 2 Passivated Emitters to n-Cz Wafers With iV oc >730 mV

    DOE PAGES

    Young, David L.; Lee, Benjamin G.; Fogel, Derek; ...

    2017-09-26

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  11. Fabrication of 4H-SiC lateral double implanted MOSFET on an on-axis semi-insulating substrate without using epi-layer

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Woo; Seok, Ogyun; Moon, Jeong Hyun; Bahng, Wook; Jo, Jungyol

    2017-12-01

    4H-SiC lateral double implanted metal-oxide-semiconductor field effect transistors (LDIMOSFET) were fabricated on on-axis semi-insulating SiC substrates without using an epi-layer. The LDIMOSFET adopted a current path layer (CPL), which was formed by ion-implantation. The CPL works as a drift region between gate and drain. By using on-axis semi-insulating substrate and optimized CPL parameters, breakdown voltage (BV) of 1093 V and specific on-resistance (R on,sp) of 89.8 mΩ·cm2 were obtained in devices with 20 µm long CPL. Experimentally extracted field-effect channel mobility was 21.7 cm2·V-1·s-1 and the figure-of-merit (BV2/R on,sp) was 13.3 MW/cm2.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected thatmore » the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.« less

  13. Buried superconducting layers comprised of magnesium diboride nanocrystals formed by ion implantation

    NASA Astrophysics Data System (ADS)

    Zhai, H. Y.; Christen, H. M.; White, C. W.; Budai, J. D.; Lowndes, D. H.; Meldrum, A.

    2002-06-01

    Superconducting layers of MgB2 were formed on Si substrates using techniques that are widely used and accepted in the semiconductor industry. Mg ions were implanted into boron films deposited on Si or Al2O3 substrates. After a thermal processing step, buried superconducting layers comprised of MgB2 nanocrystals were obtained which exhibit the highest Tc reported so far for MgB2 on silicon (Tconsetapproximately33.6 K, DeltaTc=0.5 K, as measured by current transport). These results show that our approach is clearly applicable to the fabrication of superconducting devices that can be operated at much higher temperatures (approximately20 K) than the current Nb technology (approximately6 K) while their integration with silicon structures remains straight-forward.

  14. Vacancy-fluorine complexes and their impact on the properties of metal-oxide transistors with high-k gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.

    2007-09-01

    Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.

  15. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    NASA Astrophysics Data System (ADS)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  16. Quantum point contacts for electrons on H-Si(111) surfaces using a Ga focused-ion beam for direct-write implant lithography

    NASA Astrophysics Data System (ADS)

    Robertson, Luke D.; Kane, B. E.

    Quantum point contacts (QPCs) realized in materials with anisotropic electron mass, such as Si, may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. To this end, we have developed ambipolar devices on a H-Si(111):Si(100)/SiO2 flip-chip assembly which utilize in-plane, degenerately doped n+ (P) and p+ (B) contacts to probe transport in a 2D electron system (2DES). In addition to providing electrostatic isolation of carriers, these p-type contacts can be used as lateral depletion gates to modulate the 2DES conductance, and if extended to the nanoscale can lead to 1D confinement and quantized conductance of the 2DES. In this talk, I will describe our efforts to use a Ga focused-ion beam for direct-write implant lithography to pattern QPCs and Ga nanowires on H-Si(111) surfaces. I will present low temperature (4.2K) conductance data collected on 30nm Ga nanowires to demonstrate their effectiveness as lateral depletion gates, and discuss on going measurements to confine and modulate the conductance of the 2DES using Ga QPCs.

  17. High-temperature Au implantation into Ni-Be and Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    James, M. R.; Lam, N. Q.; Rehn, L. E.; Baldo, P. M.; Funk, L.; Stubbins, J. F.

    1992-12-01

    Effects of implantation temperature and target composition on depth distribution of implanted species were investigated. Au+ ions were implanted at 300 keV into polycrystalline Ni-Be and Ni-Si alloys between 25 and 700C to a dose of 10(exp 16) cm(exp -2). Depth distributions of Au were analyzed with RBS using He+ at both 1.7 and 3.0 MeV, and those of the other alloying elements by SIMS. Theoretical modeling of compositional redistribution during implantation at elevated temperatures was also carried out with the aid of a comprehensive kinetic model. The analysis indicated that below approximately 250C, the primary controlling processes were preferential sputtering and displacement mixing, while between 250 and 600C radiation-induced segregation was dominant. Above 600C, thermal-diffusion effects were most important. Fitting of model calculations to experimental measurements provided values for various defect migration and formation parameters.

  18. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-03-01

    A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  19. Scanning electron microscopy of the surfaces of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  20. Rayleigh surface waves in ultraheavily doped n-Si

    NASA Astrophysics Data System (ADS)

    Sood, A. K.; Cardona, M.

    1986-11-01

    We report the effect of free carriers on the velocity of surface Rayleight waves (SRW) in n-type Si studied by Brillouin scattering. The samples prepared by ion implantation followed by laser annealing have carrier concentrations up to 3 x 10 21cm-3. The SRW velocity is observed to decrease significantly on doping (-18% for the heaviest doped sample). The large softening of the velocity can be quantitatively explained on the basis of the decrease of all the three independent elastic constants C 11, C 12, and C 44 in n-Si along with the changes in the density of the doped layer due to the dopant ions.

  1. Interpretation of TOF SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation

    NASA Astrophysics Data System (ADS)

    Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.

    2005-06-01

    The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.

  2. Surface modification of Monel K-500 as a means of reducing friction and wear in high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Gunaji, Mohan; Stoltzfus, Joel M.; Schoenman, Leonard; Kazaroff, John

    1989-01-01

    A study is conducted of the tribological characteristics of Monel K-500 during rubbing in a high pressure oxygen atmosphere, upon surface treatment by ion-implanted oxygen, chromium, lead, and silver, as well as electrolyzed chromium and an electroless nickel/SiC composite. The electrolyzed chromium dramatically increased total sample wear, while other surface treatments affected sample wear only moderately. Although the ion-implant treatments reduced the average coefficient of friction at low contact pressure, higher contact pressures eliminated this improvement.

  3. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube

    DTIC Science & Technology

    2016-12-13

    in SiO2 Glasses by Ion Implantation. Jpn. J. Appl. Phys. 1993;32(9R):3892. List of Publications and Significant Collaborations that resulted from...layers using TEM holders showed significant advancement. This involved investigation of the effects of sub- supporting SiO2 layer on the interaction...number density are formed on the Al2O3 layer deposited on the sub-supporting SiO2 layer than that deposited directly on the Si(100) wafer. Based on the

  4. Silicon carbide semiconductor device fabrication and characterization

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Das, K.

    1990-01-01

    A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.

  5. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran

    2018-01-01

    Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.

  6. Extended defects and hydrogen interactions in ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (<650°C) defect dissolution and defect injection dominates, resulting in increased junction depths. At higher anneal temperatures, however, repair dominates over defect injection resulting in shallower junctions. Hydrogenation experiments shows that hydrogen enhances dopant activation and reduces TED at low anneal temperatures (<550°C). At anneal temperatures >550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for along time (300min). Also presented is the recipe for formation of multiple cavity layers and the electrical and optical properties of these cavities. Electrically, these cavities are metastable, with two strong minority carrier peaks formed by multiple defect levels. Photoluminescence measurements reveal a strong 0.8eV photon peak.

  7. Maskless nano-implant of 20 keV Ga+ in bulk Si(1 0 0) substrates

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; D'Arrigo, G.; Mio, A. M.; Rimini, E.; Spinella, C.; Peto, L.; Nadzeyka, A.; Bauerdick, S.

    2014-12-01

    Multidirectional SPEG (Solid Phase Epitaxial Growth) of silicon has been investigated in micro and nanoamorphous structures generated on a crystalline substrate by a nano-sized ion beam, Gaussian shaped and with a standard deviation of about 5 nm. The 20 keV Ga+ ions were implanted at a fluence of 5 × 1014 ions cm-2 in a bulk Si(1 0 0) single crystal. Two structures were used for the implants: circular regions of 100 nm and 1 μm diameters respectively and straight lines 10 nm in width and few microns in length along (1 0 0) or (1 1 0) directions. The lateral spread of ions has been taken into account in the damage estimation. Transmission Electron Microscopy indicates that the structures are made of an amorphous core surrounded by a defective and filamentary shell. The recovery of the damaged outer regions promptly occurs during the early stages of the thermal treatment at 500-600 °C for all the structures. By prolonging annealing time, re-crystallization of the amorphous cores is achieved too by the movement of the underneath crystal-amorphous interface. The re-growth is almost defects free when the contribution of the crystalline seed below the structures is present, defective and twin mediated if it misses as in the thinnest regions of the specimen.

  8. Ag implantation-induced modification of Ni-Ti shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singhal, R.; Vishnoi, R.; Banerjee, M. K.; Sharma, M. C.; Asokan, K.; Kumar, M.

    2017-08-01

    Nanocrystalline thin films of Ni-Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120 keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni-Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni-Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni-Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9 × 1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni-Ti thin films.

  9. Counted Sb donors in Si quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  10. Ion implantation for deterministic single atom devices

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Singh, M.; Perry, D. L.; Wendt, J. R.; Ten Eyck, G.; Manginell, R. P.; Pluym, T.; Luhman, D. R.; Lilly, M. P.; Carroll, M. S.; Bielejec, E.

    2017-12-01

    We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  11. Ion implantation for deterministic single atom devices

    DOE PAGES

    Pacheco, J. L.; Singh, M.; Perry, D. L.; ...

    2017-12-04

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  12. Investigation of the stability of glass-ceramic composites containing CeTi 2 O 6 and CaZrTi 2 O 7 after ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paknahad, Elham; Grosvenor, Andrew P.

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less

  13. Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation

    NASA Astrophysics Data System (ADS)

    Paknahad, Elham; Grosvenor, Andrew P.

    2017-12-01

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.

  14. Exploring Magnetic Nanostructures Embedded Within Single-Crystal Silicon for Generation Of Spin-Polarized Carriers

    NASA Astrophysics Data System (ADS)

    Malladi, Machara Krishna Girish

    Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. This is exemplified by the synthesis of magnetic nickel nanoparticles in Si implanted with H+(range: 850 nm; dose: 1.5x1016 cm-2) and Ni+ (range: 60 nm; dose: 2x10 15 cm-2). Following annealing, the H implanted region populated with Ni nanoparticles of size ( 10-25 nm) and density ( 1011/cm2) typical of those achievable via conventional thin film deposition and growth techniques. In particular, a maximum amount of gettered Ni atoms occurs after annealing at 900 ?C, yielding strong ferromagnetism persisting even at room temperature, as well as fully recovered crystalline Si environments adjacent to these Ni nanoparticles. Furthermore, Ni nanoparticles capsulated within a defect-free crystalline Si layer exhibit a very high magnetic switching energy barrier of 0.86 eV, an increase by about one order of magnitude as compared to their counterparts on a Si surface or in a highly defective Si environment. The electrical transport properties of the samples exhibiting room temperature ferromagnetism have been measured in an in-plane magnetic field and these samples show a high room temperature magnetoresistance ( 155% at 9T for p-Si and 80% at 9T for n-Si) which is dependent on the temperature and the applied current. The peak in the magnetoresistance occurs in the ohmic regime, where the inhomogeneity is the least in these samples measured. Such magnetoresistance has been attributed to the spin-dependent of splitting of the bands in the presence of magnetic nanoparticles with large moments and Schottky junction properties. A large spin-splitting (on the order of 100-150 meV in p-Si and 65-80 meV in n-Si) has been estimated along with large g-factor of 87 (p-Si) and 40 (n-Si). The spin polarization values based on these measurements has been estimated to be 99.6% in p-Si and 95.70% in n-Si at room temperature. Such large spin polarization values show a great promise for this material system to be the base material for the demonstration of a Si-based room temperature spintronic device.

  15. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective of this study is to understand the resulting phase transformation behavior during Ag precipitation with the intent to ultimately control the electrical operation of AlN piezoelectric resonators in energy scavenging applications. In this work, multiple source reactive ion sputtering was employed to deposit a thin film of AlN on a 525 microns thick Si substrate, followed by ion implantation (Ag cathode) into the aluminum nitride, and subsequent thermal annealing. Computer simulations were conducted to elucidate the projected range of the silver in the AlN epilayer as a result of the ion implantation process. A myriad of characterization methods including Rutherford Backscattering Spectrometry (RBS), x-ray diffraction (XRD), rocking curve, electron microscopy was employed to quantify the concentration of silver, morphology of silver precipitates, as well as the composition, crystallinity and degree of damage in the ion-implanted AlN samples with respect to thermal annealing conditions. The presence, or lack of precipitates in the samples was utilized to draw conclusions about the feasibility of developing a buried conductive layer in a ceramic matrix via ion implantation. Computer simulations results obtained via TRIM and TRIDYN confirmed that the maximum concentration of silver lied within 30 -- 47 nm from the surface. The RBS data verified the presence of Si, Al, N, Ag, and O2 , whose concentration varied with temperature. X-ray diffraction and electron microscopy corroborated the crystallinity of the AlN epilayer. Electron diffraction confirmed both the epitaxy of the AlN film on the (001) Si substrate and the crystalline quality of the epilayer prior to and after the thermal annealing treatment. Electron microscopy revealed that the sputtered AlN film grew epitaxially in a columnar morphology and silver precipitates did form in some of the aluminum nitride samples implanted but only in those implanted with a higher concentration of Ag under high-energy implantation conditions. It is concluded that the Ag implanted region does indeed have potential as a buried contact layer for piezoelectric activation and sensing if the critical concentration and appropriate thermal conditions can be attained.

  16. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials

    NASA Astrophysics Data System (ADS)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, T.Q.; Buczkowski, A.; Radzimski, Z.J.

    The electrical activity of as-grown and intentionally decorated misfit dislocations in an epitaxial Si/Si(Ge) heterostructure was examined using the electron beam induced current (EBIC) technique in a scanning electron microscope. Misfit dislocations, which were not visible initially, were subsequently activated either by an unknown processing contaminant or a backside metallic impurity. Passivation of these contaminated dislocations was then studied using low energy deuterium ion implantation in a Kaufman ion source. EBIC results show that the recombination activity of the decorated misfit dislocations was dramatically reduced by the deuterium treatment. Although a front side passivation treatment was more effective than amore » backside treatment, a surface ion bombardment damage problem is still evident. 5 refs., 3 figs.« less

  18. Focused Ion Beam Fabrication of Graded Channel Field Effect Transistors (FETs) in GaAs and Si

    DTIC Science & Technology

    1988-11-21

    is used even though the cut may need to be - I-am wide. Since theL ± ne REMOVAL etch time varies as the inverse square of the beam diameter , a ROF...at room temperature a fairly large diameter capillary 1.4-mm and ion induced deposition or etching , the focused ion beam inner diameter was used . For...Pd/B/As/P (alloy sources) Main - micromachining - implantation uses - ion induced deposition - lithography and etching - high resolution SIMS

  19. On the limits to Ti incorporation into Si using pulsed laser melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Jay, E-mail: jay.mathews@udayton.edu; Warrender, Jeffrey M.; Akey, Austin J.

    2014-03-17

    Fabrication of p-Si(111) layers with Ti levels well above the solid solubility limit was achieved via ion implantation of 15 keV {sup 48}Ti{sup +} at doses of 10{sup 12} to 10{sup 16} cm{sup −2} followed by pulsed laser melting using a Nd:YAG laser (FWHM = 6 ns) operating at 355 nm. All implanted layers were examined using cross-sectional transmission electron microscopy, and only the 10{sup 16} cm{sup −2} Ti implant dose showed evidence of Ti clustering in a microstructure with a pattern of Ti-rich zones. The liquid phase diffusivity and diffusive velocity of Ti in Si were estimated to be 9 × 10{sup −4} cm{sup 2}/s and (2 ± 0.5) × 10{sup 4} m/s,more » respectively. Using these results the morphological stability limit for planar resolidification of Si:Ti was evaluated, and the results indicate that attaining sufficient concentrations of Ti in Si to reach the nominal Mott transition in morphologically stable plane-front solidification should occur only for velocities so high as to exceed the speed limits for crystalline regrowth in Si(111)« less

  20. Stopping power for 4.8-6.8 MeV C ions along [1 1 0] and [1 1 1] directions in Si

    NASA Astrophysics Data System (ADS)

    Yoneda, Tomoaki; Horikawa, Junsei; Saijo, Satoshi; Arakawa, Masakazu; Yamamoto, Yukio; Yamamoto, Yasukazu

    2018-06-01

    The stopping power for C ions with energies in the range of 4.8-6.8 MeV were investigated in a SIMOX (Separation by IMplanted OXygen into silicon) structure of Si(1 0 0)/SiO2/Si(1 0 0). Backscattering spectra were measured for random and channeling incidence along the [1 1 0] and [1 1 1] axes. The scattering angle was set to 90° to avoid an excessive decrease of the kinematic factor. The ratios of [1 1 0] and [1 1 1] channeling to the random stopping power were determined to be around 0.65 and 0.77 for 4.8-6.8 MeV ions, respectively. The validity of the impact parameter dependent stopping power calculated using Grande and Schiwietz's CasP (convolution approximation for swift particles) code was confirmed. The C ion trajectories and flux distributions in crystalline silicon were calculated by Monte Carlo simulation. The stopping power calculated with the CasP code is almost in agreement with the experimental results within the accuracy of measurement.

  1. Direct evidence of the recombination of silicon interstitial atoms at the silicon surface

    NASA Astrophysics Data System (ADS)

    Lamrani, Y.; Cristiano, F.; Colombeau, B.; Scheid, E.; Calvo, P.; Schäfer, H.; Claverie, Alain

    2004-02-01

    In this experiment, a Si wafer containing four lightly doped B marker layers epitaxially grown by CVD has been implanted with 100 keV Si + ions to a dose of 2 × 10 14 ions/cm 2 and annealed at 850 °C for several times in an RTA system in flowing N 2. TEM and SIMS analysis, in conjunction with a transient enhanced diffusion (TED) evaluation method based on the kick-out diffusion mechanism, have allowed us to accurately study the boron TED evolution in presence of extended defects. We show that the silicon surface plays a key role in the recombination of Si interstitial atoms by providing the first experimental evidence of the resulting Si ints supersaturation gradient between the defect region and the surface. Our results indicate an upper limit of about 200 nm for the surface recombination length of Si interstitials at 850 °C in a N 2 ambient.

  2. Effects of lithium-implantation on the hydrogen retention in both a-C:H and a-SiC:H materials submitted to deuterium bombardment

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Ross, G. G.; El Khakani, M. A.; Chevarier, N.; Chevarier, A.

    1997-02-01

    The hydrogen release in plasma facing materials is a challenging problem for the hydrogen recycling. The hydrogen desorption from the a-C:H and a-SiC:H materials induced by deuterium bombardment has been investigated. Prior to the deuterium bombardment, both materials were implanted with different fluences of lithium ions. Before and after each irradiation, depth profiles of H, Li and deuterium were determined by nuclear microanalysis. After deuterium bombardment, it is shown that the retention of the initial hydrogen in both materials was enhanced by increasing the total dose of the implanted Li. For the a-C:H samples, the hydrogen desorption under deuterium bombardment was strongly reduced by lithium implantation. This effect was also evidenced in a-SiC:H samples, even though it is less spectacular than in a-C:H. Also, nuclear analyses showed that the retained dose of deuterium decreases when the lithium concentration increases. This could be a result of the formation of LiH bonds which occurs to the detriment of deuterium retention in both a-C:H and a-SiC:H materials. Preliminary results of both materials exposed to TdeV tokamak discharges confirms the role of Li in hydrogen retention, already observed in deuterium bombardment exposure.

  3. Characterization of Si p-i-n diode for scanning transmission ion microanalysis of biological samples

    NASA Astrophysics Data System (ADS)

    Devès, G.; Matsuyama, S.; Barbotteau, Y.; Ishii, K.; Ortega, R.

    2006-05-01

    The performance of a silicon p-i-n diode (Hamamatsu S1223-01) for the detection of charged particles was investigated and compared with the response of a standard passivated implanted planar silicon (PIPS) detector. The photodiode was characterized by ion beam induced charge collection with a micrometer spatial resolution using proton and alpha particle beams in the 1-3MeV energy range. Results indicate that homogeneity, energy resolution, and reproducibility of detection of charged particles enable the use of the low cost silicon p-i-n device as a replacement of conventional PIPS detector during scanning transmission ion microanalysis experiments. The Si p-i-n diode detection setup was successfully applied to scanning transmission ion microscopy determination of subcellular compartments on human cancer cultured cells.

  4. Group III impurities Si interstitials interaction caused by ion irradiation

    NASA Astrophysics Data System (ADS)

    Romano, L.; Piro, A. M.; De Bastiani, R.; Grimaldi, M. G.; Rimini, E.

    2006-01-01

    The off-lattice displacement of substitutional impurities (B, Ga) in Si caused by irradiation with energetic light ion beams has been investigated. Samples have been prepared by solid phase epitaxy (SPE) of pre-amorphized Si subsequently implanted with B and Ga at a concentration of about 1 × 1020 at/cm3 confined in a 300 nm thick surface region. The off-lattice displacement of the impurities was induced at room temperature (RT) by irradiation with high energy (>600 keV) light ion beams (H, He) and detected by the channelling technique along different axes, using the 11B(p,α)8Be reaction and standard RBS, for B and Ga, respectively. The normalized channelling yield χ of the impurity signal increases with the ion fluence, indicating a progressive off-lattice displacement of the dopant during irradiation, until it saturates at χF < 1 suggesting a non-random displacement of the dopant. Although the precise value of χF depends on the channelling direction and dopant species, the off-lattice displacement rate, deduced from the χ versus interstitial fluence curve, only depends on the excess of Si self-interstitials (SiI) generated by the irradiating beam through a parameter σ that can be interpreted as an effective cross-section for the impurity-SiI interaction.

  5. Study of silicon doped with zinc ions and annealed in oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less

  6. Determination of the implantation dose in silicon wafers by X-ray fluorescence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klockenkaemper, R.; Becker, M.; Bubert, H.

    1990-08-01

    The ion dose implanted in silicon wafers was determined by X-ray fluorescence analysis after the implantation process. As only near-surface layers below 1-{mu}m thickness were considered, the calibration could be carried out with external standards consisting of thin films of doped gelatine spread on pure wafers. Dose values for Cr and Co were determined between 4 {times} 10{sup 15} and 2 {times} 10{sup 17} atoms/cm{sup 2}, the detection limits being about 3 {times} 10{sup 14} atoms/cm{sup 2}. The results are precise and accurate apart from a residual scatter of less than 7%. This was confirmed by flame atomic absorption spectrometrymore » after volatilization of the silicon matrix as SiF{sub 4}. It was found that ion-current measurements carried out during the implantation process can have considerable systematic errors.« less

  7. Homojunction silicon solar cells doping by ion implantation

    NASA Astrophysics Data System (ADS)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  8. MeV Si ion modifications on the thermoelectric generators from Si/Si + Ge superlattice nano-layered films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Heidary, K.; Johnson, R. B.; Colon, T.; Muntele, C.; Ila, D.

    2014-08-01

    The performance of thermoelectric materials and devices is characterized by a dimensionless figure of merit, ZT = S2σT/K, where, S and σ denote, respectively, the Seebeck coefficient and electrical conductivity, T is the absolute temperature in Kelvin and K represents the thermal conductivity. The figure of merit may be improved by means of raising either S or σ or by lowering K. In our laboratory, we have fabricated and characterized the performance of a large variety of thermoelectric generators (TEG). Two TEG groups comprised of 50 and 100 alternating layers of Si/Si + Ge multi-nanolayered superlattice films have been fabricated and thoroughly characterized. Ion beam assisted deposition (IBAD) was utilized to assemble the alternating sandwiched layers, resulting in total thickness of 300 nm and 317 nm for 50 and 100 layer devices, respectively. Rutherford Backscattering Spectroscopy (RBS) was employed in order to monitor the precise quantity of Si and Ge utilized in the construction of specific multilayer thin films. The material layers were subsequently impregnated with quantum dots and/or quantum clusters, in order to concurrently reduce the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and raise the cross plane electrical conductivity. The quantum dots/clusters were implanted via the 5 MeV Si ion bombardment which was performed using a Pelletron high energy ion beam accelerator. We have achieved remarkable results for the thermoelectric and optical properties of the Si/Si + Ge multilayer thin film TEG systems. We have demonstrated that with optimal setting of the 5 MeV Si ion beam bombardment fluences, one can fabricate TEG systems with figures of merits substantially higher than the values previously reported.

  9. Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Park, Joon Seok

    2008-10-01

    Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique. Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets. Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective supply of the "fuel" (oxygen and hydrogen gas), the performance of an SOFC device is primarily limited by the Ohmic resistance of the electrolyte and the electrochemical reaction kinetics at the electrode/electrolyte interfaces. While the former constraint may be substantially diminished by reducing the electrolyte's physical dimension into nanoscale thin films, the incorporation of oxygen ions into YSZ from the cathode side remains a relatively sluggish process. In order to study how structural modifications influence the effectiveness of the oxygen transfer at the cathode/YSZ boundary, ion implantation at different energies and doses was performed on the electrolyte, prior to the deposition of platinum (Pt) electrodes. Xenon ions (Xe+) were used as the implant species, and the irradiation was done on atomic layer deposited (ALD) YSZ films and monocrystalline YSZ (001) substrates. From direct electrochemical measurements on fuel cell structures made on the ALD layers, an improvement by a factor of two was witnessed in the peak power density with relatively low implantation dose (10 13 cm-2) as compared to no irradiation. However the fuel cell properties worsened significantly with elevated dosage. Cross sectional TEM images of xenon implanted YSZ single crystals demonstrated the evidence of considerable defect accumulation (dislocation loops and extended dislocation lines) at 1015 and 1016 cm-2 doses. It is speculated that the bombardment with a relatively low concentration of xenon generates an optimum density of structural defects in the electrolyte that facilitate the incorporation or diffusion of O2- ions, whereas at higher radiation fluences the associated buildup of the imperfections or the implanted elements themselves may act as impediments to the anion transfer and conduction.

  10. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  11. On the temperature dependence of Na migration in thin SiO 2 films during ToF-SIMS O 2+ depth profiling

    NASA Astrophysics Data System (ADS)

    Krivec, Stefan; Detzel, Thomas; Buchmayr, Michael; Hutter, Herbert

    2010-10-01

    The detection of Na in insulating samples by means of time of flight-secondary ion mass spectrometry (ToF-SIMS) depth profiling has always been a challenge. In particular the use of O 2+ as sputter species causes a severe artifact in the Na depth distribution due to Na migration under the influence of an internal electrical filed. In this paper we address the influence of the sample temperature on this artifact. It is shown that the transport of Na is a dynamic process in concordance with the proceeding sputter front. Low temperatures mitigated the migration process by reducing the Na mobility in the target. In the course of this work two sample types have been investigated: (i) A Na doped PMMA layer, deposited on a thin SiO 2 film. Here, the incorporation behavior of Na into SiO 2 during depth profiling is demonstrated. (ii) Na implanted into a thin SiO 2 film. By this sample type the migration behavior could be examined when defects, originating from the implantation process, are present in the SiO 2 target. In addition, we propose an approach for the evaluation of an implanted Na profile, which is unaffected by the migration process.

  12. Precipitates and voids in cubic silicon carbide implanted with 25Mg+ ions

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Schreiber, Daniel K.; Jung, Hee Joon; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2018-01-01

    Single crystal cubic phase silicon carbide (3C-SiC) films on Si were implanted to 9.6 × 101625Mg+/cm2 at 673 K and annealed at 1073 and 1573 K for 2, 6, and 12 h in an Ar environment. The data from scanning transmission election microscopy (STEM) and electron energy loss spectroscopy (EELS) mapping suggest a possible formation of unidirectionally aligned tetrahedral precipitates of core (MgC2)-shell (Mg2Si) in the implanted sample annealed at 1573 K for 12 h. There are also small spherical voids near the surface and larger faceted voids around the region of maximum vacancy concentration. Atom probe tomography confirms 25Mg segregation dominated by small atomic clusters with local 25Mg concentrations up to 85 at.%. The resulting precipitate size and number density are found to decrease and increase, respectively, probably as a result of the thermal annealing that decomposes the 25Mg-bearing precipitates at the elevated temperatures and subsequent nucleation and growth below 1073 K during the cooling stage. The results from this study provide data needed to fully understand the property degradation of SiC in a high-flux fast neutron environment.

  13. Full wafer size investigation of N+ and P+ co-implanted layers in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Blanqué, S.; Lyonnet, J.; Pérez, R.; Terziyska, P.; Contreras, S.; Godignon, P.; Mestres, N.; Pascual, J.; Camassel, J.

    2005-03-01

    We report a full wafer size investigation of the homogeneity of electrical properties in the case of co-implanted nitrogen and phosphorus ions in 4H-SiC semi-insulating wafers. To match standard industrial requirements, implantation was done at room temperature. To achieve a detailed electrical knowledge, we worked on a 35 mm wafer on which 77 different reticules have been processed. Every reticule includes one Hall cross, one Van der Pauw test structure and different TLM patterns. Hall measurements have been made on all 77 different reticules, using an Accent HL5500 Hall System® from BioRad fitted with an home-made support to collect data from room temperature down to about 150 K. At room temperature, we find that the sheet carrier concentration is only 1/4 of the total implanted dose while the average mobility is 80.6 cm2/Vs. The standard deviation is, typically, 1.5 cm2/Vs.

  14. Effects of oxygen-inserted layers on diffusion of boron, phosphorus, and arsenic in silicon for ultra-shallow junction formation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.

    2018-03-01

    The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.

  15. Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Lin; Oyoshi, Keiji; Chao, Der-Sheng; Tsai, Hsu-Sheng; Hong, Wei-Lun; Takeda, Yoshihiko; Liang, Jenq-Horng

    2016-05-01

    In recent years, gold (Au) nanoparticles have been synthesized via various methods and used in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes high absorption in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that greater efficiency in the photoluminescence (PL) originating from oxygen deficiency centers (ODC) can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated in this study. The results revealed that a clear absorption peak at approximately 530 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as post-annealing temperature and ambient. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 320, 360, 460, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2. In addition, the PL peak intensities increased as post-annealing temperature increased, a finding contradictory to the defect recovery but highly consistent with the SPR tendency. A maximum PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 °C for 1 h under N2. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects as well as enhance PL emission resulting from defect-related luminescence centers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It ismore » known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.« less

  17. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.

    2016-08-01

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  18. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  19. GaAs/GaAlAs distributed Bragg reflector laser with a focused ion beam, low dose dopant implanted grating

    NASA Technical Reports Server (NTRS)

    Wu, M. C.; Boenke, M. M.; Wang, S.; Clark, W. M., Jr.; Stevens, E. H.

    1988-01-01

    The performance of a GaAs/GaAlAs distributed Bragg reflector (DBR) laser using a focused ion beam implanted grating (FIB-DBR) is reported for the first time. Stripes of Si(2+) with a period of 2300 A and a dose about 10 to the 14th/sq cm are directly implanted into the passive large optical cavity layer to provide the distributed feedback. Surface-emitting light from the second-order grating is observed. Threshold current of 110 mA and single DBR mode operation from 20 to 40 C are obtained. The wavelength tuning rate with temperature is 0.8 A/C. The coupling coefficient is estimated to be 15/cm. The results show that FIB technology is practical for distributed feedback and DBR lasers and optoelectronic integrated circuits.

  20. Total dose radiation test methodologies for advanced spacecraft electronics experiencing enhanced low dose rate sensitivity

    NASA Astrophysics Data System (ADS)

    Ashton, Chris

    The purpose of this thesis is to determine whether hydrogen can be implanted into elec- tronic components for the goal of investigating low ionising dose rate sensitivity, and using this to suggest whether hydrogen implantation can be used as an accelerated method to detect ELDRS (Enhanced Low Dose Rate Sensitivity) susceptability. Current ground testing methods for total ionising dose irradiate using cobalt-60 at dose rates greater than 10mGy(Si)/s up to 200Gy. It has been found that bipolar devices show an increased susceptibility to radiation induced damage at dose rates below 10mGy(Si)/s known as ELDRS. Current research has linked ELDRS susceptibility with hydrogen content within the integrated circuit and experiments based upon hydrogen soaking de-lidded bipolar devices demonstrate this relationship, however this has not led to an accepted method for testing ELDRS susceptibility in previously un-tested devices. In this thesis, a novel proposal is put forward whereby bipolar devices are directly implanted with hydrogen using a targeted ion beam in order to accelerate the testing process. Hydrogen implantation via a 600keV ion beam has been achieved to a level of 10. 17 H/cm. 2 in Analog Device’s AD590KF temperature transducer, and 10. 14-15 H/cm. 2in National Semiconductor’s LM124 quad operational amplifiers. Devices were decapped, optically analysed, and targeted with a focussed proton beam. These devices were then irradiated at 15mGy/s, 5mGy/s and 15mGy/s. Increased degradation was seen at lower dose rates which was matched by high dose rate irradiation of the implanted devices followed by a room temperature anneal. The use of ion implantation for the development of an accelerated ELDRS test method is proposed. This thesis demonstrated that hydrogen can be succesfully implanted into devices, established an upper bound for the LM124 for implantation and a lower bound for hydrogen remaining in the target area and the effect of hydrogen implantation on the AD590 temperature transducer is discussed. This thesis concludes by suggesting hydrogen implantation as a method for use by manufacturers during the design and investigation of intrinsically ELDRS-free technologies.

  1. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, S.; Nagar, S.; Chakrabarti, S., E-mail: subho@ee.iitb.ac.in

    2014-08-11

    ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101{sup ¯}0〉 and 〈101{sup ¯}3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering andmore » localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.« less

  2. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  3. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.

    PubMed

    Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning

    2017-01-24

    The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10 17 ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.

  4. Modified spontaneous emission of silicon nanocrystals embedded in artificial opals

    NASA Astrophysics Data System (ADS)

    Janda, Petr; Valenta, Jan; Rehspringer, Jean-Luc; Mafouana, Rodrigue R.; Linnros, Jan; Elliman, Robert G.

    2007-10-01

    Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the (1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.

  5. Low cost solar array project: Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.

  6. Expansion and melting of Xe nanocrystals in Si

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan

    2006-12-01

    Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.

  7. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  8. Doping of two-dimensional MoS2 by high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  9. Annealing kinetics of radiation defects in boron-implanted p-Hg1‑xCdxTe

    NASA Astrophysics Data System (ADS)

    Talipov, Niyaz; Voitsekhovskii, Alexander

    2018-06-01

    The results of studying the annealing kinetics of the radiation-induced donor-type defects in boron implanted p-type Hg1‑x Cd x Te (MCT) are presented. The annealing kinetics of the radiation donor centers depend significantly on the dose of B+ ions, that is on the initial level of structural defects generated in the MCT lattice by ion bombardment. The activation energy E A of annealing of donor defects generated by implantation of B+ ions increases with increasing dose and temperature of the post-implantation heat treatment under the SiO2 cap. The smaller the dose and the higher the initial hole concentration in p-MCT, the lower the temperature of a complete annealing of donor centers, which lies in the range 220–275 °C. In the initial stages of the post-implantation heat treatment, primary donor defects are annealed, and then, more stable secondary impurity-defect complexes are annealed. It was established for the first time that the activation energy of the donor defects annealing in bulk crystals and heteroepitaxial structures of MCT has two clearly pronounced regions: at low temperatures 90–130 °C, E A = 0.06 eV and at Т = 150–250 °C, E A = 0.71–0.86 eV.

  10. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang

    2018-02-01

    Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.

  11. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  12. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  13. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  14. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  15. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  16. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  17. Effect of the order of He{sup +} and H{sup +} ion co-implantation on damage generation and thermal evolution of complexes, platelets, and blisters in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daghbouj, N.; Faculté des Sciences de Monastir, Université de Monastir, Monastir; Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr

    2016-04-07

    Hydrogen and helium co-implantation is nowadays used to efficiently transfer thin Si layers and fabricate silicon on insulator wafers for the microelectronic industry. The synergy between the two implants which is reflected through the dramatic reduction of the total fluence needed to fracture silicon has been reported to be strongly influenced by the implantation order. Contradictory conclusions on the mechanisms involved in the formation and thermal evolution of defects and complexes have been drawn. In this work, we have experimentally studied in detail the characteristics of Si samples co-implanted with He and H, comparing the defects which are formed followingmore » each implantation and after annealing. We show that the second implant always ballistically destroys the stable defects and complexes formed after the first implant and that the redistribution of these point defects among new complexes drives the final difference observed in the samples after annealing. When H is implanted first, He precipitates in the form of nano-bubbles and agglomerates within H-related platelets and nano-cracks. When He is implanted first, the whole He fluence is ultimately used to pressurize H-related platelets which quickly evolve into micro-cracks and surface blisters. We provide detailed scenarios describing the atomic mechanisms involved during and after co-implantation and annealing which well-explain our results and the reasons for the apparent contradictions reported at the state of the art.« less

  18. Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation

    NASA Astrophysics Data System (ADS)

    Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.

    2006-11-01

    Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.

  19. Experimental study on the 4H-SiC-based VDMOSFETs with lightly doped P-well field-limiting rings termination

    NASA Astrophysics Data System (ADS)

    He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming

    2017-03-01

    A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.

  20. Analysis techniques of charging damage studied on three different high-current ion implanters

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Larson, L. A.; Current, M. I.; Lindsey, D. W.

    1989-02-01

    One of the Greater Silicon Valley Implant Users' Group's recent activities has been to sponsor a round-robin on charging damage, where identical wafers were implanted on three different state-of-the-art, high-current ion implanters. The devices studied were thin-dielectric (250 Å SiO2), polysilicon-gate MOS capacitors isolated by thick field oxide. The three implanters involved were the Varian/Extrion 160XP, the Eaton/Nova 10-80, and the Applied Materials PI9000. Each implanter vendor was given 48 wafers to implant with 100 keV As+ ions at a dose of 1 × 1016 cm-2. Parameters that were varied include the beam current, electron flood gun current, and chamber pressure. The charge-to-breakdown, breakdown voltage, and leakage current of several devices before anneal have been measured. The results from these tests were inconclusive as to the physical mechanism of charging and as to the effectiveness of techniques to reduce its impact on devices. However, the methodology of this study is discussed in detail to aid in the planning of future experiments. Authors' industrial affiliations: S.B. Felch, Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303, USA; L.A. Larson, National Semiconductor Corp., P.O. Box 58090, Santa Clara, CA 95052-8090, USA; M.I. Current, Applied Materials, 3050 Bowers Ave., Santa Clara, CA 95054, USA; D.W. Lindsey, Eaton/NOVA, 931 Benicia Ave, Sunnyvale, CA 94086, USA.

  1. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    NASA Astrophysics Data System (ADS)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  2. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  3. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Oreshko, A. P.

    2016-03-15

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2–5)-keV helium ions to a dose of D = 6 × 10{sup 15}–5 × 10{sup 17} cm{sup –2} have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ(z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 10{sup 16} cm{sup –2} leads to the formation of a 20- to 30-nm-thick amorphizedmore » surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.« less

  4. On-chip very low junction temperature GaN-based light emitting diodes by selective ion implantation

    NASA Astrophysics Data System (ADS)

    Cheng, Yun-Wei; Chen, Hung-Hsien; Ke, Min-Yung; Chen, Cheng-Pin; Huang, JianJang

    2008-08-01

    We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×1018 cm-3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the p-GaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.

  5. Clustering of gold particles in Au implanted CrN thin films: The effect on the SPR peak position

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Schmidt, E.; Mitrić, M.; Bibić, N.; Rakočević, Z.; Ronning, C.

    2017-12-01

    We report on the formation of gold particles in 280 nm thin polycrystalline CrN layers caused by Au+ ion implantation. The CrN layers were deposited at 150 °C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 150 keV Au+ ions to fluences of 2 × 1016 cm-2 to 4.1 × 1016 cm-2. The implanted layers were analysed by the means of Rutherford backscattering spectrometry, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry measurements. The results revealed that the Au atoms are situated in the near-surface region of the implanted CrN layers. At the fluence of 2 × 1016 cm-2 the formation of Au particles of ∼200 nm in diameter has been observed. With increasing Au ion fluence the particles coalesce into clusters with dimensions of ∼1.7 μm. The synthesized particles show a strong absorption peak associated with the excitation of surface plasmon resonances (SPR). The position of the SPR peak shifted in the range of 426.8-690.5 nm when the Au+ ion fluence was varied from 2 × 1016 cm-2 to 4.1 × 1016 cm-2. A correlation of the shift in the peak wavelength caused by the change in the particles size and clustering has been revealed, suggesting that the interaction between Au particles dominate the surface plasmon resonance effect.

  6. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficienciesmore » in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.« less

  7. Redistribution of phosphorus during Ni0.9Pt0.1-based silicide formation on phosphorus implanted Si substrates

    NASA Astrophysics Data System (ADS)

    Lemang, M.; Rodriguez, Ph.; Nemouchi, F.; Juhel, M.; Grégoire, M.; Mangelinck, D.

    2018-02-01

    Phosphorus diffusion and its distribution during the solid-state reactions between Ni0.9Pt0.1 and implanted Si substrates are studied. Silicidation is achieved through a first rapid thermal annealing followed by a selective etching and a direct surface annealing. The redistribution of phosphorus in silicide layers is investigated after the first annealing for different temperatures and after the second annealing. Phosphorus concentration profiles obtained thanks to time of flight secondary ion mass spectrometry and atom probe tomography characterizations for partial and total reactions of the deposited 7 nm thick Ni0.9Pt0.1 film are presented. Phosphorus segregation is observed at the Ni0.9Pt0.1 surface and at Ni2Si interfaces during Ni2Si formation and at the NiSi surface and the NiSi/Si interface after NiSi formation. The phosphorus is evidenced in low concentrations in the Ni2Si and NiSi layers. Once NiSi is formed, a bump in the phosphorus concentration is highlighted in the NiSi layer before the NiSi/Si interface. Based on these profiles, a model for the phosphorus redistribution is proposed to match this bump to the former Ni2Si/Si interface. It also aims to bind the phosphorus segregation and its low concentration in different silicides to a low solubility of phosphorus in Ni2Si and in NiSi and a fast diffusion of phosphorus at their grain boundaries. This model is also substantiated by a simulation using a finite difference method in one dimension.

  8. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  9. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology.

    PubMed

    Llobet, J; Rius, G; Chuquitarqui, A; Borrisé, X; Koops, R; van Veghel, M; Perez-Murano, F

    2018-04-02

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  10. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    NASA Astrophysics Data System (ADS)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  11. Characteristics of nanocomposites and semiconductor heterostructure wafers using THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Altan, Hakan

    All optical, THz-Time Domain Spectroscopic (THz-TDS) methods were employed towards determining the electrical characteristics of Single Walled Carbon Nanotubes, Ion Implanted Si nanoclusters and Si1-xGe x, HFO2, SiO2 on p-type Si wafers. For the nanoscale composite materials, Visible Pump/THz Probe spectroscopy measurements were performed after observing that the samples were not sensitive to the THz radiation alone. The results suggest that the photoexcited nanotubes exhibit localized transport due to Lorentz-type photo-induced localized states from 0.2 to 0.7THz. The THz transmission is modeled through the photoexcited layer with an effective dielectric constant described by a Drude + Lorentz model and given by Maxwell-Garnett theory. Comparisons are made with other prevalent theories that describe electronic transport. Similar experiments were repeated for ion-implanted, 3-4nm Si nanoclusters in fused silica for which a similar behavior was observed. In addition, a change in reflection from Si1-xGex on Si, 200mm diameter semiconductor heterostructure wafers with 10% or 15% Ge content, was measured using THz-TDS methods. Drude model is utilized for the transmission/reflection measurements and from the reflection data the mobility of each wafer is estimated. Furthermore, the effect of high-kappa dielectric material (HfO2) on the electrical properties of p-type silicon wafers was characterized by utilizing non-contact, differential (pump-pump off) spectroscopic methods to differ between HfO2 and SiO 2 on Si wafers. The measurements are analyzed in two distinct transmission models, where one is an exact representation of the layered structure for each wafer and the other assumed that the response observed from the differential THz transmission was solely due to effects from interfacial traps between the dielectric layer and the substrate. The latter gave a more accurate picture of the carrier dynamics. From these measurements the effect of interfacial defects on transmission and mobility are quantitatively discussed.

  12. High level active n+ doping of strained germanium through co-implantation and nanosecond pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.

    2018-04-01

    Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.

  13. Origin of threshold voltage fluctuation caused by ion implantation to source and drain extensions of silicon-on-insulator triple-gate fin-type field-effect transistors using three-dimensional process and device simulations

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Toshiyuki

    2018-06-01

    The threshold voltage (V th) fluctuation induced by ion implantation (I/I) in the source and drain extensions (SDEs) of a silicon-on-insulator (SOI) triple-gate (Tri-Gate) fin-type field-effect transistor (FinFET) was analyzed by both three-dimensional (3D) process and device simulations collaboratively. The origin of the V th fluctuation induced by the SDE I/I is basically a variation of a bottleneck barrier height (BBH) due to implanted arsenic (As+) ions. In particular, a very low and broad V th distribution in the saturation region is due to percolative conduction in addition to the BBH variation. Moreover, it is surprisingly found that the V th fluctuation is mostly characterized by the BBH of only a top surface center line of a Si fin of the device. Our collaborative approach by 3D process and device simulations is dispensable for the accurate investigation of variability-tolerant devices. The obtained results are beneficial for the research and development of such future devices.

  14. Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer

    NASA Astrophysics Data System (ADS)

    Park, Young-Bae; Ruglovsky, Jennifer L.; Atwater, Harry A.

    2004-07-01

    Single crystal BaTiO3 thin films have been transferred onto Pt-coated and Si3N4-coated substrates by the ion implantation-induced layer transfer method using H + and He+ ion coimplantation and subsequent annealing. The transferred BaTiO3 films are single crystalline with root mean square roughness of 17nm. Polarized optical and piezoresponse force microscopy (PFM) indicate that the BaTiO3 film domain structure closely resembles that of bulk tetragonal BaTiO3 and atomic force microscopy shows a 90° a -c domain structure with a tetragonal angle of 0.5°-0.6°. Micro-Raman spectroscopy indicates that the local mode intensity is degraded in implanted BaTiO3 but recovers during anneals above the Curie temperature. The piezoelectric coefficient, d33, is estimated from PFM to be 80-100pm/V and the coercive electric field (Ec) is 12-20kV/cm, comparable to those in single crystal BaTiO3.

  15. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Zhang, Yanwen; Zhu, Zihua

    Accurate information of electronic stopping power is fundamental for broad advances in electronic industry, space exploration, national security, and sustainable energy technologies. The Stopping and Range of Ions in Matter (SRIM) code has been widely applied to predict stopping powers and ion distributions for decades. Recent experimental results have, however, shown considerable errors in the SRIM predictions for stopping of heavy ions in compounds containing light elements, indicating an urgent need to improve current stopping power models. The electronic stopping powers of 35Cl, 80Br, 127I, and 197Au ions are experimentally determined in two important functional materials, SiC and SiO2, frommore » tens to hundreds keV/u based on a single ion technique. By combining with the reciprocity theory, new electronic stopping powers are suggested in a region from 0 to 15 MeV, where large deviations from SRIM predictions are observed. For independent experimental validation of the electronic stopping powers we determined, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC with energies from 700 keV to 15 MeV. The measured ion distributions from both RBS and SIMS are considerably deeper (up to ~30%) than the predictions from the commercial SRIM code. In comparison, the new electronic stopping power values are utilized in a modified TRIM-85 (the original version of the SRIM) code, M-TRIM, to predict ion distributions, and the results are in good agreement with the experimentally measured ion distributions.« less

  17. The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering

    NASA Astrophysics Data System (ADS)

    McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.

    2000-03-01

    β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.

  18. Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films

    NASA Astrophysics Data System (ADS)

    Dupré, C.; Ernst, T.; Hartmann, J.-M.; Andrieu, F.; Barnes, J.-P.; Rivallin, P.; Faynot, O.; Deleonibus, S.; Fazzini, P. F.; Claverie, A.; Cristoloveanu, S.; Ghibaudo, G.; Cristiano, F.

    2007-11-01

    Based on electrical measurements and transmission electron microscopy (TEM) imaging, we propose an explanation for the electron and hole mobility degradation with gate length reduction in metal-oxide-semiconductor field effect transistors (MOSFETs). We demonstrate that ion implantation, normally used for source/drain doping, is responsible for transport degradation for short-channel devices. Implantation impact on electrons and holes mobility was investigated both on silicon-on-insulator (SOI) and tensile strained silicon-on-insulator (sSOI) substrates. Wafers with ultrathin Si films (from 8 to 35 nm) were Ge implanted at 3 keV and various concentrations (from 5×1014 to 2×1015 atoms cm-2), then annealed at 600 °C for 1 h. Secondary ion mass spectrometry enabled us to quantify the Ge-implanted atoms concentrations. The end-of-range defects impact on mobility was investigated with the pseudo-MOSFET technique. Measurements showed a mobility decrease as the implantation dose increased. We demonstrated that sSOI mobility is more sensitive to implantation than SOI mobility, without any implantation-induced strain relaxation in sSOI (checked using the ultraviolet Raman technique). A 36% (25%) holes (electrons) mobility degradation was measured for sSOI, while SOI presented a 21% mobility degradation for holes and 5% for electrons. Finally, the electrical results were compared with morphological studies. Plan-view TEM showed the presence of interstitial defects formed during ion implantation and annealing. The defect density was estimated to be two times higher in sSOI than in SOI, which is in full agreement with electrical results mentioned before. The results are relevant for the optimization of the source and drain regions of advanced nanoscale SOI and sSOI transistors.

  19. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  20. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Lützenkirchen-Hecht, D.

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-raymore » photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.« less

  1. Method for manufacturing compound semiconductor field-effect transistors with improved DC and high frequency performance

    DOEpatents

    Zolper, John C.; Sherwin, Marc E.; Baca, Albert G.

    2000-01-01

    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is formed and a single anneal at moderate temperature is then performed. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions co-implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region of the Si-channel tail, but does not contribute substantially to the acceptor concentration in the buried p region. As a result, the invention provides for improved field effect semiconductor and related devices with enhancement of both DC and high-frequency performance.

  2. Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ina, Ginnosuke; Fujii, Tatsuya; Kozeki, Takahiro; Miura, Eri; Inoue, Shozo; Namazu, Takahiro

    2017-06-01

    In this study, we investigate the effects of focused ion beam (FIB)-induced damage and specimen size on the mechanical properties of Si nanowires (NWs) by a microelectromechanical system (MEMS)-based tensile testing technique. By an FIB fabrication technique, three types of Si NWs, which are as-FIB-fabricated, annealed, and FIB-implanted NWs, are prepared. A sacrificial-oxidized NW is also prepared to compare the mechanical properties of these FIB-based NWs. The quasi-static uniaxial tensile tests of all the NWs are conducted by scanning electron microscopy (SEM). The fabrication process and specimen size dependences on Young’s modulus and fracture strength are observed. Annealing is effective for improving the Young’s modulus of the FIB-damaged Si. Transmission electron microscopy (TEM) suggests that the mechanism behind the process dependence on the mechanical characteristics is related to the crystallinity of the FIB-damaged portion.

  3. Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Mu, Xiaoyu; Wang, Gang; Liu, Changlong

    2017-11-01

    By etching two SiO2 optical waveguide slabs separately implanted with 90 keV Ag ions and 60 keV Cu ions at the same dose of 6 × 1016 cm-2, two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers with 600-nm periodicity and 100-nm thickness were fabricated, and their structural and vertical input coupling properties were investigated. Experimental results revealed that the two couplers could convert light beams at wavelengths of 620-880 nm into guided waves with different efficiencies, highlighting the special importance of metal nanoparticles (NPs). Further discussions also revealed that owing to the introduction of periodically distributed metal NPs, the periodical phase modification of the transmitted beam was enhanced drastically, and the nanocomposite veins could behave as efficient light scatterers. As a result, the two couplers were much larger in coupling efficiency than the NP-free one with identical morphological parameters. The above findings may be useful to construct thin and short but efficient surface-relief grating couplers on glass optical waveguides.

  4. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  5. Method of forming thermally stable high-resistivity regions in n-type indium phosphide by oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P.E.; Dietrich, H.B.

    1985-12-12

    Objects of this invention are: to form high-temperature stable isolation regions in InP; to provide InP wafers that allow greater flexibility in the design and fabrication of discrete devices; to provide new and improved InP semiconductor devices in n-type InP; to provide high-resisitivity isolation regions in InP; to extend the usefulness of damage-induced isolation in n-type InP by making possible processes in which the isolation implantation precedes the alloying of ohmic contacts; and to provide n-type InP substrates without unwanted conductive layers. The above and other object are realized by an InP wafer comprising a S.I. InP substrate; a n-typemore » InP active layer disposed on the substrate; and oxygen ion implanted isolation regions disposed in the active layer. The S.I. InP dopant may comprise either Fe or Cr.« less

  6. Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4.

    PubMed

    Fagerlund, S; Massera, J; Moritz, N; Hupa, L; Hupa, M

    2012-07-01

    This work studied the influence of sintering temperature on the phase composition, compression strength and in vitro properties of implants made of bioactive glass S53P4. The implants were sintered within the temperature range 600-1000°C. Over the whole temperature range studied, consolidation took place mainly via viscous flow sintering, even though there was partial surface crystallization. The mechanical strength of the implants was low but increased with the sintering temperature, from 0.7 MPa at 635°C to 10 MPa at 1000°C. Changes in the composition of simulated body fluid (SBF), the immersion solution, were evaluated by pH measurements and ion analysis using inductively coupled plasma optical emission spectrometry. The development of a calcium phosphate layer on the implant surfaces was verified using scanning electron microscopy-electron-dispersive X-ray analysis. When immersed in SBF, a calcium phosphate layer formed on all the samples, but the structure of this layer was affected by the surface crystalline phases. Hydroxyapatite formed more readily on amorphous and partially crystalline implants containing both primary Na(2)O·CaO·2SiO(2) and secondary Na(2)Ca(4)(PO(4))(2)SiO(4) crystals than on implants containing only primary crystals. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Chu, Paul K.; Yang, D. Z.

    2007-04-01

    Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.

  8. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  9. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  10. Round-robin study of arsenic implant dose measurement in silicon by SIMS

    NASA Astrophysics Data System (ADS)

    Simons, D.; Kim, K.; Benbalagh, R.; Bennett, J.; Chew, A.; Gehre, D.; Hasegawa, T.; Hitzman, C.; Ko, J.; Lindstrom, R.; MacDonald, B.; Magee, C.; Montgomery, N.; Peres, P.; Ronsheim, P.; Yoshikawa, S.; Schuhmacher, M.; Stockwell, W.; Sykes, D.; Tomita, M.; Toujou, F.; Won, J.

    2006-07-01

    An international round-robin study was undertaken under the auspices of ISO TC201/SC6 to determine the best analytical conditions and the level of interlaboratory agreement for the determination of the implantation dose of arsenic in silicon by secondary ion mass spectrometry (SIMS). Fifteen SIMS laboratories, as well as two laboratories that performed low energy electron-induced X-ray emission spectrometry (LEXES) and one that made measurements by instrumental neutron activation analysis (INAA) were asked to determine the implanted arsenic doses in three unknown samples using as a comparator NIST Standard Reference Material ® 2134. The use of a common reference material by all laboratories resulted in better interlaboratory agreement than was seen in a previous round-robin that lacked a common comparator. The relative standard deviation among laboratories was less than 4% for the medium-dose sample, but several percent larger for the low- and high-dose samples. The high-dose sample showed a significant difference between point-by-point and average matrix normalization because the matrix signal decreased in the vicinity of the implant peak, as observed in a previous study. The dose from point-by-point normalization was in close agreement with that determined by INAA. No clear difference in measurement repeatability was seen when comparing Si 2- and Si 3- as matrix references with AsSi -.

  11. High Mobility SiGe/Si n-Type Structures and Field Effect Transistors on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Ponchak, George E.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    SiGe/Si n-type modulation doped field effect transistors (MODFETs) fabricated on sapphire substrates have been characterized at microwave frequencies for the first time. The highest measured room temperature electron mobility is 1380 sq cm/V-sec at a carrier density of 1.8 x 10(exp 12)/sq cm for a MODFET structure, and 900 sq cm/V-sec at a carrier density of 1.3 x 10/sq cm for a phosphorus ion implanted sample. A two finger, 2 x 200 micron gate n-MODFET has a peak transconductance of 37 mS/mm at a drain to source voltage of 2.5 V and a transducer gain of 6.4 dB at 1 GHz.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (< {approx} 25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation schememore » is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developedmore » to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  14. Fabrication of Total-Dose-Radiation-Hardened (TDRH) SOI wafer with embedded silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Wu, Aimin; Wang, Xi; Wei, Xing; Chen, Jing; Chen, Ming; Zhang, Zhengxuan

    2009-05-01

    Si ion-implantation and post annealing of silicon wafers prior to wafer bonding were used to radiation-harden the thermal oxide layer of Silicon on Insulator structures. After grinding and polishing, Total-Dose-Radiation-Hardened SOI (TDRH-SOI) wafers with several-micron-thick device layers were prepared. Electrical characterization before and after X-ray irradiation showed that the flatband voltage shift induced by irradiation was reduced by this preprocessing. Photoluminescence Spectroscopy (PL), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated that the improvement of the total dose response of the TDRH-SOI wafer was associated with formation of Si nanoclusters in the implanted oxide layer, suggesting that these were the likely candidates for electron and proton trapping centers that reduce the positive charge buildup effect in the buried oxide.

  15. TOPICAL REVIEW: The doping process and dopant characteristics of GaN

    NASA Astrophysics Data System (ADS)

    Sheu, J. K.; Chi, G. C.

    2002-06-01

    The characteristic effects of doping with impurities such as Si, Ge, Se, O, Mg, Be, and Zn on the electrical and optical properties of GaN-based materials are reviewed. In addition, the roles of unintentionally introduced impurities, such as C, H, and O, and grown-in defects, such as vacancy and antisite point defects, are also discussed. The doping process during epitaxial growth of GaN, AlGaN, InGaN, and their superlattice structures is described. Doping using the diffusion process and ion implantation techniques is also discussed. A p-n junction formed by Si implantation into p-type GaN is successfully fabricated. The results on crystal structure, electrical resistivity, carrier mobility, and optical spectra obtained by means of x-rays, low-temperature Hall measurements, and photoluminescence are also discussed.

  16. Controlled atmosphere annealing of ion implanted gallium arsenide. Final report 1 Jul 76-30 Nov 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.L.; Eu, V.; Feng, M.

    1980-08-01

    Controlled atmosphere techniques were developed as an alternative to dielectric encapsulation for the high temperature anneal of ion implanted layers in GaAs. Two approaches: (1) the controlled atmosphere technique (CAT), and (2) the melt controlled ambient technique (MCAT) have been investigated. Using the CAT procedure, which involves annealing in flowing hydrogen with an arsenic overpressure, annealing without detectable surface erosion, has been performed at temperatures as high as 950 C, with or without encapsulants. Impurity diffusion, damage recovery, and electrical activity were investigated as a function of anneal parameters. Range studies of technologically important impurities such as S, Si, Se,more » Be and Mg were carried out. For the first time the role of the encapsulant on implanted profile degradation and the importance of Cr redistribution during the anneal cycle were determined. An improved CAT anneal system capable of production quantity throughput was developed and is in current use for device processing.« less

  17. In vitro biocompatibility of the surface ion modified NiTi alloy

    NASA Astrophysics Data System (ADS)

    Gudimova, Ekaterina Yu.; Meisner, Ludmila L.; Lotkov, Aleksander I.; Matveeva, Vera A.; Meisner, Stanislav N.; Matveev, Andrey L.; Shabalina, Olga I.

    2016-11-01

    This paper presents the results of the chemical, topographic and structural properties of the NiTi alloy surface and their changes after surface treatments by ion implantation techniques with use of ions Ta+ and Si+. The influence of physicochemical properties of the surface ion modified NiTi alloy was studied on in vitro cultured mesenchymal stem cells of the rats' bone marrow. It is shown that the ion surface modification improves histocompatibility of the NiTi alloy and leads to increase of proliferative activity of mesenchymal stem cells on its surface. It was experimentally found that a major contribution to viability improvement mesenchymal stem cells of rat marrow has the chemical composition and the microstructure of the surface area.

  18. Growth of WSi2 in phosphorous-implanted W/«Si» couples

    NASA Astrophysics Data System (ADS)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Alvi, N. S.; Hamdi, A. H.

    1988-05-01

    The thermal reaction of rf-sputter-deposited tungsten films with a (100) silicon substrate is investigated by vacuum furnace annealing and rapid thermal annealing. An irradiation of the W/Si interface by a phosphorous ion beam at room temperature prior to annealing promotes a uniform interfacial growth of WSi2. The growth of WSi2 follows diffusion-controlled kinetics during both furnace annealing and rapid thermal processing. A growth law of x2 = kt is obtained for furnace annealing between 690 and 740° C, where x is the thickness of the compound, t is the annealing duration after an initial incubation period and k = 62 (cm2/s) exp (--3.0 eV/kT). The surface smoothness of the suicide films improves with increasing ion dose.

  19. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  20. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen

    In today's fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption in thin film Si solar cells are of great importance and have been the focus of research for a few decades now. Another big issue of technology in this fast-paced world is the computing rate or data transfer rate between components of a chip in ultra-fast processors. Existing electronic interconnects suffering from the signal delays and heat generation issues are unable to handle high data rates. A possible solution to this problem is in replacing the electronic interconnects with optical interconnects which have large data carrying capacity. However, optical components are limited in size by the fundamental laws of diffraction to about half a wavelength of light and cannot be combined with nanoscale electronic components. Tremendous research efforts have been directed in search of an advanced technology which can bridge the size gap between electronic and photonic worlds. An emerging technology of "plasmonics'' which exploits the extraordinary optical properties of metal nanostructures to tailor the light at nanoscale has been considered a potential solution to both of the above-mentioned problems. Research conducted for this dissertation has an overall goal to investigate the optical properties of silicon with metal nanostructures for photovoltaics and advanced silicon photonics applications. The first part of the research focuses on achieving enhanced light trapping in poly-Si thin films using ion implantation induced surface texturing. In addition to surface texturing produced by H and Ar ion implantations, metal nanostructures are also added to the surface to further suppress light reflection at the plasmonic resonance of metal nanostructures. Remarkable suppression has been achieved resulting in reflection from the air/Si interface to below ˜5%. In the second part, optical properties of embedded metal nanostructures in silicon matrix gettered into the ion implantation created nanocavities are studied. Embedded nanostructures can have a huge impact in future photonics applications by replacing the existing electronic and photonic components such as interconnects, waveguides, modulators and amplifiers with their plasmonic counterparts. This new method of encapsulating metal nanostructures in silicon is cost-effective and compatible with silicon fabrication technology. Spectroscopic ellipsometry is used to study the dielectric properties of silicon with embedded silver nanostructures. High absorption regions around 900 nm, corresponding to plasmonic absorption of Ag nanoparticles in Si, have been observed and compared to theoretical calculations and simulation results. The possibility of modifying the dielectric function of Si with metal nanostructures can lay the foundation for functional base structures for advanced applications in silicon photonics, photovoltaics and plasmonics.

  1. Irradiation induced formation of VN in CrN thin films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Mitrić, M.; Bibić, N.

    2015-09-01

    Reactively sputtered CrN layer, deposited on Si(1 0 0) wafer, was implanted at room temperature with 80-keV V+ ions to the fluence of 2 × 1017 ions/cm2. After implantation the sample was annealed in a vacuum, for 2 h at 700 °C. The microstructure and chemical composition of CrN films was investigated using Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cross-sectional transmission electron microscopy (conventional and high-resolution), together with fast Fourier transformation analyses. It was found that vanadium atoms are distributed in the sub-surface region of CrN layer, with the maximum concentration at ∼20 nm. After annealing the formation of VN nanoparticles was observed. The nanoparticles are spherical shaped with a size of 8-20 nm in diameter.

  2. Formation of InAs nanocrystals in Si by high-fluence ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F.; Vlasukova, L.; Wesch, W.; Kamarou, A.; Milchanin, O.; Grechnyi, S.; Mudryi, A.; Ivaniukovich, A.

    2008-08-01

    We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 10 16 cm -2) and In (350 keV, 4.5 × 10 16 cm -2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 10 11 cm -2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.

  3. Area laser crystallized LTPS TFTs with implanted contacts for active matrix OLED displays

    NASA Astrophysics Data System (ADS)

    Persidis, Efstathios; Baur, Holger; Pieralisi, Fabio; Schalberger, Patrick; Fruehauf, Norbert

    2008-03-01

    We have developed a four mask low temperature poly-Si (LTPS) TFT process for p- and n-channel devices. Our PECVD deposited amorphous silicon is recrystallized to polycrystalline silicon with single area excimer laser crystallization while formation of drain and source is carried out with self aligned ion beam implantation. We have investigated implantation parameters, suitability of various metallizations as well as laser activation and annealing procedures. To prove the potential capability of our devices, which are suitable for conventional and inverted OLEDs alike, we have produced several functional active matrix backplanes implementing different pixel circuits. Our active matrix backplane process has been customized to drive small molecules as well as polymers, regardless if top or bottom emitting.

  4. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    NASA Astrophysics Data System (ADS)

    Friedland, E.

    2017-01-01

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  5. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    PubMed

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  6. The Selective Epitaxy of Silicon at Low Temperatures.

    NASA Astrophysics Data System (ADS)

    Lou, Jen-Chung

    1991-01-01

    This dissertation has developed a process for the selective epitaxial growth (SEG) of silicon at low temperatures using a dichlorosilane-hydrogen mixture in a hot-wall low pressure chemical vapor deposition (LPCVD) reactor. Some basic issues concerning the quality of epilayers --substrate preparation, ex-situ and in-situ cleaning, and deposition cycle, have been studied. We find it necessary to use a plasma etch to open epitaxial windows for the SEG of Si. A cycled plasma etch, a thin sacrificial oxide growth, and an oxide etching step can completely remove plasma-etch-induced surface damage and contaminants, which result in high quality epilayers. A practical wafer cleaning step is developed for low temperature Si epitaxial growth. An ex-situ HF vapor treatment can completely remove chemical oxide from the silicon surface and retard the reoxidation of the silicon surface. An in-situ low-concentration DCS cycle can aid in decomposition of surface oxide during a 900 ^circC H_2 prebake step. An HF vapor treatment combined with a low-concentration of DCS cycle consistently achieves defect-free epilayers at 850^circC and lower temperatures. We also show that a BF_sp{2}{+ } or F^+ ion implantation is a potential ex-situ wafer cleaning process for SEG of Si at low temperatures. The mechanism for the formation of surface features on Si epilayers is also discussed. Based on O ^+ ion implantation, we showed that the oxygen incorporation in silicon epilayers suppresses the Si growth rate. Therefore, we attribute the formation of surface features to the local reduction of the Si growth rate due to the dissolution of oxide islands at the epi/substrate interface. Finally, with this developed process for the SEG of silicon, defect-free overgrown epilayers are also obtained. This achievement demonstrates the feasibility for the future silicon-on-oxide (SOI) manufacturing technology.

  7. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.

  8. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    PubMed

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  10. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length

    PubMed Central

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-01-01

    AIM To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results. PMID:29564210

  11. Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

    NASA Astrophysics Data System (ADS)

    Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.

    2018-06-01

    Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.

  12. A computational atomistic study of the relaxation of ion-bombarded c-Si on experimental time-scales: an application of the kinetic Activation Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Mousseau, Normand

    2012-02-01

    The kinetic activation relaxation technique (kinetic ART) method, an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search,ootnotetextL. K. B'eland, P. Brommer, F. El-Mellouhi, J.-F. Joly and N. Mousseau, Phys. Rev. E 84, 046704 (2011). is used to study the relaxation of c-Si after Si^- bombardment at 3 keV. We describe the evolution of the damaged areas at room-temperature and above for periods of the order of seconds, treating long-range elastic deformations exactly. We assess the stability of the nanoscale structures formed by the damage cascade and the mechanisms that govern post-implantation annealing.

  13. Gallium and silicon synergistically promote osseointegration of dental implant in patients with osteoporosis.

    PubMed

    Liu, Jinsong; Wu, Zuosu; He, Hongli; Cai, Kaiyong; Zhang, Hualin; Xu, Lihua

    2017-06-01

    Over the last few decades, a wide variety of dental implants have been successfully placed in jaw bones to restore tooth function. But major challenges still remain in patients with osteoporosis involving compromised osseointegration, and the therapeutic methods is far from optimism. Gallium can directly inhibit bone osteolysis, prevent bone calcium release and augment bone mass, which makes Ga unique among the potential antiresorptive drugs. Silicon, as an indispensable modulator in bone formation, presents its bone anabolic effects, while reduces, at least doesn't increase, bone resorption. We hypothesize that the combination of bone anabolic effects of Si and antiresorptive effects of Ga will result in synergistic effects on the improvement of osteointegration under osteoporotic condition. In our strategy, in order to maximize the efficacy while minimize the side effects of ions, a novel titania mesoporous layer fabricated by electrochemical anodization on the surface of titanium implant will be employed as a promising local drug delivery system. The synergistic effects of Ga and Si on improving osseointegration will be verified by animal experiments, and be furthered by clinical trials. Our hypothesis could help to create an option to improve success rate of dental implants in osteoporotic patients. Copyright © 2017. Published by Elsevier Ltd.

  14. Ion implantation damage, annealing and dopant activation in epitaxial gallium nitride

    NASA Astrophysics Data System (ADS)

    Suvkhanov, Agajan

    2001-07-01

    Successful n- and p-doping of GaN is an extremely important technological problem. More recently, ion implantation has been used to achieve both n- and p-type GaN. The ion implantation process is accompanied by the presence of radiation defects as the result of the ion-solid interactions. The temperatures (above 1000°C) required for recovery of the implantation induced damage and dopant activation strongly affect the GaN's surface integrity due to the significant nitrogen vapor pressure. Preservation of the surface integrity of GaN during high temperature post-implantation annealing is one of the key issues in the fabrication of GaN-based light-emitting devices. The radiation damage build-up in the implanted GaN layers has been investigated as a function of ion dose and the substrate's temperature. Results of measurements of structural damage by the Rutherford backscattering/Channeling (RBS/C) and the spectroscopic ellipsometry (SE) techniques have demonstrated the complex nature of the damage build-up. Analysis of GaN implanted at high temperature has demonstrated the presence of competing processes of layer-by-layer damage build-up and defect annihilation. Using a capping layer and annealing in a sealed quartz capsule filled with dry nitrogen can preserve the integrity of the GaN's surface. In this work the ion-implanted GaN samples were capped with 40 run MOCVD (Metal Organic Chemical Vapor Deposition) grown AlN film prior to annealing. The results of this work showed the advantage of high-temperature annealing of implanted GaN in a quartz capsule with nitrogen ambient, as compared with annealing in argon and nitrogen gas flow. Partial to complete decomposition of the AlN cap and underlying GaN has been observed by RBS/C and SEM (Scanning electron microscopy) for the samples annealed in flowing argon, as well as for the samples processed in flowing nitrogen. Encapsulation with nitrogen overpressure prevented the decomposition of the AlN capping film and the GaN crystal, and made it possible to achieve optical activation of the implanted Mg + and Si+ ions. PL measurements at 16 K of GaN samples implanted with Mg+ and annealed in a capsule showed three relatively strong peaks at 211, 303, and 395 meV from the band-edge emission. The relative intensity of the "yellow" band emission (i.e. defect band) was several times lower in the case of annealing in a sealed capsule as compared to that of open anneals in flowing argon or nitrogen. A separate set of specially-grown GaN samples was used for low temperature (1.8 K) PL analysis of the activation properties of Mg+-implanted and Mg+/P+-implanted samples. The samples were annealed in Rapid thermal processor (RTP) at 1300°C for 10 s with AlON encapsulation in flowing N2. The Mg+ implants showed good optical activation, producing a dose-correlated acceptor bound exciton peak with 12.2 meV localization energy, and donor-to-acceptor and band-to-acceptor peaks at 3.270 and 3.284 eV, respectively. The spectroscopic Mg acceptor binding energy was found to be 224 meV. A broad peak at 2.35 eV is attributed to implantation-induced defects stable in p-type material.

  15. Angular dependant micro-ESR characterization of a locally doped Gd3+:Al2O3 hybrid system for quantum applications

    NASA Astrophysics Data System (ADS)

    Wisby, I. S.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindstrom, T.

    Rare-earth doped crystals interfaced with superconducting quantum circuitry are an attractive platform for quantum memory and transducer applications. Here we present a detailed characterization of a locally implanted Gd3+ in Al2O3 system coupled to a superconducting micro-resonator, by performing angular dependent micro-electron-spin-resonance (micro-ESR) measurements at mK temperatures. The device is fabricated using a hard Si3N4 mask to facilitate a local ion-implantation technique for precision control of the dopant location. The technique is found not to degrade the internal quality factor of the resonators which remains above 105 (1). We find the measured angular dependence of the micro-ESR spectra to be in excellent agreement with the modelled Hamiltonian, supporting the conclusion that the dopant ions are successfully integrated into their relevant lattice sites whilst maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our micro-resonator, emphasising the need for controllable local implantation. 1 Wisby et al. Appl. Phys. Lett. 105, 102601 (2014)

  16. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  17. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  18. Rare earth element abundances in presolar SiC

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  19. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  20. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  2. Advanced processing of gallium nitride and gallium nitride-based devices: Ultra-high temperature annealing and implantation incorporation

    NASA Astrophysics Data System (ADS)

    Yu, Haijiang

    This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.

  3. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  4. Selective high-resolution electrodeposition on semiconductor defect patterns.

    PubMed

    Schmuki, P; Erickson, L E

    2000-10-02

    We report a new principle and technique that allows one to electrodeposit material patterns of arbitrary shape down to the submicrometer scale. We demonstrate that an electrochemical metal deposition reaction can be initiated selectively at surface defects created in a p-type Si(100) substrate by Si (++) focused ion beam bombardment. The key principle is that, for cathodic electrochemical polarization of p-type material in the dark, breakdown of the blocking Schottky barrier at the semiconductor/electrolyte interface occurs at significantly lower voltages at implanted locations than for an unimplanted surface. This difference in the threshold voltages is exploited to achieve selective electrochemical deposition.

  5. Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams

    NASA Astrophysics Data System (ADS)

    Ohya, Kaoru

    2017-03-01

    The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.

  6. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.

  7. Order-of-magnitude differences in retention of low-energy Ar implanted in Si and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmaack, Klaus, E-mail: wittmaack@helmholtz-muenchen.de; Giordani, Andrew; Umbel, Rachel

    The retention of 1 and 5 keV Ar implanted at 45° in Si and 4.3 nm SiO{sub 2} on Si was studied at fluences between 3 × 10{sup 14} and 1.5 × 10{sup 16} cm{sup −2}. X-ray photoelectron spectroscopy (XPS) served to monitor the accumulation of Ar as well as the removal of SiO{sub 2}. Bombardment induced changes in oxygen chemistry caused the O 1s peak position to move toward lower binding energies by as much as 2.2 eV. Plotted versus depth of erosion, the fluence dependent changes in oxygen content, and peak position were similar at 1 and 5 keV. The Ar content of Si increased with increasingmore » exposure, saturating at fluences of ∼2 × 10{sup 15} cm{sup −2} (1 keV) and ∼6 × 10{sup 15} cm{sup −2} (5 keV). Much less Ar was retained in the SiO{sub 2}/Si sample, notably at 1 keV, in which case the low-fluence Ar signal amounted to only 8% of the Si reference. The results imply that essentially no Ar was trapped in undamaged SiO{sub 2}, i.e., the Ar atoms initially observed by XPS were located underneath the oxide. At the lowest fluence of 5 keV Ar, the retention ratio was much higher (43%) because the oxide was already highly damaged, with an associated loss of oxygen. The interpretation was assisted by TRIM(SRIM) calculations of damage production. Partial maloperation of the ion beam raster unit, identified only at a late stage of this work, enforced a study on the uniformity of bombardment. The desired information could be obtained by determining x,y line scan profiles of O 1s across partially eroded SiO{sub 2}/Si samples. Fluence dependent Ar retention in Si was described using an extended version of the rapid relocation model which takes into account that insoluble implanted rare-gas atoms tend to migrate to the surface readily under ongoing bombardment. The range parameters required for the modeling were determined using TRIM(SRIM); sputtering yields were derived from the literature. The other three parameters determining the Ar signal, i.e., (1) the thickness w of the near-surface Si region devoid of Ar, (2) the relocation efficiency Ψ{sub rlc}, and (3) the effective attenuation length L in XPS analysis were varied within reasonable limits until the calculated retention curves for 1 and 5 keV Ar in Si agreed with experimental data to better than 8%, using the same XPS sensitivity factor throughout. Results: w = 1.4 ± 0.1 nm, Ψ{sub rlc} = 6.6 ± 0.5, and L = 2.7 ± 0.2 nm. Combining experimental and calculated data, it was found that the Ar trapping efficiency of the damaged oxide is intimately correlated with the loss of oxygen. The calculated stationary areal densities of all retained Ar are compared with results obtained by high-resolution medium-energy ion scattering spectrometry. Attractive areas of future research in rare gas retention and nanobubble formation are sketched briefly.« less

  8. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants.

    PubMed

    Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia

    2010-04-01

    In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces

    PubMed Central

    Knaack, Gretchen L.; McHail, Daniel G.; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F.; Dumas, Theodore C.; Pancrazio, Joseph J.

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation. PMID:27445672

  10. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.

    PubMed

    Knaack, Gretchen L; McHail, Daniel G; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F; Dumas, Theodore C; Pancrazio, Joseph J

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation.

  11. Effects of MgO and SiO2 on Plasma-Sprayed Hydroxyapatite Coating: An in Vivo Study in Rat Distal Femoral Defects.

    PubMed

    Ke, Dongxu; Robertson, Samuel F; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2017-08-09

    Plasma-sprayed hydroxyapatite (HA)-coated titanium implants have been widely used in orthopedic applications due to their inheritance of an excellent mechanical property from titanium and great osteoconductivity from HA. However, the lack of osteoinductivity limits their further applications. In this study, 1 wt % MgO and 0.5 wt % SiO 2 were mixed with HA for making plasma-sprayed coatings on titanium implants. Plasma-sprayed HA- and MgO/SiO 2 -HA-coated titanium implants showed adhesive bond strengths of 25.73 ± 1.92 and 23.44 ± 2.89 MPa, respectively. The presence of MgO and SiO 2 significantly increased the osteogenesis, osseointegration, and bone mineralization of HA-coated titanium implants by the evaluation of their histomorphology after 6, 10, and 14 weeks of implantation in rat distal femoral defects. Implant pushout tests also showed a shear modulus of 149.83 ± 3.69 MPa for MgO/SiO 2 -HA-coated implants after 14 weeks of implantation, compared to 52.68 ± 10.41 MPa for uncoated implants and 83.92 ± 3.68 MPa for pure HA-coated implants; These are differences in the shear modulus of 96% and 56.4%, respectively. This study assesses for the first time the quality of the bone-implant interface of induction plasma-sprayed MgO and SiO 2 binary-doped HA coatings on load-bearing implants compared to bare titanium and pure HA coatings in a quantitative manner. Relating the osseointegration and interface shear modulus to the quality of implant fixation is critical to the advancement and implementation of HA-coated orthopedic implants.

  12. Fabrication of patterned single-crystal SrTiO3 thin films by ion slicing and anodic bonding

    NASA Astrophysics Data System (ADS)

    Lee, Yoo Seung; Djukic, Djordje; Roth, Ryan M.; Laibowitz, Robert; Izuhara, Tomoyuki; Osgood, Richard M.; Bakhru, Sasha; Bakhru, Hassaram; Si, Weidong; Welch, David

    2006-09-01

    A new technique for directly fabricating patterned thin films (<1μm thick) of fully single-crystal strontium titanate uses deep H+ implantation into the oxide sample, followed by anodic bonding of the sample to a Pyrex or Pyrex-on-Si substrate. The dielectric properties and crystal structure of such thin films are characterized and are found to be essentially those of the bulk single crystal.

  13. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-08-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag+ ions at different ion fluences ranging from 1 × 1014 to 5 × 1015 ions/cm2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV-Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag+-implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 1014 ions/cm2. Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  14. Plasma immersion ion implantation (and deposition) inside metallic tubes of different dimensions and configurations

    NASA Astrophysics Data System (ADS)

    Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.

    2017-10-01

    There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.

  15. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhardt, Fabien; Muller, Dominique; Slaoui, Abdelilah, E-mail: abdelilah.slaoui@unistra.fr

    2016-05-07

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size ofmore » the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.« less

  16. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  17. Molecular dynamics simulations of damage production by thermal spikes in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Pedro; Pelaz, Lourdes; Santos, Ivan

    2012-02-01

    Molecular dynamics simulation techniques are used to analyze damage production in Ge by the thermal spike process and to compare the results to those obtained for Si. As simulation results are sensitive to the choice of the inter-atomic potential, several potentials are compared in terms of material properties relevant for damage generation, and the most suitable potentials for this kind of analysis are identified. A simplified simulation scheme is used to characterize, in a controlled way, the damage generation through the local melting of regions in which energy is deposited. Our results show the outstanding role of thermal spikes inmore » Ge, since the lower melting temperature and thermal conductivity of Ge make this process much more efficient in terms of damage generation than in Si. The study is extended to the modeling of full implant cascades, in which both collision events and thermal spikes coexist. Our simulations reveal the existence of bigger damaged or amorphous regions in Ge than in Si, which may be formed by the melting and successive quenching induced by thermal spikes. In the particular case of heavy ion implantation, defect structures in Ge are not only bigger, but they also present a larger net content in vacancies than in Si, which may act as precursors for the growth of voids and the subsequent formation of honeycomb-like structures.« less

  18. In situ arsenic-doped polycrystalline silicon as a low thermal budget emitter contact for Si/Si1 - xGex heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    King, C. A.; Johnson, R. W.; Pinto, M. R.; Luftman, H. S.; Munanka, J.

    1996-01-01

    A low thermal budget emitter contact with low specific contact resistivity (ρc) with the absence of transient enhanced diffusion (TED) effects is essential to fabricate integratable high performance Si/SiGe heterojunction bipolar transistors (HBTs). We report the use of in situ As-doped polycrystalline silicon (polysilicon) from a low base pressure rapid thermal episystem for this purpose and find that it meets all the requirements. We used secondary ion mass spectrometry to find that 18 nm, heavily B-doped layers remain intact after implantation into the surface polysilicon and annealing at 800 °C for 40 s. Similar samples without the surface polylayer displayed extreme broadening of B profile. Kelvin crossbridge resistors together with 2D device simulations revealed that ρc is an extremely low value of 1.2×10-8 Ω cm2 in as-deposited material. Fabrication of simple 30×30 μm2 mesa isolated HBT devices showed IC to be more than two decades higher in devices with only an in situ As-doped polyemitter compared with devices that incorporated a surface implant into the single crystal portion of the emitter before polysilicon deposition. These results demonstrate that this doped polycrystalline silicon material is an excellent choice for emitter contacts to HBT devices.

  19. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    PubMed

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  20. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    PubMed

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naquin, Clint; Lee, Mark; Edwards, Hal

    2014-11-24

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility ofmore » exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.« less

  2. The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.

    2014-07-01

    We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).

  3. Scanning transmission electron microscopy (STEM) study on surface modified CVD diamond/Si(111) film post implanted Fe-B and NiFe-B related to GMR properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, Setyo, E-mail: setyo-p@batan.go.id, E-mail: purwantosetyo@yahoo.com; Dimyati, A., E-mail: arbi-dimyati@hotmail.com; Iskandar, R.

    Nanostructure investigation on the post implantation by Fe-B and NiFe-B on CVD diamond/Si(111) film have been studied by means of STEM related to their GMR phenomena. Two samples were investigated carefully, firstly sample is post NiFe-B at E=70keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as A-E3D1). Secondly, is post FeB at E=20 keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as B-E1D1). Based on FPP measurement at room temperature (RT) and H{sub applied} = 8 kOe, A-E3D1 sample has MR ratio almost 80% and MR ratio in B-E1D1 sample is 45%. Based on STEM-EDX investigation, there are two aspectsmore » of how MR ratio of A-E3D1 more higher than those of B-E1D1. Firstly, surface nanostructure on the top of A-E3D1 film is more grazing than on the top of B-E1D1. Analysis with Scanning Transmission Electron Microscope (STEM) equipped with Electron Energy Loss Spectroscopy (EELS) the growth of amorphous carbon layer on top of the implanted diamond film with thickness around 100 nm and only 20 nm on the no implanted sample have observed. Boron atoms were found inside the carbon amorphous layer distributed homogenously. Secondly, oxygen content at the interface between diamond film and silicon substrate in sample A-E3D1 was lower than those in B-E1D1 sample. This condition gives the resistance value in A-E3D1 lower than value in B-E1D1. This result is close to the Raman Spectroscopy data measurement which obviously suggests changes on the Raman spectrum due to implantation related to Oxygen excitation from B-E1D1 sample.« less

  4. Structural Changes in Polymer Films by Fast Ion Implantation

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  5. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  6. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  7. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  8. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation.

    PubMed

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W

    2010-11-01

    Fibrous encapsulation of surgically implanted devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA (siRNA) conjugated with branched polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knock-down led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules were observed. The siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes

    NASA Astrophysics Data System (ADS)

    Bu, Yuan; Yoshimoto, Hiroyuki; Watanabe, Naoki; Shima, Akio

    2017-12-01

    We developed a simple technology for fabricating bipolar degradation-free 6.5 kV SiC PiN diodes on the basal plane dislocation (BPD)-free areas of commercially available 4H-SiC wafers. In order to suppress process-induced basal plane dislocation, we first investigated the causes of BPD generation during fabrication and then improved the processes. We found that no BPD was induced on a flat Si-face, but a large number of BPDs were concentrated in the mesa edge after high-dose Al ions were implanted [p++ ion implantation (I. I.)] at room temperature (RT) followed by activation annealing. Therefore, we examined new technologies in device processes including (I) long-term high-temperature oxidation after the mesa process to remove etching damage in the mesa edge and (II) reducing the Al dose (p+ I. I.) in the mesa edge to suppress BPD generation. We investigated the effect of the Al dose in the mesa edge on BPD generation and bipolar degradation. The results indicated that no BPD appeared when the dose was lower than 1 × 1015 atoms/cm2 and when long-term high-temperature oxidation was applied after the mesa process. As a result, we successfully fabricated 6.5 kV PiN diodes without bipolar degradation on BPD-free areas. Moreover, the diodes are very stable when applying 270 A/cm2 for over 100 h. Photoluminescence (PL) observation indicated that no BPD was generated during the improved fabrication processes. Besides, the Ir-Vr measurements showed that the breakdown voltage was over 8 kV at RT. The leakage currents are as low as 7.6 × 10-5 mA/cm2 (25 °C) and 6.3 × 10-4 mA/cm2 (150 °C) at 6.5 kV. Moreover, this result is applicable not only for PiN diodes but also for MOSFETs (body diode), IGBTs, thyristors, etc.

  10. Cracks and blisters formed close to a silicon wafer surface by He-H co-implantation at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr; Darras, F.-X.; Claverie, A.

    2015-12-28

    We have studied the effect of reducing the implantation energy towards low keV values on the areal density of He and H atoms stored within populations of blister cavities formed by co-implantation of the same fluence of He then H ions into Si(001) wafers and annealing. Using a variety of experimental techniques, we have measured blister heights and depth from the surface, diameter, areal density of the cracks from which they originate as functions of implantation energy and fluence. We show that there is a direct correlation between the diameters of the cracks and the heights of the associated blisters.more » This correlation only depends on the implantation energy, i.e., only on the depth at which the cracks are located. Using finite element method modeling, we infer the pressure inside the blister cavities from the elastic deformations they generate, i.e., from the height of the blisters. From this, we demonstrate that the gas pressure within a blister only depends on the diameter of the associated crack and not on its depth position and derive an analytical expression relating these parameters. Relating the pressure inside a blister to the respective concentrations of gas molecules it contains, we deduce the areal densities of He and H atoms contained within the populations of blisters. After low-energy implantations (8 keV He{sup +}, 3 keV H{sup +}), all the implanted He and H atoms contribute to the formation of the blisters. There is no measurable exo-diffusion of any of the implanted gases, in contrast to what was assumed at the state of the art to explain the failure of the Smart-Cut technology when using very low energy ion implantation for the fabrication of ultra-thin layers. Alternative explanations must be investigated.« less

  11. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    PubMed

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  12. The parameter influence of ion irradiation on the distribution profile of the defect in silicon films

    NASA Astrophysics Data System (ADS)

    Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.

    2017-09-01

    As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.

  13. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  14. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compoundmore » thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.« less

  15. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Woori; Jin, Won-Beom; Choi, Jungwan

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less

  16. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.

  17. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  18. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  19. Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Pupikova, H.; Malinský, P.; Slepička, P.; Švorčík, V.

    2017-09-01

    The ion irradiation leads to deep structural and compositional changes in the irradiated polymers. Ni+ ions implanted polymers were investigated from the structural and compositional changes point of view and their optical properties were investigated. Polyimide (PI) foils were implanted with 1.0 MeV Ni+ ions at room temperature with fluencies of 1.0 × 1013-1.0 × 1015 cm-2 and two different ion implantation currents densities (3.5 and 7.2 nA/cm2). Rutherford Back-Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA) were used for determination of oxygen and hydrogen escape in implanted PI. Atomic Force Microscopy (AFM) was used to follow surface roughness modification after the ion implantation and UV-Vis spectroscopy was employed to check the optical properties of the implanted PI. The implanted PI structural changes were analysed using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). High energy Ni-ion implantation causes only a minor release of hydrogen and oxygen close to the polymer sub-surface region in about 60 nm thick layer penetrated by the ion beam; especially at ion fluencies below 1.0 × 1014 cm-2. The mostly pronounced structural changes of the Ni implanted PI were found for the samples implanted above ion fluence 1.0 × 1015 cm-2 and at the ion current density 7.2 nA/cm2, where the optical band gap significantly decreases and the reduction of more complex structural unit of PI monomer was observed.

  20. Arsenic silicide formation by oxidation of arsenic implanted silicon

    NASA Astrophysics Data System (ADS)

    Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.

    1989-07-01

    Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.

  1. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    PubMed Central

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. PMID:20727922

  2. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Chang Seouk; School of Mechanical Engineering, Pusan National University, Pusan 609-735; Lee, Byoung-Seob

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation withmore » an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.« less

  3. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus

    2013-03-01

    Exposure of ion bombarded solids to Cs gives rise to a very strong enhancement of the yields of negatively charged secondary ions and, concurrently, to a lowering of positive ion yields. The phenomena have been explored in a large number of experimental and theoretical studies but attempts to clarify the mechanism of ion formation were not as successful as assumed. This review examines the state of the art in Cs controlled secondary ion mass spectrometry (SIMS) in great detail, with due consideration of low-energy alkali-ion scattering. In very basic studies on alkali induced secondary ion yield changes, sub-monolayer quantities of Cs or Li were deposited on the sample surface, followed by low-fluence ion bombardment, to avoid significant damage. If SIMS is applied to characterise the composition of solid materials, the simplest approach to achieving sample erosion as well as high negative-ion yields is bombardment with primary ions of Cs. Two other methods of sample loading with Cs provide more flexibility, (i) exposure to a collimated beam of Cs vapour and concurrent bombardment with high-energy non-Cs ions and (ii) the mixed-beam approach involving quasi-simultaneous bombardment with Cs and Xe ions. Both concepts have the advantage that undesirable sample overload with Cs can be avoided. High Cs concentrations reduce the formation probability of target specific molecular ions and lower the yields of all types of positive secondary ions, including Cs+, M+, X+, MCs+ and XCs+ (M and X denoting matrix and impurity elements). Quantitative SIMS analysis using MCs+ and XCs+ ions appears feasible, provided the Cs coverage is kept below about 5%. The semi-classical model of resonant charge transfer, also known as the tunnelling model, has long been considered a solid framework for the interpretation of Cs and Li based SIMS data. The model predicts ionisation probabilities for cases in which, at shallow distances from the surface, the affinity (ionisation) level of the departing atom is shifted below (above) the Fermi level. Ion yields should be controlled by the work function (WF) of the sample, Φ, and the normal velocity of the ejected ions. To explore the predicted velocity dependence, the performance characteristics of the employed SIMS instrument need to be known. The Cs induced negative-ion yield enhancement observed with pure metal and alloy targets often exceeded five orders of magnitude, with enhancement factors essentially independent of the emission energy. This absence of a velocity dependence is at variance with the predictions of the tunnelling model. Previous theoretical attempts to model the Φ-dependence and the apparent velocity effect for the overrated case of O-emission from Li and Cs exposed oxidised metal surfaces must be considered a meander. The experimental data, recorded with a quadrupole based instrument of inadequate extraction geometry, may alternatively be rationalised in terms of alkali induced changes in the energy spectrum of sputtered atoms. Another important finding is that secondary ion yield changes do not correlate with the absolute magnitude of the (macroscopic) WF but often with WF changes, ΔΦ. The frequently used method of determining ΔΦ in situ from the shift of the leading edge of secondary ion energy spectra rests on the assumption, taken for granted or not even appreciated, that Cs induced yield changes are independent of the ion's emission velocity. Hence the approach is only applicable if the tunnelling model is not valid. The local character of alkali induced WF changes, which might provide a route to an understanding of previously unexplained phenomena, has been explored using photoemission of adsorbed inert gases, scanning tunneling microscopy and low-energy ion scattering spectrometry. At room temperature, the Cs coverage is limited to one layer of adatoms. Close similarities are identified between WF changes generated by Cs vapour deposition and by bombardment with Cs ions. This finding implies that sub-monolayer quantities of Cs adatoms grow at the surface of Cs bombarded samples. The process has been studied in-situ by medium-energy ion scattering spectrometry. The stationary Cs coverage, NCs, is controlled by the efficiency of active transport of implanted atoms to the surface, the bulk retention properties of the sample and the cross section for sputtering of adatoms. Unearthing immobile implanted Cs atoms by sputter erosion usually provides only a minor contribution to the stationary coverage. Cs adatoms are mobile; the time required for final adatom rearrangement may be on the order of minutes at room temperature. Exposure of Cs bombarded samples to oxygen gives rise to oxidation of the substrate as well as to the formation of oxide layers of complex composition. Intercalation should be taken into account as a possible route of alkali transport into analysed samples. An important aspect ignored in prior work is that the alkali coverage required to produce a certain WF change is five to seven times higher if Li is deposited instead of Cs. Studies involving the use of Li thus provide no advantage compared to Cs. Furthermore, migration of the tiny Li atoms into the sample and metallisation effects aggrevate data interpretation. Literature data for ΔΦ (NCs), measured using Cs vapour deposition, can be converted to calibration curves, NCs (ΔΦ), for calculating the coverage established in implantation studies, a method referred to as ΔΦ→NCs conversion. This concept may be carried even further, as shown convincingly for silicon, the material examined most frequently in basic SIMS studies: Si- ion fractions, P(Si-), derived from yields measured under vastly different conditions of Cs supply, exhibit essentially the same ΔΦ dependence. Inverting the data one can produce calibration functions for ΔΦ versus P(Si-), denoted P(Si-)→ΔΦ, or, more generally, P(M-)→ΔΦ conversion. On this basis, transient yields measured during Cs implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  4. Large area tunnel oxide passivated rear contact n -type Si solar cells with 21.2% efficiency: Large area tunnel oxide passivated rear contact n -type Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei

    This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less

  5. Development of pulsed processes for the manufacture of solar cells. Quarterly progress report No. 3, April--July 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    Third quarter results under a program to develop ion implantation and specialized, associated processes necessary to achieve automated production of silicon solar cells are described. An ion implantation facility development for solar cell production is described, and a design for an automated production implanter is presented. Also, solar cell development efforts using combined ion implantation and pulsed energy techniques are discussed. Cell performance comparisons have also been made in which junctions and back surface fields were prepared by diffusion and ion implantation. A model is presented to explain the mechanism of ion implantation damage annealing using pulsed energy sources. Functionalmore » requirements have been determined for a pulsed electron beam processor for annealing ion implantation damage at a rate compatible with a 100 milliampere ion implanter. These rates result in a throughput of 100 megawatts of solar cell product per year.« less

  6. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  7. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R. G.

    2003-09-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single 31P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31P ions.

  8. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  9. Slow positron studies of hydrogen activation/passivation on SiO2/Si(100) interfaces

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Asoka-Kumar, P.

    The hydrogen atoms are one of the most common impurity species found in semiconductor systems owing to its large diffusivity, and are easily incorporated either in a controlled process like in ion implantation or in an uncontrolled process like the one at the fabrication stage. Hydrogen can passivate dangling bonds and dislocations in these systems and hence can be used to enhance the electrical properties. In a SiO2/Si system, hydrogen can passivate electronic states at the interface and can alter the fixed or mobile charges in the oxide layer. Since hydrogen is present in almost all of the environments of SiO2/Si wafer fabrication, the activation energy of hydrogen atoms is of paramount importance to a proper understanding of SiO2/Si based devices and has not been measured on the technologically most important Si(100) face. There are no direct, nondestructive methods available to observe hydrogen injection into the oxide layer and subsequent diffusion. The positrons are used as a 'sensitive', nondestructive probe to observe hydrogen interaction in the oxide layer and the interface region. A new way is described of characterizing the changes in the density of the interface states under a low temperature annealing using positrons.

  10. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  11. Structural and chemical alteration of crystalline olivine under low energy He+ irradiation

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Carrez, Ph.; Leroux, H.; Cordier, P.; Jones, A. P.; Borg, J.; Quirico, E.; Raynal, P. I.; d'Hendecourt, L.

    2001-03-01

    We present the results of irradiation experiments on crystalline olivine with He+ ions at energies of 4 and 10 keV and fluences varying from 5 1016 to 1018 ions/cm2. The aim of these experiments is to simulate ion implantation into interstellar grains in shocks in the ISM. Irradiated samples were analysed by transmission electron microscopy (TEM). The irradiation causes the amorphization of the olivine, at all He+ fluences considered. The thickness of the amorphized region is 40 +/- 15 nm and 90 +/- 10 nm for the 4 keV and 10 keV experiments, respectively. The amorphization of the olivine occurs in conjunction with an increase in the porosity of the material due to the formation of bubbles. In addition, the amorphized layer is deficient in oxygen and magnesium. We find that the O/Si and Mg/Si ratios decrease as the He+ fluence increases. These experiments show that the irradiation of dust in supernova shocks can efficiently alter the dust structure and composition. Our result are consistent with the lack of crystalline silicates in the interstellar medium and also with the compositional evolution observed from olivine-type silicates around evolved stars to pyroxene-type silicates around protostars.

  12. Positron annihilation on the surfaces of SiO 2 films thermally grown on single crystal of Cz-Si

    NASA Astrophysics Data System (ADS)

    Deng, Wen; Yue, Li; Zhang, Wei; Cheng, Xu-xin; Zhu, Yan-yan; Huang, Yu-yang

    2009-09-01

    Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10-3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.

  13. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    NASA Astrophysics Data System (ADS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  14. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseglia, L.; Saha, K.; Ajoy, A.

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  16. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  17. Method for enhancing growth of SiO.sub.2 in Si by the implantation of germanium

    DOEpatents

    Holland, Orin W.; Fathy, Dariush; White, Clark W.

    1990-04-24

    A method for enhancing the conversion of Si to SiO.sub.2 in a directional fashion wherein steam or wet oxidation of Si is enhanced by the prior implantation of Ge into the Si. The unique advantages of the Ge impurity include the directional enhancement of oxidation and the reduction in thermal budget, while at the same time, Ge is an electrically inactive impurity.

  18. SiGe-on-insulator fabricated via germanium condensation following high-fluence Ge+ ion implantation

    NASA Astrophysics Data System (ADS)

    Anthony, R.; Haddara, Y. M.; Crowe, I. F.; Knights, A. P.

    2017-08-01

    Germanium condensation is demonstrated using a two-step wet oxidation of germanium implanted Silicon-On-Insulator (SOI). Samples of 220 nm thick SOI are implanted with a nominal fluence of 5 × 1016 cm-2 Ge+ at an energy of 33 keV. Primary post-implantation wet oxidation is performed initially at 870 °C for 70 min, with the aim of capping the sample without causing significant dose loss via Ge evaporation through the sample surface. This is followed by a secondary higher temperature wet oxidation at either 900 °C, 1000 °C, or 1080 °C. The germanium retained dose and concentration profile, and the oxide thickness is examined after primary oxidation, and various secondary oxidation times, using Rutherford backscattering analysis. A mixed SiGe oxide is observed to form during the primary oxidation followed by a pure silicon oxide after higher temperature secondary oxidation. The peak germanium concentration, which varies with secondary oxidation condition, is found to range from 43 at. % to 95 at. %, while the FWHM of the Ge profile varies from 13 to 5 nm, respectively. It is also observed that both the diffusion of germanium and the rate of oxidation are enhanced at 870 and 900 °C compared to equilibrium expectations. Transmission electron microscopy of a representative sample with secondary oxidation at 1080 °C for 20 min shows that the SiGe layer is crystalline in nature and seeded from the underlying silicon. Raman spectroscopy is used to determine residual strain in the SiGe region following secondary oxidation. The strain is compressive in nature and increases with Ge concentration to a maximum of approximately 1% in the samples probed. In order to elucidate the physical mechanisms, which govern the implantation-condensation process, we fit the experimental profiles of the samples with a model that uses a modified segregation boundary condition; a modified linear rate constant for the oxidation; and an enhanced diffusion coefficient of germanium where the enhancement is inversely proportional to the temperature and decays with increasing time. Comparison of the modeled and experimental results shows reasonable agreement and allows conclusions to be made regarding the dominant physical mechanisms, despite the semi-empirical nature of the model used.

  19. SiC Protective Coating for Photovoltaic Retinal Prostheses

    PubMed Central

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-01-01

    Objective To evaluate PECVD SiC as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach Retinal prostheses were implanted in rats subretinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiNx and thermal SiO2 were measured in accelerated soaking tests in saline at 87°C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results At 87°C SiNx dissolved at 18.3±0.3nm/day, while SiO2 grown at high temperature (1000°C) dissolved at 1.04±0.08A/day. SiC films demonstrated the best stability, with no quantifiable change after 112 days. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance SiC coatings demonstrating no erosion in accelerated aging test for 112 days at 87°C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4-month follow-up in vivo. The optimal thickness of SiC layers is about 560nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects. PMID:27323882

  20. Evaluation of stabilization techniques for ion implant processing

    NASA Astrophysics Data System (ADS)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.

  1. Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms

    NASA Astrophysics Data System (ADS)

    Shen, Ming-Yi

    The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level with a lower wafer dose can be achieved. In addition, the leakage current might also be reduced due to less undesired dopants in the channel. However, the twin defects from the problematic Si{111} recrystallization is well-known to cause excessive leakage current to the FinFET. This drawback can offset the benefits of the high dose rate I/I mentioned above. This work produced the first attempt at simulating the electrical impact of twin defects on advanced-node (10 nm) FinFET device performance. It was found that the high dose-rate I/I causes more twin defects in the silicon fin, and the physical locations of these defects were close to the channel. The defects undesirably induced trap-assisted band-to-band tunneling near the drain, which increased the leakage current. This issue could be mitigated by using asymmetrical gate overlap/underlap design or thicker spacer for SDE I/I so that the twin defects are not located in the depletion region near the drain.

  2. Design and development of wafer-level near-infrared micro-camera

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2015-08-01

    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  3. A preliminary evaluation of immune stimulation following exposure to metal particles and ions using the mouse popliteal lymph node assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvermoes, Brooke E., E-mail: brooke.tvermoes@cardn

    The objective of this preliminary study was to evaluate the threshold for immune stimulation in mice following local exposure to metal particles and ions representative of normal-functioning cobalt-chromium (CoCr) metal-on-metal (MoM) hip implants. The popliteal lymph node assay (PLNA) was used in this study to assess immune responses in BALB/c mice following treatment with chromium-oxide (Cr{sub 2}O{sub 3}) particles, metal salts (CoCl{sub 2}, CrCl{sub 3} and NiCl{sub 2}), or Cr{sub 2}O{sub 3} particles together with metal salts using single-dose exposures representing approximately 10 days (0.000114 mg), 19 years (0.0800 mg), and 40 years (0.171 mg) of normal implant wear. Themore » immune response elicited following treatment with Cr{sub 2}O{sub 3} particles together with metal salts was also assessed at four additional doses equivalent to approximately 1.5 months (0.0005 mg), 0.6 years (0.0025 mg), 2.3 years (0.01 mg), and 9.3 years (0.04 mg) of normal implant wear. Mice were injected subcutaneously (50 μL) into the right hind foot with the test article, or with the relevant vehicle control. The proliferative response of the draining lymph node cells (LNC) was measured four days after treatment, and stimulation indices (SI) were derived relative to vehicle controls. The PLNA was negative (SI < 3) for all Cr{sub 2}O{sub 3} particle doses, and was also negative at the lowest dose of the metal salt mixture, and the lowest four doses of the Cr{sub 2}O{sub 3} particles with metal salt mixture. The PLNA was positive (SI > 3) at the highest two doses of the metal salt mixture and the highest three doses of the Cr{sub 2}O{sub 3} particles with the metal salt mixture. The provisional NOAEL and LOAEL values identified in this study for immune activation corresponds to Co and Cr concentrations in the synovial fluid approximately 500 and 2000 times higher than that reported for normal-functioning MoM hip implants, respectively. Overall, these results indicate that normal wear conditions are unlikely to result in immune stimulation in individuals not previously sensitized to metals. - Highlights: • Immune responses in mice were assessed following treatment with Cr2O3 particles with metal salts. • The PLNA was negative (SI < 3) for all Cr2O3 particle doses. • A LOAEL for immune activation was identified at 0.04 mg of metal particles with metal salts. • A NOAEL for immune activation was identified at 0.01 mg of metal particles with metal salts.« less

  4. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  5. Au5+ ion implantation induced structural phase transitions probed through structural, microstructural and phonon properties in BiFeO3 ceramics, using synergistic ion beam energy

    NASA Astrophysics Data System (ADS)

    Dey, Ranajit; Bajpai, P. K.

    2018-04-01

    Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol-gel method was investigated. These BFO samples were implanted by 15.8 MeV ions of Au5+ at various ion fluence ranging from 1 × 1014 to 5 × 1015 ions/cm2. Effect of Au5+ ions' implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds' formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8 MeV Au5+ ions at a fluence of 5 × 1015 ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8 MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.

  6. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  7. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bright nanowire single photon source based on SiV centers in diamond

    DOE PAGES

    Marseglia, L.; Saha, K.; Ajoy, A.; ...

    2018-01-01

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  9. Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang

    2009-12-01

    This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.

  10. Ion beam modification of topological insulator bismuth selenide

    DOE PAGES

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; ...

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi 2Se 3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi 2Se 3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi 2Se 3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allowmore » better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  11. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  12. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  13. Semi-insulating 4H-SiC layers formed by the implantation of high-energy (53 MeV) argon ions into n-type epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kudoyarov, M. F.; Kozlovski, M. A.

    It is shown that 9-μm-thick semi-insulating surface layers can be formed in moderately doped n-type silicon carbide (donor concentration 2 × 10{sup 16} cm{sup –3}) via the comparatively low-dose (7 × 10{sup 11} cm{sup –2}) implantation of high-energy (53 MeV) argon ions. The free-carrier removal rate is estimated at ~10{sup 4} cm{sup –1}. The resistivity of the semi-insulator is no less than 7 × 10{sup 12} Ω cm. Analysis of the monopolar current of electron injection into the semi-insulator shows that the impurity-conductivity compensation is due to radiation induced defects pinning the equilibrium Fermi level at a depth of 1.16more » eV below the conduction-band bottom. The density of defect states at the Fermi level is 2.7 × 10{sup 16} cm{sup 2} eV{sup –1}.« less

  14. Electrical and Structural Analysis on the Formation of n-type Junction in Germanium

    NASA Astrophysics Data System (ADS)

    Aziz, Umar Abdul; Nadhirah Mohamad Rashid, Nur; Rahmah Aid, Siti; Centeno, Anthony; Ikenoue, Hiroshi; Xie, Fang

    2017-05-01

    Germanium (Ge) has re-emerged as a potential candidate to replace silicon (Si) as a substrate, due to its higher carrier mobility properties that are the key point for the realization of devices high drive current. However, the fabrication process of Ge is confronted with many problems such as low dopant electrical activation and the utilization of heavy n-type dopant atoms during ion implantation. These problems result in more damage and defects that can affect dopant activation. This paper reports the electrical and structural analysis on the formation of n-type junction in Ge substrate by ion implantation, followed by excimer laser annealing (ELA) using KrF laser. ELA parameters such as laser fluences were varied from 100 - 2000 mJ/cm2 and shot number between 1 - 1000 to obtain the optimized parameter of ELA with a high degree of damage and defect removal. Low resistance with a high degree of crystallinity is obtained for the samples annealed with less than five shot number. Higher shot number with high laser fluence, shows a high degree of ablation damage.

  15. Optical characterization of poly(methyl methacrylate) implanted with low energy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Kumar, Vijay; Goyal, Parveen Kumar; Kumar, Shyam

    2012-12-01

    The samples of poly(methyl methacrylate) (PMMA) were subjected to 100 keV N+ and Ar+ ion implantation up to a maximum fluence of 2 × 1016 ions/cm2. The effect of ion implantation on the optical energy gap and the refractive index has been studied through UV-visible spectroscopy. The results clearly indicate a decrease in the values of optical energy gap and an increase in the values of refractive index as an effect of ion implantation corresponding to both of the ions. It has also been observed that the changes induced by the implanted ions are more pronounced for N+ ions in comparison to Ar+ ions. This variation has been correlated with the calculated ranges of these ions in PMMA polymer using Stopping and Range of Ions in Matter (SRIM) code. Finally, an attempt has been made to correlate all the observed changes with the induced structural changes as revealed through Raman spectroscopy.

  16. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  17. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  18. Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Visco, A. M.; Campo, N.

    2004-10-01

    Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.

  19. Effect of C-implantation on Nerve-Cell Attachment to Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kitamura, Tsuyoshi; Hattori, Mitsutaka; Yamada, Tetsuya; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    The surfaces of the polystyrene films spin-coated on glass were modified by carbon negative-ion implantation with various ion doses from 1×1014 to 3×1016 ions/cm2 at 5 and 10 keV. The implantation conditions with and without a pattering mask were for investigation of the cell-attachment properties and for evaluation of surface physical properties of contact angle, respectively. The contact angles of modified surface were investigated by pure water drop and air bubble method. The lowest angle value of the implanted films at 5 and 10 keV were approximately 72° at 3×1015 ions/cm2 after dipping in the de-ionized water for 2 hours. The lowering of contact angles on C-implanted surfaces when increase the ion dose is due to formation of the OH and C-O bonds. Nerve-cell-attachment properties of modified surface were investigated by the nerve-like cell of rat adrenal pheochromocytoma (PC12h) in vitro. After 2 days culture of the PC12h cells, no cells attached on the polystyrene films implanted with low ion dose from 1×1014 to 3×1014 ions/cm2. On the polystyrene films implanted with the dose order of 1015 ions/cm2, the cells selectively attached only on the implanted region. Whereas on the surfaces implanted with high dose such as 1×1016 and 3×1016 ions/cm2 mostly cells attached on the implanted region, and some attached on the unimplanted region, as well as cells were abnormal in shape and large size. Therefore, the suitable dose implantation for the selective-attachment of nerve-cells on the polystyrene films implanted at 5 and 10 keV were obtained around the dose order of 1015 ions/cm2, and the best condition for the selective attachment properties was at 3×1015 ions/cm2 corresponding to the lowest contact angle.

  20. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  1. New materials based on polylactide modified with silver and carbon ions

    NASA Astrophysics Data System (ADS)

    Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.

    2015-11-01

    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.

  2. Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model.

    PubMed

    Ishikawa, Masahiro; de Mesy Bentley, Karen L; McEntire, Bryan J; Bal, B Sonny; Schwarz, Edward M; Xie, Chao

    2017-12-01

    While silicon nitride (Si 3 N 4 ) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin-resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si 3 N 4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant-associated osteomyelitis. In vitro, the "as-fired" Si 3 N 4 implants displayed significant reductions in adherent bacteria versus machined Si 3 N 4 (2.6 × 10 4 vs. 8.7 × 10 4 CFU, respectively; p < 0.0002). Moreover, SEM imaging demonstrated that MRSA cannot directly adhere to native as-fired Si 3 N 4 . Subsequently, a cross-sectional study was completed in which sterile or MRSA contaminated as-fired and machined Si 3 N 4 implants were inserted into the tibiae of 8-week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post-operatively for SEM. The findings demonstrated that the antimicrobial activity of the as-fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3-5, which differentiated into osteoblasts on days 7-14. In contrast, the antimicrobial behavior of the machined Si 3 N 4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si 3 N 4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413-3421, 2017. © 2017 Wiley Periodicals, Inc.

  3. Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si

    NASA Astrophysics Data System (ADS)

    Yang, W.; Akey, A. J.; Smillie, L. A.; Mailoa, J. P.; Johnson, B. C.; McCallum, J. C.; Macdonald, D.; Buonassisi, T.; Aziz, M. J.; Williams, J. S.

    2017-12-01

    Au-hyperdoped Si, synthesized by ion implantation and pulsed laser melting, is known to exhibit a strong sub-band gap photoresponse that scales monotonically with the Au concentration. However, there is thought to be a limit to this behavior since ultrahigh Au concentrations (>1 ×1020c m-3 ) are expected to induce cellular breakdown during the rapid resolidification of Si, a process that is associated with significant lateral impurity precipitation. This work shows that the cellular morphology observed in Au-hyperdoped Si differs from that in conventional, steady-state cellular breakdown. In particular, Rutherford backscattering spectrometry combined with channeling and transmission electron microscopy revealed an inhomogeneous Au distribution and a subsurface network of Au-rich filaments, within which the Au impurities largely reside on substitutional positions in the crystalline Si lattice, at concentrations as high as ˜3 at. %. The measured substitutional Au dose, regardless of the presence of Au-rich filaments, correlates strongly with the sub-band gap optical absorptance. Upon subsequent thermal treatment, the supersaturated Au forms precipitates, while the Au substitutionality and the sub-band gap optical absorption both decrease. These results offer insight into a metastable filamentary regime in Au-hyperdoped Si that has important implications for Si-based infrared optoelectronics.

  4. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  5. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide

    NASA Astrophysics Data System (ADS)

    Sun, Youmei; Zhu, Zhiyong; Li, Changlin

    2002-05-01

    The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1×10 12 to 1.25×10 15 ions/cm 2. Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value.

  6. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    NASA Astrophysics Data System (ADS)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  7. Surface characterization and biodegradation behavior of magnesium implanted poly(L-lactide/caprolactone) films

    NASA Astrophysics Data System (ADS)

    Sokullu, Emel; Ersoy, Fulya; Yalçın, Eyyup; Öztarhan, Ahmet

    2017-11-01

    Biopolymers are great source for medical applications such as drug delivery, wound patch, artificial tissue studies etc., food packaging, cosmetic applications etc. due to their biocompatibility and biodegradability. Particularly, the biodegradation ability of a biomaterial makes it even advantageous for the applications. The more tunable the biodegradation rate the more desired the biopolymers. There are many ways to tune degradation rate including surface modification. In this study ion implantation method applied to biopolymer surface to determine its effect on biodegradation rate. In this study, surface modification of poly(L-lactide/caprolactone) copolymer film is practiced via Mg-ion-implantation using a MEVVA ion source. Mg ions were implanted at a fluence of 1 × 1015 ions/cm2 and ion energy of 30 keV. Surface characterization of Mg-ion-implanted samples is examined using Atomic Force Microscopy, Raman spectroscopy, contact angle measurement and FT-IR Spectroscopy. These analyses showed that the surface become more hydrophilic and rougher after the ion implantation process which is advantageous for cell attachment on medical studies. The in vitro enzymatic degradation of Mg-implanted samples was investigated in Lipase PS containing enzyme solution. Enzymatic degradation rate was examined by mass loss calculation and it is shown that Mg-implanted samples lost more than 30% of their weight while control samples lost around 20% of their weight at the end of the 16 weeks. The evaluation of the results confirmed that Mg-ion-implantation on poly(L-lactide/caprolactone) films make the surface rougher and more hydrophilic and changes the organic structure on the surface. On the other hand, ion implantation has increased the biodegradation rate.

  8. Development of vertical compact ion implanter for gemstones applications

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  9. Exceptional cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Dadi; Chang, Yongwei; Li, Ya; Ding, Rui; Li, Jiurong; Chen, Xiao; Wang, Gang; Guo, Qinglei

    2018-01-01

    The cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si structures after thermal annealing was investigated. The crack formation position is found to closely correlate with the thickness of the buried Si0.70Ge0.30 layer. For H-implanted Si containing a buried 3-nm-thick B-doped Si0.70Ge0.30 layer, localized continuous cracking occurs at the interfaces on both sides of the Si0.70Ge0.30 interlayer. Once the thickness of the buried Si0.70Ge0.30 layer increases to 15 and 70 nm, however, a continuous sharp crack is individually observed along the interface between the Si substrate and the B-doped Si0.70Ge0.30 interlayer. We attribute this exceptional cracking behavior to the existence of shear stress on both sides of the buried Si0.70Ge0.30 layer and the subsequent trapping of hydrogen, which leads to a crack in a well-controlled manner. This work may pave the way for high-quality Si or SiGe membrane transfer in a feasible manner, thus expediting its potential applications to ultrathin silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) production.

  10. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  11. Gene expression profiles in promoted-growth rice seedlings that germinated from the seeds implanted by low-energy N+ beam

    PubMed Central

    Ya, Huiyuan; Chen, Qiufang; Wang, Weidong; Chen, Wanguang; Qin, Guangyong; Jiao, Zhen

    2012-01-01

    The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. PMID:22843621

  12. Evaluation of electron beam stabilization for ion implant processing

    NASA Astrophysics Data System (ADS)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  13. Injected ion energy dependence of SiC film deposited by low-energy SiC3H9+ ion beam produced from hexamethyldisilane

    NASA Astrophysics Data System (ADS)

    Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato

    2018-04-01

    We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.

  14. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion

  15. Localization of carbon atoms and extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions

    NASA Astrophysics Data System (ADS)

    Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.

    2013-02-01

    The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.

  16. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163Ho ions

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Ranitzsch, P. C.-O.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-05-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163Ho using MMCs having the radioactive 163Ho ions implanted in the absorber. The isotope 163Ho decays through electron capture to 163Dy and features the smallest known QEC value. This peculiarity makes 163Ho a very interesting candidate to investigate the value of the electron neutrino mass by the analysis of the energy spectrum. The implantation of 163Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. Moreover the performance of the detector prototype having the 163Ho ions implanted in the absorber is already close to the requirements needed for an experiment with sub-eV sensitivity to the electron neutrino mass. Based on these results, an optimized detector design for future 163Ho experiments is presented.

  17. Nano-scale phase transformation in Ti-implanted austenitic 301 stainless steel.

    PubMed

    Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro

    2003-01-01

    Phase-transformation behaviours were investigated for austenitic 301 stainless steel during implantation at room temperature with 300 keV Ti ions to fluences of 8 x 10(19) to approximately 3 x 10(21) ions m(-2) by means of transmission electron microscopy. The cross-sectional specimen was prepared using a focused ion beam. Plan observation of the implanted specimen showed that phase transformation from gamma-phase to alpha-phase was induced by implantation to a fluence of 3 x 10(20) Ti ions m(-2). The nucleation of the irradiation (implantation)-induced phase increased with the increase of the dose. The orientation relationship between the gamma matrix and the induced alpha martensitic phase was identified as (011)alpha//(111)gamma and [11-1]alpha//[10-1], close to the Kurdjumov-Sachs relationship. Cross-sectional observation after implantation to a fluence of 5 x 10(20) ions m(-2) showed that phase transformation mostly nucleated near the surface and occurred in the higher the concentration gradient of the implanted ion, i.e. a higher stress concentration takes place and this stress introduced by the implanted ions acts as a driving force for the transformation.

  18. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  19. Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Tao, Ye; Guo, Deliang

    2012-09-01

    TiN coatings were deposited on the substrates of cemented carbide (WC-TiC-Co) by Magnetic Filter Arc Ion Plating (MFAIP) and then implanted with vanadium through Metal Vacuum Vapor Arc (MEVVA) ion source with the doses of 1 × 1017 and 5 × 1017 ions/cm2 at 40 kV. The microstructures and chemical compositions of the V-implanted TiN coatings were investigated using Glancing Incidence X-ray Diffraction (GIXRD) and X-ray Photoelectron Spectroscopy (XPS), together with the mechanical and tribological properties of coatings were characterized using nano-indentation and ball-on-disk tribometer. It was found that the diffraction peaks of the V-implanted TiN coatings at the doses of 5 × 1017 ions/cm2 shifted to higher angles and became broader. The hardness and elastic modulus of TiN coatings increased after V ion implantation. The wear mechanism for both un-implanted and V-implanted TiN coatings against GCr15 steel ball was adhesive wear, and the V-implanted TiN coatings had a lower friction coefficient as well as a better wear resistance

  20. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  1. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  2. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  3. Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO-SiO2-TiO2 sol-gel coating

    NASA Astrophysics Data System (ADS)

    Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Ruan, Liqun; Valiev, R. Z.

    2011-04-01

    NiTi alloy has a unique combination of mechanical properties, shape memory effects and superelastic behavior that makes it attractive for several biomedical applications. In recent years, concerns about its biocompatibility have been aroused due to the toxic or side effect of released nickel ions, which restricts its application as an implant material. Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study. A homogeneous and smooth SrO-SiO2-TiO2 sol-gel coating without cracks was fabricated on its surface by dip-coating method with the aim of increasing its corrosion resistance and cytocompatibility. Electrochemical tests in simulated body fluid (SBF) showed that the pitting corrosion potential of UFG NiTi was increased from 393 mV(SCE) to 1800 mV(SCE) after coated with SrO-SiO2-TiO2 film and the corrosion current density decreased from 3.41 μA/cm2 to 0.629 μA/cm2. Meanwhile, the sol-gel coating significantly decreased the release of nickel ions of UFG NiTi when soaked in SBF. UFG NiTi with SrO-SiO2-TiO2 sol-gel coating exhibited enhanced osteoblast-like cells attachment, spreading and proliferation compared with UFG NiTi without coating and CG NiTi.

  4. [Osteosynthesis in facial bones: silicon nitride ceramic as material].

    PubMed

    Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K

    2006-12-01

    The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.

  5. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness,more » etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching showed that the Si fin (source/drain region) was directly damaged by high energy hydrogen and had local variations in the damage distribution, which may lead to a shift in the threshold voltage and the off-state leakage current. Therefore, side-wall etching and ion implantation processes must be carefully designed by considering the Si damage distribution to achieve low damage and high transistor performance for complementary metal–oxide–semiconductor devices.« less

  6. Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-02-01

    In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.

  7. A negative ion beam application to artificial formation of neuron network in culture

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Sato, Hiroko; Baba, Takahiro; Gotoh, Yasuhito; Ishikawa, Junzo

    2000-02-01

    A negative ion beam modification of the biocompatibility of polystyrene surface was investigated for the artificial formation of neuron network in culture with respect to negative ion species. Negative ions of silver, copper or carbon were implanted in nontreated polystyrene (NTPS) dishes at conditions of 20 keV and 3×1015ions/cm2 through a mask with many slits of 60 μm in width. For the surface wettability, the contact angle of ion-implanted NTPS was about 75° for silver-negative ions, which was lower than 86° of the original NTPS. For carbon implantation, on the contrary, the contact angles did not change from the original value. In culture experiment using neuron cells of PC-12h (rat adrenal pheochromocytoma), the cells cultured with serum medium in two days showed the cell attachment and growth in number only at the ion-implanted region on NTPS for all ion species. In another two days in culture with nonserum medium including a nerve growth factor, the outgrowth of neural protrusions was also observed only at the ion-implanted region for all ion species. There was a difference in number of attached cells for ion species. The silver-negative ion-implanted NTPS had a large effect for cell attachment compared with other two ion species. This reason is considered to be due to the lowest contract angles among them.

  8. Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.

    2017-05-01

    Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.

  9. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Sonoda, T.

    2013-03-01

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  10. Activation of acceptor levels in Mn implanted Si by pulsed laser annealing

    NASA Astrophysics Data System (ADS)

    Li, Lin; Bürger, Danilo; Shalimov, Artem; Kovacs, Gy J.; Schmidt, Heidemarie; Zhou, Shengqiang

    2018-04-01

    In this paper, we report the magnetic and electrical properties of Mn implanted nearly intrinsic Si wafers after subsecond thermal treatment. Activation of acceptors is realized in pulsed laser annealing (PLA) films with a free hole concentration of 6.29  ×  1020 cm‑3 while the sample annealed by rapid thermal annealing (RTA) shows n-type conductivity with a much smaller free electron concentration in the order of 1015 cm‑3. Ferromagnetism is probed for all films by a SQUID magnetometer at low temperatures. The formation of ferromagnetic MnSi1.7 nanoparticles which was proven in RTA films can be excluded in Mn implanted Si annealed by PLA.

  11. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  12. Characterization and optimization of polycrystalline Si70%Ge30% for surface micromachined thermopiles in human body applications

    NASA Astrophysics Data System (ADS)

    Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris

    2009-09-01

    This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.

  13. Impact of He and H relative depth distributions on the result of sequential He+ and H+ ion implantation and annealing in silicon

    NASA Astrophysics Data System (ADS)

    Cherkashin, N.; Daghbouj, N.; Seine, G.; Claverie, A.

    2018-04-01

    Sequential He++H+ ion implantation, being more effective than the sole implantation of H+ or He+, is used by many to transfer thin layers of silicon onto different substrates. However, due to the poor understanding of the basic mechanisms involved in such a process, the implantation parameters to be used for the efficient delamination of a superficial layer are still subject to debate. In this work, by using various experimental techniques, we have studied the influence of the He and H relative depth-distributions imposed by the ion energies onto the result of the sequential implantation and annealing of the same fluence of He and H ions. Analyzing the characteristics of the blister populations observed after annealing and deducing the composition of the gas they contain from FEM simulations, we show that the trapping efficiency of He atoms in platelets and blisters during annealing depends on the behavior of the vacancies generated by the two implants within the H-rich region before and after annealing. Maximum efficiency of the sequential ion implantation is obtained when the H-rich region is able to trap all implanted He ions, while the vacancies it generated are not available to favor the formation of V-rich complexes after implantation then He-filled nano-bubbles after annealing. A technological option is to implant He+ ions first at such an energy that the damage it generates is located on the deeper side of the H profile.

  14. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  15. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  16. Microfabrication Method using a Combination of Local Ion Implantation and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Han, Jin; Kim, Jong-Wook; Lee, Hiwon; Min, Byung-Kwon; Lee, Sang Jo

    2009-02-01

    A new microfabrication method that combines localized ion implantation and magnetorheological finishing is proposed. The proposed technique involves two steps. First, selected regions of a silicon wafer are irradiated with gallium ions by using a focused ion beam system. The mechanical properties of the irradiated regions are altered as a result of the ion implantation. Second, the wafer is processed by using a magnetorheological finishing method. During the finishing process, the regions not implanted with ion are preferentially removed. The material removal rate difference is utilized for microfabrication. The mechanisms of the proposed method are discussed, and applications are presented.

  17. Metal ion levels in patients with stainless steel spinal instrumentation.

    PubMed

    McPhee, I Bruce; Swanson, Cheryl E

    2007-08-15

    Case-control study. To determine whether metal ion concentrations are elevated in patients with spinal instrumentation. Studies have shown that serum and urinary levels of component metal ions are abnormally elevated in patients with total joint arthroplasties. Little is known of metal ion release and concentrations in patients with spinal instrumentation. The study group consisted of patients who had undergone spinal instrumentation for various spinal disorders with a variety of stainless steel implants, 5 to 25 years previously. A group of volunteers without metal implants were controls. All subjects were tested for serum nickel, blood chromium, and random urine chromium/creatinine ratio estimation. The study group consisted of 32 patients with retained implants and 12 patients whose implants had been removed. There were 26 unmatched controls. There was no difference in serum nickel and blood chromium levels between all 3 groups. The mean urinary chromium/creatinine ratio for patients with implants and those with implants removed was significantly greater than controls (P < 0.001). The difference between study subgroups was not significant (P = 0.16). Of several patient and instrumentation variables, only the number of couplings approached significance for correlation with the urine chromium excretion (P = 0.07). Spinal implants do not raise the levels of serum nickel and blood chromium. There is evidence that metal ions are released from spinal implants and excreted in urine. The excretion of chromium in patients with spinal implants was significantly greater than normal controls although lower where the implants have been removed. The findings are consistent with low-grade release of ions from implants with rapid clearance, thus maintaining normal serum levels. Levels of metal ions in the body fluids probably do not reach a level that causes late side-effect; hence, routine removal of the implants cannot be recommended.

  18. Evaluation of lattice displacement in Mg - Implanted GaN by Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishikata, N.; Kushida, K.; Nishimura, T.; Mishima, T.; Kuriyama, K.; Nakamura, T.

    2017-10-01

    Evaluation of lattice displacement in Mg-ion implanted GaN is studied by combining elastic recoil detection analysis (ERDA), Rutherford backscattering spectroscopy (RBS) and Photoluminescence (PL) measurements. Mg-ion implantation into GaN single crystal wafer is performed with energies of 30 keV (ion fluence; 3.5 × 1014 cm-2) and 60 keV (6.5 × 1014 cm-2) at room temperature. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration for un-implanted and as-implanted GaN is 3.1 × 1014 cm-2 and 6.1 × 1014 cm-2 at around 265 nm in depth. χmin (the ratio of aligned and random yields) near the surface of the 〈0 0 0 1〉 direction for Ga is 1.61% for un-implanted and 2.51% for Mg-ion implanted samples. On the other hand, the value of χmin for N is 10.08% for un-implanted and 11.20% for Mg-ion implanted samples. The displacement concentration of Ga and N estimated from these χmin values is 4.01 × 1020 cm-3 and 5.46 × 1020 cm-3, respectively. This suggests that Ga vacancy (VGa), N vacancy (VN), Ga interstitial (Gai), and N interstitial (Ni) is introduced in Mg-ion implanted GaN. A strong emission at around 400 nm in as-implanted GaN is related to a VN donor and some acceptor pairs. It is suggested that the origin of the very high resistivity after the Mg-ion implantation is attributed to the carrier compensation effect due to the deep level of Ni as a non-radiative center.

  19. X-ray Topographic Methods and Application to Analysis of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.

    1984-01-01

    Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.

  20. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  1. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F.

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. Thesemore » are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.« less

  2. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    sf.Th. 82-0 327 11,y 604.)___ _ 4 . TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Ion Implantation Studies of Titanium Metal Suf s 6 ...AD-A113 7ag GEORGIA INST OF TECH ATLANTA SCHOOL OF PHYSICS FIG 11/ 6 ION IMPLANTATION STUDOIES OF TITANIUM METAL SURtFACES. (U) 1901 J R STEVENSON. K...LL0 kpproved ror 82 4 ±s~rutic iui.~o 82r-~~ ION IMPLANTATION STUDIES OF TITANIUM METAL SURFACES SECURITY CLASSIFICATION OIOF THIS PAGE (0fen Date

  3. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less

  4. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  5. High-fluence Ga-implanted silicon-The effect of annealing and cover layers

    NASA Astrophysics Data System (ADS)

    Fiedler, J.; Heera, V.; Hübner, R.; Voelskow, M.; Germer, S.; Schmidt, B.; Skorupa, W.

    2014-07-01

    The influence of SiO2 and SiNx cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case, Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiOx grown during annealing which only can be avoided by the usage of SiNx cover layers.

  6. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  7. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  8. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  9. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.

    PubMed

    Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego

    2014-03-01

    To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.

  10. Study of the effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation on stainless steel samples

    NASA Astrophysics Data System (ADS)

    Pillaca, E. J. D. M.; Ueda, M.; Oliveira, R. M.; Pichon, L.

    2014-08-01

    Effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation (PIII) have been investigated. This magnetic configuration when used in PIII allows obtaining high nitrogen plasma density close to the ion implantation region. Consequently, high ions dose on the target is possible to be achieved compared with standard PIII. In this scenario, nitrogen and carbon ions were implanted simultaneously on stainless steel, as measured by GDOES and detected by X-ray diffraction. Carbon-tape disposed on the sample-holder was sputtered by intense bombardment of nitrogen ions, being the source of carbon atoms in this experiment. The implantation of both N and C caused changes on sample morphology and improvement of the tribological properties of the stainless steel.

  11. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  12. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier withmore » an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.« less

  13. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  14. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  15. Low-energy mass-selected ion beam production of fragments produced from hexamethyldisilane for SiC film formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato

    2016-03-14

    We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less

  16. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  17. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  18. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  19. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  20. Heavy doping of CdTe single crystals by Cr ion implantation

    NASA Astrophysics Data System (ADS)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  1. Evidence of plasmon resonances of nickel particles deposited by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Picciotto, A.; Pucker, G.; Torrisi, L.; Bellutti, P.; Caridi, F.; Bagolini, A.

    The optical spectra of some metals show pronounced resonance lines caused by collective excitations of conduction electrons. These excitations are known as particle plasmons, Mie plasmons, or surface plasmons. Their spectral properties have attracted a lot of interest, both for fundamental reasons and in a view of applications. Scope of the work is the growth of nanometric metal particles (Ni) and the study of its optical properties by spectroscopic ellipsometry. Ni particles are obtained by implanting SiO2 with pulsed laser ablation followed by heat treatment in inert atmosphere (N2). An analysis of the ellipsometric spectra for samples with different implantation times and energy is presented. Generally, the synthesis of such structures is performed using ion implantation techniques or chemical reaction methods, while here we propose pulsed laser ablation for the generation of these particles and annealing procedures for their activation. The experimental measurements were performed at IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Fondazione Bruno Kessler in Trento and at the Physics Department of University of Messina.

  2. Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate

    PubMed Central

    2014-01-01

    Background The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation. Results The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants. Conclusions The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis. PMID:24987458

  3. Multiresponsive polysiloxane bearing spiropyran: synthesis and sensing of pH and metal ions of different valence

    NASA Astrophysics Data System (ADS)

    Li, Hongqi; Zheng, Tao; Zhao, Yong; Xu, Zhenxiang; Dai, Xuhang; Shao, Zhiyu

    2018-03-01

    A spiropyran-appended polysiloxane (SP-Si) was synthesized and characterized. The pH-responsive behavior of SP-Si was investigated. It was found that with the decrease of the pH of SP-Si solution the intensity of the absorption peak at 440 nm increased and the color of SP-Si solution turned from colorless to yellow gradually. The polymer serves as chemosensor for colorimetric detection of Ag+ and Fe3+ ions. Addition of Ag+ and Fe3+ ions to SP-Si solution induced color change from colorless to brown and earthy yellow, respectively. Sensing of Ag+ ions by SP-Si was not affected by common competitive metal ions except Hg2+ ions. Based on the transformation from colorless SP-Si solution with negligible absorption at 440 nm to brown SP-Si/Ag+ showing extremely strong absorption at 440 nm by addition of Ag+ ions and subsequent transformation from brown to colorless SP-Si/Ag+/Hg2+ with relatively weak absorption at 440 nm after addition of 1 equivalent of Hg2+ ions, SP-Si/Ag+ system serves as a dual colorimetric and spectroscopic probe for highly selective and sensitive detection of Hg2+ ions. The selective detection of Fe3+ ions by SP-Si is not interfered by common competitive metal ions including Na+, K+, Li+, Hg2+, Ni2+, Fe2+, Zn2+, Co2+, Sr2+, Cu2+, Al3+, Ce3+ and Cr3+. The detection limit of Ag+ and Fe3+ ions is 1.45 × 10-6 M and 3.52 × 10-6 M, respectively.

  4. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.

    PubMed

    Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus

    2006-06-01

    The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.

  5. Synthesis of Germanium-Tin Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Band Gap Semiconductor

    NASA Astrophysics Data System (ADS)

    Tran, Tuan Thien

    The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6.5-11 at.%. Hence there has been much interest in preparing such alloys since they are compatible with silicon and they raise the possibility of integrating photonics functionality into silicon circuitry. However, the maximum solid solubility of Sn in Ge is around 0.5 at.% and non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition have been used to achieve the desired high Sn concentrations. In this PhD work, the combination of ion implantation and pulsed laser melting (PLM) is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with good crystal quality. In initial studies, it was shown that 100 keV Sn implants followed by PLM produced high quality alloys with up to 6.2 at.%Sn but above these Sn concentrations the crystal quality was poor. The structural properties of the ≤6.2 at.% alloys such as soluble Sn concentration, strain distribution and crystal quality have been characterised by Rutherford backscattering spectrometry (RBS), Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Gamma valley. However, at higher implant doses needed to achieve >6.2 at.% Sn, ion-beam-induced porosity in Ge starts to occur, which drastically reduces the retained amount of the implanted Sn and such microstructure also hinders good crystallisation of the material during PLM. To solve this problem, it was shown that a nanometer thick SiO2 layer deposited on the Ge substrate prior to the implantation can largely eliminate the formation of porosity. This capping SiO2 layer also helps to increase the retained Sn concentration up to 15 at.% after implantation, as well as significantly improving the crystal quality of the Ge-Sn layer after PLM. With the use of the capping layer, a good quality Ge-Sn layer with 9 at.% Sn has been achieved using Sn implants at an energy of 120 keV. However, the thin film alloys produced by 100 keV or 120 keV Sn implantation and PLM are shown to contain compressive strain as a result of the large lattice mismatch between Ge and high Sn content alloys. Such strain compromises the tendency towards a direct bandgap material and hence strain relaxation is highly desirable. A thermal stability study showed that the thin film strained material is metastable up to 400°C, but thereafter Sn comes out of solution and diffuses to the material surface. To investigate a possible pathway to the synthesis of strain-relaxed material, a higher Sn implant energy of 350 keV was used to produce thicker alloy layers. XRD/reciprocal space mapping showed that this thicker alloy material is largely relaxed after PLM, which is beneficial for the direct band gap transition and solves the trade-off between higher Sn concentration and compressive strain. However, RBS indicates a sub-surface band of disorder which suggested a possible mechanism for the strain relaxation. Indeed, TEM examination of such material showed the material relaxed via the generation of non-equilibrium threading defects. Despite such defects, a PL study of this relaxed material found photon emission at a wavelength of 2150 nm for 6-9 at.% Sn alloys. However, the intensity of the emission was variable across different Sn content alloys, presumably as a result of the threading defects. A possible pathway to removing such defects is given that may enable both photodetectors and lasers to be fabricated at wavelengths above 2mum.

  6. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  7. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  8. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  9. Surface modification by carbon ion implantation for the application of ni-based amorphous alloys as bipolar plate in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan

    2011-04-01

    Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.

  10. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  11. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  12. Modification of Wetting Properties of PMMA by Immersion Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mireault, N.; Ross, G. G.

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the formation of new chemical functions such as -OOH, -COOH and C=C. These observations provide a good explanation for the strong increase of the wetting properties of the PMMA surfaces.

  13. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  14. Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2018-04-01

    After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.

  15. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  16. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  17. Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants.

    PubMed

    MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A

    2017-01-01

    Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.

  18. Formation of Porous Germanium Layers by Silver-Ion Implantation

    NASA Astrophysics Data System (ADS)

    Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.

    2018-04-01

    We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.

  19. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  20. Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

    NASA Astrophysics Data System (ADS)

    Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.

    2015-07-01

    This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.

  1. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  2. In vivo immuno-reactivity analysis of the porous three-dimensional chitosan/SiO2 and chitosan/SiO2 /hydroxyapatite hybrids.

    PubMed

    Guo, Mengxia; Dong, Yifan; Xiao, Jiangwei; Gu, Ruicai; Ding, Maochao; Huang, Tao; Li, Junhua; Zhao, Naru; Liao, Hua

    2018-05-01

    Inorganic/organic hybrid silica-chitosan (CS) scaffolds have promising potential for bone defect repair, due to the controllable mechanical properties, degradation behavior, and scaffold morphology. However, the precise in vivo immuno-reactivity of silica-CS hybrids with various compositions is still poorly defined. In this study, we fabricated the three-dimensional (3D) interconnected porous chitosan-silica (CS/SiO 2 ) and chitosan-silica-hydroxyapatite (CS/SiO 2 /HA) hybrids, through sol-gel process and 3D plotting skill, followed by the naturally or freeze drying separately. Scanning electron microscopy demonstrated the hybrids possessed the uniform geometric structure, while, transmission electron microscopy displayed nanoscale silica, or HA nanoparticles dispersed homogeneously in the CS matrix, or CS/silica hybrids. After intramuscular implantation, CS/SiO 2 and CS/SiO 2 /HA hybrids triggered a local and limited monocyte/macrophage infiltration and myofiber degeneration. Naturally dried CS/SiO 2 hybrid provoked a more severe inflammation than the freeze-dried ones. Dendritic cells were attracted to invade into the implants embedded-muscle, but not be activated to prime the adaptive immunity, because the absence of cytotoxic T cells and B cells in muscle received the implants. Fluorescence-activated cell sorting (FACS) analysis indicated the implanted hybrids were incapable to initiate splenocytes activation. Plasma complement C3 enzyme linked immunosorbent assay (ELISA) assay showed the hybrids induced C3 levels increase in early implanting phase, and the subsequent striking decrease. Thus, the present results suggest that, in vivo, 3D plotted porous CS/SiO 2 and CS/SiO 2 /HA hybrids are relatively biocompatible in vivo, which initiate a localized inflammatory procedure, instead of a systematic immune response. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1223-1235, 2018. © 2018 Wiley Periodicals, Inc.

  3. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells

    PubMed Central

    Kalia, Priya; Brooks, Roger A.; Kinrade, Stephen D.; Morgan, David J.; Brown, Andrew P.; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased hydrophobicity, respectively. AFM showed an increase in surface roughness of the 6 mM Si treated surface, which correlated well with an increase in number of vinculin plaques. These findings suggest that NSP of the right size (relative to charge) adsorb readily to the HA surface, changing the surface characteristics and, thus, improving osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated HA surfaces that may enable improved osseointegration of bone implants. PMID:26863624

  4. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications.

    PubMed

    Kaya, Seray; Cresswell, Mark; Boccaccini, Aldo R

    2018-02-01

    Bioactive glasses (BGs) are being used in several biomedical applications, one of them being as antibacterial materials. BGs can be produced via melt-quenching technique or sol-gel method. Bactericidal silver-doped sol-gel derived mesoporous silica-based bioactive glasses were reported for the first time in 2000, having the composition 76SiO 2 -19CaO-2P 2 O 5 -3Ag 2 O (wt%) and a mean pore diameter of 28nm. This review paper discusses studies carried out exploring the potential antibacterial applications of drug-free mesoporous silica-based BGs. Bioactive glasses doped with metallic elements such as silver, copper, zinc, cerium and gallium are the point of interest of this review, in which SiO 2 , SiO 2 -CaO and SiO 2 -CaO-P 2 O 5 systems are included as the parent glass compositions. Key findings are that silica-based mesoporous BGs offer a potential alternative to the systemic delivery of antibiotics for prevention against infections. The composition dependent dissolution rate and the concentration of the doped elements affect the antibacterial efficacy of BGs. A balance between antibacterial activity and biocompatibility is required, since a high dose of metallic ion addition can cause cytotoxicity. Typical applications of mesoporous BGs doped with antibacterial ions include bone tissue regeneration, multifunctional ceramic coatings for orthopedic devices and orbital implants, scaffolds with enhanced angiogenesis potential, osteostimulation and antibacterial properties for the treatment of large bone defects as well as in wound healing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-09-01

    Specimens of polymethylmethacrylate (PMMA) have been implanted with 400 keV Cr+ ions at different ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The possible chemical reactions involved in the nucleation of conjugated carbonaceous clusters in implanted PMMA are discussed. Furthermore, impact of formation of carbonaceous clusters on structural, optical, electrical and morphological properties of implanted PMMA has been examined. The structural modifications in implanted PMMA are observed by Raman spectroscopy. The variation in optical band gap and Urbach energy is measured using UV-visible spectroscopic analysis. The effects of Cr+ ion implantation on electrical and morphological properties are investigated by four-probe apparatus and atomic force microscopy, respectively. The Raman spectroscopic analysis confirmed the formation of carbonaceous clusters with the transformation of implanted layer of PMMA into amorphous carbon. Simultaneously, the optical band gap of implanted PMMA has reduced from 3.13 to 0.85 eV. The increase in Urbach energy favors the decline in band gap together with the structural modification in implanted PMMA. As a result of Cr+ ion implantation, the electrical conductivity of PMMA has improved from 2.14 ± 0.06 × 10-10 S/cm (pristine) to 7.20 ± 0.36 × 10-6 S/cm. The AFM images revealed a decrease in surface roughness with an increment in ion fluence up to 5 × 1014 ions/cm2. The modification in the electrical, optical and structural properties makes the PMMA a promising candidate for its future utilization, as a semiconducting and optically active material, in various fields like plastic electronics and optoelectronic devices.

  6. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  7. Beta-decay spectroscopy of neutron-rich 84-86Ga isotopes

    NASA Astrophysics Data System (ADS)

    Naqvi, Farheen; Xu, Zhengyu; Werner, Volker; Niikura, Megumi; Nishimura, Shunji; Eurica Collaboration

    2013-10-01

    The low lying excited states in 84-86 Ge were studied via the beta-gamma spectroscopy of 84-86 Ga nuclei. The study focused on the beta-delayed neutron emission probabilities and the beta-decay lifetimes, relevant for the astrophysical r process path in the region. The neutron-rich Ga isotopes were produced by in-flight fragmentation of 238U beam on a 9Be target. The experiment was performed at the Radioactive Ion Beam Facility (RIBF) at RIKEN, Japan. The BigRIPS spectrometer was utilized to identify and separate the reaction residues and the ions of interest were implanted in a segmented Si detector array called WASABI. Gamma rays emitted after the beta decay were identified by the EURICA array. Results of the ongoing analysis will be presented. Work supported by DOE grant no. DE-FG02-91ER-40609.

  8. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  9. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.

    2018-01-01

    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.

  10. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  11. Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance

    PubMed Central

    Gunawidjaja, Philips N.; Mathew, Renny; Lo, Andy Y. H.; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Mattias Edén, María Vallet-Regí

    2012-01-01

    We review the benefits of using 29Si and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for probing the local structures of both bulk and surface portions of mesoporous bioactive glasses (MBGs) of the CaO–SiO2−(P2O5) system. These mesoporous materials exhibit an ordered pore arrangement, and are promising candidates for improved bone and tooth implants. We discuss experimental MAS NMR results from three MBGs displaying different Ca, Si and P contents: the 29Si NMR spectra were recorded either directly by employing radio-frequency pulses to 29Si, or by magnetization transfers from neighbouring protons using cross polarization, thereby providing quantitative information about the silicate speciation present in the pore wall and at the MBG surface, respectively. The surface modifications were monitored for the three MBGs during their immersion in a simulated body fluid (SBF) for intervals between 30 min and one week. The results were formulated as a reaction sequence describing the interconversions between the distinct silicate species. We generally observed a depletion of Ca2+ ions at the MBG surface, and a minor condensation of the silicate-surface network over one week of SBF soaking. PMID:22349247

  12. Vanadium supersaturated silicon system: a theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Garcia-Hemme, Eric; García, Gregorio; Palacios, Pablo; Montero, Daniel; García-Hernansanz, Rodrigo; Gonzalez-Diaz, Germán; Wahnon, Perla

    2017-12-01

    The effect of high dose vanadium ion implantation and pulsed laser annealing on the crystal structure and sub-bandgap optical absorption features of V-supersaturated silicon samples has been studied through the combination of experimental and theoretical approaches. Interest in V-supersaturated Si focusses on its potential as a material having a new band within the Si bandgap. Rutherford backscattering spectrometry measurements and formation energies computed through quantum calculations provide evidence that V atoms are mainly located at interstitial positions. The response of sub-bandgap spectral photoconductance is extended far into the infrared region of the spectrum. Theoretical simulations (based on density functional theory and many-body perturbation in GW approximation) bring to light that, in addition to V atoms at interstitial positions, Si defects should also be taken into account in explaining the experimental profile of the spectral photoconductance. The combination of experimental and theoretical methods provides evidence that the improved spectral photoconductance up to 6.2 µm (0.2 eV) is due to new sub-bandgap transitions, for which the new band due to V atoms within the Si bandgap plays an essential role. This enables the use of V-supersaturated silicon in the third generation of photovoltaic devices.

  13. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, R.H.; Zhang, S.

    1997-01-14

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

  14. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  15. Passivated contact formation using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Stradins, Pauls; Nemeth, William

    2018-05-29

    Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.

  16. High-fluence Ga-implanted silicon—The effect of annealing and cover layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, J., E-mail: jan.fiedler@hzdr.de; Heera, V.; Hübner, R.

    2014-07-14

    The influence of SiO{sub 2} and SiN{sub x} cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case,more » Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiO{sub x} grown during annealing which only can be avoided by the usage of SiN{sub x} cover layers.« less

  17. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  18. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  19. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    PubMed Central

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  20. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    PubMed

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

Top