Science.gov

Sample records for ion loss-driven h-mode

  1. Ion Temperature Fluctuations in ELMy H-mode of the X3 EC-heated Plasmas on TCV

    SciTech Connect

    Karpushov, A. N.; Duval, B. P.; Schlatter, Ch.

    2008-03-19

    This paper focuses on interpreting variations in the NPA measured energy distribution of neutral fluxes from the TCV high density H-mode plasma discharges with strong third harmonic electron cyclotron heating (P{sub X3}>P{sub {omega}}). Two quasi-stationary regimes: ELMy H-mode and ELM-free H-mode, routinely and reproducibly obtained in TCV, with a plasma density 5-10x10{sup 19} m{sup -3}, electron temperature 2-3 keV and ion temperature of 0.7-1.0 keV. The ELMy X3-heated H-mode plasma on TCV is significantly perturbed by ELMs, sawteeth activity and modes. In X3-heated plasmas ELMs are characterised by increased amplitudes and lower frequencies than are typical in ohmic H-modes with strong sawteeth synchronised with ELM cycle. The energy losses per ELM can exceed the 15% of the total stored energy and the plasma density and electron temperature profiles were resolved during the ELM cycle. NPA measurements in the presence of ELMs and sawteeth cannot be explained with the classical theory of two-body Coulomb electron-ion collisions alone. Additional effects (such as a modification of the ion temperature radial profile and/or ion redistribution in the coordinate and velocity space due to plasma perturbations) must be considered.

  2. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  3. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  4. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    SciTech Connect

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  5. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  6. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  7. Role of Te/Ti and ∇vtor in ion heat transport of ASDEX Upgrade H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manini, A.; Angioni, C.; Peeters, A. G.; Ryter, F.; Jacchia, A.; Maggi, C. F.; Suttrop, W.; ASDEX Upgrade Team

    2006-12-01

    Experiments in H-mode plasmas have shown that both heat and particle transport are sensitive to the ratio between electron and ion temperature (Te/Ti). While decreasing Te/Ti is beneficial for confinement, an increased electron heating in these so called 'hot ion plasmas' deteriorates the confinement. H-mode plasmas with low Te/Ti are often accompanied by high toroidal rotation velocity (vphi). Its gradient (∇vphi) can destabilize the ion temperature gradient mode (ITG) through its parallel component in the parallel velocity shear, but it has also stabilizing effects since it produces an E × B shearing rate (ωE × B). In this paper, the effects of electron heating on the ion heat transport is investigated in H-mode plasmas heated by neutral beam injection (NBI) and electron cyclotron heating (ECH). In particular, the correlation on Te/Ti and ∇vphi is studied and compared with calculations made with GLF23 and GS2. Experimentally it is shown that the normalized gradient length of the ions ( R/L_{T_{\\rmi}} ) is correlated with both Te/Ti and ∇vphi: peaked ion temperature profiles are only obtained with low Te/Ti and high ∇vphi, and vice-versa. When ECH is added, both ion heat and momentum transport are enhanced, leading to a drop of both the Ti and vphi profiles. The effective growth rate γeff = γ-ωE × B is calculated, with the mode growth rate γ determined with GS2 and ωE × B with GLF23. The ion transport is enhanced due to the decrease of the ITG R/L_{T_{\\rmi}} threshold with increasing Te/Ti. Comparison of the dependence of R/L_{T_{\\rmi}} on Te/Ti and ∇vphi between experiments and modelling indicates that the deterioration of confinement cannot be explained by the changes in only Te/Ti or ∇vphi, but by the combined effects of both parameters. The changes in Te/Ti act directly on the ITG threshold, while the ones in ∇vphi modify the ωE × B shearing rate leading to changes in the effective threshold.

  8. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  9. Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in Experimental Advanced Superconducting Tokomak

    SciTech Connect

    Zhang, X. J.; Wan, B. N. Zhao, Y. P.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.

    2014-06-15

    An ion cyclotron range of frequencies (ICRF) system with power up to 6.0 MW and a lower hybrid current drive (LHCD) system up to 4 MW have been applied for heating and current drive experiments in Experimental Advanced Superconducting Tokomak (EAST). Significant progress has been made with ICRF heating and LHCD for realizing the H-mode plasma operation in EAST. During 2010 and 2012 experimental campaigns, ICRF heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H minority heating (H-MH) mode. The H-MH mode produced good plasma performance, and realized H-mode using ICRF power alone in 2012. In 2010, H-modes were generated and sustained by LHCD alone, where lithium coating and gas puffing near the mouth of the LH launcher were applied to improve the LHCD power coupling and penetration into the core plasmas of H-modes. In 2012, the combination of LHCD and ICRH power extended the H-mode duration up to over 30 s. H-modes with various types of edge localized modes (ELMs) have been achieved with H{sub IPB98}(y, 2) ranging from 0.7 to over unity. A brief overview of LHCD and ICRF Heating experiment and their application in achieving H-mode operation during these two campaigns will be presented.

  10. Long-lived impurity-ion snakes in the EAST ELM-free H-mode Sawtoothing plasma

    NASA Astrophysics Data System (ADS)

    Ma, Tianpeng; Xu, Liqing; Hu, Liqun

    2015-06-01

    Two types of long-lived impurity-ion snakes (LLSs) including the ideal-like kink mode which damps before the large sawtooth crash, termed sawtooth-free LLSs (SF-LLSs) and complex LLSs (C-LLSs), which coexist with compound sawtooth and final damping after sawtooth crash were observed in EAST ELM-free H-mode sawtoothing plasma. These LLSs have an m = 1 structure, accompanied by several harmonic modes (m = 2, m = 3...). There is a slight frequency-chirping behavior of the LLS. Similar with the typical sawtooth crash phase, a large crescent-shaped helical island-like structure in the core region of the C-LLSs was visible after the major crash of the coexisting compound sawtooth. The strong coupling of the C-LLSs and the 2/1 tearing mode (TM) can trigger a neo-classical tearing mode (NTM) due to a forced magnetic reconnection.

  11. Threshold conditions for transitions to I-mode and H-mode with unfavourable ion grad B drift direction

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Whyte, D. G.; Churchill, R. M.; Dominguez, A.; Hughes, J. W.; Ma, Y.; Marmar, E. S.; Lin, Y.; Reinke, M. L.; White, A. E.

    2012-11-01

    Transitions from the L-mode regime to the I-mode regime, with an energy transport barrier, and to the H-mode regime with both an energy and particle transport barrier are studied on the Alcator C-Mod tokamak. Steady I-mode plasmas have been produced over a wide range of plasma field (3-6 T), current (0.8-1.35 MA), density and shaping in the unfavourable ion B × ∇B configuration. The power threshold for the L-I transition is higher than scalings for the L-H transition with favourable drift, and increases with plasma current as well as density. Threshold conditions for the I-H transition are more variable. In some conditions I-mode is maintained up to the maximum available ICRF power of 5 MW, nearly a factor of two above the L-I threshold, giving a robust operating window. Edge Te at the L-I transition is in the range 250-450 eV, over a range of current and density, about a factor of two higher than with favourable drift, while at the I-H transition it can be much higher (up to 1.1 keV) but is again widely variable. Heat pulses due to sawteeth may play a role in transitions. Controlled I-L back transitions indicate little power hysteresis.

  12. UF-CHERS Measurements of Ion Temperature and Toroidal Rotation Fluctuations Associated with the Edge Harmonic Oscillation in Quiescent H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.; Yan, Z.; Grierson, B. A.

    2016-10-01

    The UF-CHERS (Ultra Fast CHarge Exchange Recombination Spectroscopy) diagnostic at DIII-D measures local, long-wavelength ion temperature and toroidal velocity fluctuations at turbulence-relevant spatiotemporal scales from emission of the CVI n=8 ->7 transition. During Quiescent H-mode (QH-mode) plasmas, which offer ELM-free improved confinement, UF-CHERS measurements observed coherent, low frequency (fo 10kHz) pedestal oscillations in Ti and vtor at the Edge Harmonic Oscillation (EHO) frequency while several modes between 35-75 kHz are suppressed when the EHO appears. Although broadband ion temperature and density fluctuations were reduced by the EHO, the toroidal rotation showed increased fluctuation amplitude. Investigating ion temperature and toroidal fluctuations associated with the EHO may provide insights into the saturated instability driving the EHO. Supported by DOE Grants DE-FG02-08ER54999, DE-FC02-04ER54698, and NSF GRFP Grant DGE-1256259.

  13. Limiter H-mode experiments on TFTR

    SciTech Connect

    Bush, C.E. ); Bretz, N.L.; Fredrickson, E.D.; McGuire, K.M.; Nazikian, R.; Park, H.K.; Schivell, J.; Taylor, G.; Bitter, M.; Budny, R.; Cohen, S.A.; Kilpatrick, S.J.; LeBlanc, B.; Manos, D.M.; Meade, D.; Paul, S.F.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Towner, H.H.; Wieland, R.M.; Arunasalam, V.; Bateman, G.; Bell, M.G.; Bell, R.; Boivin, R.; Cavallo, A.; Cheng, C.Z.; Chu, T.K.; Co

    1991-05-01

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bidirectional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/, greater than 2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks, while the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The transport analysis of the data shows that transport in these H-modes is similar to that of supershots within the inner 0.6 m core of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering data for the edge plasma shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time, beam emission spectroscopy (BES) shows a coherent mode near the boundary which propagates in the ion direction with m = 15--20 at 20--30 kHz. During the ELM event these apparent rotations cease and Mirnov fluctuations in the frequency range of 50--500 kHz increase in intensity. 16 refs., 8 figs.

  14. High performance H modes in JET

    SciTech Connect

    Tanga, A.

    1990-01-01

    In JET the scientific properties and technical basis of good confinement regimes have been evaluated in the light of the potential extrapolation of such regimes to reactor requirements. In this paper the main experimental H-mode results are discussed highlighting global confinement scaling, low q regimes, the role of the target plate material, the density limit, and finally sawtooth suppression and hot-ion mode. 17 refs., 15 figs.

  15. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE PAGES

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  16. Progress in understanding the enhanced pedestal H-mode in NSTX

    SciTech Connect

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  17. Progress In Understanding The Enhanced Petestal H-mode In NSTX

    SciTech Connect

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-06-26

    ThIS paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  18. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  19. Characteristics of the First H-mode Discharges in KSTAR

    SciTech Connect

    Yoon, S. W.; Ahn, J.W.; Jeon, Y. M.; Suzuki, T.; Hahn, S. H.; Ko, W. H.; Lee, K. D.; Chung, J. I.; Nam, Y. U.; Kim, H. S.; Kim, W. C.; Oh, Y. K.; Kwak, J. G.; Park, Y. S.; Sabbagh, S. A.; Humphreys, D. A.; Na, Y. S.; Kim, K. M.; Yun, G. S.; Hyatt, A. W.; Gohil, P.; Bae, Y. S.; Yang, H. L.; Park, H.; Kwon, M.; Lee, G. S.

    2011-01-01

    Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L-H transition is about 0.9MW for a line-averaged density of similar to 2.0 x 10(19) m(-3). There is a clear indication of the increase in the L-H threshold power with decreasing density for densities lower than similar to 2 x 10(19) m(-3). The L-H transitions typically occurred shortly after the beginning of plasma current flattop (I(p) = 0.6 MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L-H transition, which is also implied by the relatively slow transition time (>10 ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (tau(E)) indicates that tau(E) is higher than the prediction of multi-machine scaling laws by 10-20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10-30 Hz for the large ELM bursts and 50-100 Hz for the smaller ones. In addition, very small and high frequency (200-300 Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases.

  20. H-modes studies in PDX

    SciTech Connect

    Fonck, R.J.; Beirsdorfer, P.; Bell, M.; Bol, K.; Boyd, D.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1984-07-01

    A regime of enhanced energy confinement during neutral beam heating has been obtained routinely in the PDX tokamak after modifications to form a closed divertor geometry. Plasma density profiles were broad and the electron temperature at the plasma edge reached values of approx. 400 eV in the H-mode phase of a discharge. A comparison of closed divertor discharges with moderate and intense gas puffing indicates that a requirement for obtaining high confinement times is the localization of the plasma fueling source in the divertor throat region. While high confinement was attained at moderate injected powers (P/sub INJ/ less than or equal to 3 MW), confinement was degraded at higher powers due to both increased edge instabilities and, especially, the intense gas puffing needed to prevent disruptions. Initial results with a particle scoop limiter indicate high particle confinement times and energy confinement times approaching those of diverted H-mode plasmas.

  1. LHCD and ICRF heating experiments in H-mode plasmas on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Wan, B. N.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.; Collaboration: EAST Team

    2014-02-12

    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report.

  2. [ital H] mode of the W 7-AS stellarator

    SciTech Connect

    Erckmann, V.; Wagner, F.; Baldzuhn, J.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Hartfuss, H.J.; Hofmann, J.V.; Jaenicke, R.; Niedermeyer, H.; Ohlendorf, W.; Rudyj, A.; Weller, A.; Bogdanov, S.D.; Bomba, B.; Borschegovsky, A.A.; Cattanei, G.; Dodhy, A.; Dorst, D.; Elsner, A.; Endler, M.; Geist, T.; Giannone, L.; Hacker, H.; Heinrich, O.; Herre, G.; Hildebrandt, D.; Hiznyak, V.I.; Il'in, V.I.; Kasparek, W.; Karger, F.; Kick, M.; Kubo, S.; Kuftin, A.N.; Kurbatov, V.I.; Lazaros, A.; Malygin, S.A.; Malygin, V.I.; McCormick, K.; Mueller, G.A.; Orlov, V.B.; Pech, P.; Roi, I.N.; Sardei, F.; Sattler, S.; Schneider, F.; Schneider, U.; Schueller, P.G.; Siller, G.; Stroth, U.; Tutter, M.; Unger, E.; Wolff, H.; Wuersching, E.; Zoepfel, S. )

    1993-04-05

    In W 7-AS the [ital H] mode has been observed for the first time in a currentless stellarator plasma. [ital H] modes are achieved with 0.4 MW electron cyclotron resonance heating at 140 GHz at high density. The [ital H] phases display all characteristics known from tokamak [ital H] modes including edge localized modes (ELMs). The achievement of the [ital H] mode in a shear-free stellarator without toroidal current has consequences on [ital H]-mode transition and ELM theories.

  3. Scaling studies of the H-mode pedestal

    SciTech Connect

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T{sub i} and T{sub e} are comparable. Measurements of main ion and C{sup 6+} profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier {delta} is best described by the dimensionless scaling {delta}/R {proportional_to} ({beta}{sub pol}{sup ped}){sup 0.4} where ({beta}{sub pol}{sup ped}) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T{sub i} barrier is quite variable and is not a good measure of the width of the pressure barrier.

  4. Tokamak L/H mode transition

    SciTech Connect

    Tsui, K. H.; Navia, C. E.

    2012-01-15

    Through the non field-aligned rotational tokamak equilibrium of a divergence-free plasma flow with a pair of transformed plasma variables w-vector{sub *}=({mu}{rho}){sup 1/2}{nu}-vector and {mu}p{sub *}=({mu}p+w{sub *}{sup 2}/2)[K. H. Tsui, Phys. Plasmas 18, 072502 (2011)], a preliminary understanding of the L/H equilibrium transition is proposed through a feedback cycle, where the higher plasma flux due to external drives enters the rotational Grad-Shafranov equation through the velocity dependent poloidal plasma {beta} to generate the H equilibrium. This H rotational mode has the characteristics of higher normal electric field and plasma pressure. Coupled to the transport properties of E-vector x B-vector drift transport barrier leading to a higher plasma pressure, this makes the H mode a self-sustained equilibrium. The higher plasma {beta} then feeds back to the equilibrium and completes the feedback loop.

  5. Phenomenological model for H-mode

    SciTech Connect

    Ohyabu, N.

    1985-08-01

    A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition.

  6. H-mode Edge Turbulence and Pedestal Measurements in Pegasus Plasmas using Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Kriete, D. M.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2015-11-01

    In Pegasus discharges, L-H mode transitions are induced using Ohmic heating and high-field-side fueling. H-mode plasmas have energy confinement consistent with the ITER98pb(y,2) scaling law, indications of increased electron and ion temperature, and an increase in core rotation compared to L-mode plasmas. Electron density and temperature profiles have been measured in the edge region using a scannable triple Langmuir probe on a shot-by-shot basis. In H-mode, a pressure pedestal that has a hyperbolic tangent shape and a ~ 2 cm ∇pe scale length is observed, in contrast to a linear shape in L-mode. Autopower spectra of the collected ion saturation current in H-mode discharges show a factor of ~ 3 reduction in fluctuations in the 50-200 kHz band with respect to L-mode. Two Langmuir probes with 8 cm poloidal separation have been installed on Pegasus. The turbulence correlation length in the edge will be measured by radially scanning the probes. Knowledge of the correlation length will be used to inform the design of a future 8-channel radial multiprobe array. This system will simultaneously measure the dynamic ne (R , t) , Te (R , t) , and Φ (R , t) profiles and fluctuations across the L-H mode transition and be used to investigate nonlinear ELM dynamics. Work supported by US DOE grant DE-FG02-96ER54375.

  7. Predictions of H-mode performance in ITER

    SciTech Connect

    Budny, R. V.; Andre, R.; Bateman, G.; Halpern, F.; Kessel, C. E.; Kritz, A.; McCune, D.

    2008-03-03

    Time-dependent integrated predictive modeling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutral beam injection and ion cyclotron heating of He3 minority ions are modeled, and the GLF23 transport model is used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion, and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip=15 MA, BTF=5.3 T, and Greenwald fraction=0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡ PDT/Paux). Typical predictions assuming Paux = 50-53 MW yield PDT = 250- 720 MW and QDT = 5 - 14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10 or 20%, and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn-up is predicted to generate central tritium densities up to 1016/m3 and DT neutron rates up to 5×1016/s, compared with the DD neutron rates of 6×1017/s. Predictions with the toroidal field reduced 10 or 20% below the planned 5.3 T and keeping the same q98, Greenwald fraction, and Βη indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B3.5).

  8. Progress in Understanding the Enhanced Pedestal H-mode in NSTX

    NASA Astrophysics Data System (ADS)

    Gerhardt, S.; Battaglia, D.; Bell, R. E.; Diallo, A.; Guttenfelder, W.; Leblanc, B. P.; Maingi, R.; Ren, Y.; Canik, J. M.; Snyder, P.; Kubota, S.; Smith, D. R.

    2013-10-01

    The enhanced pedestal H-mode (EP H-mode) is a high performance regime in NSTX, characterized by very steep ion temperature gradients and large edge flow shear. Recent research shows that the edge ion temperature shapes can very widely, from cases with the steep gradient region near the separatrix, to cases where the gradient is shifted inward by up to 10 cm. In all cases, however, the region of good confinement is coincident with a region of large toroidal flow shear. Typically 75% of the stored energy increase following the EP H-mode transition is through the ion channel, with the remaining 25% in the electron channel. While most EP H-mode examples are quite short, a number of quite quiescent long-pulse examples have been found in the NSTX database. Edge fluctuations in this regime have been assessed. There are some hints of an increase in magnetic fluctuations measured at the vessel wall, but no profound modifications in the turbulence measured by BES; reflectometer analysis is ongoing. Results of transport assessments with TRANSP and XGC-0, microstability calculations with GS-2, and edge macrostability with ELITE will be presented. This work was sponsored by the U.S. Department of Energy.

  9. Observation of a Complex Multistage Transition in the JT-60U H-mode Edge

    SciTech Connect

    Kamiya, K.; Sakamoto, Y.; Matsunaga, G.; Kojima, A.; Urano, H.; Oyama, N.; Koide, Y.; Kamada, Y.; Ida, K.

    2010-07-23

    A complex multistage transition of the edge radial electric field is observed in JT-60U H-mode phase without edge localized mode. An interesting feature is that the poloidal rotation velocity of the carbon impurity ions changes in the later H-phase without a comparable change in the main ion pressure gradient, indicating a change in the parallel momentum (and particle) balance channel.

  10. L-H Mode Transitions in the National Spherical Torus Experiment

    SciTech Connect

    S.M. Kaye; C.E. Bush; E. Fredrickson; B. LeBlanc; R. Maingi; S.A. Sabbagh

    2003-07-24

    Edge data from plasmas in the National Spherical Torus Experiment (NSTX) [S. Kaye et al., Fusion Technology 36 (1999) 16] have been compared to theories of transport suppression that have been used to develop a physics framework for low-confinement (L) to high-confinement (H) mode transitions. The NSTX data were obtained in low aspect ratio (R/a approximately equal to 1.3) discharges taken from a variety of discharge phases, including L-modes, L-H transitions, and H-modes with and without edge localized modes (ELMs). The comparisons show that the group of points taken just before the L-H mode transition are well mixed with the purely L-mode group to within the measurement uncertainties, indicating that changes in these parameters leading up to the transition are subtle. One of the theory parameters, alpha{sub MHD} = -R{sub q}{sup 2}dbeta{sub t/dr}, does show a clear threshold alpha{sub MHD} = 1 to 2 between the H-mode grouping of points and those remaining in the L-mode or taken just prior to the transition. Additionally, there is no evidence for an edge temperature threshold necessary for transitioning into the H-mode. NSTX data indicate further a possible connection between L-H transitions and non-ambipolar beam ion losses.

  11. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    SciTech Connect

    Taylor, G.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Harvey, R. W.

    2011-12-23

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a non-inductive current fraction, f{sub NI}{approx}0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI}{approx}0.35, when P{sub RF}{>=}2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  12. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bonoli, P. T.; Green, D. L.; Harvey, R. W.; Hosea, J. C.; Jaeger, E. F.; LeBlanc, B. P.; Maingi, R.; Phillips, C. K.; Ryan, P. M.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.

    2011-12-01

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (Ip) ramp-up in NSTX. The initial approach to achieving this goal has been to heat Ip = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (PRF), achieved a non-inductive current fraction, fNI˜0.65. Improved antenna conditioning resulted in the generation of Ip = 650 kA HHFW H-mode plasmas, with fNI˜0.35, when PRF≥2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW+NBI H-mode data that show decreasing core RF heating

  13. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    SciTech Connect

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  14. Peaked density profile circular limiter H-modes on TFTR

    SciTech Connect

    Bush, C.E. ); Goldston, R.J.; Scott, S.D.; Fredrickson, E.D.; McGuire, K.; Schivell, J.; Taylor, G.; Bell, M.G.; Boivin, R.L.; Bretz, N.; Cavallo, A.; Efthimion, P.C.; Grek, B.; Hawryluk, R.; Hill, K.; Hulse, R.A.; Janos, A.; Johnson, D.W.; Kilpatrick, S.; Manos, D.M.; Mansfield, D.K.; Meade, D.M.; Park, H.; Ramsey, A.T.; Stratton, B.; Synakowski, E.J.; Towner, H.H.; Wieland, R.M.; Zarnstor

    1990-06-01

    Circular limiter H-modes are obtained on TFTR during high power neutral beam heating. The transition is usually from the supershot to the H-mode rather than the usual L- to H- transition, and thus is obtained in a low recycling environment with core fueling mainly from the heating beams. As a result, the density and pressure profiles are highly peaked at the center. Global confinement time, {tau}{sub E}, is enhanced over L-mode scaling by up to {approx} 2.5 times. The onset of ELMs shortly after the H-mode transition appears to limit {tau}{sub E}. Limiter H-modes of up to 1.5 sec duration have been realized. 18 refs., 4 figs.

  15. Two-dimensional structure and particle pinch in tokamak H mode.

    PubMed

    Kasuya, Naohiro; Itoh, Kimitaka

    2005-05-20

    Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime.

  16. Two-Dimensional Structure and Particle Pinch in Tokamak H Mode

    SciTech Connect

    Kasuya, Naohiro; Itoh, Kimitaka

    2005-05-20

    Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime.

  17. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.

  18. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  19. Pressure-Gradient-Limiting Instability Dynamics in the H-mode Pedestal on DIII-D

    NASA Astrophysics Data System (ADS)

    Yan, Z.

    2010-11-01

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the inter-ELM phase indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (20-150 kHz) advects in the ion-diamagnetic drift direction (ion mode), and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). Interestingly, the mode amplitudes are modulated with the ELM cycle with the ion mode having some features qualitatively similar to those predicted for kinetic ballooning modes (KBM). Experiments have focused on determining the role of current and pressure gradient-driven instabilities in determining the H-mode pedestal structure. Detailed analysis of the temporal evolution reveals complex dynamics. The ion mode amplitude increases rapidly after an ELM and then saturates, consistent with the dynamics of the pedestal electron pressure, while the electron mode is quasi-stationary between ELMs. The decorrelation time of the ion mode is <5,s (τcxcs/a<=1), the radial correlation length is of order 10,ρi and the poloidal wave-number kθρi˜0.1. The mode velocity is comparable to the diamagnetic velocity. In related Quiescent H-mode experiments, pedestals with high electron pressure and high ExB shearing rates exhibit a set of high-frequency coherent modes propagating in the ion diamagnetic direction. These modes also exhibit KBM-like characteristics, but do not develop into fully turbulent structures. Numerical simulations are in progress to help identify the underlying instabilities and nature of these modes, and ultimately help validate nonlinear models of the H-mode pedestal structure.

  20. Characteristics of the First H-mode Discharges in NSTX

    SciTech Connect

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; and Synakowski, E.J.

    2001-05-10

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as {approximately}150 ms. This confinement time is {approximately}1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) {approximately} 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks.

  1. H-modes on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Hubbard, A. E.; Garnier, D. T.; Golovato, S. N.; Granetz, R. S.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; La Bombard, B.; Marmar, E. S.; Niemczewski, A.; O'Shea, P. J.; Porkolab, M.; Stek, P.; Takase, Y.; Terry, J. L.; Watterson, R.; Wolfe, S. M.

    1996-08-01

    H-modes exhibiting improved confinement above the L-mode are achieved in Alcator C-Mod with ICRF and with ohmic heating alone without boronization. Both ELM-free and ELMy H-modes are obtained with total input power from 0.75 to 4.2 MW over a range of densities (0.8 to 0741-3335/38/8/005/img1) and toroidal fields (3 to 8 T). Type III ELMs are often observed to have coherent, high m and n precursor oscillations with frequencies of 100 - 160 kHz. The threshold power required to achieve the H-mode increases with density and toroidal field, in rough agreement with scalings derived from other tokamaks. The power densities and density times toroidal field products are an order of magnitude larger than in other tokamaks, in the range of values expected for ITER. The L - H and H - L transitions occur at approximately the same edge electron temperature. A low density limit to the H-mode is found at about 0741-3335/38/8/005/img2. A high midplane neutral pressure limit of about 0.6 mTorr is also observed.

  2. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    PubMed

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  3. Predictions of Alpha Heating in ITER L-mode and H-mode Plasmas

    SciTech Connect

    R.V. Budny

    2011-01-06

    Predictions of alpha heating in L-mode and H-mode DT plasmas in ITER are generated using the PTRANSP code. The baseline toroidal field of 5.3 T, plasma current ramped to 15 MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance, and electron cyclotron resonance are assumed to start half-way up the density ramp. The time evolution of plasma temperatures and, for some cases, toroidal rotation are predicted assuming GLF23 and boundary parameters. Significant toroidal rotation and flow-shearing rates are predicted by GLF23 even in the L-mode phase with low boundary temperatures, and the alpha heating power is predicted to be significant if the power threshold for the transition to H-mode is higher than the planned total heating power. The alpha heating is predicted to be 8-76 MW in L-mode at full density. External heating mixes with higher beam injection power have higher alpha heating power. Alternatively if the toroidal rotation is predicted assuming that the ratio of the momentum to thermal ion energy conductivity is 0.5, the flow-shearing rate is predicted to have insignificant effects on the GLF23- predicted temperatures, and alpha heating is predicted to be 8-20 MW. In H-mode plasmas the alpha heating is predicted to depend sensitively on the assumed pedestal temperatures. Cases with fusion gain greater than 10 are predicted to have alpha heating greater than 80 MW.

  4. THE ROLE OF NEUTRALS IN H-MODE PEDESTAL FORMATION

    SciTech Connect

    R.J. GROEBNER; M.A. MAHDAVI; A.W. LEONARD; T.H. OSBORNE; G.D. PORTER; R.J. COLCHIN; L.W.OWEN

    2001-11-01

    An analytic model, derived from coupled continuity equations for the electron and neutral deuterium densities, is consistent with many features of edge electron density profiles in the DIII-D tokamak. For an assumed constant particle diffusion coefficient, the model shows that particle transport and neutral fueling produce electron and neutral density profiles that have the same characteristic scale lengths at the plasma edge. For systematic variations of density in H-mode discharges, the model predicts that the width of the electron density transport barrier decreases and the maximum gradient increases, as observed in the experiments. The widths computed from the model agree quantitatively with the experimental widths for conditions in which the model is valid. These results support models of transport barrier formation in which the H-mode particle barrier is driven by the edge particle flux and the width of the barrier is approximately the neutral penetration length.

  5. Recent progress towards a physics-based understanding of the H-mode transition

    NASA Astrophysics Data System (ADS)

    Tynan, G. R.; Cziegler, I.; Diamond, P. H.; Malkov, M.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Irby, J. H.

    2016-04-01

    Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. The drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. These results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator-prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode.

  6. An emerging understanding of H-mode discharges in tokamaks

    SciTech Connect

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the [upsilon][sub E][sup [yields

  7. An emerging understanding of H-mode discharges in tokamaks

    SciTech Connect

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the {upsilon}{sub E}{sup {yields}} = (E {times} B)/B{sup 2} flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in {upsilon}E. The required {upsilon}E flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the {upsilon}E flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios.

  8. H-mode characterisation for dominant ECRH and comparison to dominant NBI or ICRF heating at ASDEX Upgrade

    SciTech Connect

    Sommer, F.; Stober, J.; Angioni, C.; Fable, E.; Bernert, M.; Burckhart,; Bobkov, V.; Fischer, R.; Fuchs, C.; McDermott, R. M.; Suttrop, W.; Viezzer, E.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    At ASDEX Upgrade the ECRH system has been upgraded to provide up to 4 MW of heating power at 140 GHz (or 2.2 MW at 105 GHz). The power at 140 GHz exceeds the minimum H-mode power threshold for typical high I{sub p}, B{sub t} conditions by approximately a factor of two. The upgrade allows H-modes with dominant electron heating and significant electron-ion heat exchange to be studied, i.e. the situation expected in ITER. This paper reports on systematic studies varying the heating mix with NBI, ICRF and ECRH and its effect on pedestal parameters and core transport. The H-mode pedestal is hardly affected by the choice of heating mix, but the ion temperature in the plasma center is found to vary significantly. The ion channel dominates heat transport and ion temperature gradient modes (ITG) are found to be the most unstable microinstability in all the scenarios considered. R/L{sub Ti} at half radius reduces by a factor of two when T{sub e}/T{sub i} increases from 0.9 to 1.5. TGLF modelling of the electron and ion temperature and electron density profiles shows very good agreement with the experimental data when applying a realistic sawtooth model.

  9. Experimental investigations of LHW-plasma coupling and current drive related to achieving H-mode plasmas in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Kong, E. H.; Li, M. H.; Zhang, Lei; Wei, W.; Wang, M.; Xu, H. D.; Li, Y. C.; Ling, B. L.; Zang, Q.; Xu, G. S.; Han, X. F.; Zhao, H. L.; Zhang, Ling; Zhao, L. M.; Hu, H. C.; Yang, Y.; Liu, L.; Ekedahl, A.; Goniche, M.; Cesario, R.; Peysson, Y.; Decker, J.; Basiuk, V.; Huynh, P.; Artaud, J.; Imbeaux, F.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Gong, X. Z.; Hu, L. Q.; Gao, X.; Guo, H. Y.; Wan, B. N.; Li, J. G.; the EAST Team

    2013-11-01

    Aimed at high-confinement (H-mode) plasmas in the Experimental Advanced Superconducting Tokamak (EAST), the effect of local gas puffing from electron and ion sides of a lower hybrid wave (LHW) antenna on LHW-plasma coupling and high-density experiments with lower hybrid current drive (LHCD) are investigated in EAST. Experimental results show that gas puffing from the electron side is more favourable to improve coupling compared with gas puffing from the ion side. Investigations indicate that LHW-plasma coupling without gas puffing is affected by the density near the LHW grill (grill density), hence leading to multi-transition of low-high-low (L-H-L) confinement, with a correspondingly periodic characteristic behaviour in the plasma radiation. High-density experiments with LHCD suggest that strong lithiation gives a significant improvement on current drive efficiency in the higher density region than 2 × 1019 m-3. Studies indicate that the sharp decrease in current drive efficiency is mainly correlated with parametric decay instability. Using lithium coating and gas puffing from the electron side of the LHW antenna, an H-mode plasma is obtained by LHCD in a wide range of parameters, whether LHW is deposited inside the half-minor radius or not, implying that a central and large driven current is not a necessary condition for the H-mode plasma. H-mode is investigated with CRONOS.

  10. METHANE PENTRATION IN DIII-D ELMing H-MODE PLASMAS

    SciTech Connect

    W.P. WEST; C.J. LASNIER; D.G. WHYTE; R.C. ISLER; T.E. EVANS; G.L. JACKSON; D.L. RUDAKOV; M.R. WADE; J. STRACHAN

    2002-06-01

    Carbon penetration into the core plasma during midplane and divertor methane puffing has been measured for DIII-D ELMing H-mode plasmas. The methane puffs are adjusted to a measurable signal, but global plasma parameters are only weakly affected (line average density, increases by < 10%, energy confinement time, {tau}{sub E} drops by < 10%). The total carbon content is derived from C{sup +6} density profiles in the core measured as a function of time using charge exchange recombination spectroscopy. The methane penetration factor is defined as the difference in the core content with the puff on and puff off, divided by the carbon confinement time and the methane puffing rate. In ELMing H-mode discharges with ion {del}B drift direction into the X-point, increasing the line averaged density from 5 to 8 x 10{sup 19} m{sup -3} dropped the penetration factor from 6.6% to 4.6% for main chamber puffing. The penetration factor for divertor puffing was below the detection limit (<1%). Changing the ion {del}B drift direction to away from the X-point decreased the penetration factor by more than a factor of five for main chamber puffing.

  11. Enhanced-recycling H-mode regimes with edge coherent modes achieved by RF heating with lithium-wall conditioning in the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Guo, H. Y.; Wan, B. N.; Chen, R.; Ding, S. Y.; Yan, N.; Wang, L.; Gong, X. Z.; Liu, S. C.; Shao, L. M.; Chen, L.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Li, Y. L.; Zhao, N.

    2014-12-01

    Two enhanced-recycling H-mode regimes, named low-enhanced-recycling (LER) and high-enhanced-recycling (HER) H-mode regimes, with edge coherent modes, have been achieved by lower hybrid current drive and ion cyclotron resonance heating with lithium-wall conditioning in the EAST superconducting tokamak. In the LER H-mode regime, the density and radiation increase during the ELM-free phase until the onset of edge-localized modes (ELMs), while in the HER H-mode regime, the density and radiation are well controlled without the presence of ELMs. Both LER and HER H-modes exhibit a low-frequency (frequency <100 kHz) edge quasi-coherent mode (ECM) with an initial frequency chirping down phase, following the L-H transition. In addition, an electromagnetic high-frequency coherent mode (HFM) with frequency >170 kHz appears shortly (<1 ms) after the transition during HER H-modes. Both ECM and HFM propagate in the electron diamagnetic drift direction in the lab frame with a low poloidal wavelength and may be responsible for enhanced recycling during the ELM-free phase. These two enhanced-recycling H-mode regimes may have significant implications for long-pulse high-performance operations in future fusion experiments.

  12. Simulation of electron thermal transport in H-mode discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-03-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  13. H-mode studies with microwave reflectometry on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manso, M.; Serra, F.; Kurzan, B.; Nunes, I.; Santos, J.; Silva, A.; Suttrop, W.; Varela, P.; Vergamota, S.

    1998-05-01

    The microwave reflectometry system on ASDEX Upgrade measures density profiles (in broadband swept operation) and plasma fluctuations (fixed-frequency operation) both at the high-field side (HFS) and low-field side (LFS). Densities up to 0741-3335/40/5/036/img12 can be probed. We analyse the evolution of turbulence at the L-H transition and during the ELMy phase of H-mode discharges. The detailed density profile evolution during type I ELMs is resolved and profile oscillations associated with ELM precursors are studied.

  14. Transport modeling of L- and H-mode discharges with LHCD on EAST

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  15. EDGE2D-EIRENE modelling of near SOL E r: possible impact on the H-mode power threshold

    NASA Astrophysics Data System (ADS)

    Chankin, A. V.; Delabie, E.; Corrigan, G.; Harting, D.; Maggi, C. F.; Meyer, H.; Contributors, JET

    2017-04-01

    Recent EDGE2D-EIRENE simulations of JET plasmas showed a significant difference between radial electric field (E r) profiles across the separatrix in two divertor configurations, with the outer strike point on the horizontal target (HT) and vertical target (VT) (Chankin et al 2016 Nucl. Mater. Energy, doi: 10.1016/j.nme.2016.10.004). Under conditions (input power, plasma density) where the HT plasma went into the H-mode, a large positive E r spike in the near scrape-off layer (SOL) was seen in the code output, leading to a very large E × B shear across the separatrix over a narrow region of a fraction of a cm width. No such E r feature was obtained in the code solution for the VT configuration, where the H-mode power threshold was found to be twice as high as in the HT configuration. It was hypothesised that the large E × B shear across the separatrix in the HT configuration could be responsible for the turbulence suppression leading to an earlier (at lower input power) L–H transition compared to the VT configuration. In the present work these ideas are extended to cover some other experimental observations on the H-mode power threshold variation with parameters which typically are not included in the multi-machine H-mode power threshold scalings, namely: ion mass dependence (isotope H–D–T exchange), dependence on the ion ∇B drift direction, and dependence on the wall material composition (ITER-like wall versus carbon wall in JET). In all these cases EDGE2D-EIRENE modelling shows larger positive E r spikes in the near SOL under conditions where the H-mode power threshold is lower, at least in the HT configuration.

  16. A Scaling for the H--mode Edge Pedestal in DIII--D

    NASA Astrophysics Data System (ADS)

    Yushmanov, P.; Groebner, R. J.; Lao, L. L.; Carlstrom, T. N.

    1996-11-01

    A database characterizing the edge pedestal of H--mode plasmas in a wide variety of DIII--D operational conditions is being collected and analyzed by regression methods. The edge density and pressure pedestals are described by the amplitude and the width of the high gradient region. The set of regression parameters includes global discharge characteristics such as toroidal magnetic field, plasma current, stored energy, average density, energy flux through the separatrix as well as local values of electron and ion temperatures and plasma density at the inner side of the edge pedestal. The parameters of the magnetic configuration are described by the critical pressure gradient and the width of the second stability region in the vicinity of the separatrix. These parameters are obtained from magnetic and kinetic measurements with the use of the EFIT equilibrium code and the CAMINO stability code. The goal of this work is to develop a scaling for the H--mode edge pedestal in terms of local plasma parameters which may be used for comparison with the data from other tokamaks and for developing ITER confinement models.

  17. ECE-imaging of the H-mode pedestal (invited).

    PubMed

    Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B

    2012-10-01

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  18. ECE-imaging of the H-mode pedestal (invited)

    SciTech Connect

    Tobias, B. J.; Nazikian, R.; Austin, M. E.; Boom, J. E.; Classen, I. G. J.; Burrell, K. H.; Snyder, P. B.; Domier, C. W.; Luhmann, N. C. Jr.

    2012-10-15

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T{sub e} and n{sub e} contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  19. Advances in High Harmonic Fast Wave Heating of NSTX H-mode Plasmas

    SciTech Connect

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.; Bonoli, P.; Chen, Guangye; Green, David L; Harvey, R. W.; Hosea, J.; Jaeger, Erwin Frederick; Kaye, S.; LeBlanc, B; Maingi, Rajesh; Phillips, Cynthia; Podesta, M.; Taylor, G.; Wilgen, John B; Wilson, J. R.

    2010-01-01

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths and during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal

  20. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    SciTech Connect

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-nΦ perturbations (nΦ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  1. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  2. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE PAGES

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; ...

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-nΦ perturbations (nΦ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density andmore » temperature profiles.« less

  3. Baseline neoclassical scaling law on H-mode pedestal width from XGC0 kinetic simulation

    NASA Astrophysics Data System (ADS)

    Park, Gunyoung; Chang, C. S.; Ku, S.

    2009-11-01

    In the H-mode pedestal before the ELM onset, nonlocal neoclassical self-organization is an important physical effect, to set the baseline pedestal width scaling law. Deviation from the neoclassical scaling will define the anomalous scaling. The neoclassical self-organization includes effects from the self-consistent radial electric field shear, strong magnetic field shear, ion-orbit loss across the last closed magnetic surface, finite ion banana width, particle source from neutral ionization, heat flux from the core plasma, and collisional transport. XGC0 code is used to perform an inter-machine study of the neoclassical pedestal scaling law between two representative devices DIII-D (low-B, low collisionality) and C- Mod (high-B, high collisionality). Anomalous scaling component in the experimental pedestal width data will be separated out from the neoclassical component. Prediction for ITER pedestal will be attempted based upon the combined neoclassical (theoretical) and anomalous (empirical) scaling laws obtained in this study. This ion-electron study indicates that the neoclassical pedestal width is broader than the previous ion only study results, closer to experimental pedestal width.

  4. H-mode inductive coupling plasma for PVC surface treatment

    NASA Astrophysics Data System (ADS)

    Croccolo, F.; Quintini, A.; Barni, R.; Ripamonti, M.; Malgaroli, A.; Riccardi, C.

    2009-08-01

    An inductively coupled plasma machine has been modified to be able to apply working powers in the order of 1 kW, thus switching to the real inductive H-mode. The plasma is generated by applying a 13.56 MHz radio-frequency to a λ/4 antenna outside the plasma chamber in low pressure conditions. The working gas is argon at pressure in the range from 10 to 100 Pa. With this high power source we have been able to perform plasma etching on a poly(vinyl-chloride) (PVC) film. In particular the effect of the plasma is the selective removal of hydrogen and chlorine from the sample surface. The action of the high power plasma on the sample has been proved to be much more effective than that of the low power one. Results similar to those obtained with the low power machine at about 300 W for 120 min, have been obtained with the high power source at about 600 W for 30 min. The superficial generation of a conductive layer of double C=C bonds was obtained. The samples have been investigated by means of ATR spectroscopy, FIB/SEM microscopy and micro-electrical measurements, which revealed the change in charge conductivity.

  5. Ideal Stability of the Tokamak H--mode Edge Region

    NASA Astrophysics Data System (ADS)

    Wilson, H. R.

    1998-11-01

    Tokamak performance is often controlled by stability of the edge plasma. Consistent with ``stiff'' transport models, the confinement in tokamak discharges is strongly correlated with the magnitude of the edge pressure pedestal which is limited by MHD stability. Furthermore, the high performance ELM-free H--modes are terminated by low toroidal mode number n, MHD modes driven by high edge pressure gradient, and edge current. We have evaluated low n modes using the δ W code GATO, and both high edge pressure gradient and high edge current density are found to destabilize the n=1, 2, and 3 ideal modes. We have included the self-consistent bootstrap current in the equilibria generation, and have completed a thorough survey of the effects of plasma shape and edge pressure profiles on the edge ballooning stability. The bootstrap current density helps to provide access to the second regime of stability, which is easier for: higher elongation, intermediate triangularity, larger aspect ratio, narrower pedestal width, and higher q_95. The intermediate n stability is being evaluated using a high-mode-number peeling/ ballooning mode model,(J.W. Connor, R.J. Hastie, H.R. Wilson, and R.L. Miller, Phys. Plasmas 5), 2687 (1998). where a critical role is played by the edge current density. This edge model describes the interaction of peeling mode (current driven) and ballooning mode (pressure driven) effects at high, but finite, mode number; a modified ballooning mode formalism is shown to be valid at the plasma edge. Based upon this edge model, a 2D eigenvalue code has been written to determine the stability of these modes for arbitrary shape cross sections, and edge pressure and current profiles including bootstrap current effects. This model suggests a power threshold for L--H transitions and provides a plausible explanation for an ELM cycle. Results will be presented for the pressure gradient and edge current density stability boundaries for a range of shapes and pedestal widths

  6. Particle transport in low-collisionality H-mode plasmas on DIII-D

    SciTech Connect

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; Rhodes, Terry L.; Schmitz, Lothar; Zeng, Lei; Staebler, Gary M.; Petty, Clinton C.; Groebner, Richard J.; Ko, W. -H.; Grierson, Brian A.; Solomon, Wayne M.; Tala, Tuomas; Salmi, Antti; Chrystal, Colin; Diamond, P. H.; McKee, George R.

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the Te/Ti ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in the perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.

  7. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the Te/Ti ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in the perturbed diffusionmore » coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  8. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.; Burrell, K. H.; Grassie, J. S. de

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  9. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; Ku, S.; deGrassie, J. S.; Grierson, B. A.

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Er inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.

  10. Kinetic neoclassical transport in the H-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less

  11. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    SciTech Connect

    Baumgaertel, J. A.; Redi, M. H.; Budny, R. V.; Rewoldt, G.; Dorland, W.

    2005-10-19

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER.

  12. H-mode threshold power scaling and the {gradient}B drift effect

    SciTech Connect

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Staebler, G.M.

    1997-06-01

    One of the largest influences on the H-mode power threshold (P{sub TH}) is the direction of the ion {gradient}B drift relative to the X-point location, where factors of 2--3 increase in P{sub TH} are observed for the ion {gradient}B drift away from the X-point. It is proposed that the threshold power scaling observed in single-null configurations with the ion {gradient}B drift toward the X-point location (P{sub TH} {approximately} nB, where n is the plasma density, and B is the toroidal field) is due to the scaling of the magnitude of the {gradient}B drift effect. Hinton and later Hinton and Stebler have modeled this effect as neoclassical cross field fluxes of both heat and particles driven by poloidal temperature gradients on the open field lines in the scrape-off layer (SOL). The {gradient}B drift effect influences the power threshold by affecting the edge conditions needed for the L-H transition. It is not essential for the L-H transition itself since transitions are observed with either direction of B. Predictions of this model include saturation of the B scaling of P{sub TH} at high field, 1/B scaling of P{sub TH} with reverse B, and no B scaling of P{sub TH} in balanced double-null configurations. This last prediction is consistent with the observed scaling of p{sub TH} in double-null plasma sin DIII-D.

  13. Core impurity transport in Alcator C-Mod L-, I- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Rice, J. E.; Reinke, M. L.; Gao, C.; Howard, N. T.; Chilenski, M. A.; Delgado-Aparicio, L.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Lin, Y.; Marmar, E. S.; Mumgaard, R. T.; Scott, S. D.; Terry, J. L.; Walk, J. R.; White, A. E.; Whyte, D. G.; Wolfe, S. M.; Wukitch, S. J.

    2015-03-01

    Core impurity transport has been investigated for a variety of confinement regimes in Alcator C-Mod plasmas from x-ray emission following injection of medium and high Z materials. In ohmic L-mode discharges, impurity transport is anomalous (Deff ≫ Dnc) and changes very little across the LOC/SOC boundary. In ion cyclotron range of frequencies (ICRF) heated L-mode plasmas, the core impurity confinement time decreases with increasing ICRF input power (and subsequent increasing electron temperature) and increases with plasma current. Nearly identical impurity confinement characteristics are observed in I-mode plasmas. In enhanced Dα H-mode discharges the core impurity confinement times are much longer. There is a strong connection between core impurity confinement time and the edge density gradient across all confinement regimes studied here. Deduced central impurity density profiles in stationary plasmas are generally flat, in spite of large amplitude sawtooth oscillations, and there is little evidence of impurity convection inside of r/a = 0.3 when averaged over sawteeth.

  14. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim

    2016-04-01

    We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.

  15. L to H mode transition: Parametric dependencies of the temperature threshold

    DOE PAGES

    Bourdelle, C.; Chone, L.; Fedorczak, N.; ...

    2015-06-15

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (Tth). They are based on the stabilization of the underlying turbulence by a mean radial electricmore » field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived Tth are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular Tth increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.« less

  16. L to H mode transition: Parametric dependencies of the temperature threshold

    SciTech Connect

    Bourdelle, C.; Chone, L.; Fedorczak, N.; Garbet, Xavier; Beyer, P.; Citrin, J.; Fuhr, G.; Loarte, A.; Maggi, C. F.; Militello, F.; Sarazin, Y.; Vermare, L.; Delabie, E.; Dif-Pradalier, G.

    2015-06-15

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (Tth). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived Tth are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular Tth increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.

  17. DT fusion power production in ELM free H modes in JET

    NASA Astrophysics Data System (ADS)

    Rimini, F. G.; JET Team

    1999-11-01

    Experiments in the ELM free hot ion H mode regime have been carried out in DT plasmas in JET. Initial experiments undertaken at constant neutral beam (NB) power (~11 MW) demonstrated that core fuelling was dominated by wall/target recycling rather than NB fuelling and made it possible to arrange an optimum core DT mix by adjusting the DT mix in wall/target, gas and NB. High power experiments at 4.2 MA/3.6 T have successfully and reliably delivered fusion power (Pfus) up to 16.1 MW and plasma stored energy (Wdia) up to 17 MJ. The results are in good agreement with extrapolations, carried out with the TRANSP and JETTO codes, from similar deuterium discharges. Transiently, values of Qtot up to 0.95 +/-0.17 were achieved, consistent with values of nDT(0)τE, diaTi (0) approx 8.7 × 1020 m-3·s·keV+/-20%. The ratio of fusion power to input power, Qin, is in excess of 0.6. There are indications of an isotope effect on the edge pressure pedestal, but no net dependence of global confinement on isotopic plasma composition has been found.

  18. The low density type III ELMy H-mode regime on JET-ILW: a low density H-mode compatible with a tungsten divertor?

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team

    2016-10-01

    The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at = 2.9 1019 m-3 with up to 15 MW of heating power at H98y 0.9. Better knowledge of the operational boundaries of this high frequency ELM regime could provide insight in how to sustain it at higher heating power for high temperature scenarios. Work supported, in part, by the US DOE under Contract No. DE-AC05-00OR22725.

  19. Evolution of 2D Visible and VUV Divertor Emission Profiles During DIII-D H-MODE Detachment Transitions

    NASA Astrophysics Data System (ADS)

    Fenstermacher, M. E.; Jalufka, N.; Meyer, W. H.; Nilson, D. G.; Gafert, J.

    1999-07-01

    The peak heat flux to divertor target surfaces (Pdiv) must be reduced, compared with present experimental levels, before a tokamak operating in the high confinement regime (H-mode) can be extrapolated to a reactor. Partially Detached Divertor (PDD) operation (1), in which deuterium gas is injected into an H-mode plasma, reduces Pdiv by factors of 3-5 in DIII-D. A key element in the physics model of PDD operation is that carbon radiation near the X-point dissipates the energy flowing in the scrape-off-layer (SOL) before it enters the divertor (2). This allows the divertor temperature to be low, density to be high and thereby reduces the heat flux and ion particle flux to the targets both by reduced recycling and increased recombination. Previous line integrated SPRED measurements (3) and computer simulations indicated that the 155 nm (Delta)n = 0 transition of C3+ was the main power radiator from carbon during PDD operation. This paper presents the first 2D profiles of 155 nm CIV emission in any tokamak divertor. The images were obtained on DIII-D with a new tangentially viewing VUV camera (4) and established image reconstruction techniques (5). The discharges were lower single null configurations with, I p = 1.75 MA, BT = 2.1 (Tau), q95 = 3.2, Pinj = 9 MW, (kappa) = 1.9 and the (nabla)B drift toward the lower divertor. After establishing an ELMing H-mode with neutral beam injection, deuterium gas was injected at 17 Pa m3/s (130 T (ell)/s) to increase the divertor density and produce a transition to PDD operation. A practical discharge scenario is given in Ref. (2).

  20. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    SciTech Connect

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.

  1. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  2. Probe Measurements in the H-mode Pedestal Region in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2014-10-01

    In near-unity aspect ratio Pegasus discharges, Ohmic heating and high-field-side fueling together trigger an L-H mode transition in both limited and diverted configurations. H-mode plasmas are predicted to exhibit pedestals in both the pressure and current density profiles. Operation at A ~ 1 allows for the use of local magnetic and Langmuir probes in the pedestal region. A current pedestal is routinely observed in Pegasus H-mode plasmas, but not in L-mode plasmas or during ELMs. Conventionally, edge pedestal measurements are observed in the edge pressure profile. A triple Langmuir probe has recently been installed in order to investigate the structure of the edge pressure pedestal in Pegasus H-mode discharges and complement the current density profile measurements. Local density and temperature measurements will be collected using the triple Langmuir probe at varying spatial locations to identify edge pressure profiles. These pressure profiles will be measured in both the L-mode and H-mode regimes. The triple probe will additionally be used to observe the turbulence levels before, during, and after the L-H mode transition. Complete density and temperature profiles including the pedestal will be obtained using a combination of Langmuir probe and Thomson scattering measurements. Work supported by US DOE Grant DE-FG02-96ER54375.

  3. OVERVIEW OF H-MODE PEDESTAL RESEARCH ON DIII-D

    SciTech Connect

    T.H. OSBORNE; K.H. BURRELL; T.N. CARLSTROM; M.S. CHU; E.J. DOYLE; J.R. FERRON; R.J. GROEBNER; R.J. LA HAYE; L.L. LAO; A.W. LEONARD; M.A. MAHDAVI; G.R. PORTER; P.B. SNYDER; E.J. STRAIT; G.M. STAEBLER; D.M. THOMAS; A.D. TURNBULL; M.R. WADE; THE DIII-D TEAM

    2001-07-01

    Developing an understanding of the processes that control the H-mode transport barrier is motivated by the significant impact this small region (typically <2% of the minor radius) can have on overall plasma performance. Conditions at the inner edge of the H-mode transport barrier can strongly influence the overall energy confinement, and the maximum density, and therefore fusion power, that can be achieved with the typically flat H-mode density profiles [1,2]. The ELM instability, which usually regulates the pressure gradient in the H-mode edge, can result in large power loads to, and erosion of, the divertor targets in a reactor scale device [3]. The goal of H-mode pedestal research at DIII-D is to: (1) develop a physics based model that would allow prediction of the conditions at the top of the H-mode pedestal, (2) develop an understanding of processes which control Type I ELM effects in the core and divertor, and (3) explore alternatives to the Type I ELM regime.

  4. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  5. Recent edge CXRS measurements in I-mode and ELMy H-mode plasmas on C-Mod

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Churchill, R. M.; Hubbard, A.; Hughes, J. W.; Lipschultz, B.; Marmar, E.; Reinke, M. L.; Terry, J. L.; Walk, J. R.; Whyte, D.; Diallo, A.

    2012-10-01

    A high-resolution charge exchange recombination spectroscopy (CXRS) diagnostic is installed on Alcator C-Mod to measure edge profiles of B^5+ density, temperature, and flows and to deduce radial electric field profiles. As donor particles for CX, both hydrogen from a modulated diagnostic neutral beam and deuterium from a local gas puff are employed. While the former technique often suffers from low signal intensities near the LCFS, the latter can be complicated by contamination of the signal by molecular lines and cross-section effects. After discussing how these challenges are overcome in data analysis, we present recent measurements in regimes which have not extensively been investigated previously with edge CXRS on C-Mod. The first one is the I-mode regime, which is characterized by H-mode like energy confinement and L-mode like particle transport. Focusing on I-modes with unfavorable ion B x∇B drift, we study profile scalings with plasma parameters such as density, plasma current and heating power. The second regime is ELMy H-mode, where we explore the capabilities of the CXRS diagnostic to measure profile evolutions during and in between ELMs.

  6. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    NASA Astrophysics Data System (ADS)

    Ekedahl, Annika; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-01

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  7. Differences in the H-mode pedestal width of temperature and density

    NASA Astrophysics Data System (ADS)

    Schneider, P. A.; Wolfrum, E.; Groebner, R. J.; Osborne, T. H.; Beurskens, M. N. A.; Dunne, M. G.; Ferron, J. R.; Günter, S.; Kurzan, B.; Lackner, K.; Snyder, P. B.; Zohm, H.; the ASDEX Upgrade Team; the DIII-D Team; EFDA Contributors, JET

    2012-10-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates ΨN and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of \\Delta_{T_\\rme} and \\Delta_{n_\\rme} . In dimensionless form the density pedestal width in ΨN scales with \\rho^{0.6}_{i\\star} , the temperature pedestal width with \\beta_p,ped^{0.5} . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal.

  8. Transport and micro-instability analysis of JET H-mode plasma during pellet fueling

    NASA Astrophysics Data System (ADS)

    Klaywittaphat, P.; Onjun, T.

    2017-02-01

    Transport and micro-instability analysis in a JET H-mode plasma discharge 53212 during the pellet fueling operation is carried out using the BALDUR integrated predictive modeling code with a combination of the NCLASS neoclassical transport model and an anomalous core transport model (either Mixed B/gB or MMM95 model). In this work, the evolution of plasma current, plasma density and temperature profiles is carried out and, consequently, the plasma’s behaviors during the pellet operation can be observed. The NGS pellet model with the Grad-B drift effect included is used to describe pellet ablation and its behaviors when a pellet is launched into hot plasma. The simulation shows that after each pellet enters the plasma, there is a strong perturbation on the plasma causing a sudden change of both thermal and particle profiles, as well as the thermal and particle transports. For the simulation using MMM95 transport model, the change of both thermal and particle transports during pellet injection are found to be dominated by the transport due to the resistive ballooning modes due to the increase of collisionality and resistivity near the plasma edge. For the simulation based on mixed B/gB transport model, it is found that the change of transport during the pellet injection is dominated by the Bohm term. Micro-instability analysis of the plasma during the time of pellet operation is also carried out for the simulations based on MMM95 transport model. It is found that the ion temperature gradient mode is destabilized due to an increase of temperature gradient in the pellet effective region, while the trapped electron mode is stabilized due to an increase of collisionality in that region.

  9. Circular limiter H-mode plasmas in the Tokamak Fusion Test Reactor (TFTR)

    SciTech Connect

    Bush, C.E.

    1990-01-01

    Circular limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed in other tokamaks. Bidirectional beam heating is required and the threshold power needed to induce the transition increases linearly with plasma current. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, greater than 2.3 are obtained and, at the same time, the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. Microwave scattering data from the edge plasma shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. This implies a poloidal rotation, which begins at the transition to the H-mode, of {approximately}10{sup 4} m/sec. During an edge localized mode instability (ELM), these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz range increase in intensity. Electron cyclotron emission data shows the origin of the ELMs and probably the transition layer to be located a few centimeters inside the plasma surface. A short review of requirements for controlled thermonuclear reactions is given in the introduction. 16 refs., 7 figs.

  10. Quiescent Double Barrier H-Mode Plasmas in the DIII-D Tokamak

    SciTech Connect

    Burrell, K H; Austin, M E; Brennan, D P; DeBoo, J C; Doyle, E J; Fenzi, C; Fuchs, C; Gohil, P; Greenfield, C M; Groebner, R J; Lao, L L; Luce, T C; Makowski, M A; McKee, G R; Moyer, R A; Petty, C C; Porkolab, M; Rettig, C L; Rhodes, T L; Rost, J C; Stallard, B W; Strait, E J; Synakowski, E J; Wade, M R; Watkins, J G; West, W P

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H89 = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H89 values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  11. QUIESCENT DOUBLE BARRIER H-MODE PLASMAS IN THE DIII-D TOKAMAK

    SciTech Connect

    K.H. BURRELL; M.E. AUSTIN; D.P. BRENNAN; J.C. DeBOO; E.J. DOYLE; C. FENZI; C. FUCHS; P. GOHIL; R.J. GROEBNER; L.L. LAO; T.C. LUCE; M.A. MAKOWSKI; G.R. McKEE; R.A. MOYER; C.C. PETTY; M. PORKOLAB; C.L.RETTIG; T.L. RHODES; J.C. ROST; B.W. STALLARD; E.J. STRAIT; E.J. SYNAKOWSKI; M.R. WADE; J.G. WATKINS; W.P. WEST

    2000-11-01

    High confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J.L. Luxon, et al., Plasma Phys. and Contr. Nucl. Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987) Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 seconds or >25 energy confinement times {tau}{sub E}), yielding a quiescent double barrier regime. By slowly ramping the input power, we have achieved {beta}{sub N} H{sub 89} = 7 for up to 5 times the {tau}{sub E} of 150 ms. The {beta}{sub N} H{sub 89} values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density and impurity control in the quiescent H-mode is possible because of the presence of an edge magnetic hydrodynamic (MHD) oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.

  12. H-mode pedestal turbulence in DIII-D and NSTX using BOUT++

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dudson, B. D.; Joseph, I.; Groebner, R. J.; Maingi, R.

    2011-10-01

    In this work, we will report BOUT++ simulations for H-mode pedestal instabilities and turbulent transport. For DIII-D H-mode discharges, the BOUT++ peeling-ballooning ELM model including electron inertia was used to analyze the ideal linear stability and ELM dynamics. The beta scan is carried out from a series of self-consistent MHD equilibria generated from EFIT by varying pressure and/or current. For typical tokamak pedestal plasmas with high temperature and low collisionality, we found that the collisionless ballooning modes driven by electron inertia are unstable in the H-mode pedestal and have a lower beta threshold than ideal peeling-ballooning modes, which are the triggers for Edge Localized Modes. The growth rate of electron inertia ballooning modes is found to increase with the magnitude of the electron skin depth de=c/ωpe. Thus, collisionless (electron inertia) ballooning modes might be responsible for H-mode turbulence transport when the pedestal is stable to peeling-ballooning modes. BOUT++ calculations also show that NSTX Elm stability boundaries are sensitive to flow shear profile. Attempts are underway to calculate nonlinear turbulence and transport in H-mode discharges due to the non-ideal effects. Performed for USDoE by LLNL under Contract DE-AC52-07NA27344.

  13. Characteristics of the TFTR limiter H-mode: The transition, ELMs, transport and confinement

    SciTech Connect

    Bush, C.E. ); Bretz, N.; Nazikian, R.; Stratton, B.C.; Synakowski, E.; Taylor, G. Budny, R.; Ramsey, A.T.; Scott, S.D.; Bell, M.; Bell, R.; Biglari, H.; Bitter, M.; Darrow, D.S.; Efthimion, P.; Fredrickson, E.D.; Hill, K.; Hsuan, H.; Kilpatrick, S.; McGuire, K.M.; Manos, D.; Mansfield, D.; Medley, S.S.; Mueller, D.; Park, H.; Paul, S.; Sabbagh, S.; Schivell, J.; Thompson, M.; Town

    1992-11-01

    H-Modes obtained through transitions from the supershot regime have been studied on TFTR. The characteristics of these H-modes are similar to those found on other tokamaks with one main exception, the density prof:des can be highly peaked. In the best cases the enhanced confinement in the core of the initial supershot is retained in the H-mode phase, while the confinement in a broad edge region is enhanced. Thus in TFTR, all of the important physics of H-modes such as transitions, enhanced edge confinement, ELMs and other phenomena are studied in a large circular limiter tokamak with the added feature of centrally peaked density profiles and the advantage of an extensive set of diagnostics. The threshold power for the transition is found to be a linear function of plasma current. Transitions and ELMs are affected by the mix of co-and counter-neutral beam injection (NBI) and by perturbations introduced by pellet injection, gas puffing, and current ramping before and during NBI. Fluctuations near both transition and ELM events have been characterized. High frequency magnetic fluctuations in the range [ge] 100--250 kHz usually decrease during the transition. Microwave scattering spectra of density fluctuations in the plasma edge show a feature at high frequency during the H-mode, which is not observed in the plasma core and which is consistent with an edge poloidal rotation velocity, V[sub [theta

  14. BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  15. BOUT++ simulations of edge turbulence in Alcator C-Mod's EDA H-mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.; MIT PSFC Team; Atomics Team, General; LLNL Team

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  16. Observation of pedestal turbulence in edge localized mode-free H-mode on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X. Zhang, T.; Zhang, S. B.; Wang, Y. M.; Shi, T. H.; Liu, Z. X.; Kong, D. F.; Qu, H.; Gao, X.

    2014-10-15

    Two different pedestal turbulence structures have been observed in edge localized mode-free phase of H-mode heated by lower hybrid wave and RF wave in ion cyclotron range of frequencies (ICRF) on experimental advanced superconducting tokamak. When the fraction of ICRF power P{sub ICRF}/P{sub total} exceeds 0.7, coherent mode is observed. The mode is identified as an electromagnetic mode, rotating in electron diamagnetic direction with a frequency around 50 kHz and toroidal mode number n = −3. Whereas when P{sub ICRF}/P{sub total} is less than 0.7, harmonic mode with frequency f = 40–300 kHz appears instead. The characteristics of these two modes are demonstrated preliminarily. The threshold value of heating power and also the plasma parameters are distinct.

  17. The H-mode density limit in the full tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Bernert, M.; Eich, T.; Kallenbach, A.; Carralero, D.; Huber, A.; Lang, P. T.; Potzel, S.; Reimold, F.; Schweinzer, J.; Viezzer, E.; Zohm, H.

    2015-01-01

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favorable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. In present tokamaks, this H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In gas ramp discharges at the fully tungsten covered ASDEX Upgrade tokamak (AUG), four distinct operational phases are identified in the approach towards the HDL. These phases are a stable H-mode, a degrading H-mode, the breakdown of the H-mode and an L-mode. They are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analyzed. During the evolution, energy losses are increased and a fueling limit is encountered. The latter is correlated to a plateau of electron density in the scrape-off layer (SOL). The well-known extension of the good confinement at high density with high triangularity is reflected in this scheme by extending the first phase to higher densities. In this work, two mechanisms are proposed, which can explain the experimental observations. The fueling limit is most likely correlated to an outward shift of the ionization profile. The additional energy loss channel is presumably linked to a regime of increased radial filament transport in the SOL. The SOL and divertor plasmas play a key role for both mechanisms, in line with the previous hypothesis that the HDL is edge-determined. The four phases are also observed in carbon covered AUG, although the HDL density exhibits a different dependency on the heating power and plasma current. This can be attributed to a changed energy loss channel in the presented scheme.

  18. Edge Profiles during Quiescent H-mode on DIII-D

    NASA Astrophysics Data System (ADS)

    West, W. P.; Burrell, K. H.; Snyder, P. B.; Turnbull, A. D.; Doyle, E. J.; Zeng, L.; Casper, T. A.; Lasnier, C. J.

    2003-10-01

    The quiescent H-mode is a stationary, ELM-free regime with high confinement, in which the edge electron density and temperature profiles exhibit a sharp pedestal, just as in standard ELMing H-mode discharges. The measured profiles of n_e, T_e, and Ti will be presented and compared with those in ELMing and standard ELM-free discharges. Edge current profiles calculated with the CORSICA code will be combined with measured pressure profiles to assess edge stability against medium-n peeling and balloon modes using the ELITE code, and against low-n ballooning modes using the GATO code.

  19. Characteristics of the TFTR limiter H-mode: The transition, ELMs, transport and confinement

    SciTech Connect

    Bush, C.E.; Bretz, N.; Nazikian, R.; Stratton, B.C.; Synakowski, E.; Taylor, G. Budny, R.; Ramsey, A.T.; Scott, S.D.; Bell, M.; Bell, R.; Biglari, H.; Bitter, M.; Darrow, D.S.; Efthimion, P.; Fredrickson, E.D.; Hill, K.; Hsuan, H.; Kilpatrick, S.; McGuire, K.M.; Manos, D.; Mansfield, D.; Medley, S.S.; Mueller, D.; Park, H.; Paul, S.; Sabbagh, S.; Schivell, J.; Thompson, M.; Towner, H.H.; Wieland, R.M.; Zarnstorff, M.C.; Zweben, S.; Fonck, R.; Nagayama, Y.

    1992-11-01

    H-Modes obtained through transitions from the supershot regime have been studied on TFTR. The characteristics of these H-modes are similar to those found on other tokamaks with one main exception, the density prof:des can be highly peaked. In the best cases the enhanced confinement in the core of the initial supershot is retained in the H-mode phase, while the confinement in a broad edge region is enhanced. Thus in TFTR, all of the important physics of H-modes such as transitions, enhanced edge confinement, ELMs and other phenomena are studied in a large circular limiter tokamak with the added feature of centrally peaked density profiles and the advantage of an extensive set of diagnostics. The threshold power for the transition is found to be a linear function of plasma current. Transitions and ELMs are affected by the mix of co-and counter-neutral beam injection (NBI) and by perturbations introduced by pellet injection, gas puffing, and current ramping before and during NBI. Fluctuations near both transition and ELM events have been characterized. High frequency magnetic fluctuations in the range {ge} 100--250 kHz usually decrease during the transition. Microwave scattering spectra of density fluctuations in the plasma edge show a feature at high frequency during the H-mode, which is not observed in the plasma core and which is consistent with an edge poloidal rotation velocity, V{sub {theta}}, of {approximately} 10{sup 4} m/s. The fluctuations begin at the transition, propagate in the direction of electron diamagnetic drift, and have modulation correlated with ELMs. Several TFTR H-modes showed a modest improvement in confinement over that of the supershots from which they originated, and an understanding of these may eventually lead to a plasma with the combined advantages of both the supershot and the H-mode. The characteristics and physics of the TFTR H-modes are considered relative to other tokamaks and in light of various theoretical studies.

  20. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  1. Effort of lower hybrid current drive experiments toward to H-mode in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Liu, F. K.; Shan, J. F.; Li, Y. C.; Wang, M.; Liu, L.; Zhao, L. M.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Cheng, M.; Zang, Q.; Lyu, B.; Duan, Y. M.; Lin, S. Y.; Wu, J. H.; Hillairet, J.; Ekedahl, A.; Peysson, Y.; Goniche, M.; Tuccillo, A. A.; Cesario, R.; Amicucci, L.; Shen, B.; Gong, X. Z.; Xu, G. S.; Zhao, H. L.; Hu, L. Q.; Li, J. G.; Wan, B. N.; EAST Team

    2017-02-01

    Lower hybrid current drive (LHCD) is an effective tool to achieve high confinement (H-mode) plasma in EAST. To utilize LHCD for accessing H-mode plasma, efforts have been made to improve LHW (lower hybrid wave)-plasma coupling and current drive capability at high density. Improved LHW-plasma coupling by means of local gas puffing and gas puffing from the electron side is routinely used during EAST operation with LHCD. High density experiments suggest that low recycling and high LH frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. The effect of LHCD on the current profile in EAST demonstrates that it is possible to control the plasma profile by optimizing the LHW spectrum. Repeatable H-mode plasma was obtained by LHCD and the maximum density during H-mode with the combination of 2.45 GHz and 4.6 GHz LH waves was up to 4.5  ×  1019 m-3.

  2. Observation of H-Mode Operation Windows for ECH Plasmas in Heliotron J

    SciTech Connect

    Sano, F.; Mizuuchi, T.; Nagasaki, K.

    2004-09-15

    The H-mode transition properties of 70-GHz, 0.4-MW electron cyclotron heating (ECH) plasmas in Heliotron J have been studied with special reference to their magnetic configuration dependences, such as the edge iota dependences. Two edge iota windows for the H-mode transition were observed to be (a) 0.54 < {iota}(a)/2{pi} < 0.56 in separatrix discharge plasmas and (b) 0.62 < {iota}>(a)/2{pi} < 0.63 in partial wall-limiter discharge plasmas if a certain threshold line-averaged electron density (n{sub e} = 1.2-1.6 x 10{sup 19} m{sup -3}) is achieved, where {iota}(a) is the vacuum edge iota value and a is the plasma minor radius, respectively. A strong dependence of the quality of the H-mode on the edge topology conditions was revealed. The energy confinement time for the separatrix discharge plasmas was found to be enhanced beyond the normal ISS95 scaling in the transient H-mode phase, being 50% longer than that in the 'before transition' phase. The window characteristics are discussed on the basis of the calculated geometrical poloidal viscous damping rate coefficient in a collisional plasma, indicating that the behavior of the viscous damping rate coefficient alone could not explain the observed characteristics. The bootstrap current properties of ECH plasmas and the relevant electron cyclotron current drive experimental results are also discussed.

  3. The density dependence of H-mode access at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Brunner, D.; Hubbard, A. E.; Labombard, B.; Rice, J.; Terry, J.; Tolman, E.; Cziegler, I.; Edlund, E.

    2016-10-01

    Experimental investigations on Alcator C-Mod explore the power requirements, and local edge threshold conditions, for H-mode transitions, while accessing reactor-relevant plasma densities and toroidal magnetic fields from 2.5T to 8T. As on many tokamaks, the power threshold for H-mode Pth does not increase monotonically with density, but actually rises significantly below a particular value of ne (the so-called `low-density limit' for H-mode). Such behavior can not be reproduced by current scaling laws used to project the power threshold for H-mode on future devices, which tend to assume a power law form, e.g. Pth BTxney . Considerably more complicated dependencies are suggested by experiments, which indicate that the low-density branch moves to higher values of density as BT is increased. We extend this examination to magnetic fields that meet and surpass the ITER design field, and interpret the results in the context of candidate models to explain the upturn in Pth at low density. Supported by USDoE Award DE-FC02-99ER54512.

  4. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    SciTech Connect

    R. Maingi; C.E. Bush; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; J.E. Menard; H. Meyer; D. Mueller; N. Nishino; A.L. Roquemore; S.A. Sabbagh; K. Tritz; S.J. Zweben; M.G. Bell; R.E. Bell; T. Biewer; J.A. Boedo; D.W. Johnson; R. Kaita; H.W. Kugel; R.J. Maqueda; T. Munsat; R. Raman; V.A. Soukhanovskii; T. Stevenson; D. Stutman

    2004-10-28

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a {approx}100 {micro}sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value.

  5. Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.

    2016-10-01

    A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  6. Transient energetic charge exchange flux enhancement observed in NSTX neutral-beam-heated H-mode discharges

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Kramer, G. J.; Bell, R. E.; Belova, E.; Fredrickson, E. D.; Gerhardt, S. P.; Leblanc, B. P.; Podestá, M.; Ren, Y.; Roquemore, A. L.; Crocker, N. A.; NSTX Team

    2011-10-01

    Large increases in the E | | B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam Injection (NBI) full energy are observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears only at the NBI full energy, exhibits growth times ~ 20-80 ms, seldom develops a slowing down distribution and arises only in discharges where NTM modes (f < 30 kHz) are absent, TAE activity (f ~ 30-150 kHz) is weak and GAE/CAE activity (f ~ 400-1200 kHz) is robust. The HEF occurs only in H-mode discharges with Pb >= 3 MW and v||/v ~ 0.7-0.9; i.e. only for passing ions. The HEF appears to be caused by a GAE wave-particle interaction that modifies of the NB fast ion distribution, fi(E,v||/v,r). This proposed mechanism was studied using the SPIRAL code that imports a TRANSP-calculated fi(E,v||/v,r) distribution and evolves it under drive from GAE wave-particle resonances. Supported by U.S. DoE Contract Nos. DE-AC02-09CH11466, DE-FG02-99ER54527.

  7. Comparisons of Predicted Plasma Performance in ITER H-mode Plasmas with Various Mixes of External He

    SciTech Connect

    R.V. Budny

    2009-03-20

    Performance in H-mode DT plasmas in ITER with various choices of heating systems are predicted and compared. Combinations of external heating by Negative Ion Neutral Beam Injection (NNBI), Ion Cyclotron Range of Frequencies (ICRF), and Electron Cyclotron Heating (ECH) are assumed. Scans with a range of physics assumptions about boundary temperatures in the edge pedestal, alpha ash transport, and toroidal momentum transport are used to indicate effects of uncertainties. Time-dependent integrated modeling with the PTRANSP code is used to predict profiles of heating, beam torque, and plasma profiles. The GLF23 model is used to predict temperature profiles. Either GLF23 or the assumption of a constant ratio for χø/χi is used to predict toroidal rotation profiles driven by the beam torques. Large differences for the core temperatures are predicted with different mixes of the external heating during the density and current ramp-up phase, but the profiles are similar during the flattop phase. With χø/χi = 0.5, the predicted toroidal rotation is relatively slow and the flow shear implied by the pressure, toroidal rotation, and neoclassical poloidal rotation are not sufficient to cause significant changes in the energy transport or steady state temperature profiles. The GLF23-predicted toroidal rotation is faster by a factor of six, and significant flow shear effects are predicted.

  8. Influence of the boundary conditions on the H-mode power threshold

    SciTech Connect

    Kalupin, D.; Tokar, M.Z.; Unterberg, B.; Loozen, X.; Pilipenko, D.; Zagorski, R.

    2006-03-15

    The effect of boundary conditions at the last closed magnetic surface (LCMS) on the formation of the edge transport barrier (ETB) in tokamaks is investigated by one-dimensional transport calculations for the radial profiles of plasma parameters. For a given heating power the transition from the low confinement mode (L mode) to the high confinement mode (H mode) can be triggered by increasing the density e-folding length, {delta}{sub n}, or reducing the temperature e-folding length, {delta}{sub T}, at the LCMS. This is explained by the decrease of heat losses from the confined plasma with the convection of charged particles and changeover to the case where losses are mostly due to heat conduction. In such a case, corresponding to a divertor configuration, the computed power threshold for the L- to H-mode transition (L-H transition) is in a good agreement with the experimental multimachine scaling.

  9. Influence of the boundary conditions on the H-mode power threshold

    NASA Astrophysics Data System (ADS)

    Kalupin, D.; Tokar, M. Z.; Unterberg, B.; Loozen, X.; Pilipenko, D.; Zagorski, R.

    2006-03-01

    The effect of boundary conditions at the last closed magnetic surface (LCMS) on the formation of the edge transport barrier (ETB) in tokamaks is investigated by one-dimensional transport calculations for the radial profiles of plasma parameters. For a given heating power the transition from the low confinement mode (L mode) to the high confinement mode (H mode) can be triggered by increasing the density e-folding length, δn, or reducing the temperature e-folding length, δT, at the LCMS. This is explained by the decrease of heat losses from the confined plasma with the convection of charged particles and changeover to the case where losses are mostly due to heat conduction. In such a case, corresponding to a divertor configuration, the computed power threshold for the L- to H-mode transition (L-H transition) is in a good agreement with the experimental multimachine scaling.

  10. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    SciTech Connect

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (..delta omega../..omega.. less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement.

  11. ECE-Imaging of the H-mode Pedestal on DIII-D

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.

    2012-10-01

    Forward modeling of ECE originating near the edge of DIII-D plasmas has improved our understanding of radiation properties in this region and enabled interpretation of ECE-Imaging and radiation temperature profiles of the H-mode pedestal. A variety of coherent edge modes have been imaged, revealing the nature of the edge harmonic oscillation (EHO) present in QH-mode plasmas, as well as directly diagnosing the plasma response to RMP fields applied for ELM suppression. Attempts to image the most fleeting aspects of ELMs in low density H-mode discharges have revealed intense bursts of millimeter wave radiation. Initiating during ELM precursor oscillations and prevalent at ITER relevant collisionality, these bursts appear to be coherent, stimulated emission from thermal electrons interacting with a non-axisymmetric perturbation of the plasma boundary.

  12. New B2SOLPS5.2 transport code for H-mode regimes in tokamaks

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Counsell, G.; Kirk, A.; Lisgo, S.; ASDEX-Upgrade Team; MAST Team

    2009-02-01

    A new B2SOLPS5.2 transport code has been developed and implemented for the simulation of H-mode shots. A new equation system is proposed, which is equivalent to the system which was used in B2SOLPS5.0 previously. The main idea is to replace the major part of the large radial ∇B driven convective fluxes by poloidal fluxes with the same divergence both in the particle balance and in the energy balance equations. This is of special importance for the H-mode where the diffusion coefficient is strongly reduced inside the barrier and large radial convective flows are strongly undesirable from the numerical point of view. The H-mode shots of ASDEX-Upgrade and MAST have been simulated with the new version with reasonable time steps and convergence. It is demonstrated that the radial electric field inside the edge transport barrier and in the pedestal region is close to the neoclassical electric field as in previous simulations of Ohmic shots. The toroidal rotation is co-current directed as in L-mode but is significantly larger in absolute value. It is shown that the shear of the poloidal \\vec {E}\\times \\vec {B} drift at the inner side of the barrier is close to the value of the shear before the transition, while inside the barrier the value of the shear is significantly bigger. This fact determines self-consistently the width of the edge transport barrier. It is demonstrated that to match the experimental density and temperature radial profiles the drop in the diffusion coefficient within the barrier needs to be significantly larger than the drop in the electron heat conductivity coefficient. For the H-mode the pedestal region usually corresponds to the collisionless regime, so several corrections were introduced into the transport coefficients to extend the applicability of the code to the plateau and banana regimes in the inner regions of the simulation domain.

  13. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  14. Search for Suitable ICRF Operation Window for the Shaped H-mode Operation of KSTAR

    SciTech Connect

    Park, B. H.; Kim, J. Y.

    2009-11-26

    KSTAR will try to achieve its 1st shaped H-mode plasma in 2010 campaign. The available power is limited by our plan for auxiliary heating system. Up to 2010, NBI with 1 MW, LHCD 0.5 MW, and ECH with 0.5 MW power will be prepared. To accomplish high beta plasma, TF magnetic field will be reduced to 2 T from rated field of 3.5 T. In this case the ECH contribution to H-mode power threshold requirement is ignorant because the 84 GHz frequency does not meet neither fundamental nor second harmonic resonance in the discharge area. Therefore the ICRF heating should carry out important roll to reach power threshold. The ICRF system of tunable frequency from 30 to 60 MHz will come with 1 MW power in 2010. To maximize the ICRF heating efficiency for H-mode purpose, we try to find suitable condition of ICRF heating parameters through the simulation using by TORIC code. Optimizations of RF frequency, toroidal modes controllable by 4 current straps, and the minority concentration are performed. Possibilities of second harmonic heating of minority and the mode converted heating near resonance layer are also studied.

  15. Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid chromatography-tandem mass spectrometry using data-dependent acquisition: neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation.

    PubMed

    Rauniyar, Navin; Stevens, Stanley M; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2009-01-15

    Reactive oxygen species generated during oxidative stress can lead to unfavorable cellular consequences, predominantly due to formation of 4-hydroxy-2-nonenal (HNE) during lipid peroxidation. Data-dependent and neutral loss (NL)-driven MS(3) acquisition have been reported for the identification of HNE adducts by mass spectrometry-based proteomics. However, the limitation associated with this method is the ambiguity in correct assignment of the HNE modification site when more than one candidate site is present as MS(3) is triggered on the neutral loss ion. We introduce NL-triggered electron capture dissociation tandem mass spectrometry (NL-ECD-MS/MS) for the characterization of HNE-modification sites in peptides. With this method performed using a hybrid linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, ECD in the FTICR unit of the instrument is initiated on precursor ions of peptides showing the neutral loss of 156 Da corresponding to an HNE molecule in the prescan acquired via collision-induced dissociation tandem mass spectrometry in the linear ion trap. In addition to manifold advantages associated with the ECD method of backbone fragmentation, including extensive sequence fragments, ECD tends to retain the HNE group during MS/MS of the precursor ion, facilitating the correct localization of the modification site. The results also suggest that predisposition of a peptide molecular ion to lose HNE during collision-induced dissociation-based fragmentation is independent of its charge state (2+ or 3+). In addition, we have demonstrated that coupling of solid-phase enrichment of HNE-modified peptides facilitates the detection of this posttranslational modification by NL-driven strategies for low-abundance proteins that are susceptible to substoichiometric carbonylation during oxidative stress.

  16. Impact of localized gas injection on ICRF coupling and SOL parameters in JET-ILW H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Goniche, M.; Jacquet, P.; Van Eester, D.; Bobkov, V.; Colas, L.; Czarnecka, A.; Brezinsek, S.; Brix, M.; Crombe, K.; Graham, M.; Groth, M.; Monakhov, I.; Mathurin, T.; Matthews, G.; Meneses, L.; Noble, C.; Petrzilka, V.; Rimini, F.; Shaw, A.

    2015-08-01

    Recent JET-ILW [1,2] experiments reiterated the importance of tuning the plasma fuelling in order to optimize ion cyclotron resonance frequency (ICRF) heating in high power H-mode discharges. By fuelling the plasma from gas injection modules (GIMs) located in the mid-plane and on the top of the machine instead of adopting the more standardly used divertor GIMs, a considerable increase of the ICRF antenna coupling resistances was achieved with moderate gas injection rates (<1.5 × 1022 e/s). This effect is explained by an increase of the scrape-off-layer density in front of the antennas when mid-plane and top fuelling is used. By distributing the gas injection to optimize the coupling of all ICRF antenna arrays simultaneously, a substantial increase in the ICRF power capability and reliability was attained. Although similar core/pedestal plasma properties were observed for the different injection cases, the experiments indicate that the RF-induced impurity sources are reduced when switching from divertor to main chamber gas injection.

  17. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  18. Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid

    NASA Astrophysics Data System (ADS)

    Baiocchi, B.; Garcia, J.; Beurskens, M.; Bourdelle, C.; Crisanti, F.; Giroud, C.; Hobirk, J.; Imbeaux, F.; Nunes, I.; Contributors, JET; EU-ITM ITER Scenario Modelling Group

    2015-03-01

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E × B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  19. The Role of Cross-Scale Coupling in the Saturation of Turbulence and Transport in ITER-Relevant, ELM-y H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J.

    2016-10-01

    New multi-scale gyrokinetic simulations which capture ITG/TEM/ETG turbulence and their interactions have been performed on an ITER-relevant, ELM-y H-mode Alcator C-Mod plasma. Recent multi-scale simulations indicate that ion and electron-scale turbulence strongly couple in the core of L-mode plasmas, driving significant electron heat flux at both turbulent scales. Building off of these results, cutting-edge multi-scale simulations were performed in reactor-relevant conditions (no external momentum input, dominant electron heating, and Te Ti) . These simulations include 3 gyrokinetic species, realistic geometry, collisions, rotation, finite beta, all experimental inputs, and required approximately 60M CPU hours on the NERSC Edison supercomputer. The presence of electron-scale turbulence is found to fundamentally change the saturation of the ion-scale turbulence in H-mode plasma conditions, calling into question reactor scenario predictions which are based on purely long wavelength turbulence models. To validate the gyrokinetic model in this reactor-relevant plasma regime, quantitative comparisons are made between simulated heat fluxes, incremental diffusivities, and density fluctuations with experiment. Supported by US DOE Grant DEFC02-99ER54512-CMOD and simulations were performed at NERSC supported by DE-AC02-05CH11231.

  20. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    NASA Astrophysics Data System (ADS)

    Solomon, W. M.; Snyder, P. B.; Bortolon, A.; Burrell, K. H.; Garofalo, A. M.; Grierson, B. A.; Groebner, R. J.; Loarte, A.; Leonard, A. W.; Meneghini, O.; Nazikian, R.; Osborne, T. H.; Petty, C. C.; Poli, F.

    2016-05-01

    A new high pedestal regime ("Super H-mode") has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  1. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    SciTech Connect

    Solomon, W. M.; Snyder, P. B.; Bortolon, A.; Burrell, K. H.; Garofalo, A. M.; Grierson, B. A.; Groebner, R. J.; Loarte, A.; Leonard, A. W.; Meneghini, O.; Nazikian, R.; Osborne, T. H.; Petty, C. C.; Poli, F.

    2016-03-25

    In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  2. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    DOE PAGES

    Solomon, W. M.; Snyder, P. B.; Bortolon, A.; ...

    2016-03-25

    In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less

  3. PREFACE: 9th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Groebner, Richard

    2004-05-01

    This special issue of Plasma Physics and Controlled Fusion contains invited and contributed papers presented at the 9th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Catamaran Hotel in San Diego, California, on 24-26 September, 2003, and it was organized by General Atomics. As has been the tradition at the last four meetings of this series, the programme was sub-divided into six topics. For each topic there was an invited talk whose purpose was to give an overview of the topic, based on contributed papers presented at the meeting and on external results. These talks were followed by discussion periods, which were used for extended question and answer sessions for the invited speakers or for additional short presentations by contributing speakers. For each topic there was an associated poster session for contributed papers, of which there were about 70. The topics were: Structure and dynamics of internal transport barriers Structure and dynamics of the H-mode pedestal Understanding transport barriers through modelling Control of transport barriers Transport within transport barriers: theorist's view of the future Diagnostic and analysis issues for transport barriers The topics were focused on the physics of edge and core transport barriers. Similar to the previous meeting, held in Toki, Japan, the universality of this physics in axisymmetric and non-axisymmetric machines was featured. In addition, the physics of transport barriers in relation to burning plasma experiments was emphasized. In particular, one of the hopes and goals of the participants is that the physics of transport barriers can be used to enhance the prospects for burning plasmas. Because this meeting occurred approximately 21 years after the discovery of the H-mode in 1982, a special session was held to commemorate more than 20 years of research on transport barriers. In this session, Dr R Stambaugh and Professor K Itoh presented personal views on the

  4. Effect of Aspect Ratio on H-mode and ELM Characteristics

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.

    2015-11-01

    The H-mode confinement regime is achieved at near-unity aspect ratio (A < 1 . 2) in the Pegasus Toroidal Experiment via high-field-side fueling and low edge recycling. Ohmic H-mode is attained in both limited and diverted magnetic topologies. This regime is characterized by: reduced Dα emissions; increased core rotation; increased central heating; formation of edge current and pressure pedestals; and measured energy confinement consistent with the ITER98pb(y,2) scaling. The H-mode power threshold, PLH , behaves quite differently at low- A when compared with high- A operations. PLH /PLH_ITPA 08 increases sharply as A is lowered and no difference in PLH for limited and diverted plasmas is observed at A ~ 1 . 2 . No minimum in PLH with density is observed. Some of these results are consistent with the FM3 model for the L-H transition. Two classes of ELMs have been observed. Small, Type III-like ELMs are present at low input power and have n <= 4 . At POH >>PLH , they transition to large, Type-I-like ELMs with intermediate 5 < n < 15 . The Type III ELM magnetic structures behave opposite that of high- A plasmas, with n much higher, presumably due to the naturally higher J / B peeling mode drive at low- A . Long-sought measurements of the Jedge (R , t) pedestal collapse during an ELM event show a complex, multimodal pedestal collapse and the subsequent ejection of a current-carrying filament. Work supported by US DOE grant DE-FG02-96ER54375.

  5. Interdigital H -mode drift-tube linac design with alternative phase focusing for muon linac

    NASA Astrophysics Data System (ADS)

    Otani, M.; Mibe, T.; Yoshida, M.; Hasegawa, K.; Kondo, Y.; Hayashizaki, N.; Iwashita, Y.; Iwata, Y.; Kitamura, R.; Saito, N.

    2016-04-01

    We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from β =v /c =0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 π and 0.195 π mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

  6. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    SciTech Connect

    McKee, G; Gohil, P; Schlossberg, D; Boedo, J; Burrell, K; deGrassie, J; Groebner, R; Makowski, M; Moyer, R; Petty, C; Rhodes, T; Schmitz, L; Shafer, M; Solomon, W; Umansky, M; Wang, G; White, A; Xu, X

    2008-10-13

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion {del}B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion {del}B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER.

  7. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  8. Microturbulent Drift Mode Stability before Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; W. Dorland; C.L. Fiore; P.T. Bonoli; M.J. Greenwald; J.E. Rice; J.A. Baumgaertel; T.S. Hahm; G.W. Hammett; K. Hill; D.C. McCune; D.R. Mikkelsen; G. Rewoldt

    2004-09-01

    H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasma 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with gyrokinetic simulations, near the ITB onset time. Linear simulations support the picture of ion and electron temperature gradient (ITG, ETG) microturbulence driving high {chi}{sub i} and {chi}{sub e}, respectively, and that stable ITG correlates with reduced particle transport and improved ion thermal confinement on C-Mod. In the barrier region ITG is weakly unstable, with a critical temperature gradient higher than expected from standard models. Nonlinear calculations and the role of E x B shear suppression of turbulence outside the plasma core are discussed in light of recent profile measurements for the toroidal velocity. The gyrokinetic model benchmarks successfully against experiment in the plasma core.

  9. Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals

    SciTech Connect

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2012-11-15

    Plasma toroidal rotation reduces reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational (q = m/n) magnetic flux surfaces. Hence, it causes radial perturbations {delta}B{sub {rho}m/n} to be small there, and thus inhibits magnetic island formation and stochasticity in the edge of high (H-) mode confinement tokamak plasmas. However, electron collisional damping combined with the spatial magnetic flutter {delta}B{sub {rho}m/n} induced by RMPs in the vicinity of rational surfaces causes a radial electron heat diffusivity in which {chi}{sub e Parallel-To }{sup eff}{approx}(v{sub Te}{sup 2}/{nu}{sub e})/(1+x{sup 2}/{delta}{sub Parallel-To }{sup 2}) is an effective parallel electron thermal diffusivity. These effects are reduced by magnetic shear effects at a distance x from rational surfaces for |x|>{delta}{sub Parallel-To} but amplified for {delta}B-caret{sub {rho}m/n}(x)>{delta}B-caret{sub {rho}m/n}(0). A kinetic, toroidal model of these RMP-flutter-induced plasma transport effects is developed and compared to a previously developed cylindrical model. The RMP-induced increases in plasma transport can be large enough to reduce plasma gradients in H-mode pedestals. Thus, they may contribute to suppressing edge localized modes in tokamak plasmas.

  10. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  11. Investigating electromagnetic effects on core transport in Alcator C-Mod H-mode discharges

    NASA Astrophysics Data System (ADS)

    Guttenfelder, W.; Howard, N. T.; Irby, J.; Poli, F. M.; White, A. E.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Kessel, C. E.; Sung, C.; Wolfe, S. M.; Xu, P.

    2014-10-01

    Understanding the importance of electromagnetic effects on core turbulence and transport is being pursued at Alcator C-Mod, especially for higher performance H-mode plasmas at increasing beta. Previously reported measurements from a line-integrated polarimeter diagnostic reveal broadband, high frequency fluctuations. The presence of these features, absent in core and edge density fluctuation measurements from phase contrast imaging, suggest they may be related to fluctuations in the magnetic field. Such features were observed in a number of H-mode plasmas over a range of normalized beta (βN ~ 1-2) and Greenwald fraction (fGW ~ 0.45-0.85). To investigate the possible influence of electromagnetic effects on core transport and turbulence, gyrokinetic simulations are used to predict microinstability of these discharges, the corresponding relative amplitude of the magnetic fluctuations in comparison to density fluctuations, and the sensitivity of these predictions to variations in beta. Results of both linear and nonlinear simulations and their comparison with transport and turbulence measurements will be presented. This work is supported by US DOE Contracts DE-AC02-09CH11466 and DE-FC02-99ER54512.

  12. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  13. On the difference of H-mode power threshold in divertor and limiter tokamaks

    NASA Astrophysics Data System (ADS)

    Kalupin, D.; Tokar, M. Z.; Unterberg, B.; Loozen, X.; Pilipenko, D.; Zagorski, R.; Contributors, TEXTOR

    2006-05-01

    The difference in the H-mode power threshold in divertor and limiter configurations is numerically investigated by analysing the effect of boundary conditions imposed on the last closed magnetic surface (LCMS) and given by prescribed density and temperature e-folding lengths, δn and δT, respectively. It is demonstrated that the variation of δn and δT significantly affects the H-mode power threshold. This is explained by the change in the balance between conductive and convective heat losses at the edge. For the ratio δn/δT large enough, when the convective loss does not exceed 45% of the total power, the threshold agrees well with the experimental multi-machine scaling for divertor tokamaks. With reduction in δn/δT and increase in convective loss above this critical level, the power threshold significantly exceeds the scaling, in agreement with observations on different limiter tokamaks. By considering the power and particle balances in the scrape-off layer it is shown that the ratio δn/δT is controlled by the distance which recycling neutrals pass before entering the confined plasma and which is normally much larger in divertor machines than in the limiter ones. The calculations for the limiter tokamak TEXTOR have predicted the experimentally found conditions for the L H transition in advance.

  14. H-mode and ELM Characteristics at Ultralow Aspect Ratio in the Pegasus Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Barr, J. L.; Bongard, M. W.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Thome, K. E.

    2016-10-01

    Operation at low BT and A < 1.3 allows access to the H-mode regime in the Pegasus experiment using only Ohmic heating. Modest plasma parameters in this regime permit detailed probe measurements of the edge pedestal region. H-mode plasmas have standard L-H transition phenomena: a drop in Dα radiation; formation of pressure and current pedestals; field-aligned filament ejection during ELMs; and a doubling of τE from H98 0.5 to 1 . The L-H power threshold PLH increases monotonically with ne, consistent with both the ITPA08 scaling, PITPA 08 , used for ITER and the theoretical FM3 power threshold model. Unlike at high A, PLH is comparable in limited and single-null diverted topologies at A 1.2 , consistent with FM3 predictions. PLH /PITPA 08 increases rapidly as A -> 1 , and is > 10 for A < 1.3 . Multiple- n modes are observed during ELMs, consistent with excitation of multiple peeling-ballooning modes. Small, Type-III-like ELMs occur at POH PLH with n <= 4 . Large, Type-I-like ELMs occur with POH >PLH and intermediate 5 < n < 15 . High-resolution spatiotemporal measurements of Jedge(R , t) across single ELMs show the nonlinear generation and expulsion of current-carrying filaments during the large ELM crash. Helical edge current injection appears to suppress small ELM activity. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. Status of the COMPASS tokamak and characterization of the first H-mode

    NASA Astrophysics Data System (ADS)

    Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS Team

    2016-01-01

    This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.

  16. Magnetic-perturbation-induced plasma transport in H-mode pedestals

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Cole, A. J.; Hegna, C. C.

    2012-03-01

    Plasma toroidal rotation can prevent reconnection of externally applied resonant magnetic perturbation (RMP) fields on rational surfaces and hence magnetic island formation and stochasticity in the edge of tokamak H-mode plasmas. However, magnetic flutter induced by RMPs off the rational surfaces causes a radial electron heat diffusivity χe^RMP˜(δBr/B0)^2χ| F(x) in which χ|˜vTe^2/νe is an effective parallel electron heat diffusivity and F is a spatially varying factor [1]. The flutter also diffuses electrons radially and causes a factor of about 3 smaller increases in density diffusion. Since the electron density transport is non-ambipolar, this flutter process also modifies the radial electric field and plasma toroidal rotation. This work extends the previously developed periodic cylinder screw pinch model [1] of RMP-flutter-induced plasma transport to a full toroidal model which is axisymmetric to lowest order plus gyroradius-small magnetic field perturbations. The possible role of the RMP-flutter-induced plasma transport in reducing pressure gradients in H-mode pedestals and thereby suppressing ELMs will be discussed.[4pt] [1] J.D. Callen et al., UW-CPTC 11-13, http://www.cptc.wisc.edu (submitted to Nucl. Fusion.)

  17. Plasma turbulence measured with fast frequency swept reflectometry in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Sirinelli, A.; Meneses, L.; Contributors, JET

    2016-12-01

    In this work we present recent achievements to provide precise measurements of turbulence on JET H-mode plasmas using frequency sweeping reflectometry diagnostic. The plasma density fluctuations retrieved from swept reflected signals, first initiated with the Tore Supra reflectometry (Heuraux et al 2003 Rev. Sci. Instrum. 74 1501, Vermare et al 2006 Nucl. Fusion 46 S743, Gerbaud et al 2006 Rev. Sci. Instrum. 77 10E928), provides a radial profile of the density fluctuation level and its spectral structure. Using the complete set of the JET X-mode fast sweeping heterodyne reflectometers we have determined the temporal dynamic of the density fluctuation profile from the edge to the center during an H-mode discharge. At the L-H transition, the turbulence reduction seems to occur, at first, simultaneously from the edge to the center then deepens at the edge at ρ ~ 0.95 and this deepening propagates toward the center with a steepening of the wavenumber spectra. During an edge localized mode (ELM) event, a substantial density fluctuations increase has been observed with a localized turbulent wave front propagating toward the center accompanying a particle transport. We also show that type-III ELMs sustain a steady and high level of plasma turbulence compare to type-I.

  18. Turbulence, flows and edge localized mode (ELM) dynamics in limiter H-mode plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Soldatov, S.; Krämer-Flecken, A.; Kantor, M.; Unterberg, B.; Sun, Y.; Van Oost, G.; Reiter, D.; TEXTOR Team

    2010-08-01

    The turbulence, plasma flow and edge localized mode (ELM) dynamics in the limiter H-mode TEXTOR plasmas are investigated. Properties of both ambient turbulence within 0 < k⊥ < 4.2 cm-1 and coherent modes are studied on the ELM time scale in detail. The turbulence level near the pedestal is shown to evolve several times with the period of ELMs. Within the inter-ELM period the 'silent stage' is found which is characterized by an extremely low (below that for Ohmic plasmas) turbulence level and a phase growth in the reflectometry signal. The silent stage is associated with the quasi-steady state when the pedestal is formed and confinement is improved between two successive ELMs. Quasi-coherent density oscillations near the pedestal region with m ≈ 3, 5, 16 and 38 are measured with correlation reflectometry. Low-m modes are found to reveal the signatures of precursor mode. At first, the radial structure of the rotation shear and radial electric field Er in limiter H-mode in TEXTOR is presented. The characteristic negative electric field well with the sharp gradient ∇Er ≈ 250 V cm-2 at ≈2 cm inside separatrix is resolved. The Er × B rotation profile defines both the resulting plasma rotation in the electron diamagnetic drift direction and a significant rotation shear near the separatrix which exceeds the decorrelation rate of ambient turbulence by several times.

  19. Analysis of fuelling requirements in ITER H-modes with SOLPS-EPED1 derived scalings

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Kukushkin, A. S.; Pacher, H. D.; Pacher, G. W.; Köchl, F.

    2017-02-01

    Fuelling requirements for ITER are analysed in relation to pellet fuelling and ELM pacing, and a divertor power load control consistent with the ITER pumping and fuel throughput capabilities. The plasma parameters at the separatrix and the particle sources are derived from scalings based on SOLPS simulations. Effective transport coefficients in the H-mode pedestal are derived from EPED1 + SOLPS scalings for the pedestal height and width. 1.5D transport is simulated in the ASTRA framework. The operating window for ITER DT plasmas with the required fusion performance and level of ELM, and divertor power load control compatible with ITER fuelling and pumping capabilities, is determined. It is shown that the flexibility of the ITER fuelling systems, comprising pellet and gas injection systems, enables operation with Q  =  10, which was found to be marginal in previous studies following a similar approach but with different assumptions. The present assessment shows that a reduction of < {{n}e}> by a factor ~2 (from 9 to 5  ×  1019 m-3) in 15 MA H-mode plasmas leads to a reduction in the required pellet fuelling rate by a factor of four. Results of the analysis of the fuelling requirements for a range of ITER scenarios are found to be similar to those obtained with the JINTRAC code that included 2D modelling of the edge plasma.

  20. High density operation in H mode discharges by inboard launch pellet refuelling

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Gafert, J.; Gruber, O.; Kaufmann, M.; Lorenz, A.; Maraschek, M.; Mertens, V.; Neuhauser, J.; Salzmann, H.; ASDEX Upgrade Team

    2000-02-01

    Operating a tokamak at plasma densities near the empirical Greenwald limit bar neGw in H mode could yield significant advantages for a fusion reactor. Trying to avoid the strong confinement degradation observed with gas puff refuelling, pellet injection from the magnetic high field side was applied. Sufficient pellet particle flux was supplied to achieve persistent density rampup and to enable density control in H mode at a level beyond bar neGw for the first time. The pellet induced density increase decays in a fast phase with τ = 10 ms until about half of the latest pellet inventory remains, and decays thereafter to the base density on the particle confinement timescale with τ = 120 ms. The fast decay is the result of strong ELM events following each injected pellet, accompanied by a loss of energy, causing a transient reduction of the plasma energy content by convective heat flux. Recovery of the plasma energy after the ELM sequence takes place with τ = 25 ms, enabling transient operation at appropriately high densities without significant confinement degradation. To reach this scenario, however, confinement degradation caused by other factors must be inhibited. Other factors causing confinement degradation were found to be the increase of neutral gas pressure by pellet born gas puff at insufficient pumping speed or the occurrence of neoclassical tearing modes triggered by pellets when the temperatures close to rational surfaces were reduced too strongly.

  1. Intermittency in the Scrape-off Layer of the National Spherical Torus Experiment During H-mode Confinement

    SciTech Connect

    R.J. Maqueda, D.P. Stotler, S.J. Zweben, and the NSTX Team

    2010-11-22

    A gas puff imaging diagnostic is used in the National Spherical Tokamak Experiment [M. Ono, et al., Nucl. Fusion 40, 557 (2000)] to study the edge turbulence and intermittency present during H-mode discharges. In the case of low power Ohmic H-modes the suppression of turbulence/blobs is maintained through the duration of the (short lived) H-modes. Similar quiescent edges are seen during the early stages of H-modes created with the use of neutral beam injection. Nevertheless, as time progresses following the L-H transition, turbulence and blobs reappear although at a lower level than that typically seen during L-mode confinement. It is also seen that the time-averaged SOL emission profile broadens, as the power loss across the separatrix increases. These broad profiles are characterized by a large level of fluctuations and intermittent events.

  2. Scaling of the Critical Beta for Onset of the m/n=2/1 Neoclassical Tearing Mode in Conventional H-Mode Discharges in DIII-D

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.; Petty, C. C.; Strait, E. J.

    2000-10-01

    While m/n=3/2 NTMs have been observed and studied in detail,(R.J. La Haye et al.), to be in the August 2000 Phys. Plasmas. their consequences are small compared to the m/n=2/1 mode which tends to lock, destroy the H-Mode and cause disruption. The 2/1 modes in DIII-D H-Mode discharges appear to be NTMs in that they are excited as beta is rising, are triggered by a sawtooth crash, ELM or both and have a nearly linear critical beta with rhoistar (the ion gyroradius normalized to the plasma minor radius). Analysis of a 2/1 database in DIII-D will be presented. Preliminary comparison to the polarization/ inertial theory,(H.R. Wilson et al.), Phys. Plasmas 3, 248 (1996). particularly of the key issue of island propagation in the local (q=2) E_r=0 quasi-neutrality frame, shows consistency with a stabilizing effect, i.e., a threshold.

  3. Tungsten divertor sourcing in DIII-D H-mode discharges and its impact on core impurity accumulation in different ELM regimes

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Ding, R.; Guterl, J.; Briesemeister, A.; Unterberg, E. A.; Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Victor, B.; Rudakov, D.; Grierson, B.; Watkins, J. G.; Elder, J. D.; Stangeby, P. C.

    2016-10-01

    Significant progress has been made understanding W sourcing during Type I ELMy H-mode on DIII-D using fast high-resolution measurements of W sourcing coupled with OEDGE/ERO and TRIM.SP modeling. ERO modeling of the inter-ELM phase, using a new OEDGE capability for charge state-resolved carbon ion fluxes and a material mixing model, shows measured W erosion is well explained by C- >W sputtering. Ion impact energies in the DIII-D divertor during ELMs, inferred from ratios of heat flux to ion flux, are 200-500 eV. Comparisons with TRIM.SP indicate C- >W sputtering dominates W sourcing during ELMs. This is in contrast to JET where ion impact energies are 3-5 keV during ELMs, predicted by the ``free streaming model,'' and D- >W sputtering strongly contributes to W sourcing. Fast measurements of W erosion dynamics during ELMs agree well with TRIM.SP-based sputtering models assuming C/W surface concentrations of 0.5-0.8 and a 2% C2+ ion flux fraction. Core W accumulation and SOL W density measurements made during the DIII-D high-Z tile array mini-campaign correlate with ELM frequency and W source rate. Supported by US DOE under DE-FC02-04ER54698.

  4. Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces

    SciTech Connect

    R. Kaita, et. al.

    2012-07-20

    Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

  5. Periods of enhanced transport during H-mode in PBX-M

    SciTech Connect

    Sesnic, S.; Kaita, R.; Kaye, S.M.; Okabayashi, M.; Dunlap, J.

    1994-02-01

    In PBX-M, periods of enhanced transport are often observed in high {beta}{sub pol} H-mode discharges. They can reduce the energy confinement time by a factor of two. Their duration is typically between 2 to 20 ms. They are followed by periods of normal transport of a similar duration. These periods of enhanced transport consist of a series of turbulent m = even MHD events, starting several cm inside the plasma edge. They propagate into the confinement region in 600 {mu}s, causing a progressive erosion of the profile. Each m = even event can also cause an energy loss of 1% or less, mainly from the confinement region. These m = even events are reminiscent of grassy ELMS.

  6. Realization of minute-long steady-state H-mode discharges on EAST

    NASA Astrophysics Data System (ADS)

    Xianzu, GONG; Baonian, WAN; Jiangang, LI; Jinping, QIAN; Erzhong, LI; Fukun, LIU; Yanping, ZHAO; Mao, WANG; Handong, XU; A, M. GAROFALO; Annika, EKEDAH; Siye, DING; Juan, HUANG; Ling, ZHANG; Qing, ZANG; Haiqing, LIU; Long, ZENG; Shiyao, LIN; Biao, SHEN; Bin, ZHANG; Linming, SHAO; Bingjia, XIAO; Jiansheng, HU; Chundong, HU; Liqun, HU; Liang, WANG; Youwen, SUN; Guosheng, XU; Yunfeng, LIANG; Nong, XIANG; EAST Team

    2017-03-01

    In the 2016 EAST experimental campaign, a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive, through an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management, and effective coupling of multiple RF heating and current drive sources at high injected power. The plasma current (I p ∼ 0.45 MA) was fully-noninductively driven (V loop < 0.0 V) by a combination of ∼2.5 MW LHW, ∼0.4 MW ECH and ∼0.8 MW ICRF. This result demonstrates the progress of physics and technology studies on EAST, and will benefit the physics basis for steady state operation of ITER and CFETR.

  7. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    NASA Astrophysics Data System (ADS)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  8. Physics of the L-mode to H-mode transition in tokamaks

    SciTech Connect

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D. ); Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L. ); Finkenthal, D. ); Hillis, D.L.; Wade, M.R. (Oak Ridge National Lab., TN (United

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E {times} B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories.

  9. Theory and Modeling of ELMs and Constraints on the H-Mode Pedestal

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Ferron, J. R.; Lao, L. L.; Leonard, A. W.; Osborne, T. H.; Turnbull, A. D.; Wilson, H. R.; Webster, A. J.; Xu, X. Q.; Mossessian, D.; Murakami, M.

    2002-11-01

    We present a theory of edge localized modes (ELMs) and constraints on the H-mode pedestal, based on the stability of intermediate wavelength peeling-ballooning modes driven by the strong pressure gradient and resulting bootstrap current in the pedestal region. Detailed studies of ideal MHD pedestal stability bounds are presented using the ELITE code, and are compared to data from multiple tokamaks. Observed ELM onset times and characteristics, as well as variation in pedestal behavior with discharge shape and collisionality, are studied. In addition, the impact of diamagnetic stabilization and rotation shear are assessed, and progress on dynamic modeling of the ELM cycle which couples transport codes to stability calculations and ELM crash models is briefly discussed. Nonlinear simulations using the BOUT code are used to provide further insight on non-ideal effects and ELM crash dynamics.

  10. E→H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  11. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-02-01

    H-mode is obtained at A˜ 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to {{H}98y,2}˜ 1 . The L-H power threshold {{P}\\text{LH}} increases with density, and there is no {{P}\\text{LH}} minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured {{P}\\text{LH}} is ˜ 15 × higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and {{P}\\text{LH}}/{{P}\\text{ITPA08}} increases as A\\to 1 . Small ELMs are present at low input power {{P}\\text{IN}}˜ {{P}\\text{LH}} , with toroidal mode number n≤slant 4 . At {{P}\\text{IN}}\\gg {{P}\\text{LH}} , they transition to large ELMs with intermediate 5. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.

  12. H-mode and Edge Physics on the Pegasus ST: Progress and Future Directions

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Kriete, D. M.; Lewicki, B. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.

    2015-11-01

    Ohmic H-modes are routinely attained on the Pegasus ST, in part due to the low L-H power threshold PLH arising from low-BT operation at A ~ 1 . Characteristics of H-mode include: improved τe, consistent with H98 ~ 1 edge current and pressure pedestal formation; and the occurrence of ELMs. Experiments in the past year have examined magnetic topology and density dependencies of PLH in detail. PLH exceeds ITER L-H scaling values by 10-20 ×, with PLH /PITPA 08 increasing sharply as A --> 1 . No PLH-minimizing density has been found. Unlike at high- A, PLH is insensitive to limited or diverted magnetic topologies to date. The low BT and modest pedestal values at A ~ 1 afford unique edge diagnostic accessibility to investigate ELMs and their nonlinear dynamics. Jedge (R , t) measured through a Type I ELM shows a complex pedestal collapse and filament ejection. These studies are being extended to higher Ip and longer pulse length with LHI startup to conserve Ohmic V-s and improve MHD stability. A modest-cost upgrade to the facility will enable detailed validation studies of nonlinear ELM dynamics and ELM control. This initiative will upgrade the centerstack, increasing BT by × 3 , Ohmic V-s by × 4 , and pulse lengths to 100 ms at A < 1 . 3 , as well as deploy a comprehensive 3D magnetic perturbation coil system with full poloidal coverage from frame coils and helical centerstack windings. Work supported by US DOE grant DE-FG02-96ER54375.

  13. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    DOE PAGES

    Thome, Kathleen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-09-30

    H-mode is obtained atmore » $$A\\sim 1.2$$ in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to $${{H}_{98y,2}}\\sim 1$$ . The L–H power threshold $${{P}_{\\text{LH}}}$$ increases with density, and there is no $${{P}_{\\text{LH}}}$$ minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured $${{P}_{\\text{LH}}}$$ is $$\\sim 15\\,\\,\\times $$ higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and $${{P}_{\\text{LH}}}/{{P}_{\\text{ITPA}08}}$$ increases as $$A\\to 1$$ . Small ELMs are present at low input power $${{P}_{\\text{IN}}}\\sim {{P}_{\\text{LH}}}$$ , with toroidal mode number $$n\\leqslant 4$$ . At $${{P}_{\\text{IN}}}\\gg {{P}_{\\text{LH}}}$$ , they transition to large ELMs with intermediate 5 < n < 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.« less

  14. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.; Hollmann, E. M.; Lasnier, C. J.; Unterberg, Ezekial A

    2014-01-01

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  15. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M.; Rognlien, T. D.; Lasnier, C. J.; Unterberg, E.

    2014-06-15

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  16. Advancing the Physics Basis of Quiescent H-mode through Exploration of ITER Relevant Parameters

    SciTech Connect

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Snyder, B. P.

    2014-09-01

    Recent experiments on DIII-D have overcome a long-standing limitation in accessing quiescent H-mode (QH-mode), a high confinement state of the plasma that does not exhibit the explosive instabilities associated with edge localized modes (ELMs). In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (ηe ≈ 7 × 1019 m—3) and normalized Greenwald fraction (ηe/ηG > 0:7) . In these plasmas, the pedestal can evolve to very high pressures and current as the density is increased. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimental observed evolution with density. The comparison of the dependence of the maximum density threshold for QH-mode with plasma shape help validate the underlying theoretical peeling-ballooning models describing ELM stability. High density QH-mode operation with strong shaping has allowed stable access to a previously predicted regime of very high pedestal dubbed \\Super H-mode". In general, QH-mode is found to achieve ELM-stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E Χ B shear is observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for ITER's Q=10 mission.

  17. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    SciTech Connect

    Thome, Kathleen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymonf J.; Kriete, David M.; Perry, Justin M.; Reusch, Joshua A.; Schlossberg, David J.

    2016-09-30

    H-mode is obtained at $A\\sim 1.2$ in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to ${{H}_{98y,2}}\\sim 1$ . The L–H power threshold ${{P}_{\\text{LH}}}$ increases with density, and there is no ${{P}_{\\text{LH}}}$ minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured ${{P}_{\\text{LH}}}$ is $\\sim 15\\,\\,\\times $ higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and ${{P}_{\\text{LH}}}/{{P}_{\\text{ITPA}08}}$ increases as $A\\to 1$ . Small ELMs are present at low input power ${{P}_{\\text{IN}}}\\sim {{P}_{\\text{LH}}}$ , with toroidal mode number $n\\leqslant 4$ . At ${{P}_{\\text{IN}}}\\gg {{P}_{\\text{LH}}}$ , they transition to large ELMs with intermediate 5 < n < 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.

  18. Heat-flux footprints for I-mode and EDA H-mode plasmas on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Hughes, J. W.; Reinke, M. L.; Whyte, D. G.

    2013-07-01

    IR thermography is used to measure the heat flux footprints on C-Mod's outer target in I-mode and EDA H-mode plasmas. The footprint profiles are fit to a function with a simple physical interpretation. The fit parameter that is sensitive to the power decay length into the SOL, λSOL, is ˜1-3× larger in I-modes than in H-modes at similar plasma current, which is the dominant dependence for the H-mode λSOL. In contrast, the fit parameter sensitive to transport into the private-flux-zone along the divertor leg is somewhat smaller in I-mode than in H-mode, but otherwise displays no obvious dependence on Ip, Bt, or stored energy. A third measure of the footprint width, the "integral width", is not significantly different between H- and I-modes. Also discussed are significant differences in the global power flows of the H-modes with "favorable"∇B drift direction and those of the I-modes with "unfavorable"∇B drift direction.

  19. Characterization of core microturbulence in L-mode and H-mode regimes on the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Cao, G. M.; Li, Y. D.; Li, Q.; Zhang, X. D.; Sun, P. J.; Wu, G. J.; Hu, L. Q.; EAST Team

    2015-02-01

    The core microturbulence ({\\boldsymbol{r}} /{\\boldsymbol{a}} ≈ 0.4-0.5, {{k}\\bot }{{ρ }s}\\tilde{ }1.5-4.3) provided by a tangential CO2 laser collective scattering system on the EAST tokamak, in low (L) and high (H) confinement mode regimes respectively, are presented. We report the change of core microturbulence characteristics from L-mode to H-mode: firstly, the spectrograms of the core microturbulence show the redistribution of microturbulence in the frequency domain after the L-H transition; secondly, the time evolution of the integrated spectral power displays that the amplitude of the core microturbulence in H-mode is much larger than that in L-mode; thirdly, the cross-correlation time-frequency spectrum analysis indicates that the structural characteristics of the core microturbulence in L-mode and H-mode are very different. These results suggest that both the amplitude and the structural characteristics of the core microturbulence change significantly from L-mode to H-mode, although the spatial extent of the transport barrier in H-mode is at the edge, which could be closely related to the changes of the profiles of basic plasma parameters.

  20. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch

    2003-11-20

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.

  1. Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U

    NASA Astrophysics Data System (ADS)

    Oyama, N.; Isayama, A.; Suzuki, T.; Koide, Y.; Takenaga, H.; Ide, S.; Nakano, T.; Asakura, N.; Kubo, H.; Takechi, M.; Sakamoto, Y.; Kamada, Y.; Urano, H.; Yoshida, M.; Tsuzuki, K.; Matsunaga, G.; Gormezano, C.; JT-60 Team

    2007-07-01

    After installation of ferritic steel tiles, fast ion losses due to toroidal field ripple have been reduced by 1/2-1/3. The increase in absorbed power at same injection power can reduce the required number of neutral beam injector (NBI) units to sustain a given normalized beta, βN, resulting in a better flexibility of torque input by increasing the available combination of tangential NBI units. By making use of these advantages to sustain an internal transport barrier (ITB), the performance of long-pulse ELMy H-mode plasmas was improved in terms of sustained duration time for both high βN and high thermal confinement enhancement factor (HH98(y,2)). High βN > 2.3 together with HH98(y,2) ~ 1 was sustained for 23.1 s (~12τR, where τR is the current diffusion time) at q95 ~ 3.3, which also provide high βNHH98(y,2) >= 2.2 and a bootstrap current fraction of >=40%. βNHH98(y,2) of 2.0 was sustained for 28.6 s, which is limited by the maximum injection period of 30s for NBI system. These long-pulse plasmas are possible candidates for ITER hybrid operation scenario. Improved confinement is characterized by the larger thermal components at a given density maintained by lower heating power than in previous experiments. The strength of the ITB depends on the pedestal temperature, which varies with edge density while keeping constant the edge pressure (limited by type I ELMs). The fact that co-toroidal rotation as a result of reduced fast ion losses provides better quality of Te-ITB also contributes the improvement of thermal plasma confinement. These long-pulse plasmas indicate that further investigation to establish high performance plasmas longer than the time scale of wall saturation (τW) with active particle control is essential to establish the operational scenarios for next step devices, where the wall pumping does not work.

  2. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  3. The impact of 3D fields on tearing mode stability of H-modes

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; Gerhardt, S.; La Haye, R. J.; Liu, Y. Q.; Reimerdes, H.; Sabbagh, S.; Chu, M. S.; Osborne, T. H.; Park, J.-K.; Pinsker, R. I.; Strait, E. J.; Yu, J. H.; DIII-D, the; NSTX Teams

    2011-07-01

    New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest β on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high βN where ideal MHD responses amplify the fields (where βN is the plasma β divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing βN limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to β and the current profile. Typical field thresholds to induce modes in torque-free βN ~ 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal βN limit. The strong interaction with the tearing mode βN limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline βN value of 1.8, and a linear

  4. OEDGE Modeling of the DIII-D H-Mode 13CH4 Puffing Experiment

    SciTech Connect

    Elder, J D; McLean, A G; Stangeby, P C; Allen, S L; Boedo, J C; Bray, B D; Brooks, N H; Fenstermacher, M E; Groth, M; Leonard, A W; Reiter, D; Rudakov, D L; Wampler, W R; Watkins, J G; West, W P; Whyte, D G

    2006-06-01

    Use of carbon in tokamaks leads to a serious tritium retention issue due to co-deposition. To further investigate the processes involved, a detached ELMy H-mode (6.5 MW NBI) experiment was performed on DIII-D in which {sup 13}CH{sub 4} was puffed into the main vessel through the toroidally symmetric pumping plenum at the top of lower single-null discharges. Subsequently, the {sup 13}C content of tiles taken from the vessel wall was measured. The interpretive OEDGE code was used to model the results. The {sup 13}C deposition pattern could be reproduced, in general shape and magnitude, by assuming in the code the existence of a parallel flow and a radial pinch in the scrape-off layer. Parallel flows of Mach {approx} 0.3 toward the inner divertor and a radial pinch {approx}10 to 20 m/s (+ R-direction) were found to yield {sup 13}C deposition comparable to the experiment.

  5. Core Impurity Transport in C-Mod L-, I- and H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Rice, J.; Reinke, M.; Gao, C.; Howard, N.; Chilenski, M.; Delgado-Aparicio, L.; Granetz, R.; Greenwald, M.; Hubbard, A.; Hughes, J.; Irby, J.; Lin, Y.; Marmar, E.; Mumgaard, R.; Scott, S.; Terry, J.; Walk, J.; White, A.; Whyte, D.; Wolfe, S.; Wukitch, S.

    2014-10-01

    Core impurity transport has been investigated for a variety of confinement regimes in C-Mod plasmas from x-ray emission following laser blow-off injection of medium and high Z materials. In Ohmic L-mode discharges, impurity transport is anomalous (Deff >> Dnc) and changes very little across the LOC/SOC boundary. In ICRF heated L-mode plasmas, the core impurity confinement time decreases with increasing ICRF input power (and subsequent increasing electron temperature) and increases with plasma current. Nearly identical impurity confinement characteristics are observed in plasmas with I-mode confinement. In EDA H-mode discharges the core impurity confinement time is much larger, but exhibits a similar scaling with plasma current, although there is a covariance with the density. There is a strong connexion between core impurity confinement time and the edge density gradient. Central impurity density profiles in these stationary regimes are often flat, in spite of large amplitude sawtooth oscillations, and there is little evidence of impurity convection inside of r/a = 0.3. Supported by USDoE Award DE-FC02-99ER54512.

  6. Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho

    2017-03-01

    Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}}   =  2.8 T, {{I}\\text{P}}   =  0.6 MA, and {{P}\\text{NBI}}   =  4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R   =  1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

  7. X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode

    NASA Astrophysics Data System (ADS)

    Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.

    2015-11-01

    Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.

  8. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  9. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  10. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  11. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  12. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    SciTech Connect

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymond J.; Kriete, David M.; Perry, Justin M.; Reusch, Joshua A.; Schlossberg, David J.

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  13. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  14. ELM-related fluctuations in PBX-M H-modes

    SciTech Connect

    Kaye, S.M.; Hahm, T.S.; Sesnic, S.; Tang, W.; Roney, P.; Davis, W.; Dunlap, J.L.; Harris, J.H.

    1994-04-01

    Edge Localized Modes, or ELMs, are at the same time both disadvantageous and advantageous features of H-modes. ELMs can cause energy and particle losses from the plasma, with instantaneous energy losses reaching 40% of the total stored energy in the case of large-amplitude ELMs. The energy loss from these ELMs, or closely spaced smaller ELMs, may result in what is known as a beta-collapse, an event in which energy is lost over a substantial duration of the discharge. On the other hand, if controlled, the ELM related energy and, especially, impurity losses can lead to near steady-state discharge conditions with relatively low radiative power losses. The importance of ELMs in the development of the H-phase has led to numerous studies which attempt to uncover their nature. The purpose of the present work is to present additional observations of, most notably, high frequency magnetic fluctuations associated with ELMS. There are some observations here that are consistent with previously reported ones, namely the appearance of high frequency ({ge}250 kHz) activity prior to the D{sub {alpha}} increase, suggesting again that the rise in D{sub {alpha}} is some delayed response to an instability occurring farther inside the plasma edge. While this high frequency activity is global, with high coherence for all coil pairs both on the inside and outside midplane, there is no identifiable mode structure. Reported here for the first time are observations of a very intense outward ballooning feature that appears simultaneously with the D{sub {alpha}} increase and lasts for about 5 msec. The toroidal mode structure of this feature is clearly identifiable, consisting of a series of toroidal harmonics from n=3 to 8, at frequencies given by f{sub n}=f{sub 0}+n{Delta}f, with f{sub 0}=30 to 50 kHz and A{Delta}=20 to 30 kHz.

  15. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$e ≈ 7 × 1019 m₋3) and normalized Greenwald fraction ($$\\bar{n}$$e/nG > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  16. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    SciTech Connect

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Osborne, T. H.; Snyder, P. B.

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute ($\\bar{n}$e ≈ 7 × 1019 m₋3) and normalized Greenwald fraction ($\\bar{n}$e/nG > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.

  17. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Snyder, P. B.; Walk, J. R.; Davis, E. M.; Diallo, A.; LaBombard, B.; Baek, S. G.; Churchill, R. M.; Greenwald, M.; Groebner, R. J.; Hubbard, A. E.; Lipschultz, B.; Marmar, E. S.; Osborne, T.; Reinke, M. L.; Rice, J. E.; Theiler, C.; Terry, J.; White, A. E.; Whyte, D. G.; Wolfe, S.; Xu, X. Q.

    2013-04-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling-ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of βpol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices.

  18. Role of Combined NNBI and ICRH Heating in FAST H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Calabrò, G.; Di Troia, C.; Marinucci, M.; Baiocchi, B.; Bilato, R.; Brambilla, M.; Briguglio, S.; Fogaccia, G.; Mantica, P.; Vlad, G.; Zonca, F.

    2011-12-01

    The combination of ICRH+NNBI in FAST allows the generation of fast ion populations with different velocity space anisotropy and radial profiles. These energetic ion populations can excite meso-scale fluctuations with the same characteristics of those expected in reactor conditions and, for this reason, FAST can address a number of important burning plasma physics issues. Numerical simulation and modeling of energetic particle physics are based on the use of transport codes that are iteratively coupled with a bi-dimensional full wave-quasi-linear solver for ICRH, in order to determinate the normalized supra-thermal population pressure ßhot. The value of ßhot. as well the energetic particle distribution functions can be used as initial condition for numerical simulation studies, investigating the destabilization and saturation of fast ion driven Alfvénic modes.

  19. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    SciTech Connect

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R; Osborne, T. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  20. The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas

    SciTech Connect

    Angioni, C.; Pütterich, T.; Bilato, R.; Casson, F. J.; Giroud, C.; Mantica, P.; Helander, P.

    2015-05-15

    Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.

  1. Improved confinement in high-density H-modes via modification of the plasma boundary with lower hybrid wavesa)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; Reinke, M. L.; Hughes, J. W.; LaBombard, B.; Theiler, C.; Wallace, G. M.; Baek, S. G.; Brunner, D.; Churchill, R. M.; Edlund, E.; Ennever, P.; Faust, I.; Golfinopoulos, T.; Greenwald, M.; Hubbard, A. E.; Irby, J.; Lin, Y.; Parker, R. R.; Rice, J. E.; Shiraiwa, S.; Walk, J. R.; Wukitch, S. J.; Xu, P.

    2015-05-01

    Injecting Lower Hybrid Range of Frequency (LHRF) waves into Alcator C-Mod's high-density H-mode plasmas has led to enhanced global energy confinement by increasing pedestal temperature and pressure gradients, decreasing the separatrix density, modifying the pedestal radial electric field and rotation, and decreasing edge turbulence. These experiments indicate that edge LHRF can be used as an actuator to increase energy confinement via modification of boundary quantities. H98-factor increases of up to ˜35% (e.g., H98 from 0.75 to 1.0) are seen when moderate amounts of LH power (PLH/Ptot ˜ 0.15) are applied to H-modes of densities n ¯ e ˜ 3 × 1020 m-3, corresponding to values ˜0.5 of the Greenwald density. However, the magnitude of the improvement is reduced if the confinement quality of the target H-mode plasma is already good (i.e., H98target ˜ 1). Ray-tracing modeling and accessibility calculations for the LH waves indicate that they do not penetrate to the core. The LHRF power appears to be deposited in plasma boundary region, with a large fraction of the injected power increment appearing promptly on the outer divertor target. There is no evidence that the LH waves are driving current in these plasmas. The LHRF-actuated improvements are well correlated with suppressed pedestal density fluctuations in the 100-300 kHz range. There is also a correlation between the improved confinement and a drop in separatrix density, a correlation that is consistent with previous H-mode results with no LHRF.

  2. Experimental results of H-mode power threshold with lower hybrid wave heating on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Huang, Canbin; Gao, Xiang; Liu, Zixi; Han, Xiang; Zhang, Tao; Wang, Yumin; Zang, Shoubiao; Kong, Defeng; the EAST Team

    2016-07-01

    The density roll-over dependence on H-mode power threshold is observed on EAST for the first time. In campaign 2014 and 2015 shots with a toroidal field of 2.25 T have observed roll-over dependence with lower hybrid wave as the only auxiliary heating method, while shots with a toroidal field of 1.79 T and 1.9 T exhibit linear dependence consistent with scaling law. The density of minimum power for accessing H-mode on EAST has different plasma current values of 400 kA and 500 kA, and is better described in the normalized Greenwald fraction {{\\widehat{n}}\\text{e,min}}/{{n}\\text{G}}~≈ ~0.4 at {{B}\\text{T}}=2.35 \\text{T} . The absence of {{\\widehat{n}}\\text{e,min}} in 1.7 T and 1.8 T may be attributed to the positive dependence with toroidal field. Besides, correlation analysis of H-mode power threshold and divertor geometry in scanning X-point is summarized and compared. Outer leg length (distance from X-point to outer strike point) has the highest correlation coefficient with H-mode power threshold, which explains the data scattering within the same plasma parameters. A new equation of scaling law is proposed: {{P}\\text{th \\_\\text{EAST}}}=4.27\\text{OL}{{\\text{L}}1.4}× {{P}\\text{th \\_\\text{08}}}.~ Neutral particles are believed to be the hidden factor in different divertor geometry, and play a negative role in L-H transition via charge exchange damping.

  3. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    NASA Astrophysics Data System (ADS)

    Saibene, G.

    2012-11-01

    The 13th International Workshop on H-mode Physics and Transport Barriers, held in Lady Margaret Hall College in Oxford in October 2011 continues the tradition of bi-annual international meetings dedicated to the study of transport barriers in fusion plasmas. The first meeting of this series took place in S Diego (CA, US) in 1987, and since then scientists in the fusion community studying the formation and effects of transport barriers in plasmas have been meeting at this small workshop to discuss progress, new experimental evidence and related theoretical studies. The first workshops were strongly focussed on the characterization and understanding of the H-mode plasma, discovered in ASDEX in 1982. Tokamaks throughout the entire world were able to reproduce the H-mode transition in the following few years and since then the H-mode has been recognised as a pervasive physics feature of toroidally confined plasmas. Increased physics understanding of the H-mode transition and of the properties of H-mode plasmas, together with extensive development of diagnostic capabilities for the plasma edge, led to the development of edge transport barrier studies and theory. The H-mode Workshop reflected this extension in interest, with more and more contributions discussing the phenomenology of edge transport barriers and instabilities (ELMs), L-H transition and edge transport barrier formation theory. In the last 15 years, in response to the development of fusion plasma studies, the scientific scope of the workshop has been broadened to include experimental and theoretical studies of both edge and internal transport barriers, including formation and sustainment of transport barriers for different transport channels (energy, particle and momentum). The 13th H-mode Workshop was organized around six leading topics, and, as customary for this workshop, a lead speaker was selected for each topic to present to the audience the state-of-the-art, new understanding and open issues, as well

  4. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  5. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  6. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    SciTech Connect

    Navarro, A. Bañón Told, D.; Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H.; Jenko, F.

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  7. Calibration of Model for Tokamak H-mode Pedestal and ELMs

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Bateman, G.; Kritz, A. H.; McElhenny, J.; Osborne, T.; Pankin, A. Y.

    2004-11-01

    Experimental data is used to calibrate a model for the pedestal and Edge Localized Modes (ELMs) implemented in the ASTRA integrated code. The model is calibrated to predict the frequency of the ELMs and the height of the electron and ion temperature pedestals just before an ELM crash. Detailed comparisons are made with experimental data from the DIII-D 98889 discharge, in which the noise in the data is reduced by overlaying the plasma profiles from a sequence of consecutive, nearly identical ELM cycles. The model includes neoclassical transport and transport driven by ion drift modes, resistive ballooning modes, and the electron gradient temperature mode. The criterion for triggering ELM crashes allows for access to second stability. The calibration is carried out by adjusting: (1) The flow shear rates for individual modes of long wavelength turbulent transport; (2) the stability criterion that is used to trigger ELM crashes; and (3) the shapes of the plasma profiles and plasma energy lost after each ELM crash. The calibration is presented as well as the sensitivity to the coefficients in the model.

  8. Experimental validation of non-uniformity effect of the radial electric field on the edge transport barrier formation in JT-60U H-mode plasmas

    PubMed Central

    Kamiya, K.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas). The roles of inhomogeneities of radial electric field (Er) are known inevitable. In this mechanism, whether the first derivative of Er (shear) or the second derivative of Er (curvature) works most is decisive in determining the class of nontrivial solutions (which describe the barrier structure). Here we report the experimental identification of the essential role of the Er-curvature on the ETB formation, for the first time, based on the high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature on ETB formation during ELM-free phase, but there is only a low correlation with the Er-shear value at the peak of normalized ion temperature gradient. Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas. PMID:27480931

  9. Experimental validation of non-uniformity effect of the radial electric field on the edge transport barrier formation in JT-60U H-mode plasmas.

    PubMed

    Kamiya, K; Itoh, K; Itoh, S-I

    2016-08-02

    The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas). The roles of inhomogeneities of radial electric field (Er) are known inevitable. In this mechanism, whether the first derivative of Er (shear) or the second derivative of Er (curvature) works most is decisive in determining the class of nontrivial solutions (which describe the barrier structure). Here we report the experimental identification of the essential role of the Er-curvature on the ETB formation, for the first time, based on the high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature on ETB formation during ELM-free phase, but there is only a low correlation with the Er-shear value at the peak of normalized ion temperature gradient. Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas.

  10. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    NASA Astrophysics Data System (ADS)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  11. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  12. Advances in understanding quiescent H-mode plasmas in DIII-D

    SciTech Connect

    Burrell, K.H.; West, W.P.; Gohil, P.; Greenfield, C.M.; Groebner, R.J.; Hyatt, A.W.; Kaplan, D.H.; Lao, L.L.; Leonard, A.W.; Osborne, T.H.; Snyder, P.B.; Thomas, D.M.; Strait, E.J.; Doyle, E.J.; Rhodes, T.L.; Wang, G.; Zeng, L.; Austin, M.E.; Casper, T.A.; Jayakumar, R.J.

    2005-05-15

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle

  13. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  14. Coupling Of The JET ICRF Antennas In ELMy H-mode Plasmas With ITER Relevant Plasma-Straps Distance

    SciTech Connect

    Mayoral, M.-L.; Monakhov, I.; Jacquet, P.; Brix, M.; Graham, M.; Erents, K.; Korotkov, A.; Lomas, P.; Mailloux, J.; McDonald, D. C.; Stamp, M.; Walden, A.; Hobirk, J.; Ongena, J.

    2007-09-28

    In ITER, the requirement for the ICRF antenna is to deliver 20 MW in ELMy H-mode plasmas with an averaged antenna - plasma separatrix distance of 14 cm. Two major problems will have to be solved: the very fast change in antenna loading during ELMs and the decrease of the loading when the plasma is pushed far away from the antenna. JET has the capability to combine these conditions and for the first time, experiments were performed in ELMy H-mode at antenna--separatrix distance, referred as ROG, varied from 10 to 14 cm. When ROG was increased, the perturbation caused by ELMs was found to decrease significantly and the loading between ELMs was found to deteriorate to very low values. In order to compensate the latter unwanted effect, different levels of deuterium gas were injected in the edge either from the divertor, the midplane or the top of the tokamak. Using this technique, the loading was increased by up to a factor 6 and up to 8 MW of ICRF power were coupled.

  15. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    NASA Astrophysics Data System (ADS)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Roquemore, A. L.; Baylor, L. R.; Commaux, N.; Jackson, G. L.; Gilson, E. P.; Lunsford, R.; Parks, P. B.; Chrystal, C.; Grierson, B. A.; Groebner, R.; Haskey, S. R.; Makowski, M. J.; Lasnier, C. J.; Nazikian, R.; Osborne, T.; Shiraki, D.; Van Zeeland, M. A.

    2016-05-01

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3-0.9 mm, speed of 50-120 m s-1 and average injection rates up to 100 Hz for 0.9 mm granules and up to 700 Hz for 0.3 mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9 mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for the entire shot length, at ELM frequencies 3-5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Overall, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is needed to determine whether the projected heat flux reduction required for ITER can be met.

  16. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    SciTech Connect

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-02-02

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.

  17. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    SciTech Connect

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Roquemore, A. L.; Baylor, L. R.; Commaux, N.; Jackson, G. L.; Gilson, E. P.; Lunsford, R.; Parks, P. B.; Chrystal, C.; Grierson, B. A.; Groebner, R.; Haskey, S. R.; Makowski, M. J.; Lasnier, C. J.; Nazikian, R.; Osborne, T.; Shiraki, D.; Van Zeeland, M. A.

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s-1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need

  18. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s-1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas for themore » entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  19. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    SciTech Connect

    Robert J. Goldston

    2011-02-28

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlüter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2aρp/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Härm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  20. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    SciTech Connect

    Robert J. Goldston

    2011-04-29

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlüter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ~ 2aρp/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Härm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  1. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-28

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

  2. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-27

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

  3. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    SciTech Connect

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; Grierson, Brian A.; Hanson, Jeremy M.; Holland, Christopher; Huijsmans, Guido T. A.; Liu, Feng; Loarte, Alberto; Meneghini, Orso; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Solomon, W. M.; Turnbull, A. D.; Zeng, L.

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  4. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  5. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D

    SciTech Connect

    Rost, J. C.; Porkolab, M.; Dorris, J.; Burrell, K. H.

    2014-06-15

    A region of turbulence with large radial wavenumber (k{sub r}ρ{sub s}>1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII–D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E{sub r} well, the turbulence exhibits large amplitude n{sup ~}/n∼40%, with large radial wavenumber |k{sup ¯}{sub r}/k{sup ¯}{sub θ}|∼11 and short radial correlation length L{sub r}/ρ{sub i}∼0.2. The turbulence inside the E{sub r} well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density fluctuations, so data are taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k{sub r}/k{sub θ}. Analysis of the Doppler shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface, outside the minimum of the E{sub r} well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. These PCI observations, made in QH-mode, are qualitatively similar to those made in standard edge localized modes (ELM)-free H-mode and between ELMs, suggesting a similar role for large k{sub r} turbulence there.

  6. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII-D

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Porkolab, M.; Dorris, J.; Burrell, K. H.

    2014-06-01

    A region of turbulence with large radial wavenumber (krρs>1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII-D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the Er well, the turbulence exhibits large amplitude n ˜/n˜40%, with large radial wavenumber |k¯r/k¯θ|˜11 and short radial correlation length Lr/ρi˜0.2. The turbulence inside the Er well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density fluctuations, so data are taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in kr/kθ. Analysis of the Doppler shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface, outside the minimum of the Er well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. These PCI observations, made in QH-mode, are qualitatively similar to those made in standard edge localized modes (ELM)-free H-mode and between ELMs, suggesting a similar role for large kr turbulence there.

  7. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  8. Role of a MHD mode crash in triggering H-mode at marginal heating power on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Xu, Y.; Hidalgo, C.; Yan, L. W.; Liu, Yi; Jiang, M.; Li, Y. G.; Yu, L. M.; Dong, Y. B.; Li, D.; Liu, L.; Zhong, W. L.; Xu, J. Q.; Huang, Z. H.; Ji, X. Q.; Song, S. D.; Yu, D. L.; Xu, M.; Shi, Z. B.; Pan, O.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Yong

    2016-12-01

    The impact of a low frequency MHD mode crash on triggering the H-mode has been studied in detail on the HL-2A tokamak. The mode manifests fishbone characteristics with a precession frequency f ≈ 14- 19 kHz. The abrupt mode crash evokes substantial energy release from the core to the plasma boundary and hence increases the edge pressure gradient and Er × B flow shear, which further suppresses turbulence and leads to confinement improvement into the H-mode. Under the same NBI heating (∼1 MW), the I-phase plasma transits into H-mode with a rapid MHD mode crash while it returns to the L-mode without the presence of the mode in the I-phase. With increasing heating power by the ECRH added to the NBI, the MHD mode disappears. The statistical result shows that with the MHD mode crash the heating power for accessing the H-mode is significantly lower than that without the mode crash. All these facts reveal that the MHD mode crash in the I-phase plays a critical role in trigging the I → H transition at marginal heating power. In addition, it has been found that with the same NBI power heating, the magnitude of the mode (crash) increases with increasing plasma density, implying larger energy release being needed to access the H-mode for higher density plasmas.

  9. Global Gyrokinetic Simulations of the Dominant High-n and Intermediate-n Instabilities in the H-Mode Tokamak Edge Pedestal

    NASA Astrophysics Data System (ADS)

    Parker, Scott

    2012-10-01

    Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions, for both a high-n Kinetic Ballooning Mode (KBM) and an intermediate-n kinetic version of Peeling-Ballooning Mode (PBM). The KBM and the PBM have been used to constrain the EPED model [1]. Global gyrokinetic simulations show that the H-mode pedestal, just prior to the onset of the Edge Localized Mode (ELM), is very near the KBM threshold. Two DIII-D experimental discharges are studied, one reporting KBM features in fluctuation measurements [2]. Simulations find that in addition to the high-n KBM, an intermediate-n electromagnetic mode is unstable. This kinetic version of the PBM has phase velocity in the electron diamagnetic direction, but otherwise has features similar to the MHD PBM. When the magnetic shear is reduced in a narrow region near the steep pressure gradient, the intermediate-n ``kinetic PBM'' is stabilized, while the high-n KBM becomes the most unstable mode. Global simulation results of the KBM compare favorably with flux tube simulations. The KBM transitions to an unstable electrostatic ion mode as the plasma beta is reduced. The intermediate-n ``kinetic peeling ballooning mode'' is sensitive to the q-profile and only seen in global electromagnetic simulations. Collisions increase the KBM critical beta and growth rate. These results indicate that an improved pedestal model should include, in detail, any corrections to the bootstrap current, and any other equilibrium effects that might reduce the local magnetic shear. It is known that the bootstrap current may flatten the q-profile in the steep gradient region [3]. Simulations are carried out using the global electromagnetic GEM code, including kinetic electrons, electron-ion collisions and the effects of realistic magnetic geometry. In addition to global linear analysis, nonlinear simulations will be reported showing that, while the equilibrium radial electric field has a weak effect on the linear growth

  10. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    SciTech Connect

    Ekedahl, A.; Petrzilka, V.; Baranov, Y.; Goniche, M.; Jacquet, P.; Klepper, C Christopher; Mailloux, J.

    2012-01-01

    Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.

  11. Overview of the Results on Divertor Heat Loads in RMP Controlled H-mode Plasmas on DIII-D

    SciTech Connect

    Jakubowski, M. W.; Evans, T. E.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Leonard, A. W.; Schmitz, O.; Watkins, J. G.; Elch, T.; Wolf, R. C.; Baylor, L. B.; Boedo, J.A.; Burrell, K. H.; Frerichs, H.; DeGrassie, J. S.; Gohil, P.; Joseph, I.; Mordijck, S.; Lehnen, M.; Petty, C C.; Pinsker, R. I.; Reiter, D.; Rhodes, T. L.; Samm, U.; Schaffer, M. J.; Snyder, P. B.; Stoschus, H.; Unterberg, E. A.; West, W. P.

    2009-01-01

    n this paper the manipulation of power deposition on divertor targets at DIII-D by the application of resonant magnetic perturbations (RMPs) for suppression of large type-I edge localized modes (ELMs) is analysed. We discuss the modification of the ELM characteristics by the RMP applied. It is shown that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns are controlled by the externally induced magnetic perturbation. It was also found that the manipulation of heat transport due to the application of small, edge RMP depends on the plasma pedestal electron collisionality nu(e)*. We compare in this analysis RMP and no RMP phases with and without complete ELM suppression. At high nu(e)* > 0.5, the heat flux during the ELM suppressed phase is of the same order as the inter-ELM and the no-RMP phase. However, below this collisionality value, a slight increase in the total power flux to the divertor is observed during the RMP phase. This is most likely caused by a more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area along perturbed, open field lines.

  12. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    SciTech Connect

    R.V. Budny

    2000-11-15

    ELMy H-mode plasmas form the basis of conservative performance predictions for tokalmak reactors of the size of ITER. Relatively high performace for long durations has been achieved and the scaling is favorable. It will be necessary to sustain low Zeff and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one in which the degradation occurs with an intense gas puff, and the other with a spontaneous transition at the heating power threshold from Type I to III ELMs. Linear gryokinetic analysis gives the growth rate, glin of the fastest growing mode. Our results indicate that the flow-shearing rate wExB and glin are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high *wExB*/glin near the top of the pedestal for high confinement.

  13. Fast measurements of the electron temperature and parallel heat flux in ELMy H-mode on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Seidl, J.; Komm, M.; Weinzettl, V.; Panek, R.; Stöckel, J.; Hron, M.; Hacek, P.; Imrisek, M.; Vondracek, P.; Horacek, J.; Devitre, A.; the COMPASS Team

    2017-02-01

    We report the latest results on fast measurements of the electron temperature and parallel heat flux in the COMPASS tokamak scrape-off layer (SOL) and divertor region during ELMy H-mode plasmas. The system of ball-pen and Langmuir probes installed on the divertor target, the horizontal reciprocating manipulator and the fast data-acquisition system with sampling frequency rate f  =  5 MSa s-1 allow us to measure the electron temperature and parallel heat flux during inter-ELM and ELM periods with high temporal resolution. The filamentary structure of the electron temperature and parallel heat flux was observed during ELMs in the SOL as well as in the divertor region. The position of the filaments within ELMs is not regular and therefore the resulting conditionally averaged ELM neglects the peak values of the electron temperature and parallel heat flux. We have found a substantial difference between the value of the radial power decay length in the inter-ELM period λ q,inter  =  2.5 mm and the decay length of the peak ELM heat flux λ q,ELM  =  13.1 mm. The decay length of the ELM energy density was found to be λ E,ELM  =  5.4 mm.

  14. New Electron Temperature Measurements During Local Helicity Injection and H-mode Plasmas at the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Fonck, R. J.; Reusch, J. A.; Winz, G. R.

    2015-11-01

    Extrapolation of non-solenoidal startup via local helicity injection (LHI) to larger devices depends critically on confinement during the injection process. To begin quantifying confinement regimes, the Thomson scattering diagnostic on the Pegasus ST was upgraded to include 12 radial positions and high temperature (0.1 H-mode plasmas in Pegasus. Work supported by US DOE grant DE-FG02-96ER54375.

  15. Comparison study between the observed ELM dynamics in the KSTAR H-mode and simulation results from BOUT++

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Xu, Xueqiao; Yun, Gunsu S.; Lee, Jaehyun; Park, Hyeon K.

    2012-10-01

    The BOUT++ simulations [1] of edge localized modes (ELMs) have been quantitatively compared with high resolution 2D images of ELMs observed in typical KSTAR H-mode plasmas through an electron cyclotron emission imaging (ECEI) system [2]. The poloidal structure of the most unstable mode predicted by the linear 3-field simulation qualitatively matches with the observed ELM structure. As the next step, simulation studies for the nonlinear aspects of the ELM dynamics are planned; in particular, the transient mode structure change prior to the ELM crash [2] will be investigated. In addition, the parametric dependence of the observed ELM suppression/mitigation process during resonant magnetic perturbation (RMP) [2, 3] and supersonic molecular beam injection (SMBI) experiments will be studied using 5-field BOUT++ simulation.[4pt] [1] X.Q. Xu et al., PRL, 105 (2010).[0pt] [2] G.S. Yun et al., Phys. Plasmas, 19 (2012).[0pt] [3] Y.M. Jeon et al., accepted for publication in PRL.

  16. Characterization of MHD instabilities, plasma rotation alteration, and RWM control analysis in the expanded H-mode operation of KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Bak, J. G.; Ko, W. H.; Lee, S. G.; Jeon, Y. M.; Hahn, S. H.; You, K.-I.; Lee, K. D.; Park, J. K.; Yun, G. S.; Park, H. K.

    2012-10-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) has expanded its H-mode operational space to higher beta and lower internal inductance, moving toward design target operation. Plasmas have reached normalized beta of 1.9, stored energy of 340 kJ, and energy confinement time of 171ms evaluated by EFIT reconstructions. Advances from the fall run campaign will be reported. Rotating modes having n = 1, 2 tearing parities are observed by internal and external measurements and their characteristics and stability dependence on plasma rotation profile are analyzed and compared to initial observations. Initial alteration of the plasma rotation profile by applied non-axisymmetric fields is investigated and has characteristics of non-resonant braking. Computation of active RWM control using the VALEN code examines the impact of available sensors for control. Both off-axis and midplane sensors are analyzed, and with off-axis sensors the mode can be stabilized up to normalized beta of 4.5 (C/beta = 86/) and up to 3.6 (44&%slash;) with and without compensation of the prompt applied field of the control coils from the sensors, respectively. Power and bandwidth requirements for RWM stabilization are also calculated by including sensor noise and power supply time delay.

  17. A semi-analytic power balance model for low (L) to high (H) mode transition power threshold

    SciTech Connect

    Singh, R.; Jhang, Hogun; Kaw, P. K.; Diamond, P. H.; Nordman, H.; Bourdelle, C.

    2014-06-15

    We present a semi-analytic model for low (L) to high (H) mode transition power threshold (P{sub th}). Two main assumptions are made in our study. First, high poloidal mode number drift resistive ballooning modes (high-m DRBM) are assumed to be the dominant turbulence driver in a narrow edge region near to last closed flux surface. Second, the pre-transition edge profile and turbulent diffusivity at the narrow edge region pertain to turbulent equipartition. An edge power balance relation is derived by calculating the dissipated power flux through both turbulent conduction and convection, and radiation in the edge region. P{sub th} is obtained by imposing the turbulence quench rule due to sheared E × B rotation. Evaluation of P{sub th} shows a good agreement with experimental results in existing machines. Increase of P{sub th} at low density (i.e., the existence of roll-over density in P{sub th} vs. density) is shown to originate from the longer scale length of the density profile than that of the temperature profile.

  18. Development of a disruption precursor based on rotating mhd instabilities and its application to JET H-mode plasma scenario

    NASA Astrophysics Data System (ADS)

    Sozzi, Carlo; Alessi, Edoardo; Baruzzo, Matteo; Gerasimov, Sergei; JET Contributors Team

    2016-10-01

    Magneto-hydrodynamic activity often precedes disruption events in tokamaks, being either the root cause for disruption or one of the last symptoms of plasma deterioration due to a different root cause. Often a locked mode is detected before the plasma termination, with a warning time useful to trigger mitigation strategies but not enough for recovery, i.e. to act to avoid the disruption. In this work we present a study of disruption precursors derived from the Singular Value Decomposition analysis of the signals of a 3-d array of pick-up coils. Such signals are sensitive to rotating magneto-hydrodynamic activity before the locking phase. The analysis has been applied to the dataset of H-mode plasma scenario being developed at JET in preparation of the DT campaign. It is shown that using this technique a reasonable good rate of right/false alarms (81%/16%) can be obtained with an extended warning time (4-7s). Moreover, since such precursors are based on the phase analysis of normalized signals they are rather insensitive to calibration problems and show a potential for more general application.. Supported by EUROfusion Grant 633053.

  19. Edge Pedestal Control in Quiescent H-Mode Discharges in DIII-D Using Co Plus Counter Neutral Beam Injection

    SciTech Connect

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Chu, M S; Fenstermacher, M E; Gohil, P; Solomon, W M

    2008-10-13

    We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter rotation. This result demonstrates that counter NBI and edge counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation (EHO) that regulates edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in the present paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created.

  20. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.

    PubMed

    Flemisch, Frank Ole; Bengler, Klaus; Bubb, Heiner; Winner, Hermann; Bruder, Ralph

    2014-01-01

    This article provides a general ergonomic framework of cooperative guidance and control for vehicles with an emphasis on the cooperation between a human and a highly automated vehicle. In the twenty-first century, mobility and automation technologies are increasingly fused. In the sky, highly automated aircraft are flying with a high safety record. On the ground, a variety of driver assistance systems are being developed, and highly automated vehicles with increasingly autonomous capabilities are becoming possible. Human-centred automation has paved the way for a better cooperation between automation and humans. How can these highly automated systems be structured so that they can be easily understood, how will they cooperate with the human? The presented research was conducted using the methods of iterative build-up and refinement of framework by triangulation, i.e. by instantiating and testing the framework with at least two derived concepts and prototypes. This article sketches a general, conceptual ergonomic framework of cooperative guidance and control of highly automated vehicles, two concepts derived from the framework, prototypes and pilot data. Cooperation is exemplified in a list of aspects and related to levels of the driving task. With the concept 'Conduct-by-Wire', cooperation happens mainly on the guidance level, where the driver can delegate manoeuvres to the automation with a specialised manoeuvre interface. With H-Mode, a haptic-multimodal interaction with highly automated vehicles based on the H(orse)-Metaphor, cooperation is mainly done on guidance and control with a haptically active interface. Cooperativeness should be a key aspect for future human-automation systems. Especially for highly automated vehicles, cooperative guidance and control is a research direction with already promising concepts and prototypes that should be further explored. The application of the presented approach is every human-machine system that moves and includes high

  1. Investigation of reactive plasma species created in SO2 by an inductively coupled RF discharge in E- and H-mode

    NASA Astrophysics Data System (ADS)

    Zaplotnik, Rok; Vesel, Alenka; Mozetic, Miran

    2016-10-01

    Optical emission spectroscopy (OES) and mass spectrometry were used to investigate the gas phase and surface reactions in inductively coupled SO2 plasma at various radiofrequency discharge powers up to 1000 W and gas pressures from 30 to 100 Pa. At such conditions, the plasma was created either in E- or in H-mode. In the E-mode, extensive radiation in the UV range was observed due to transitions of SO2 and SO molecules to the ground electronic states, whereas the other spectral features were marginal. At elevated powers, an abrupt transition to the H-mode occurred, where the total radiation increased for several orders of magnitude. Strong hysteresis was observed in the behaviour of all OES spectral features at the transitions between the E- and H-modes. In the H-mode, the atomic lines prevailed because of the relaxation of highly excited O and S atoms to the lower excited states, indicating high density of atoms. UV continuum was very weak and governed only by transitions of the SO radicals to the ground state. Thus, it was concluded that in the E-mode, predominantly SO and O radicals are formed during the partial dissociation of SO2 molecules, whereas in the H-mode, high dissociation to S and O atoms occurred, leading to the negligible concentration of SO2. However, in the flowing afterglow, the final gas composition was predominantly always SO2. The concentration of O2 was only approximately 3%, whereas the concentration of SO3 was marginal. This was explained by the recombination of the reactive plasma species formed in the plasma back to SO2 molecules on the surfaces of the remote plasma reactor.

  2. Analysis of turbulence diffusion and H-mode transition in conjunction with gyrocentre shift at the boundary of fusion devices

    NASA Astrophysics Data System (ADS)

    Lee, K. C.

    2009-06-01

    A new concept of turbulence transport and diffusion coefficient are derived from the microscopic \\tilde {E}\\times B ( \\tilde {E} is the localized electric field and B is the magnetic field) drifts at the boundary of fusion devices by characterization of the gyrocentre shift induced by the collisions among electrons, ions and neutrals. It is found that when the viscosity force of the ion-neutral collision is counted, Reynolds numbers of the poloidal ion flow in the vicinity of the tokamak separatrix vary over the critical value between turbulent and laminar flows depending on the plasma parameters such as temperature, neutral density and density fluctuation level, which explains the mechanism of the fast transition from the low confinement mode to the high confinement mode (L/H transition) for the examplar cases.

  3. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  4. Kinetic instabilities that limit β in the edge of a tokamak plasma: a picture of an H-mode pedestal.

    PubMed

    Dickinson, D; Roach, C M; Saarelma, S; Scannell, R; Kirk, A; Wilson, H R

    2012-03-30

    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM, steep gradients in pressure, P, and density, n(e), form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes in the pedestal and microtearing modes in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.

  5. Kinetic Instabilities that Limit β in the Edge of a Tokamak Plasma: A Picture of an H-Mode Pedestal

    NASA Astrophysics Data System (ADS)

    Dickinson, D.; Roach, C. M.; Saarelma, S.; Scannell, R.; Kirk, A.; Wilson, H. R.

    2012-03-01

    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM, steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes in the pedestal and microtearing modes in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.

  6. Improved confinement in ELM-suppressed high-density H-modes at the ITER field via modification of the plasma boundary with Lower Hybrid RF

    NASA Astrophysics Data System (ADS)

    Terry, J. L.

    2014-10-01

    Injecting Lower Hybrid (LH) power into Alcator C-Mod's high-density H-mode plasmas has enhanced global confinement by increasing pedestal temperature gradients, modifying edge rotation, and decreasing edge and SOL turbulence. These new experiments indicate that edge LHRF can be used as a tool to increase confinement via direct modification of boundary quantities. Ray-tracing modeling and accessibility calculations for the LH waves indicate that the LH waves do not penetrate to regions inside the top of the pedestal and are not driving current in these plasmas; instead the LH power modifies the boundary conditions. When moderate amounts of LH power (PLH/Ptot = 20%) are applied to high-density EDA H-modes (neo = 3.5×1020 m-3) , we observe the following effects: edge/SOL fluctuation power decreases by roughly an order of magnitude; pedestal temperature gradients are increased; global energy confinement time and H-factor increase by 30-40% (H98 from 0.7 to 1.0); co-current core and pedestal rotation velocities increase; power to the (outer) divertor target increases promptly with an increment that is roughly 1/2 of the injected LH power, qualitatively consistent with the inaccessibility of the LH waves; and the central frequency of the edge-localized Quasi-Coherent Mode down-shifts and becomes much more coherent. These H-mode confinement improvements brought about by the edge LHRF are the result of changes in the pedestal (e.g. changes in rotation/shear and increased pedestal temperature gradients), with no substantial change in peaking of core density or temperature profiles. There is not perfect correlation with edge turbulence suppression, indicating that the turbulence decrease may be a necessary, but not sufficient, condition for the pedestal and confinement improvements. Supported by US DoE Awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  7. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    SciTech Connect

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  8. Observations of Reduced Electron Gyro-scale Fluctuations in National Spherical Torus Experiment H-mode Plasmas with Large E × B Flow Shear

    SciTech Connect

    Smith, D. R.; Kaye, S. M.; Lee, W.; Mazzucato, E.; Park, H. K.; Bell, R. E.; Domier, C. W.; LeBlanc, B. P.; Levinton, F. M.; Luhmann, Jr., N. C.; Menard, J. E.; Yu, H.

    2009-02-13

    Electron gyro-scale fluctuation measurements in National Spherical Torus Experiment (NSTX) H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temper- ature gradient (ETG) turbulence. Large toroidal rotation in NSTX plasmas with neutral beam injection generates E × B flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the E × B flow shear rate exceeds ETG linear growth rates. The observations indicate E × B flow shear can be an effective suppression mechanism for ETG turbulence.

  9. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    SciTech Connect

    Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Naulin, V.; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, N.; Zhao, H. L.

    2012-12-15

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

  10. Raman and DFT study of polar nu(CN) and non-polar nu(C-H) modes of acetonitrile in aqueous Ag nano-colloids.

    PubMed

    Mishra, Shivangi; Singh, Dheeraj K; Ojha, Animesh K; Asthana, B P; Singh, Ranjan K

    2010-10-15

    Raman spectra of acetonitrile (Acn) in different millimolar (mM) concentrations adsorbed on Ag nano-colloids were recorded in the region 2100-3300cm(-1). The nu(CN) and nu(C-H) modes show blue shifts of approximately 3 and approximately 1cm(-1), respectively, when the concentration of Acn in the mixture is increased from 2 to 8mM. The blue shift of nu(CN) and nu(C-H) modes is predominantly because of adsorption of Acn molecules on Ag nano-colloids. The wave number shift and variation of intensity of the nu(CN) and nu(C-H) bands have been discussed in terms of the adsorption geometry, which probably changes from flat-on configuration at lower concentration of Acn to an end-on configuration at higher concentration of Acn. The dephasing of nu(CN) oscillator becomes considerably slower at higher concentration of Acn. The adsorption of Acn molecules on the nano-colloids was simulated using the (B3LYP) method and the basis sets used for Acn molecules and Ag atoms were 6-311++G(d,p) and Lanl2dz, respectively.

  11. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    SciTech Connect

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu; Zheng, Zhe; Xu, Liang; Wang, Pi; Cao, Jin-Xiang

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E mode transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.

  12. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Boivin, R. L.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Turnbull, A. D.; Tynan, G. R.; Boedo, J. A.; Burrell, K. H.; Kolemen, E.; Schmitz, L.; Wilson, H. R.

    2015-05-01

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significant (up to ˜50%) reduction of pedestal height on short (˜1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.

  13. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    SciTech Connect

    Eldon, D.; Boivin, R. L.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Turnbull, A. D.; Burrell, K. H.; Tynan, G. R.; Boedo, J. A.; Kolemen, E.; Schmitz, L.; Wilson, H. R.

    2015-05-15

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significant (up to ∼50%) reduction of pedestal height on short (∼1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.

  14. Investigation of a transient energetic charge exchange flux enhancement ('spike-on-tail') observed in neutral-beam-heated H-mode discharges in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Kolesnichenko, Ya. I.; Yakovenko, Yu. V.; Bell, R. E.; Bortolon, A.; Crocker, N. A.; Darrow, D. S.; Diallo, A.; Domier, C. W.; Fonck, R. J.; Fredrickson, E. D.; Gerhardt, S. P.; Gorelenkov, N. N.; Kramer, G. J.; Kubota, S.; LeBlanc, B. P.; Lee, K. C.; Mazzucato, E.; McKee, G. R.; Podestà, M.; Ren, Y.; Roquemore, A. L.; Smith, D. R.; Stutman, D.; Tritz, K.; White, R. B.

    2012-01-01

    In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized around the neutral beam (NB) injection full energy is measured using a neutral particle analyser. Termed the high-energy feature (HEF), it appears on the NB-injected energetic-ion spectrum only in discharges where tearing or kink-type modes (f < 50 kHz) are absent, toroidal Alfvén eigenmode activity (f ~ 50-150 kHz) is weak and global Alfvén eigenmode (GAE) activity (f ~ 400-1000 kHz) is robust. Compressional Alfvén eigenmode activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of Δt ~ 20-80 ms, durations spanning 100-600 ms and peak-to-base flux ratios up to H = Fmax/Fmin ~ 10. In infrequent cases, a slowing-down distribution below the HEF energy can develop that continues to evolve over periods of order 100 ms, a time scale long compared with the typical fast-ion equilibration times. HEFs are observed only in H-mode (not L-mode) discharges with injected power Pb >= 4 MW and in the pitch range χ ≡ v||/v ~ 0.7-0.9 i.e. only for passing particles. Increases of order 10-30% in the measured neutron yield and total stored energy that are observed to coincide with the feature appear to be driven by concomitant broadening of measured Te(r), Ti(r) and ne(r) profiles and not the HEF itself. While the HEF has minimal impact on plasma performance, it nevertheless poses a challenging wave-particle interaction phenomenon to understand. Candidate mechanisms for HEF formation are developed based on quasilinear (QL) theory of wave-particle interaction. The only mechanism found to lead to the large NPA flux ratios, H = Fmax/Fmin, observed in NSTX is the QL evolution of the energetic-ion distribution, Fb(E, χ, r), in phase space. A concomitant loss of some particles is observed due to interaction through cyclotron resonance of the particles with destabilized modes having sufficiently high frequencies, f ~ 700

  15. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-15

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  16. Integrated core-SOL-divertor modelling for ITER including impurity: effect of tungsten on fusion performance in H-mode and hybrid scenario

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Voitsekhovitch, I.; Ivanova-Stanik, I.; Köchl, F.; Belo, P.; Fable, E.; Garcia, J.; Garzotti, L.; Hobirk, J.; Hogeweij, G. M. D.; Joffrin, E.; Litaudon, X.; Polevoi, A. R.; Telesca, G.; contributors, JET

    2015-05-01

    The compatibility of two operational constraints—operation above the L-H power threshold and at low power to divertor—is examined for ITER long pulse H-mode and hybrid scenarios in integrated core-scrape off layer (SOL)-divertor modelling including impurities (intrinsic Be, He, W and seeded Ne). The core thermal, particle and momentum transport is simulated with the GLF23 transport model tested in the self-consistent simulations of temperatures, density and toroidal rotation velocity in JET hybrid discharges and extrapolated to ITER. The beneficial effect of toroidal rotation velocity on fusion gain is shown. The sensitivity studies with respect to operational (separatrix and pedestal density, Ne gas puff) and unknown physics (W convective velocity and perpendicular diffusion in SOL as well as W prompt re-deposition) parameters are performed to determine their influence on the operational window and fusion gain.

  17. Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET

    NASA Astrophysics Data System (ADS)

    Maddison, G. P.; Giroud, C.; Alper, B.; Arnoux, G.; Balboa, I.; Beurskens, M. N. A.; Boboc, A.; Brezinsek, S.; Brix, M.; Clever, M.; Coelho, R.; Coenen, J. W.; Coffey, I.; da Silva Aresta Belo, P. C.; Devaux, S.; Devynck, P.; Eich, T.; Felton, R. C.; Flanagan, J.; Frassinetti, L.; Garzotti, L.; Groth, M.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kempenaars, M. A. H.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Leyland, M. J.; Liu, Y.; Lomas, P. J.; Lowry, C. G.; Marsen, S.; Matthews, G. F.; McCormick, G. K.; Meigs, A. G.; Morris, A. W.; Neu, R.; Nunes, I. M.; Oberkofler, M.; Rimini, F. G.; Saarelma, S.; Sieglin, B.; Sips, A. C. C.; Sirinelli, A.; Stamp, M. F.; van Rooij, G. J.; Ward, D. J.; Wischmeier, M.; EFDA Contributors, JET

    2014-07-01

    The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q95 ≈ 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is ≈30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes

  18. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    DOE PAGES

    Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; ...

    2015-04-28

    We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due tomore » the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.« less

  19. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET

    2017-04-01

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  20. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    SciTech Connect

    Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; LaBombard, B. A.; Lipschultz, B.; Terry, J. L.; Pitts, R. A.; Feng, Y.

    2015-04-28

    We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.

  1. Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D-EIRENE

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Groth, M.; Airila, M.; Belo, P.; Beurskens, M.; Brezinsek, S.; Clever, M.; Corrigan, G.; Devaux, S.; Drewelow, P.; Eich, T.; Giroud, C.; Harting, D.; Huber, A.; Jachmich, S.; Lawson, K.; Lipschultz, B.; Maddison, G.; Maggi, C.; Makkonen, T.; Marchetto, C.; Marsen, S.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Wischmeier, M.

    2015-08-01

    Nitrogen seeded JET-ILW H-mode plasmas have been investigated with EDGE2D-EIRENE. The simulations reproduce the experimentally observed factor of 10 reduction in the outer target power deposition when the normalized divertor radiation, Praddiv/PSOL, increases from the unseeded levels of 15% up to the 50% levels required for detachment. At these radiation levels, nitrogen is predicted dominate the total radiation with a contribution of 85%, consistent with previous measurements in JET-C. Due to the low radiative potential of nitrogen at the electron temperatures above 100 eV, more than 80% of the radiation is predicted to occur in the scrape-off layer, making nitrogen a suitable divertor radiator for typical JET divertor conditions with Te around 30 eV. The simulations reproduce the experimentally observed particle flux reduction at the low-field side target without the need for strong recombination. This is due to strong impurity radiation reducing the power levels entering the deuterium ionization front.

  2. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications.

    PubMed

    Rauniyar, Navin; Prokai, Laszlo

    2009-11-01

    We report a data-dependent neutral-loss-driven MS(3) acquisition to enhance, in addition to abundant Michael adducts, the detection of Schiff-base adducts of proteins and 4-hydroxy-2-nonenal, a reactive end product of lipid peroxidation. In vitro modification of cytochrome c oxidase, a mitochondrial protein complex, was used as a model to evaluate the method. The technique allowed for a confident validation of modification sites and also identified a Schiff-base adduct in subunit Vb of the protein complex.

  3. Ion mobility and transport barriers in the tokamak plasmas

    SciTech Connect

    Xiao, H.; Hazeltine, R.D.; Valanju, P.M.; Zhang, Y.Z.

    1993-06-01

    The character of charged particle motion in an axisymmetric toroidal system with a constant radial electric field is investigated both analytically and numerically. Ion radial mobility caused by the combined effects of the radial electric field and charge exchange is found. A simple moment argument in the banana regime matches the simulation results well. Relation of present work and high confinement (H-mode) experiment is also discussed.

  4. Implementation of a new atomic basis for the He I equilibrium line ratio technique for electron temperature and density diagnostic in the SOL for H-mode plasmas in DIII-D

    SciTech Connect

    Burgos, JMM; Schmitz, O.; Unterberg, Ezekial A; Loch, S. D.; Ballance, C. P.

    2011-01-01

    Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. (C) 2010 Elsevier B.V. All rights reserved.

  5. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.

    2016-10-01

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high βP plasmas. The improved understanding is used to develop steady state scenarios for ITER and CFETR. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing improved performance in the high βP regime, is maintained when the scenario is extended from q95 10 to 7 and from rapid to near-zero plasma rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without E ×B shear effect on turbulence suppression. Measured electron turbulent transport is large when ion turbulent transport is low, consistent with recent multi-scale simulations. With decreasing q95, dominant turbulent transport shifts from electrons to ions, which exceeds the neoclassical ion transport level, and may set a q95 limit for the large-radius ITB regime. Experiments also show that the ITB is lost below βN 1.5 , when long wavelength turbulence increases in agreement with predictions of turbulence suppression by Shafranov shift. In DIII-D, a broad current profile enabling large radius ITB is accessed via early heating and sustained with high bootstrap current fraction. Experiments on EAST show that a broad current profile can be accessed and sustained exploiting a large fraction of lower hybrid wave current drive (LHCD). Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. Overall, these results provide encouragement that high performance high βP regimes can be extended to lower safety factor and very low rotation, providing potential paths to steady state in ITER and CFETR. Supported in part by the US DOE under DE-FC02-04ER54698 and the NNSF of China under 11575248.

  6. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    SciTech Connect

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  7. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  8. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  9. Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Giroud, C.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Moulton, D.; O'Mullane, M.; Stamp, M.

    2015-08-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the ‘Free-Streaming’ kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.

  10. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  11. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  12. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  13. Ion Bernstein wave heating on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.; Ono, M.

    1989-02-01

    In the present plan, CIT is to be heated by power in the ion cyclotron range of frequencies (ICRF), and electron cyclotron heating (ECH) may be used if suitable rf sources can be developed. We consider the option of ion Bernstein wave heating (IBWH). The key points are that a simple vacuum waveguide launcher can be well- removed from high fluxes of heat and particles and that the development of a suitable source is straightforward. A practical point is that an IBWH waveguide launcher, including transition from coaxial power feeds, fits inside the shield wall surrounding CIT. To confirm IBWH as an option for CIT, experiments are needed on a shaped, H-mode plasma at high power. Successful experiments should be followed by a tube development program to allow CIT heating at 200 - 275 MHz. 2 refs., 3 figs.

  14. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  15. Toroidal rotation and ion heating during neutral beam injection in PBX-M

    NASA Astrophysics Data System (ADS)

    Asakura, N.; Fonck, R. J.; Jaehnig, K. P.; Kaye, S. M.; LeBlanc, B.; Okabayashi, M.

    1993-08-01

    Determination of the profiles of the ion temperature and the plasma toroidal rotation has been accomplished by charge exchange recombination spectroscopy in PBX-M. The angular momentum and the thermal ion energy transport have been studied mainly during the H mode phase of a high βp discharge (Ip approx 330 kA, 3.5 × 1019 <= ne <= 6.5 × 1019 m-3) having different heating beam configurations (combination of two perpendicular and two tangential neutral beam injections, abbreviated as 2 perp. NBI and 2 parall. NBI). The toroidal rotation velocity Vphi rises substantially in the region of r/a >= 0.5 after the L-H transition, and the Vphi profile (peakedness) is more highly dependent on the beam configuration than the Ti profile. The angular momentum confinement time varies from 147 ms (rigid rotation for 2 perp. NBI) to 39 ms (viscous rotation for 2 parall. NBI). In contrast, the thermal energy confinement time is 44-48 ms and is almost independent of the configuration. The transport analysis shows that the radial angular momentum diffusion is caused mainly by the viscous losses and that the angular momentum diffusivity χphi is reduced substantially in the outer minor radius region during the 2 perp. NBI H mode. The neoclassical friction effect between the bulk ions and the impurities may influence the χphi profiles locally, where the ion temperature gradient is steep

  16. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  17. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  18. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  19. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  20. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  1. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-01

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  2. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    SciTech Connect

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-08

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  3. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  4. Neoclassical ion heat flux and poloidal flow in a tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2010-05-01

    In the core of a tokamak, turbulent transport normally dominates over neoclassical. The situation could be different in a high confinement (or H) mode pedestal, where the former may be suppressed by a strongly sheared equilibrium electric field. On the other hand, this very field makes conventional neoclassical results inapplicable in the pedestal by significantly modifying ion drift orbits. We present the first calculation of the banana regime neoclassical ion heat flux and poloidal flow in the pedestal accounting for the strong E × B drift inherent to this tokamak region. Interestingly, we find that due to the electric field the pedestal poloidal ion flow can change its direction as compared with its core counterpart. This result elucidates the discrepancy between the conventional banana regime predictions and recent experimental measurements of the impurity flow performed at Alcator C-Mod.

  5. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  6. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  7. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  8. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas

    SciTech Connect

    Hahm, T.S.; Tang, W.M.

    1989-09-01

    Typical profiles measured in H-mode ( high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter {eta}{sub i} ({equivalent to}dlnT{sub i}/dlnn{sub i}) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative {eta}{sub i}-modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative {eta}{sub i} values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-{eta}{sub i}-instabilities. 19 refs., 3 figs.

  9. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions.

  10. Fast-ion Energy Loss During TAE Avalanches in the National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E D; Darrow, D S; Gorelenkov, N N; Kramer, G J; Kubota, S; Podesta, M; White, R B; Bortolon, A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-07-11

    Strong TAE avalanches on NSTX, the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] are typically correlated with drops in the neutron rate in the range of 5% - 15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modeled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈ 6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for the bulk of the drop in neutron rate, even in the absence of fast ion losses. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfven wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code.

  11. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  12. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  13. Effect of plasma rotation on sawtooth stabilization by beam ions

    SciTech Connect

    N. N. Gorelenkov; M. F. F. Nave; R. Budny; C. Z. Cheng; G. Y. Fu; J. Hastie; J. Manickam; W. Park

    2000-06-23

    The sawtooth period in JET ELM-free H-Mode plasmas is increasing with Neutral Beam Injection (NBI) power. For injected power PNBI 12MW no large sawtooth crash is observed during the ELM-free period. However, as the edge stability is improved and external kink modes and ELMs are delayed, a possible sawtooth crash at a high plasma beta becomes a concern. In JET DT experiments, delaying sawteeth was found to be crucial in the quest for high fusion power. Fast particles are known to provide stabilizing effect on sawteeth, however, sawtooth stabilization by NBI ions is not clearly understood, since NBI ions are usually not ''fast'' enough to stabilize the m/n = 1/1 internal kink mode which is believed to cause the crash. In order to understand the observed sawteeth stabilization in tokamak experiments with NBI heating, the internal kink m/n = 1/1 mode stability of JET plasmas was modeled using the NOVA-K code, which is also benchmarked with the nonperturbative version of NOVA and the M3D code. Comparison of m/n = 1/1 mode stabilization by NBI ions in JET and TFTR and application of the nonlinear stabilization criteria is given.

  14. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  15. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  16. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  17. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  18. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile

  19. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    SciTech Connect

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; Heidbrink, W. W.; Kramer, G. J.; Lasnier, C. J.; Pace, David C.; Allen, Steve L.; Chen, X.; Evans, T. E.; García-Muñoz, M.; Hanson, J. M.; Lanctot, M. J.; Lao, L. L.; Meyer, W. H.; Moyer, R. A.; Nazikian, R.; Orlov, D. M.; Paz-Soldan, C.; Wingen, A.

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $\\rho >0.7$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion ${{\\text{D}}_{\\alpha}}$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed

  20. Ion funnel ion trap and process

    DOEpatents

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  1. Ions and ion accelerators for cancer treatment.

    NASA Astrophysics Data System (ADS)

    Prelec, Krsto

    Energetic ions in the mass range up to neon may have important advantages in cancer treatment when compared to other, conventional types of radiation. This review will first consider radiobiological properties of several types of radiation (photons, electrons, protons and ions), pointing out to the relevant characteristics of ions compared to other types. Parameters of ion beams as required for cancer treatment will then be defined, followed by the review of the status of proton and ion therapy and clinical trials, and a description of operating and planned facilities. Finally, on the basis of existing experience and desired future performance, a possible design of such a facility will be suggested.

  2. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  3. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  4. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  5. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  6. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  7. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  8. Ion sources for ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-01

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  9. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  10. Ion implantation technology and ion sources

    NASA Astrophysics Data System (ADS)

    Sugitani, Michiro

    2014-02-01

    Ion implantation (I/I) technology has been developed with a great economic success of industries of VLSI (Very Large-Scale Integrated circuit) devices. Due to its large flexibility and good controllability, the I/I technology has been assuming various challenging requirements of VLSI evolutions, especially in advanced evolutional characteristics of CMOSFET. Here, reviewing the demands of VLSI manufacturing to the I/I technology, required characteristics of ion implanters, and their ion sources are discussed.

  11. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  12. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  13. Ambient ion soft landing.

    PubMed

    Badu-Tawiah, Abraham K; Wu, Chunping; Cooks, R Graham

    2011-04-01

    Ambient ion soft landing, a process in which polyatomic ions are deposited from air onto a surface at a specified location under atmospheric pressure, is described. Ions generated by electrospray ionization are passed pneumatically through a heated metal drying tube, their ion polarity is selected using ion deflectors, and the dry selected ions are soft-landed onto a selected surface. Unlike the corresponding vacuum soft-landing experiment, where ions are mass-selected and soft-landed within a mass spectrometer, here the ions to be deposited are selected through the choice of a compound that gives predominantly one ionic species upon ambient ionization; no mass analysis is performed during the soft landing experiment. The desired dry ions, after electrical separation from neutrals and counterions, are deposited on a surface. Characterization of the landed material was achieved by dissolution and analysis using mass spectrometry or spectrofluorimetry. The treated surface was also characterized using fluorescence microscopy, which allowed surfaces patterned with fluorescent compounds to be imaged. The pure dry ions were used as reagents in heterogeneous ion/surface reactions including the reaction of pyrylium cations with d-lysine to form the N-substituted pyridinium cation. The charged microdroplets associated with incompletely dried ions could be selected for soft landing or surface reaction by choice of the temperature of a drying tube inserted between the ion source and the electrical ion deflectors.

  14. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  15. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  16. Impact of ion diamagnetic drift on MHD stability at edge pedestal in JT-60U rotating plasmas

    NASA Astrophysics Data System (ADS)

    Aiba, N.; Honda, M.; Kamiya, K.

    2017-02-01

    The effect of ion diamagnetic drift on the stability of peeling-ballooning modes in rotating tokamak plasmas has been analyzed numerically. The results show that plasma toroidal rotation can not only destabilize the peeling-ballooning mode but also can reduce the ion diamagnetic drift effect on the mode stability, even though the ion diamagnetic drift effect stabilizes the mode in a static plasma. Plasma poloidal rotation can also destabilize the mode and cancel the ion diamagnetic drift effect, even when the rotation frequency is much smaller than the toroidal one. These impacts of the rotation on the stability can resolve the discrepancy between the result of the numerical stability analysis and the experimental result in type-I ELMy H-mode plasmas in JT-60U. The reduction of the ion diamagnetic drift effect on ELM stability due to plasma rotation is shown to depend on the direction of the rotation, so that the ion diamagnetic drift effect becomes negligible only when the JT-60U plasma rotates in the direction counter to the plasma current.

  17. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  18. Production and ion-ion cooling of highly charged ions in electron string ion source.

    PubMed

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  19. Neoclassical ion heat flux and poloidal flow in a tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2009-11-01

    In the core of a tokamak, neoclassical transport normally dominates over classical while itself being dominated by turbulent transport. The situation may be different in a high confinement (or H) mode pedestal, where the latter is effectively suppressed by a strongly sheared equilibrium electric field. On the other hand, this very field makes conventional neoclassical results inapplicable in the pedestal by significantly modifying ion drift orbits. We present the first calculation of the banana regime neoclassical ion heat flux and poloidal flow in the pedestal accounting for the strong ExB drift inherent to this tokamak region. Interestingly, the fact that ion heat conductivity depends on the local values of the electric field and its shear allows us to hypothesize about possible shapes of the global electric field and density profiles in the pedestal. We also find that due to the electric field the pedestal poloidal ion flow is likely to change its direction as compared to its core counterpart. This result elucidates the discrepancy between the conventional banana regime predictions and recent experimental measurements of the impurity flow performed at Alcator C-Mod.

  20. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  1. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  2. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  3. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  4. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  5. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  6. Ion trap simulation tools.

    SciTech Connect

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  7. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  8. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  9. Global mountain snow and ice loss driven by dust and black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2014-12-01

    Changes in mountain snow and glaciers have been our strongest indicators of the effects of changing climate. Earlier melt of snow and losses of glacier mass have perturbed regional water cycling, regional climate, and ecosystem dynamics, and contributed strongly to sea level rise. Recent studies however have revealed that in some regions, the reduction of albedo by light absorbing impurities in snow and ice such as dust and black carbon can be distinctly more powerful than regional warming at melting snow and ice. In the Rocky Mountains, dust deposition has increased 5 to 7 fold in the last 150 years, leading to ~3 weeks earlier loss of snow cover from forced melt. In absolute terms, in some years dust radiative forcing there can shorten snow cover duration by nearly two months. Remote sensing retrievals are beginning to reveal powerful dust and black carbon radiative forcing in the Hindu Kush through Himalaya. In light of recent ice cores that show pronounced increases in loading of dust and BC during the Anthropocene, these forcings may have contributed far more to glacier retreat than previously thought. For example, we have shown that the paradoxical end of the Little Ice Age in the European Alps beginning around 1850 (when glaciers began to retreat but temperatures continued to decline and precipitation was unchanged) very likely was driven by the massive increases in deposition to snow and ice of black carbon from industrialization in surrounding nations. A more robust understanding of changes in mountain snow and ice during the Anthropocene requires that we move past simplistic treatments (e.g. temperature-index modeling) to energy balance approaches that assess changes in the individual forcings such as the most powerful component for melt - net solar radiation. Remote sensing retrievals from imaging spectrometers and multispectral sensors are giving us more powerful insights into the time-space variation of snow and ice albedo.

  10. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-08-19

    A novel ion source is described for use in a calutron which has the prime adwantage of reducing the nunnber of unwanted ions in the ion generating mechamism.An important feature of the invention resides In an arc chamber having a lining of the polyisotopic material to be treated In the calutron and bombardment of the linirg with positive ions of a light gas to induce sputtering and ionization of the lining. With the reduction of unwanted ions in the source beam provided by the described source, the calutron operation may be more accurately controlled.

  11. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  12. Ion channels in asthma.

    PubMed

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  13. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  14. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  15. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  16. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  17. Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M

    SciTech Connect

    LeBlanc, B.; Bell, R.; Batha, S.

    1995-01-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large {triangledown}n{sub e}, {triangledown}T{sub e}, {triangledown}v{sub phi}, and {triangledown}T{sub i}, delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central T{sub i} results from {chi}{sub i} reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  18. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    NASA Astrophysics Data System (ADS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  19. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  20. The acrylonitrile dimer ion

    NASA Astrophysics Data System (ADS)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  1. Atomic ion clock with two ion traps, and method to transfer ions

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  2. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  3. The light ion trough.

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1972-01-01

    A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid-latitude concentrations of H+ and He+ decrease sharply with latitude. In contrast to the 'main trough' in electron density observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid-latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection.

  4. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  5. Auroral ion acceleration

    NASA Astrophysics Data System (ADS)

    Shalimov, S. L.

    From the altitude of 500 km to 15 R sub E everywhere conic like distributions of H+, O+, He+ ions are moving upwards from the ionosphere along the geomagnetic field lines in the auroral zone. The distributed ions suggest the existence of ion transverse acceleration mechanisms (ITAM) acting below the observation point. The more plausible mechanisms are connected with the resonance of the type wave particle between ions and the observed EIC and LH waves and are also due to the existence of the local transverse electric fields in the ionoshere and the magnetosphere. The known ion transverse acceleration mechanisms were complemented by new results. The conical distributions of ionospheric ions at different altitudes in the auroral zone are pointed out.

  6. Positive Ion Photodissociation.

    DTIC Science & Technology

    1980-09-08

    order perturbation theory was found to account well for the iT-it substituent effects , but within a perturbation-theory framework the 7T-7i* band...substituent effects on energy levels of this ionic chromophore. This study, publication #23, is reproduced as Appendix A. N -14- VI. ION STRUCTURES...splitting of the ion cyclo- tron resonances can occur by coupling to rotational degrees of freedom of the ion, although these effects are negligible except

  7. Collection of ions

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  8. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  9. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  10. APPARATUS FOR HEATING IONS

    DOEpatents

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  11. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  12. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  13. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  14. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  15. Doppler ion program description

    SciTech Connect

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities.

  16. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  17. Ion pressure gradient effects on Kelvin-Helmholtz and interchange instabilities

    NASA Astrophysics Data System (ADS)

    Russell, David; Myra, James

    2016-10-01

    In the flow-free state, radial force-balance implies that the poloidal components of the ExB and ion diamagnetic drifts, grad(Pi) / n, are mirrored : vE + vdi = 0. Analysis of the linearized fluid equations shows that the mirrored state is stable in the absence of the interchange drive, grad(Pe +Pi) / n, i.e., the K-H instability is absent. With the interchange drive present, the mirrored-state growth rate passes through a global minimum value with increasing ion pressure gradient, due to sheared ExB flow and diamagnetic suppression, admitting a stability interval in a neighborhood of the minimum if other damping mechanisms are present. The K-H instability is recovered, absent the interchange drive, if force-balance is generalized to include neoclassical poloidal flows (vE + vdi + vnc = 0, vnc grad(Ti)), so that mirroring is lost. Implications for achieving a quiescent H-mode are discussed, and SOLT simulations, which include nonlinear ion pressure effects, are compared with the linear picture. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.

  18. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  20. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  1. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  2. Ion channels in toxicology.

    PubMed

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  3. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  4. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  5. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  6. Quadrupole ion traps.

    PubMed

    March, Raymond E

    2009-01-01

    The extraordinary story of the three-dimensional radiofrequency quadrupole ion trap, accompanied by a seemingly unintelligible theoretical treatment, is told in some detail because of the quite considerable degree of commercial success that quadrupole technology has achieved. The quadrupole ion trap, often used in conjunction with a quadrupole mass filter, remained a laboratory curiosity until 1979 when, at the American Society for Mass Spectrometry Conference in Seattle, George Stafford, Jr., of Finnigan Corp., learned of the Masters' study of Allison Armitage of a combined quadrupole ion trap/quadrupole mass filter instrument for the observation of electron impact and chemical ionization mass spectra of simple compounds eluting from a gas chromatograph. Stafford developed subsequently the mass-selective axial instability method for obtaining mass spectra from the quadrupole ion trap alone and, in 1983, Finnigan Corp. announced the first commercial quadrupole ion trap instrument as a detector for a gas chromatograph. In 1987, confinement of ions generated externally to the ion trap was demonstrated and, soon after, the new technique of electrospray ionization was shown to be compatible with the ion trap.

  7. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  8. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  9. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  10. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  11. ION PULSE GENERATION

    DOEpatents

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  12. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  13. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  14. Ion track doping

    NASA Astrophysics Data System (ADS)

    Fink, D.; Chadderton, L. T.; Cruz, S. A.; Fahrner, W. R.; Hnatowicz, V.; Te Kaat, E. H.; Melnikov, A. A.; Varichenko, V. S.; Zaitsev, A. M.

    1994-10-01

    Longitudinal dopant distribution along ion tracks in soft (polymers [1?5]) and hard (diamond [6,7]) condensed carbonaceous matter have been studied by neutron depth profiling and cathodoluminesence. Both in-diffusion from the aqueous phase and energetic ion implantation were used in primary track doping. In-situ self-decoration of tracks and post-implantation with a secondary ion species were used in the specific case of ion implantation. Radial dopant distributions were also studied by means of a modified tomographic procedure. Decorative doping of ion bombarded solids is useful in probing track structure, and especially in pointing the way to potential development of nanometric-sized electronic devices.

  15. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  16. Ion chemistry in space.

    PubMed

    Larsson, M; Geppert, W D; Nyman, G

    2012-06-01

    We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.

  17. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  18. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  19. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  20. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  1. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  2. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  3. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  4. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  5. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  6. Multiple ion temperature gradient driven modes in transport barriers

    NASA Astrophysics Data System (ADS)

    Han, M. K.; Wang, Zheng-Xiong; Dong, J. Q.; Du, Huarong

    2017-04-01

    The ion temperature gradient (ITG) modes in transport barriers (TBs) of tokamak plasmas are numerically studied with a code solving gyrokinetic integral eigenvalue equations in toroidal configurations. It is found that multiple ITG modes with conventional and unconventional ballooning mode structures can be excited simultaneously in TBs with steep gradients of ion temperature and density. The characteristics of the modes, including the dependence of the mode frequencies, growth rate and structure on plasma parameters, are systematically investigated. Unconventional modes with large mode-number l (where l denotes a certain parity and peak number in ballooning space) dominate in the large {{k}θ}{ρs} region ({{k}θ}{ρs}≥slant 1.2 ), while the conventional mode with l=0 dominates in the medium {{k}θ}{ρs} region (0.4≤slant {{k}θ}{ρs}<1.2 ), and unconventional modes with small mode-number l dominate in the small {{k}θ}{ρs} region ({{k}θ}{ρs}<0.4 ). Thus, the {{k}θ}{ρs} spectra of these conventional and unconventional modes at steep gradients are qualitatively different from those of the conventional ITG modes at small or medium gradients, in which the growth rate of the only ITG mode with l=0 reaches maximum at the medium value {{k}θ}{ρs}=0.6 . Through scanning ion temperature gradient {{\\varepsilon}T\\text{i}} and density gradient {{\\varepsilon}n} separately, it is proven that the synergetic effect of {{\\varepsilon}T\\text{i}} and {{\\varepsilon}n} , rather than {{\\varepsilon}T\\text{i}} alone, drives the unconventional ITG modes in TBs. Moreover, it is found that the critical value of {{\\varepsilon}n} for driving the unconventional ITG modes with large l number increases with increasing {{k}θ}{ρs} . In addition, the effects of magnetic shear on conventional and unconventional ITG modes in the high confinement regime (H-mode) are analyzed in detail, and compared with equivalent effects on conventional modes in the low and intermediate gradient

  7. Ion dynamics during seizures

    PubMed Central

    Raimondo, Joseph V.; Burman, Richard J.; Katz, Arieh A.; Akerman, Colin J.

    2015-01-01

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena. PMID:26539081

  8. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  9. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  10. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  11. ION PRODUCING MECHANISM

    DOEpatents

    Lawrence, E.O.

    1958-09-16

    Improvements are presented in calutron devices and, more specifically, dealswith an improved mounting arrangement fer the ion source of the calutron. An important feature of the invention resides in a pluraiity of insulators so mounted as to be accessible from the exterior of the calutron tank and supporting at their inner ends the ion source. These insutators are arranged in mutually parallel relation and also parallel to the flux of the nmgnetic field, whereby the strain of the supporting elements is reduced to a minimum. In addition the support assembly is secured to a removable wall portion of the task to facilitate withdrawal and examination of the ion producing mechanism.

  12. Relating to ion detection

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  13. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  14. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  15. Ion sensing method

    DOEpatents

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  16. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  17. [Particle therapy: carbon ions].

    PubMed

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  18. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  19. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  20. Ion manipulation device

    SciTech Connect

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  1. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  2. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  3. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  4. Surface Production of Ions

    DTIC Science & Technology

    1992-05-26

    restrictions present in most surface baffle . The base pressure was 3 .. 10 ’ Torr. The experimen- conversion sources operating at 1(X) eV bombarding...are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate...emitters. Ccx um ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface

  5. Ions and neutralization

    NASA Astrophysics Data System (ADS)

    Poncet, A.

    After a short presentation of intensity limitations examples due to trapped ions, the processes of ionization and neutralization build up in particle accelerators and storage rings are briefly reviewed. The tolerable limits in neutralization are then assessed at the light of current theories of incoherent and coherent effects driven by ions. Finally the usual antidotes such as clearing electrodes, missing bunch schemes and beam shaking are presented.

  6. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    ure are only those which had the greatest effect . Several features of this periodic chart are worth not- ing: i) some elements improve more than one...from nearly all the groups of the periodic table can have beneficial effects on a given property. iv) Ions which improve properties are highlighted...here, but ions which have deleterious effects may also be implanted which facilitates the study of mechanisms of wear and corrosion. v) Elements to

  7. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  8. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  9. Ion electric propulsion unit

    DOEpatents

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  10. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  11. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  12. Single ion heat engine

    NASA Astrophysics Data System (ADS)

    Singer, Kilian

    2015-03-01

    An experimental realization of a heat engine with a single ion is presented, which will allow for work extraction even with non-classical thermal reservoirs. To this goal a custom designed linear Paul trap with a single ion performing an Otto cycle is presented. The radial state of the ion is used as the working gas analogous to the gas in a conventional heat engine. The conventional piston is realized by the axial degrees of freedom and the axial motional excitation stores the generated work, just like a conventional fly-wheel. The heat baths can be realized by tailored laser radiation. Alternatively electrical noise can be used to control the state of the ion. The presented system possesses advantageous properties, as the working parameters can be tuned over a broad range and the motional degrees of freedom of the ion can be accurately determined. Dark resonances allow for fast stroboscopic thermometry during the entire working cycle. Monte Carlo simulations are performed to predict the efficiency and the gained work of the working cycle. We have also shown how the equations for the Carnot limit have to be modified if a squeezed thermal reservoir is employed. Furthermore structural phase transitions with laser cooled linear ion crystals are induced verifying the Kibble-Zurek mechanism.

  13. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  14. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  15. Energy channeling from trapped to passing fast ions mediated by GAE/CAE activity in NSTX

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Belova, E.; Kramer, G.; Podesta, M.; Liu, D.

    2013-10-01

    In the National Spherical Torus Experiment, an increased charge exchange neutral flux localized at the neutral beam full injection energy is measured by the E||B Neutral Particle Analyzer. Termed the High-Energy Feature (HEF), it appears on the beam-injected energetic ion spectrum in discharges where NTM or kink modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak and CAE/GAE activity (f ~ 400 - 1200 kHz) is robust. The HEF exhibits a growth time of t ~ 20-80 ms and develops a slowing down distribution that continues to evolve over periods > 100 ms. HEFs are observed only in H-mode discharges with NB power Pb >= 4 MW and in the pitch range v||/v ~ 0.7 - 0.9. The HEF appears to be caused by a CAE/GAE wave-particle interaction that modifies the fast ion distribution, fi(E,v||/v,r). This mechanism was studied using the SPIRAL code that evolves an initial TRANSP-calculated fi(E,v||/v,r) distribution in the presence of background plasma profiles under drive from wave-particle resonances with CAE/GAE Alfvén eigenmodes. Supported by U.S. Department of Energy under Contract No. DE-AC02-09CH11466.

  16. Alfvénic ion temperature gradient activities in a weak magnetic shear plasma

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ma, R. R.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Shi, P. W.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Liu, Yi.; Xu, M.; Xu, Y. H.; Yang, Q. W.; Duan, X. R.

    2016-11-01

    We report the first experimental evidence of Alfvénic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with f=15\\text{--}40 \\text{kHz} and n=3\\text{--}6 is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and ηi , and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also shed light on why AITG modes can be unstable for weak shear and low pressure gradients. It is worth emphasizing that these instabilities may be linked to the internal transport barrier (ITB) and H-mode pedestal physics for weak magnetic shear.

  17. Observations on turbulence and beam-ion driven modes in TEXTOR

    NASA Astrophysics Data System (ADS)

    de Meijere, C. A.; Coda, S.; Krämer-Flecken, A.; Soldatov, S.; Albergante, M.; the TEXTOR Team

    2012-10-01

    At a sufficiently weak toroidal magnetic field, neutral beam injection heated, limited plasmas in the TEXTOR tokamak exhibit bursts of beam-ion driven ‘fishbone’ and Alfvén modes, which are characterized for the first time using the multi-antenna reflectometer and Mirnov coils. In H-mode the fishbone triggers edge-localized modes (ELMs) and in L-mode it triggers previously unobserved bursts of particle recycling, resembling the ELMs. The reflectometer phase shows statistically significant bispectral coherence between the fishbone and the Alfvén modes, indicative of non-linear coupling between them. Additionally, using conditional averaging techniques, two ELM precursor modes are found that are not related to the beam ions. The first is a coherent mode with toroidal mode number n = -2, which is also seen with the Mirnov coils. Bispectral analysis of the reflectometer signals shows that this mode modulates the amplitude of broadband turbulence in the pedestal. The second ELM precursor is a semi-coherent, down-chirping mode with a poloidal wavelength of 6 cm.

  18. Ion optics of RHIC EBIS

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  19. Clues From Pluto's Ions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  20. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  1. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  2. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  3. Ion transport in pigmentation.

    PubMed

    Bellono, Nicholas W; Oancea, Elena V

    2014-12-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.

  4. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  5. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  6. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  7. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  8. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications.

    PubMed

    Belykh, S F; Palitsin, V V; Veryovkin, I V; Kovarsky, A P; Chang, R J H; Adriaens, A; Dowsett, M G; Adams, F

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  9. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  10. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  13. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  14. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  15. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  16. ION PRODUCING MECHANISMS

    DOEpatents

    Brobeck, W.M.

    1959-02-10

    Ion generating means and means for producing ions of material for isotopic separation are discussed. One feature of the invention resides in providing a heater means located in the source block approximately equidistant from a charge reservoir and an arc chamber, whereby the heat distribution in the block is such as to avoid overheating and to maintain the temperature of the various critical localities of the unit at their optimum values. Another feature consists of a pair of plates disposed on either side of the arc chamber exit opening to define a narrow slit for the egression of the ion beam. When the adjacent edges of the plates have become worn, the plates may be detached and reversed to use the opposite edges thereof to define the exit opening.

  17. Positronium ions and molecules

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.

    1990-01-01

    Recent theoretical studies on positronium ions and molecules are discussed. A positronium ion is a three particle system consisting of two electrons in singlet spin state, and a positron. Recent studies include calculations of its binding energy, positron annihilation rate, and investigations of its doubly excited resonant states. A positronium molecule is a four body system consisting of two positrons and two electrons in an overall singlet spin state. The recent calculations of its binding energy against the dissociation into two positronium atoms, and studies of auto-detaching states in positronium molecules are discussed. These auto-dissociating states, which are believed to be part of the Rydberg series as a result of a positron attaching to a negatively charged positronium ion, Ps-, would appear as resonances in Ps-Ps scattering.

  18. ION-1 technical manual

    SciTech Connect

    Halbig, J.K.; Caine, J.C.

    1985-07-01

    The portable gamma-ray and neutron detector electronics (ION-1) gives a digital readout of the current-mode response produced by gamma rays in an ion chamber and of amplification and scaling of pulses received from a neutron detector. The primary application is the measurement of gamma-ray and neutron activity of irradiated reactor fuels stored at a reactor or at a storage pond away from a reactor. ION-1 is the first such instrument to use a design that allows communication of procedures, response, and results between instrument and inspector. It prompts the inspector through procedures, carries out programmed measurement steps, calculates results and error estimates, and performs internal diagnostic checks. This Technical Manual describes adjustment procedures and limited technical information that enable the inspector to troubleshoot at the board level. 5 figs., 10 tabs.

  19. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  20. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  1. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  3. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  4. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  5. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  6. Dynamics of the ion-ion acoustic instability in the thermalization of ion beams

    SciTech Connect

    Han, J.H.; Horton, W.; Leboeuf, J.N.

    1992-07-01

    Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.

  7. Laser ion source for isobaric heavy ion collider experiment

    SciTech Connect

    Kanesue, T. Okamura, M.; Kumaki, M.; Ikeda, S.

    2016-02-15

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is {sup 96}Ru + {sup 96}Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  8. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  9. Ion Engine Test Firing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Ion propulsion was first proposed in the 1950s and NASA performed experiments on this highly efficient propulsion system in the 1960s, but it was not used aboard an American spacecraft until the 1990s. Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA. The almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets. Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs.

  10. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  11. Interferometry with Strontium Ions

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  12. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  13. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  14. Asymmetric ion trap

    DOEpatents

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  15. Uranyl ion coordination

    USGS Publications Warehouse

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  16. AMPTE ion composition results

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hamilton, D. C.

    1987-01-01

    The CHEM and SULEICA experiments on the AMPTE/CCE and IRM spacecraft have been used to identify ion species of solar wind as well as of ionospheric origin and to meaasure their distribution functions in the energy range of 1-315 keV/e. This paper reviews current observations of the composition of magnetospheric ions in the bulk of the ring current and in the near-earth plasma sheet during both quiet and disturbed times, as well as in the near-noon magnetosheath at times when the magnetosphere is compressed.

  17. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.

    1978-01-01

    Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.

  18. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  19. Unidentified ions in comets

    NASA Technical Reports Server (NTRS)

    Engel, Lisa

    1990-01-01

    Optical spectra were taken of comets Halley, West, and Brorsen-Metcalf in the wavelength region 3200 to 6400 A. These spectra were offset approximately 10(exp -5) to 10(exp -6) km tailward from the nucleus so that the features detected were all ions with the exception of a very small residual C2 emission at 5165 A. The full labeled tail spectrum of comet Halley is given. While most of the features detected are attributable to CO(+), H2O(+), CO2(+), CH(+), and OH(+), there are three moderately strong bands in the spectra of comets Halley and Brorsen-Metcalf which remain unidentified. These features were not detected in comet West. All three spectra in the 4800 to 5400 A region are presented, Brorsen-Metcalf is the gassiest of the three. The central wavelengths of the unidentified features are 4930, 5300, and 6000 A. In an effort to identify the ions responsible for these features as well as to confirm previous identifications, laboratory spectra of ions were compared with the comet spectra. H2O(+) and CO(+) are known to have extensive emission in the 4800 to 6200 A region. Therefore, the possibility that these unidentified features are due to H2O(+) and CO(+) was investigated. A search for the following bands was conducted: H2O(+) (11-0), H2O(+) (12-0), H2O(+) (13-1), CO(+) (1-1), and CO(+) (0-0). CO(+) (1-1) and CO(+) (0-0) were previously identified and are present in all the spectra examined. The H2O(+) (11-0) band was identified. Comparison of the H2O(+) (11-0) synthetic spectrum with comet Brorsen-Metcalf data is presented. The relative fluxes of the blended H2O(+) lines in the synthetic spectrum match those of the cometary data. After eliminating H2O(+) and CO(+) as significant contributors to the stronger unidentified features, spectra of ions which are not yet identified in the optical region of comets were compared to the data. These ions are NH(+), CS(+), and C2(+). None of these ions appears to be a significant contributor to the optical spectra of these

  20. Advanced penning ion source

    DOEpatents

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  1. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  2. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  3. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-09-01

    This patent relates to improvements in calutron devices and particularly describes a novel ion source. The unique feature of this source lies in the shaping of the ionizing electron stream to conform to the arc plasma boundary at the exit slit of the ionization chamber, thereby increasing the ion density produced at the plasma boundary. The particular structure consists of an electron source disposed at onc end of an elongated ionization chambcr and a coilimating electrode positioned to trim the electron stream to a crescent shape before entering the ionization chamber.

  4. Stability of colliding ion beams

    SciTech Connect

    Foote, E.A.; Kulsrud, R.M.

    1980-11-01

    We determine conditions for stability of two identical colliding ion beams in the presence of neutralizing electrons, but no background ions. Such a situation is envisioned for the Counterstreaming Ion Torus. The ion beams are taken to be Maxwellian in their frames of reference. The approximation of electrostatic and electromagnetic modes is made. The stability of the electrostatic modes depends on the relation between the ion electron temperature ratio and the relative beam velocities. The stability of the electromagnetic mode depends on the relation between the ion plasma ..beta.. and the relative beam velocities.

  5. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  6. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  7. Ion-dust streaming instability with non-Maxwellian ions

    SciTech Connect

    Kählert, Hanno

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutral damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.

  8. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  9. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  10. ION PRODUCING MECHANISM

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A calutron ion source is described which masks the ends of the arc to provide a more stable beam from the middle portion. The masking is effected by milling the arc slit in a single sheet of material which is secured to the open face of the arc block. (T.R.H.)

  11. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  12. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  13. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  14. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  15. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  16. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  17. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. Electron-less negative ion extraction from ion-ion plasmas

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-03-09

    This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids are biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.

  20. Compact RF ion source for industrial electrostatic ion accelerator

    SciTech Connect

    Kwon, Hyeok-Jung Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  1. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  2. Ion conductance in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Chandra, Amalendu; Bagchi, Biman

    1999-05-01

    We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on √c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.

  3. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials.

  4. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  5. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  6. Ion Engine With Solid-Electrolyte Ion Generator

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1984-01-01

    Working fluid utilized efficiently. Working fluid positive ions conducted through solid electrolyte to outside, then accelerated in external electric field. While in solid-electrolyte material, ions do not recombine with electrons: transported to surface with high ionization efficiency. Provides new way to generate beam of ions for implantation in semiconductors or other applications.

  7. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  8. Device for separating non-ions from ions

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2017-01-31

    A device for separating non-ions from ions is disclosed. The device includes a plurality of electrodes positioned around a center axis of the device and having apertures therein through which the ions are transmitted. An inner diameter of the apertures varies in length. At least a portion of the center axis between the electrodes is non-linear.

  9. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  10. Impurity ion flow and temperature measured in a detached divertor with externally applied non-axisymmetric fields on DIII-D

    DOE PAGES

    Briesemeister, A. R.; Isler, R. C.; Allen, S. L.; ...

    2014-11-15

    Externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flow were observed inmore » response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.« less

  11. Ion Runaway in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    Fülöp, T.; Landreman, M.

    2013-07-01

    Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we derive an expression for the high-energy tail of the ion distribution function in lightning discharges and investigate the energy range that the ions can reach. We also estimate the corresponding energetic proton and neutron production due to fusion reactions.

  12. Membranes in lithium ion batteries.

    PubMed

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  13. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  14. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

  15. The Ion Conveyor. An ion focusing and conveying device.

    PubMed

    Colburn, Alex W; Giannakopulos, A E; Derrick, Peter J

    2004-01-01

    The control and transmission of ions or small charged droplets in the intermediate to high-pressure regime is of primary importance in areas such as atmospheric pressure ionisation. Where small apertures separate differentially pumped vacuum regions in the inlet systems to mass spectrometers, a large proportion of the available ion current is lost to the surrounding electrode structures. A new ion-optical device, named the ion conveyor, incorporating electrodynamic focusing and conveying of charged entities is described. Results from ion-optical simulations are presented demonstrating the performance of the device in various operating modes and electrode configurations.

  16. Macroreticular chelating ion-exchangers.

    PubMed

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  17. Ion loss in weakly collisional three ion species plasmas

    NASA Astrophysics Data System (ADS)

    Hershkowitz, Noah; Yip, Chi-Shung; Severn, Greg

    2016-10-01

    Ion velocity distribution functions (ivdfs) at sheath-presheath boundaries are studied with laser-induced fluorescence in weakly collisional Xe-Kr-Ar and Xe-Ar-Ne plasmas using tunable diode lasers for Ar + and Xe + ions. The argon and xenon ivdfs are measured at the sheath-presheath boundary near a negatively biased boundary plate. The plasma potential profiles are measured by an emissive probe throughout the sheath and presheath. Relative ion concentrations resulting from the neutral gas mixtures are calculated using G-H. Kim's loss-production balance method. Ne + and Kr + ions are added to plasmas with approximately equal amounts of Ar + and Xr + ions, where Ar + and Xe + ions are previously observed to reach the sheath edge at nearly the system sound speed. In two ion species plasmas, instability enhanced collisional friction was demonstrated to dictate the escape velocities of the ions. When three ion species are present, it is demonstrated that as the concentration of the third ion species increases, Xe + and Ar + ion velocities at the sheath edge deviates from the common sound speed and approach their individual Bohm velocities. These observations are consistent with the predictions of the instability enhanced collisional friction theory This work was supported by NSF under Grant No. 1464741 and U.S. DOE under Grant No. DE-SC00114226.

  18. An ion-optical bench for testing ion source lenses

    NASA Astrophysics Data System (ADS)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  19. Ion response in a weakly ionized plasma with ion flow

    SciTech Connect

    Kompaneets, Roman; Tyshetskiy, Yuriy O.; Vladimirov, Sergey V.

    2013-04-15

    We study the ion response to an initial perturbation in a weakly ionized plasma with ion flow driven by a dc electric field. The analysis is made by extending the classical Landau work [J. Phys. (USSR) 10, 25 (1946)] to the ion kinetic equation including ion-neutral collisions and a dc electric field. We show, in particular, that the complex frequencies of ion waves can be directly found from a known expression for the ion susceptibility [A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005); V. A. Schweigert, Phys. Rep. 27, 997 (2001)]; this is not obvious from its original derivation, because it only aims to describe the ion response for real frequencies.

  20. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  1. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  2. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  3. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  4. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  5. Cooled Ion Frequency Standard

    DTIC Science & Technology

    1988-09-27

    on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 8. "High Accuracy Spectroscopy of Stored Ions," D.J...Wineland, W.M. Itano, J.S. Bergquist, J.J. Bollinger, F. Diedrich and S.L. Gilbert, Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy...Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 10. "Quantative Study of Laser Cooling in

  6. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  7. Ion Trap Quantum Computing

    DTIC Science & Technology

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  8. Ion extraction system optimization

    SciTech Connect

    Cavenago, Marco

    2013-07-18

    The extraction of a beam from ion sources is dominated by the strong space charge of the beam, due to the initial low speed of the particles. Several mathematical and computational issues are discussed, with reference to a diode design based on thin anode lens effect, yielding a parallel beam at its exit, which is the first block of many high current electrostatic accelerators. Perturbation to uniform current density are analyzed. Effect of a thick anode lens is also treated.

  9. Ion beam analysis

    SciTech Connect

    Robertson, J.D. )

    1990-01-01

    A new ion beam analysis facility has recently been installed at a Van de Graaff accelerator. Its use is expected to support many energy and environmental research projects. Material composition and spatial distribution analyses at the facility are based upon Rutherford backscattering spectrometry, particle-induced X-ray emission, and particle-induced gamma-ray emission analysis. An overview of these three techniques is presented in this article.

  10. Ion Deposited Carbon Coatings.

    DTIC Science & Technology

    1983-07-01

    G 6. 673 2 460 10-" N m’ kg-’ Avogadro constant ------------------- NA 6. 022 169 6. 6 ION kmol -, Boltzmann constant --------------- k 1...II I I .. . . . . .. . . . . .. .-- NASA SP-7012 THE INTERNATIONAL SYSTEM OF UNITS PHYSICAL CONSTANTS and CONVERSION FACTORS SECOND REVISION E. A...values of physical constants expressed in SI units, and tables of numerical factors for converting miscellaneous units to SI units. It was first published

  11. Cooled Ion Frequency Standard.

    DTIC Science & Technology

    2014-09-26

    report on our measurement of the Hg gj factor. This was an important step in the project because of the necessity of "mixing" the Zeeman 201Hg th 201...reported in Phys. Rev. Lett. in April, concentrates on detailed measurements made of systematic effects in this system. Two key features are: (1) an...stored ion frequency standard systematic effects since laser cooling is easier to achieve than in Hg . 2. "Strongly coupled" liquid and solid plasmas

  12. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  13. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  14. Improved negative ion source

    DOEpatents

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  15. Negative ion source

    DOEpatents

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  16. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  17. In-line ion detector

    SciTech Connect

    Becker, R.; Kester, O.

    2008-02-15

    An in-line particle detector (IPD) uses secondary electrons for the detection of multiply charged ions with low to medium energy (10-10 keV). The ion detector does not physically intercept the ion beam line and is fully transparent to ions without applied voltages. The activation of the detector is performed by applying appropriate voltages to electrodes, which avoids any physical movement. Equipped with a channel electron multiplier, single particle counting is possible as well as measurement of currents. This detector therefore has a large dynamical range from about 10{sup -17} to 10{sup -3} A. The basic principle also allows for ion beam diagnostics.

  18. In-line ion detectora)

    NASA Astrophysics Data System (ADS)

    Becker, R.; Kester, O.

    2008-02-01

    An in-line particle detector (IPD) uses secondary electrons for the detection of multiply charged ions with low to medium energy (10-10keV). The ion detector does not physically intercept the ion beam line and is fully transparent to ions without applied voltages. The activation of the detector is performed by applying appropriate voltages to electrodes, which avoids any physical movement. Equipped with a channel electron multiplier, single particle counting is possible as well as measurement of currents. This detector therefore has a large dynamical range from about 10-17to10-3A. The basic principle also allows for ion beam diagnostics.

  19. Ion aggregation in high salt solutions: ion network versus ion cluster.

    PubMed

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O-D stretch mode of HDO in highly concentrated salt solutions and (13)C-NMR chemical shift of S(13)CN(-) in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  20. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    PubMed Central

    2015-01-01

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) “rung” electrodes, bordered by DC “guard” electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be “soft” in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations. PMID:25152178