DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, T.M.; Wagner, A.; Berger, A.S.
1975-06-01
An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10/sup -6/ torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450/sup 0/K. Specimens can also be irradiated in-situ with any low-energymore » (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s/sup -1/. In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy. (auth)« less
Vacancy Transport and Interactions on Metal Surfaces
2014-03-06
prevent obtaining systematical pictures with atomic scale resolution. Thus the experiments on adatom and mono -vacancy surface diffusion on Ag(110) were...vacuum conditions with atomic scale resolution with Scanning Tunneling Microscope (STM) and Field Ion Microscope (FIM). For each investigated material...experimental conditions for creation of surface vacancies on Au(100) has been determined and observations of surface diffusion of mono vacancies has been
Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I
2016-11-01
Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, G.; Washburn, J.
1977-11-01
Work is currently in progress investigating the possibility of imaging large organic and biological molecules in a modification of field desorption microscopy (FDM). A field ion microscope (FIM) is being converted to an FDM by installation of a chevron channel tron electron multiplier array (CEMA), commonly called a chevron channel plate. The chevron CEMA has a gain of over 10{sup 7} and can thus produce enough light from single field desorbed ions to be readily photographed. In field desorption microscopy, a fine metal tip is subjected to positive electric fields high enough to field evaporate the metal as positive ions.more » These ions follow the field lines radially away from the tip and strike the CEMA. One therefore gets a greatly magnified image of the tip by field evaporated ions. The magnification, M equals R/{beta}r where R is the tip to screen distance, typically 5-10 cm, r is the tip radius, typically 100-1000 {angstrom} and {beta} is an electrostatic compression factor due to the field lines being Slightly compressed at the tip. Magnifications of over 10{sup 6} are easily obtained and at low temperatures, metal atoms field evaporating from adjacent lattice positions on the tip will strike the CEMA within separate areas. Therefore the resolution is less than 3 {angstrom}. A large amount of work has been done attempting to image molecules on tips by FIM and field emission microscopy (FEM). In FEM, the resolution is normally limited to about 25{angstrom} due to the large transverse momentum of the emitted electrons. The images of molecules obtained have therefore been of low resolution and hard to interpret due to effects which are still controversial in interpretation. By reversing the field and adding an imaging gas one would hope to be able to get high resolution FIM images of adsorbed molecules. It turns out however that the molecules are pulled off the tips in fields of approximately +100 to +200 MV/cm. In FEM which uses fields of -30 to -50 MV/cm this is managable. In FIM, the best resolution is obtained using helium imaging gas which has a best imaging field ({approx}440 MV/cm) well above the desorption field of the molecules. By substituting lower ionization potential imaging gases, the field can be lowered. Thus FIM images of molecules have been obtained with H{sub 2} and Hg which require fields of {approx} 200 MV/cm and 80 MV/cm respectfully. The resolution is not very good however; one only sees diffuse patches of light with no structure. Even if one gets some direct image of a molecule via FIM, the fields are so high that the molecule will be severely distorted and possibly dissociated. The imaging gases which field ionize at low fields all produce low resolution FIM images. In addition, these gases are usually highly chemically reactive at the imaging field. Other attempts have been made to shadow molecules on a tip with vapor deposited metal atoms or encasing molecules in an electroplated deposit on a tip. By field evaporating the deposit until a cavity with an enclosed molecule is uncovered, one might hope to see an outline of the molecule by imaging of the surrounding matrix atoms. Again however, the resolution is not very good because of the uncertainty of the metal atoms to reliably encase the molecule.« less
Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.
Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P
2015-12-01
Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation--a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. Copyright © 2015 Elsevier B.V. All rights reserved.
Design and development of a fast ion mass spectrometer
NASA Technical Reports Server (NTRS)
Burch, J. L.
1983-01-01
Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.
Selective field evaporation in field-ion microscopy for ordered alloys
NASA Astrophysics Data System (ADS)
Ge, Xi-jin; Chen, Nan-xian; Zhang, Wen-qing; Zhu, Feng-wu
1999-04-01
Semiempirical pair potentials, obtained by applying the Chen-inversion technique to a cohesion equation of Rose et al. [Phys. Rev. B 29, 2963 (1984)], are employed to assess the bonding energies of surface atoms of intermetallic compounds. This provides a new calculational model of selective field evaporation in field-ion microscopy (FIM). Based on this model, a successful interpretation of FIM image contrasts for Fe3Al, PtCo, Pt3Co, Ni4Mo, Ni3Al, and Ni3Fe is given.
NASA Technical Reports Server (NTRS)
Karimi, Majid
1993-01-01
Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.
Russell, P W; Orndorff, P E
1992-01-01
We describe the characterization of two genes, fimF and fimG (also called pilD), that encode two minor components of type 1 pili in Escherichia coli. Defined, in-frame deletion mutations were generated in vitro in each of these two genes. A double mutation that had deletions identical to both single lesions was also constructed. Examination of minicell transcription and translation products of parental and mutant plasmids revealed that, as predicted from the nucleotide sequence and previous reports, the fimF gene product was a protein of ca. 16 kDa and that the fimG gene product was a protein of ca. 14 kDa. Each of the constructions was introduced, via homologous recombination, into the E. coli chromosome. All three of the resulting mutants produced type 1 pili and exhibited hemagglutination of guinea pig erythrocytes. The latter property was also exhibited by partially purified pili isolated from each of the mutants. Electron microscopic examination revealed that the fimF mutant had markedly reduced numbers of pili per cell, whereas the fimG mutant had very long pili. The double mutant displayed the characteristics of both single mutants. However, pili in the double mutant were even longer than those seen in the fimG mutant, and the numbers of pili were even fewer than those displayed by the fimF mutant. All three mutants could be complemented in trans with a single-copy-number plasmid bearing the appropriate parental gene or genes to give near-normal parental piliation. On the basis of the phenotypes exhibited by the single and double mutants, we believe that the fimF gene product may aid in initiating pilus assembly and that the fimG product may act as an inhibitor of pilus polymerization. In contrast to previous studies, we found that neither gene product was required for type 1 pilus receptor binding. Images PMID:1355769
Field Ion Microscopy and Atom Probe Tomography of Metamorphic Magnetite Crystals
NASA Technical Reports Server (NTRS)
Kuhlman, K.; Martens, R. L.; Kelly, T. F.; Evans, N. D.; Miller, M. K.
2001-01-01
Magnetite has been analysed using Field Ion Microscopy (FIM) and Atom Probe Tomography (APT), highly attractive techniques for the nanoanalysis of geological materials despite the difficulties inherent in analyzing semiconducting and insulating materials. Additional information is contained in the original extended abstract.
Musa, Hassan-Hussein; Zhang, Wei-Juan; Lv, Jing; Duan, Xiao-Li; Yang, Yang; Zhu, Chun-Hong; Li, Hui-Fang; Chen, Kuan-Wei; Meng, Xia; Zhu, Guo-Qiang
2014-02-01
The fimbriae of Salmonella enterica serovar Enteritidis are used for colonization and invasion into host cells, and have drawn considerable interest because fimbriae can serve as potential immunogens against many pathogenic bacteria that colonize on epithelial surfaces. The purpose of the study is to use a molecular adjuvant, C3d, to enhance the immunogenicity of FimA proteins against Salmonella enterica serovar Enteritidis. FimA of type I fimbriae from Salmonella enteritidis and FimA with one copy of mC3d, two copies of mC3d2 and three copies of mC3d3 were cloned into the expression vector pCold-TF. Soluble fusion proteins of FimA with different copy of mC3d were induced by IPTG and expressed into Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant proteins from pCold-TF-fimA, TF-fimA-mC3d, TF-fimA-mC3d2, TF-fimA-mC3d3 were 70 kDa, 100 kDa, 130 kDa and 160 kDa, respectively. The fusion protein was recognized by rabbit anti-fimbriae polyclonal antibodies, and then visualized by goat anti-rabbit polyclonal antibodies with a chrome appearance by enzyme-subtract interaction. The recombinant proteins were purified by Ni-TED (tris-carboxymethyl ethylene diamine), immobilized metal ion affinity chromatography (IMAC). Balb/c mice were subcutaneously immunized with the purified proteins and the immune response was monitored by an enzyme-linked immunosorbent assay (ELISA) for FimA-specific antibody. The immunized mice were challenged with a 10-fold LD50 dose (i.e., 100 CFU) of Salmonella enterica serovar Enteritidis standard strain (SD-2) 1 week after the second immunization. The immunized mice with the fusion proteins FimA-mC3d2 and FimA-mC3d3 had increased levels of ELISA titer of antibody that were 2 and 4 logs, respectively, more immunogenic than the TF-FimA protein alone. The challenge results showed that immune protection rate in the mice immunized with 10 μg of FimA, FimA-mC3d2, and FimA-mC3d3 were 50%, 75% and 100%, respectively. We conclude that mC3d can be expressed in a prokaryotic vector and enhance the immune response of the recombinant protein. FimA-mC3d3 is potentially a subunit vaccine against S. enterica serovar Enteritidis infection. Copyright © 2012. Published by Elsevier B.V.
Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli (Lucy)
2013-01-01
High performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultra-performance liquid chromatography with a quadrupole-time of flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min, and could potentially be developed for high-throughput applications; whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755
Samimi, Goli; Trabert, Britton; Duggan, Máire A; Robinson, Jennifer L; Coa, Kisha I; Waibel, Elizabeth; Garcia, Edna; Minasian, Lori M; Sherman, Mark E
2018-03-01
Many high-grade serous carcinomas initiate in fallopian tubes as serous tubal intraepithelial carcinoma (STIC), a microscopic lesion identified with specimen processing according to the Sectioning and Extensive Examination of the Fimbria protocol (SEE-Fim). Given that the tubal origin of these cancers was recently recognized, we conducted a survey of pathology practices to assess processing protocols that are applied to gynecologic surgical pathology specimens in clinical contexts in which finding STIC might have different implications. We distributed a survey electronically to the American Society for Clinical Pathology list-serve to determine practice patterns and compared results between practice types by chi-square (χ2) tests for categorical variables. Free text comments were qualitatively reviewed. Survey responses were received from 159 laboratories (72 academic, 87 non-academic), which reported diverse specimen volumes and percentage of gynecologic samples. Overall, 74.1% of laboratories reported performing SEE-Fim for risk-reducing surgical specimens (82.5% academic versus 65.7% non-academic, p < 0.05). In specimens from surgery for benign indications in which initial microscopic sections showed an unanticipated suspicious finding, 75.9% of laboratories reported using SEE-Fim to process the remainder of the specimen (94.8% academic versus 76.4% non-academic, p < 0.01), and 84.6% submitted the entire fimbriae. Changes in the theories of pathogenesis of high-grade serous carcinoma have led to implementation of pathology specimen processing protocols that include detailed analysis of the fallopian tubes. These results have implications for interpreting trends in cancer incidence data and considering the feasibility of developing a bank of gynecologic tissues containing STIC or early cancer precursors. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...
Information Processing Approaches to Cognitive Development
1988-07-01
Craik . F.I.M., & Lockhart , R.S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11...task at both levels of performance, then one would, in both cases, postulate systems that had the ability to process symbols at the microscopic level ...821760s and early 70s. (cf. Atkinson & Shiffrin. 1968: Craik & Lockhart . 1972: Norman, Rumelhart, & LNR, 1975). This architecture is comprised of several
Atom probe field ion microscopy and related topics: A bibliography 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, R.D.; Miller, M.K.; Russell, K.F.
1994-10-01
This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.
Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.
Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A
2013-12-30
Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.
Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale
Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.
2015-01-01
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411
Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...
Nechaeva, O V; Tikhomirova, E I; Zayarsky, D A; Bespalova, N V; Glinskaya, E V; Shurshalova, N F; Al Bayati, B M; Babailova, A I
2017-04-01
The dynamics of microbial biofilm formation by standard strain and by clinical strains of uropathogenic coliform bacteria was investigated in vitro and the effect of sublethal concentrations of the polymer compound polyazolidinammonium modified with iodine hydrate ions on the initial stages of biofilm formation was assessed. Treatment of immunological plate wells with the polymeric compound prevented film formation, especially in case of clinical E. coli strain carrying FimH virulence gene.
Zeiner, Sarah A.; Dwyer, Brett E.
2013-01-01
The production of type 1 fimbriae in Salmonella enterica serovar Typhimurium is controlled, in part, by three proteins, FimZ, FimY, and FimW. Amino acid sequence analysis indicates that FimZ belongs to the family of bacterial response regulators of two-component systems. In these studies, we have demonstrated that introducing a mutation mimicking phosphorylation of FimZ is necessary for activation of its target gene, fimA. In addition, the interaction of FimZ with FimW, a repressor of fimA expression, occurs only when FimZ is phosphorylated. Consequently, the negative regulatory effect of FimW is most likely due to downmodulation of the active FimZ protein. FimY does not appear to function as a response regulator, and its activity can be lost by mimicking the phosphorylation of FimY. Overproduction of FimY cannot alleviate the nonfimbriate phenotype in a FimZ mutant, whereas high levels of FimZ can overcome the nonfimbriate phenotype of a FimY mutant. It appears that FimY acts upstream of FimZ to activate fimA expression. PMID:24042120
Histidine Kinase-Mediated Production and Autoassembly of Porphyromonas gingivalis Fimbriae▿ †
Nishikawa, Kiyoshi; Duncan, Margaret J.
2010-01-01
Porphyromonas gingivalis, a Gram-negative oral anaerobe, is strongly associated with chronic adult periodontitis, and it utilizes FimA fimbriae to persistently colonize and evade host defenses in the periodontal crevice. The FimA-related gene cluster (the fim gene cluster) is positively regulated by the FimS-FimR two-component system. In this study, comparative analyses between fimbriate type strain ATCC 33277 and fimbria-deficient strain W83 revealed differences in their fimS loci, which encode FimS histidine kinase. Using a reciprocal gene exchange system, we established that FimS from W83 is malfunctional. Complementation analysis with chimeric fimS constructs revealed that W83 FimS has a defective kinase domain due to a truncated conserved G3 box motif that provides an ATP-binding pocket. The introduction of the functional fimS from 33277 restored the production, but not polymerization, of endogenous FimA subunits in W83. Further analyses with a fimA-exchanged W83 isogenic strain showed that even the fimbria-deficient W83 retains the ability to polymerize FimA from 33277, indicating the assembly of mature FimA by a primary structure-dependent mechanism. It also was shown that the substantial expression of 33277-type FimA fimbriae in the W83 derivative requires the introduction and expression of the functional 33277 fimS. These findings indicate that FimSR is the unique and universal regulatory system that activates the fim gene cluster in a fimA genotype-independent manner. PMID:20118268
NASA Technical Reports Server (NTRS)
Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.
1987-01-01
Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.
Zhang, Huibin; Susanto, Teodorus T.; Wan, Yue
2016-01-01
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems. PMID:27035967
Zhang, Huibin; Susanto, Teodorus T; Wan, Yue; Chen, Swaine L
2016-04-12
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Dual Function of a Tip Fimbrillin of Actinomyces in Fimbrial Assembly and Receptor Binding▿
Wu, Chenggang; Mishra, Arunima; Yang, Jinghua; Cisar, John O.; Das, Asis; Ton-That, Hung
2011-01-01
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly. PMID:21531799
Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli
Greene, Sarah E.; Hibbing, Michael E.; Janetka, James; Chen, Swaine L.
2015-01-01
ABSTRACT Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing the fimS promoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces the fimS phase OFF orientation, preventing fim expression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias in fimS orientation toward the phase OFF state. The dual effect of urine on fimS regulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such that fim expression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce the fimS phase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function. PMID:26126855
NASA Astrophysics Data System (ADS)
Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert
2006-09-01
The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.
The Product of the fimI Gene Is Necessary for Escherichia coli Type 1 Pilus Biosynthesis
Valenski, Mary L.; Harris, Sandra L.; Spears, Patricia A.; Horton, John R.; Orndorff, Paul E.
2003-01-01
Site-directed mutagenesis was employed to create lesions in fimI, a gene of uncertain function located in the chromosomal gene cluster (fim) involved in Escherichia coli type 1 pilus biosynthesis. Chromosomal fimI mutations produced a piliation-negative phenotype. Complementation analysis indicated that a fimI′-kan insertion mutation and a fimI frameshift mutation produced polarity-like effects not seen with an in-frame fimI deletion mutation. Minicell analysis associated fimI with a 16.4-kDa noncytoplasmic protein product (FimI). We conclude that FimI has a required role in normal pilus biosynthesis. PMID:12897022
Bordetella pertussis isolates in Finland: Serotype and fimbrial expression
Heikkinen, Eriikka; Xing, Dorothy K; Ölander, Rose-Marie; Hytönen, Jukka; Viljanen, Matti K; Mertsola, Jussi; He, Qiushui
2008-01-01
Background Bordetella pertussis causes whooping cough or pertussis in humans. It produces several virulence factors, of which the fimbriae are considered adhesins and elicit immune responses in the host. B. pertussis has three distinct serotypes Fim2, Fim3 or Fim2,3. Generally, B. pertussis Fim2 strains predominate in unvaccinated populations, whereas Fim3 strains are often isolated in vaccinated populations. In Finland, pertussis vaccination was introduced in 1952. The whole-cell vaccine contained two strains, 18530 (Fim3) since 1962 and strain 1772 (Fim2,3) added in 1976. After that the vaccine has remained the same until 2005 when the whole-cell vaccine was replaced by the acellular vaccine containing pertussis toxin and filamentous hemagglutinin. Our aims were to study serotypes of Finnish B. pertussis isolates from 1974 to 2006 in a population with > 90% vaccination coverage and fimbrial expression of the isolates during infection. Serotyping was done by agglutination and serotype-specific antibody responses were determined by blocking ELISA. Results Altogether, 1,109 isolates were serotyped. Before 1976, serotype distributions of Fim2, Fim3 and Fim2,3 were 67%, 19% and 10%, respectively. From 1976 to 1998, 94% of the isolates were Fim2 serotype. Since 1999, the frequency of Fim3 strains started to increase and reached 83% during a nationwide epidemic in 2003. A significant increase in level of serum IgG antibodies against purified fimbriae was observed between paired sera of 37 patients. The patients infected by Fim3 strains had antibodies which blocked the binding of monoclonal antibodies to Fim3 but not to Fim2. Moreover, about one third of the Fim2 strain infected patients developed antibodies capable of blocking of binding of both anti-Fim2 and Fim3 monoclonal antibodies. Conclusion Despite extensive vaccinations in Finland, B. pertussis Fim2 strains were the most common serotype. Emergence of Fim3 strains started in 1999 and coincided with nationwide epidemics. Results of serotype-specific antibody responses suggest that Fim2 strains could express Fim3 during infection, showing a difference in fimbrial expression between in vivo and in vitro. PMID:18816412
Clinical utility of the AlphaFIM® instrument in stroke rehabilitation.
Lo, Alexander; Tahair, Nicola; Sharp, Shelley; Bayley, Mark T
2012-02-01
The AlphaFIM instrument is an assessment tool designed to facilitate discharge planning of stroke patients from acute care, by extrapolating overall functional status from performance in six key Functional Independence Measure (FIM) instrument items. To determine whether acute care AlphaFIM rating is correlated to stroke rehabilitation outcomes. In this prospective observational study, data were analyzed from 891 patients referred for inpatient stroke rehabilitation through an Internet-based referral system. Simple linear and stepwise regression models determined correlations between rehabilitation-ready AlphaFIM rating and rehabilitation outcomes (admission and discharge FIM ratings, FIM gain, FIM efficiency, and length of stay). Covariates including demographic data, stroke characteristics, medical history, cognitive deficits, and activity tolerance were included in the stepwise regressions. The AlphaFIM instrument was significant in predicting admission and discharge FIM ratings at rehabilitation (adjusted R² 0.40 and 0.28, respectively; P < 0.0001) and was weakly correlated with FIM gain and length of stay (adjusted R² 0.04 and 0.09, respectively; P < 0.0001), but not FIM efficiency. AlphaFIM rating was inversely related to FIM gain. Age, bowel incontinence, left hemiparesis, and previous infarcts were negative predictors of discharge FIM rating on stepwise regression. Intact executive function and physical activity tolerance of 30 to 60 mins were predictors of FIM gain. The AlphaFIM instrument is a valuable tool for triaging stroke patients from acute care to rehabilitation and predicts functional status at discharge from rehabilitation. Patients with low AlphaFIM ratings have the potential to make significant functional gains and should not be denied admission to inpatient rehabilitation programs.
Zhao, Jieliang; Wu, Jianing; Yan, Shaoze
2015-01-01
Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated. PMID:26223946
Schwartz, Drew J; Kalas, Vasilios; Pinkner, Jerome S; Chen, Swaine L; Spaulding, Caitlin N; Dodson, Karen W; Hultgren, Scott J
2013-09-24
Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.
Ion photon emission microscope
Doyle, Barney L.
2003-04-22
An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.
NASA Astrophysics Data System (ADS)
Ivchenko, V. A.
2017-01-01
In this paper are the results of direction observations of nanopores in the subsurface volume of metals materials Pt and Pd(CuAg) using field-ion microscopy (FIM). Radiation of tip specimens was carried out with ions having an energy ˜ 25-30 keV in the fluency range of 1016 - 1018 ions/cm2, the current density lying within 150- 340 µA/cm2. Nanopores have been observed immediately after removal of the first atomic layers from the irradiated surface. It was established that, the threshold for ion-implanted platinum corresponds to fluence F = 1017 ions/cm2. For Pd(CuAg) it was revealed that nanopores have been down to 80 nm deep with current density 340 µA/cm2. Their dimensions and volume fractions were determined. The obtained results can be used for prediction of radiation stability of materials based on fcc metals.
Chen, Yi-Wen; Teng, Ching-Hao; Ho, Yu-Hsuan; Jessica Ho, Tien Yu; Huang, Wen-Chun; Hashimoto, Masayuki; Chiang, I-Yuan; Chen, Chien-Sheng
2014-01-01
Type 1 fimbriae are filamentous structures on Escherichia coli. These structures are important adherence factors. Because binding to the host cells is the first step of infection, type 1 fimbria is an important virulence factor of pathogenic E. coli. Expression of type 1 fimbria is regulated by a phase variation in which each individual bacterium can alternate between fimbriated (phase-ON) and nonfimbriated (phase-OFF) states. The phase variation is regulated by the flipping of the 314-bp fimS fragment, which contains the promoter driving the expression of the genes required for the synthesis of type 1 fimbria. Thus, the bacterial proteins able to interact with fimS are likely to be involved in regulating the expression of type 1 fimbria. To identify novel type 1 fimbria-regulating factors, we used an E. coli K12 proteome chip to screen for the bacterial factors able to interact with a 602-bp DNA fragment containing fimS and its adjacent regions. The Spr protein was identified by the proteome chip-based screening and further confirmed to be able to interact with fimS by electrophoretic mobility shift assay. Deletion of spr in the neonatal meningitis E. coli strain RS218 significantly increased the ratio of the bacterial colonies that contained the type 1 fimbria phase-ON cells on agar plates. In addition, Spr interfered with the interactions of fimS with the site-specific recombinases, FimB and FimE, which are responsible for mediating the flipping of fimS. These results suggest that Spr is involved in the regulation of type 1 fimbria expression through direct interaction with the invertible element fimS. These findings facilitate our understanding of the regulation of type 1 fimbria. PMID:24692643
The history and development of the helium ion microscope.
Economou, Nicholas P; Notte, John A; Thompson, William B
2012-01-01
The helium ion microscope has recently emerged as a commercially available instrument. However, its roots go back more than 60 years to the development of the field ion microscope in Berlin, first reported in 1951. Over the intervening years, numerous researchers have pursued the development of a gas field ionization source with the goal of producing a suitable source for an ion microscope. This proved to be an elusive goal until early in this century when a number of discoveries led to a successful source, and shortly thereafter, an instrument fully able to exploit its advantages. Many individuals and many technical advances have come together to make this new class of microscope. The long history of this quest is reviewed along with the recent advances that led to the achievement of this milestone. A brief summary of the current status of the technology and its applications are given. © Wiley Periodicals, Inc.
Site-Directed Disruption of the fimA and fimF Fimbrial Genes of Xylella fastidiosa.
Feil, Helene; Feil, William S; Detter, John C; Purcel, Alexander H; Lindow, Steven E
2003-06-01
ABSTRACT Xylella fastidiosa causes Pierce's disease, a serious disease of grape, citrus variegated chlorosis, almond and oleander leaf scorches, and many other similar diseases. Although the complete genome sequences of several strains of this organism are now available, the function of most genes in this organism, especially those conferring virulence, is lacking. Attachment of X. fastidiosa to xylem vessels and insect vectors may be required for virulence and transmission; therefore, we disrupted fimA and fimF, genes encoding the major fimbrial protein FimA and a homolog of the fimbrial adhesin MrkD, to determine their role in the attachment process. Disruption of the fimA and fimF genes in Temecula1 and STL grape strains of X. fastidiosa was obtained by homologous recombination using plasmids pFAK and pFFK, respectively. These vectors contained a kanamycin resistance gene cloned into either the fimA or fimF genes of X. fastidiosa grape strains Temecula1 or STL. Efficiency of transformation was sufficiently high ( approximately 600 transformants per mug of pFFK DNA) to enable selection of rare recombination events. Polymerase chain reaction and Southern blot analyses of the mutants indicated that a double crossover event had occurred exclusively within the fimA and fimF genes, replacing the chromosomal gene with the disrupted gene and abolishing production of the corresponding proteins, FimA or FimF. Scanning electron microscopy revealed that fimbriae size and number, cell aggregation, and cell size were reduced for the FimA or FimF mutants of X. fastidiosa when compared with the parental strain. FimA or FimF mutants of X. fastidiosa remained pathogenic to grapevines, with bacterial populations slightly reduced compared with those of the wild-type X. fastidiosa cells. These mutants maintained their resistance to kanamycin in planta for at least 6 months in the greenhouse.
Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru
2017-09-01
Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.
Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A
2013-01-01
In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.
Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles.
Roer, Louise; Tchesnokova, Veronika; Allesøe, Rosa; Muradova, Mariya; Chattopadhyay, Sujay; Ahrenfeldt, Johanne; Thomsen, Martin C F; Lund, Ole; Hansen, Frank; Hammerum, Anette M; Sokurenko, Evgeni; Hasman, Henrik
2017-08-01
The aim of this study was to construct a valid publicly available method for in silico fimH subtyping of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multilocus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available at https://bitbucket.org/genomicepidemiology/fimtyper, the database is freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software is available at https://cge.cbs.dtu.dk/services/FimTyper FimTyper was validated on three data sets: one containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study (data set 1), one containing whole-genome sequence (WGS) data of 243 third-generation-cephalosporin-resistant E. coli isolates (data set 2), and one containing a randomly chosen subset of 40 E. coli isolates from data set 2 that were subjected to conventional fimH subtyping (data set 3). The combination of the three data sets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 42 fimH subtypes from the Sanger sequences from data set 1 and successfully analyzed all 243 draft genomes from data set 2. FimTyper subtyping of the Sanger sequences and WGS data from data set 3 were in complete agreement. Additionally, fimH subtyping was evaluated on a phylogenetic network of 122 sequence type 131 (ST131) E. coli isolates. There was perfect concordance between the typology and fimH -based subclones within ST131, with accurate identification of the pandemic multidrug-resistant clonal subgroup ST131- H 30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH subtyping, highly suitable for surveillance and outbreak detection. Copyright © 2017 American Society for Microbiology.
DNA translocation measurements in solid-state nanopores fabricated using helium-ion microscope
NASA Astrophysics Data System (ADS)
Liu, Liping; Miao, Wang; Huynh, Chuong; Liu, Quanjun; Ling, Xinsheng
2012-02-01
We report high-quality DNA translocation measurements in solid-state nanopores drilled in free-standing SiN membranes by using a helium-ion beam in a Zeiss helium-ion microscope (HIM). We show that the HIM nanopores have similar performance as the TEM-drilled pores.
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
2012-01-01
Background Several strain-specific Klebsiella pneumoniae virulence determinants have been described, though these have almost exclusively been linked with hypervirulent liver abscess-associated strains. Through PCR interrogation of integration hotspots, chromosome walking, island-tagging and fosmid-based marker rescue we captured and sequenced KpGI-5, a novel genomic island integrated into the met56 tRNA gene of K. pneumoniae KR116, a bloodstream isolate from a patient with pneumonia and neutropenic sepsis. Results The 14.0 kb KpGI-5 island exhibited a genome-anomalous G + C content, possessed near-perfect 46 bp direct repeats, encoded a γ1-chaperone/usher fimbrial cluster (fim2) and harboured seven other predicted genes of unknown function. Transcriptional analysis demonstrated expression of three fim2 genes, and suggested that the fim2A-fim2K cluster comprised an operon. As fimbrial systems are frequently implicated in pathogenesis, we examined the role of fim2 by analysing KR2107, a streptomycin-resistant derivative of KR116, and three isogenic mutants (Δfim, Δfim2 and ΔfimΔfim2) using biofilm assays, human cell adhesion assays and pair-wise competition-based murine models of intestinal colonization, lung infection and ascending urinary tract infection. Although no statistically significant role for fim2 was demonstrable, liver and kidney CFU counts for lung and urinary tract infection models, respectively, hinted at an ordered gradation of virulence: KR2107 (most virulent), KR2107∆fim2, KR2107∆fim and KR2107∆fim∆fim2 (least virulent). Thus, despite lack of statistical evidence there was a suggestion that fim and fim2 contribute additively to virulence in these murine infection models. However, further studies would be necessary to substantiate this hypothesis. Conclusion Although fim2 was present in 13% of Klebsiella spp. strains investigated, no obvious in vitro or in vivo role for the locus was identified, although there were subtle hints of involvement in urovirulence and bacterial dissemination from the respiratory tract. Based on our findings and on parallels with other fimbrial systems, we propose that fim2 has the potential to contribute beneficially to pathogenesis and/or environmental persistence of Klebsiella strains, at least under specific yet-to-be identified conditions. PMID:22520965
Kelly, Arlene; Conway, Colin; Ó Cróinín, Tadhg; Smith, Stephen G. J.; Dorman, Charles J.
2006-01-01
Site-specific recombinases of the integrase family usually require cofactors to impart directionality in the recombination reactions that they catalyze. The FimB integrase inverts the Escherichia coli fim switch (fimS) in the on-to-off and off-to-on directions with approximately equal efficiency. Inhibiting DNA gyrase with novobiocin caused inversion to become biased in the off-to-on direction. This directionality was not due to differential DNA topological distortion of fimS in the on and off phases by the activity of its resident PfimA promoter. Instead, the leucine-responsive regulatory (Lrp) protein was found to determine switching outcomes. Knocking out the lrp gene or abolishing Lrp binding sites 1 and 2 within fimS completely reversed the response of the switch to DNA relaxation. Inactivation of either Lrp site alone resulted in mild on-to-off bias, showing that they act together to influence the response of the switch to changes in DNA supercoiling. Thus, Lrp is not merely an architectural element organizing the fim invertasome, it collaborates with DNA supercoiling to determine the directionality of the DNA inversion event. PMID:16855224
Trunk control test as an early predictor of stroke rehabilitation outcome.
Franchignoni, F P; Tesio, L; Ricupero, C; Martino, M T
1997-07-01
The aim of this study was to investigate the construct and predictive validity of the Trunk Control Test (TCT) in postacute stroke patients by comparing TCT scores at admission and discharge with the Functional Independence Measure (FIM) scores. Forty-nine patients participated in the study. The TCT examines four movements: rolling from a supine position to the weak side (T1) and to the strong side (T2), sitting up from a lying-down position (T3), and sitting balance (T4). The FIM is an 18-item scale (13 motor [motFIM] and 5 cognitive [cognFIM]) used to determine the level of dependence of patients in daily life. Thirty-six patients (73%) increased their TCT overall score at discharge. The TCT item-total correlations were high, both at admission and discharge (P < .0001). The individual TCT items were intercorrelated. Furthermore, the homogeneity of the TCT was confirmed by a high Cronbach's index. High correlations were found between admission and discharge scores in the different tests (TCT, FIM, and motFIM; P < .0001) and between TCT at admission and FIM (P < .0001) and motFIM (P < .0001) at admission. TCT at admission alone explained 71% of the variance in motFIM at discharge. The TCT showed a good sensitivity to change in assessing recovery of stroke patients. The high item-total correlation and Cronbach's alpha value of the TCT suggest that there is one homogeneous construct underlying the item list. The TCT construct validity was confirmed by the correlation between this test and the FIM scores. TCT at admission predicted motFIM at discharge even better than motFIM at admission alone. Possibly, the TCT captures basic motor skills that foreshadow the recovery of more complex behavioral skills described by the FIM.
Drobni, Mirva; Hallberg, Kristina; Öhman, Ulla; Birve, Anna; Persson, Karina; Johansson, Ingegerd; Strömberg, Nicklas
2006-01-01
Background Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers) with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking. Results Here we have sequenced fimA genes from strains of A.naeslundii genospecies 1 (n = 4) and genospecies 2 (n = 4), both of which harboured variant Galβ-dependent hemagglutination (HA) types, and from A.odontolyticus PK984 with a sialic acid-dependent HA pattern. Three unique subtypes of FimA proteins with 63.8–66.4% sequence identity were present in strains of A. naeslundii genospecies 1 and 2 and A. odontolyticus. The generally high FimA sequence identity (>97.2%) within a genospecies revealed species specific sequences or segments that coincided with binding specificity. All three FimA protein variants contained a signal peptide, pilin motif, E box, proline-rich segment and an LPXTG sorting motif among other conserved segments for secretion, assembly and sorting of fimbrial proteins. The highly conserved pilin, E box and LPXTG motifs are present in fimbriae proteins from other Gram-positive bacteria. Moreover, only strains of genospecies 1 were agglutinated with type-2 fimbriae antisera derived from A. naeslundii genospecies 1 strain 12104, emphasizing that the overall folding of FimA may generate different functionalities. Western blot analyses with FimA antisera revealed monomers and oligomers of FimA in whole cell protein extracts and a purified recombinant FimA preparation, indicating a sortase-independent oligomerization of FimA. Conclusion The genus Actinomyces involves a diversity of unique FimA proteins with conserved pilin, E box and LPXTG motifs, depending on subspecies and associated binding specificity. In addition, a sortase independent oligomerization of FimA subunit proteins in solution was indicated. PMID:16686953
Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R
2011-07-15
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.
Concurrent in situ ion irradiation transmission electron microscope
Hattar, K.; Bufford, D. C.; Buller, D. L.
2014-08-29
An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.
Focal depth measurement of scanning helium ion microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei
2014-07-14
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less
Focal depth measurement of scanning helium ion microscope
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke
2014-07-01
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.
Wang, Jian; Pikridas, Michael; Pinterich, Tamara; ...
2017-06-08
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Pinterich, Tamara
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
The utility of the FIM+FAM for assessing traumatic brain injury day program outcomes.
Seel, Ronald T; Wright, Greg; Wallace, Tracey; Newman, Sary; Dennis, Leanne
2007-01-01
To evaluate the effectiveness of the FIM+FAM as a primary outcome measure for traumatic brain injury (TBI) comprehensive day programs. Retrospective data analysis. Single center, TBI comprehensive day program facility. A demographically and regionally diverse sample of 105 persons with moderate or severe TBI admitted to the Shepherd Pathways comprehensive TBI day rehabilitation program. Functional Independence Measure + Functional Assessment Measure (FIM+FAM). Twenty-eight percent or fewer of participants reached ceiling effects on 25 of the 30 FIM+FAM items at day program admission with only 2% of clients rated above ceiling score levels on the FIM+FAM total score. The criteria of Guyatt et al showed that 20 of the 30 FIM+FAM items showed clinically meaningful improvements in 60% or more of clients. On average, clients with TBI improved over 27 points on the FIM+FAM total score. Fifteen of 30 items showed ceiling effects of 33% or less at discharge where only 25% of clients exceeded the FIM+FAM total score ceiling threshold. Discharge FIM+FAM motor scale was a very good predictor of the need for additional single service physical therapy. However, reaching ceiling rating on the FIM+FAM cognitive scale demonstrated poor specificity (0.28) and negative predictive power (0.42) for the need for additional speech/cognitive therapy services. The FIM+FAM demonstrated utility as an outcome measure for TBI comprehensive day program treatment in the current milieu. Future research is required to replicate and extend the current findings.
The Conformational Variability of FimH: Which Conformation Represents the Therapeutic Target?
Eris, Deniz; Preston, Roland C; Scharenberg, Meike; Hulliger, Fabian; Abgottspon, Daniela; Pang, Lijuan; Jiang, Xiaohua; Schwardt, Oliver; Ernst, Beat
2016-06-02
FimH is a bacterial lectin found at the tips of type 1 pili of uropathogenic Escherichia coli (UPEC). It mediates shear-enhanced adhesion to mannosylated surfaces. Binding of UPEC to urothelial cells initiates the infection cycle leading to urinary tract infections (UTIs). Antiadhesive glycomimetics based on α-d-mannopyranose offer an attractive alternative to the conventional antibiotic treatment because they do not induce a selection pressure and are therefore expected to have a reduced resistance potential. Genetic variation of the fimH gene in clinically isolated UPEC has been associated with distinct mannose binding phenotypes. For this reason, we investigated the mannose binding characteristics of four FimH variants with mannose-based ligands under static and hydrodynamic conditions. The selected FimH variants showed individually different binding behavior under both sets of conditions as a result of the conformational variability of FimH. Clinically relevant FimH variants typically exist in a dynamic conformational equilibrium. Additionally, we evaluated inhibitory potencies of four FimH antagonists representing different structural classes. Inhibitory potencies of three of the tested antagonists were dependent on the binding phenotype and hence on the conformational equilibrium of the FimH variant. However, the squarate derivative was the notable exception and inhibited FimH variants irrespective of their binding phenotype. Information on antagonist affinities towards various FimH variants has remained largely unconsidered despite being essential for successful antiadhesion therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding Imaging and Metrology with the Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András E.; Ming, Bin
2009-09-01
One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.
Functional Divergence of FimX in PilZ Binding and Type IV Pilus Regulation
Qi, Yaning; Xu, Linghui; Dong, Xueming; Yau, Yin Hoe; Ho, Chun Loong; Koh, Siew Lee; Shochat, Susana Geifman; Chou, Shan-Ho; Tang, Kai
2012-01-01
Type IV pili (T4P) are polar surface structures that play important roles in bacterial motility, biofilm formation, and pathogenicity. The protein FimX and its orthologs are known to mediate T4P formation in the human pathogen Pseudomonas aeruginosa and some other bacterial species. It was reported recently that FimXXAC2398 from Xanthomonas axonopodis pv. citri interacts with PilZXAC1133 directly through the nonenzymatic EAL domain of FimXXAC2398. Here we present experimental data to reveal that the strong interaction between FimXXAC2398 and PilZXAC1133 is not conserved in P. aeruginosa and likely other Pseudomonas species. In vitro and in vivo binding experiments showed that the interaction between FimX and PilZ in P. aeruginosa is below the measurable limit. Surface plasmon resonance assays further confirmed that the interaction between the P. aeruginosa proteins is at least more than 3 orders of magnitude weaker than that between the X. axonopodis pv. citri pair. The N-terminal lobe region of FimXXAC2398 was identified as the binding surface for PilZXAC1133 by amide hydrogen-deuterium exchange and site-directed mutagenesis studies. Lack of several key residues in the N-terminal lobe region of the EAL domain of FimX is likely to account for the greatly reduced binding affinity between FimX and PilZ in P. aeruginosa. All together, the results suggest that the interaction between PilZ and FimX in Xanthomonas species is not conserved in P. aeruginosa due to the evolutionary divergence among the FimX orthologs. The precise roles of FimX and PilZ in bacterial motility and T4P biogenesis are likely to vary among bacterial species. PMID:22942245
Nanofabrication with a helium ion microscope
NASA Astrophysics Data System (ADS)
Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul
2010-03-01
The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.
Porphyromonas gingivalis Fim-A genotype distribution among Colombians
Jaramillo, Adriana; Parra, Beatriz; Botero, Javier Enrique; Contreras, Adolfo
2015-01-01
Introduction: Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. Objetive: To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans, Treponema denticola, and Tannerella forsythia. Methods: Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. Results: P. gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Conclusions: Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia. PMID:26600627
Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae.
Stahlhut, Steen G; Chattopadhyay, Sujay; Struve, Carsten; Weissman, Scott J; Aprikian, Pavel; Libby, Stephen J; Fang, Ferric C; Krogfelt, Karen Angeliki; Sokurenko, Evgeni V
2009-03-01
FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.
Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.
1998-01-01
Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Highly charged ion based time of flight emission microscope
Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney
2001-01-01
A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
The FIM-iHYCOM Model in SubX: Evaluation of Subseasonal Errors and Variability
NASA Astrophysics Data System (ADS)
Green, B.; Sun, S.; Benjamin, S.; Grell, G. A.; Bleck, R.
2017-12-01
NOAA/ESRL/GSD has produced both real-time and retrospective forecasts for the Subseasonal Experiment (SubX) using the FIM-iHYCOM model. FIM-iHYCOM couples the atmospheric Flow-following finite volume Icosahedral Model (FIM) to an icosahedral-grid version of the Hybrid Coordinate Ocean Model (HYCOM). This coupled model is unique in terms of its grid structure: in the horizontal, the icosahedral meshes are perfectly matched for FIM and iHYCOM, eliminating the need for a flux interpolator; in the vertical, both models use adaptive arbitrary Lagrangian-Eulerian hybrid coordinates. For SubX, FIM-iHYCOM initializes four time-lagged ensemble members around each Wednesday, which are integrated forward to provide 32-day forecasts. While it has already been shown that this model has similar predictive skill as NOAA's operational CFSv2 in terms of the RMM index, FIM-iHYCOM is still fairly new and thus its overall performance needs to be thoroughly evaluated. To that end, this study examines model errors as a function of forecast lead week (1-4) - i.e., model drift - for key variables including 2-m temperature, precipitation, and SST. Errors are evaluated against two reanalysis products: CFSR, from which FIM-iHYCOM initial conditions are derived, and the quasi-independent ERA-Interim. The week 4 error magnitudes are similar between FIM-iHYCOM and CFSv2, albeit with different spatial distributions. Also, intraseasonal variability as simulated in these two models will be compared with reanalyses. The impact of hindcast frequency (4 times per week, once per week, or once per day) on the model climatology is also examined to determine the implications for systematic error correction in FIM-iHYCOM.
The utility of the functional independence measure (FIM) in discharge planning for burn patients.
Choo, Benji; Umraw, Nisha; Gomez, Manuel; Cartotto, Robert; Fish, Joel S
2006-02-01
Determining burn patients' need for inpatient rehabilitation at discharge is difficult and an objective clinical indicator might aid in this decision. The functional independence measure (FIM) is a validated outcome measure that predicts the need for rehabilitation services. This study evaluated the utility of the FIM score for discharge planning in burn patients. A retrospective chart review and FIM score determination was performed on all major burn patients discharged from a regional adult burn centre between July 1, 1999 and June 30, 2000. From 164 adult burn patients discharged, 37 met the American Burn Association criteria for major burns. One patient had insufficient data. Therefore, 36 patients were studied (mean age 47.3 +/- 17.4 years, and mean body area burned 27.4 +/- 12.9%). All 17 patients with FIM scores greater than 110 were discharged home, and patients with FIM score of 110 or lower were discharged to another institution (rehabilitation hospital n = 14, other acute care hospital n = 4, or a nursing home n = 1) p < 0.0001. A discharge FIM score of 110 or lower was strongly associated with the need for inpatient rehabilitation, while a FIM score greater than 110 indicates the patient is independent enough to manage at home. Further prospective studies will be necessary to validate these findings.
NASA Astrophysics Data System (ADS)
Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei
2015-03-01
Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC-MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica.
2012-01-01
Background Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP). The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. Results A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E) with alanine (A), of STM0551 or a FimY protein abolished this activity. Conclusions The finding that the stm0551 gene plays a negative regulatory role in the regulation of type 1 fimbriae in S. Typhimurium has not been reported previously. The possibility that degradation of c-di-GMP is a key step in the regulation of type 1 fimbriae warrants further investigation. PMID:22716649
Ng, Yee Sien; Jung, Heeyoune; Tay, San San; Bok, Chek Wai; Chiong, Yi; Lim, Peter A C
2007-01-01
Rehabilitation improves functional outcomes, but there is little data on the profiles and outcomes of patients undergoing inpatient rehabilitation in Singapore. The aims of this paper were to document the clinical characteristics and functional outcomes, using the Functional Independence Measure (FIM), of all patients admitted to an inpatient rehabilitation unit in a tertiary teaching hospital, and to identify and analyse factors significantly associated with better discharge functional scores and higher functional gains. In this prospective cohort study over a 4-year period, clinical and functional data for 1502 patients admitted consecutively to the Singapore General Hospital inpatient rehabilitation unit were charted into a custom-designed rehabilitation database. The primary outcome measures were the discharge total FIM scores, FIM gain and FIM efficiency. Multiple linear regression analysis was used to identify independent variables associated with better discharge FIM scores and FIM gain. The mean age was 61.3 +/- 15.0 years and 57.2% of the patients were male. Stroke (57.9%) followed by spinal cord injury (9.7%) were the most common diagnoses. The average rehabilitation length of stay was 21.5 +/- 19.0 days. The mean admission total FIM score was 70.3 +/- 23.2 and the mean discharge total FIM score was 87.3 +/- 23.0, with this gain being highly significant (P <0.001). The mean FIM gain was 17.0 +/- 13.4 and FIM efficiency was 0.95 +/- 0.90 points/day. Factors associated with better functional outcomes were higher admission motor and cognitive FIM scores, male gender, a longer rehabilitation length of stay and the use of acupuncture. Factors associated with poorer functional outcomes were older age, clinical deconditioning, ischaemic heart disease, depression, pressure sores and the presence of a domestic worker as a caregiver. The FIM is an easy-to-use, standardised and robust general measure of functional disability. Multiple demographic, clinical and socio-cultural variables are associated with the primary functional outcomes and should be taken into account in rehabilitation and discharge planning. Nevertheless, rehabilitation improves functional outcomes across a wide range of diagnoses. Further research should be aimed at evaluating long-term disability postdischarge from inpatient rehabilitation and translating these findings into improving rehabilitation and healthcare resource utilisation.
Mishra, Arunima; Wu, Chenggang; Yang, Jinghua; Cisar, John O.; Das, Asis; Ton-That, Hung
2010-01-01
Interbacterial interactions between oral streptococci and actinomyces and their adherence to tooth surface and the associated host cells are key early events that promote development of the complex oral biofilm referred to as dental plaque. These interactions depend largely on a lectin-like activity associated with the Actinomyces oris type 2 fimbria, a surface structure assembled by sortase (SrtC2)-dependent polymerization of the shaft and tip fimbrillins, FimA and FimB, respectively. To dissect the function of specific fimbrillins in various adherence processes, we have developed a convenient new technology for generating unmarked deletion mutants of A. oris. Here, we show that the fimB mutant, which produced type 2 fimbriae composed only of FimA, like the wild type coaggregated strongly with receptor-bearing streptococci, agglutinated with sialidase-treated RBC, and formed monospecies biofilm. In contrast, the fimA and srtC2 mutants lacked type 2 fimbriae and were non-adherent in each of these assays. Plasmidbased expression of the deleted gene in respective mutants restored adherence to wild-type levels. These findings uncover the importance of the lectin-like activity of the polymeric FimA shaft rather than the tip. The multivalent adhesive function of FimA makes it an ideal molecule for exploring novel intervention strategies to control plaque biofilm formation. PMID:20545853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Spielman, Steven R.
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...
2017-06-01
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Review of microscopic plasma processes of occurring during refilling of the plasmasphere
NASA Technical Reports Server (NTRS)
Singh, N.; Torr, D. G.
1988-01-01
Refilling of the plasmashere after geomagnetic storms involves both macroscopic and microscopic plasma processes. The latter types of processes facilitate the refilling by trapping the plasma in the flux tube and by thermalizing the interhemispheric flow. A review of studies on microscopic processes is presented. The primary focus in this review is on the processes when the density is low and the plasma is collisionless. The discussion includes electrostatic shock formation, pitch angle scatterring extended ion heating and localized ion heating in the equatorial region.
Sokurenko, E V; Courtney, H S; Maslow, J; Siitonen, A; Hasty, D L
1995-01-01
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics. PMID:7601831
NASA Technical Reports Server (NTRS)
Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.
2012-01-01
Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.
Di Monaco, Marco; Schintu, Selene; Dotta, Manuela; Barba, Sonia; Tappero, Rosa; Gindri, Patrizia
2011-08-01
To investigate the relationship between severity of unilateral spatial neglect (USN) and functional recovery in activities of daily living after a right-hemisphere stroke. Observational study. Rehabilitation hospital in Italy. We investigated 107 of 131 inpatients with right-hemisphere stroke who were consecutively admitted to our rehabilitation hospital. Not applicable. To assess USN severity, conventional and nonconventional Behavioral Inattention Tests (BITs) were performed at admission to inpatient rehabilitation at a median of 19 days after stroke occurrence. FIM was performed both on admission to and discharge from inpatient rehabilitation to assess functional autonomy. FIM efficiency (improvement of FIM score per day of stay length) and FIM effectiveness (proportion of potential improvement achieved) were calculated. Fifty-four (50.5%) of the 107 patients were affected by USN. In these 54 patients, both conventional and nonconventional BIT scores were significantly correlated with FIM scores assessed at discharge from rehabilitation: ρ values were .385 (P=.004) and .396 (P=.003), respectively. After adjustment for 7 potential confounders, including FIM scores before rehabilitation, we found a significant positive association between either conventional or nonconventional BIT scores and FIM scores after rehabilitation (r=.276, P=.047 and r=.296, P=.033, respectively), FIM efficiency (r=.315, P=.022 and r=.307, P=.025, respectively), and FIM effectiveness (r=.371, P=.006 and r=.306, P=.026, respectively). Data support the independent prognostic role of USN severity assessed at admission to inpatient rehabilitation after a right-hemisphere stroke. Models aimed at predicting the functional outcome in stroke survivors may benefit from inclusion of USN severity. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2014-01-13
Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.
NASA Technical Reports Server (NTRS)
Lancaster, Jeff; Dillard, Michael; Alves, Erin; Olofinboba, Olu
2014-01-01
The User Guide details the Access Database provided with the Flight Deck Interval Management (FIM) Display Elements, Information, & Annunciations program. The goal of this User Guide is to support ease of use and the ability to quickly retrieve and select items of interest from the Database. The Database includes FIM Concepts identified in a literature review preceding the publication of this document. Only items that are directly related to FIM (e.g., spacing indicators), which change or enable FIM (e.g., menu with control buttons), or which are affected by FIM (e.g., altitude reading) are included in the database. The guide has been expanded from previous versions to cover database structure, content, and search features with voiced explanations.
Metwal, Nirmala; Jyotsna, R; Jeyarani, T; Venkateswara Rao, G
2011-06-01
A functional ingredient mix (FIM) comprising debittered and defatted fenugreek seed powder (70%) and flaxseed powder (30%) was used in cookies. Ash, fat and protein, dough development time, resistance to extension and peak viscosity values increased as the level of FIM increased from 10 to 30% in the blend. Beyond 20% of FIM substitution, the quality characteristics of cookies were adversely affected. Use of soya lecithin produced a significant improvement in the overall quality of the cookies with 20% FIM. Linolenic acid and total dietary fiber content of the cookies with 20% FIM and lecithin contained four times the amount of linolenic acid (2.3%) and double the amount of dietary fiber (13.04%) when compared with the control cookies (0.5% and 6.22%) respectively. Surface scanning electron microscopy of cookies with different levels of FIM from 10 to 30% showed that there was a disruption in the matrix.
Zebracki, Kathy; Kichler, Jessica C.; Fitzgerald, Christopher J.; Neff Greenley, Rachel; Alemzadeh, Ramin; Holmbeck, Grayson N.
2011-01-01
Objective To examine reliability and validity data for the Family Interaction Macro-coding System (FIMS) with adolescents with spina bifida (SB), adolescents with type 1 diabetes mellitus (T1DM), and healthy adolescents and their families. Methods Sixty-eight families of children with SB, 58 families of adolescents with T1DM, and 68 families in a healthy comparison group completed family interaction tasks and self-report questionnaires. Trained coders rated family interactions using the FIMS. Results Acceptable interrater and scale reliabilities were obtained for FIMS items and subscales. Observed FIMS parental acceptance, parental behavioral control, parental psychological control, family cohesion, and family conflict scores demonstrated convergent validity with conceptually similar self-report measures. Conclusions Preliminary evidence supports the use of the FIMS with families of youths with SB and T1DM and healthy youths. Future research on overall family functioning may be enhanced by use of the FIMS. PMID:21097956
NASA Astrophysics Data System (ADS)
Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles
2018-03-01
We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Distribution of Porphyromonas gingivalis fimA genotypes in primary endodontic infections.
Rôças, Isabela N; Siqueira, José F
2010-03-01
Long fimbriae (FimA) are important virulence factors of Porphyromonas gingivalis. Based on the diversity of the fimA gene, this species is classified into 6 genotypes. This study surveyed samples from primary endodontic infections for the presence of these P. gingivalis fimA variants. Genomic DNA isolated from samples taken from 25 root canals of teeth with chronic apical periodontitis and 25 aspirates from acute apical abscess was used as template in polymerase chain reaction (PCR) assays directed toward the detection of the different P. gingivalis fimA genotypes. Porphyromonas gingivalis was detected by a 16S rRNA gene-based PCR in 36% of the total number of cases sampled (44% of chronic apical periodontitis and 28% of abscess aspirates). In cases of chronic apical periodontitis, P. gingivalis variant type IV was the most prevalent (24%), followed by types I (20%), II (16%), and III (8%). In acute abscess samples, variant type II was the most prevalent (12%), followed by types III and IV (8% of each) and type I (4%). Combinations of up to 3 different genotypes were detected in a few cases. No single fimA genotype variant or combination thereof was significantly associated with symptoms. Overall, fimA types IV (16%), II (14%), and I (12%) were the most prevalent. Findings demonstrated that different P. gingivalis fimA genotypes can be present in primary endodontic infections. Copyright 2010 Mosby, Inc. All rights reserved.
Wang, Ching-Yi; Graham, James E; Karmarkar, Amol M; Reistetter, Timothy A; Protas, Elizabeth J; Ottenbacher, Kenneth J
2014-06-01
To assess the utility of functional status in classifying patients by discharge setting after inpatient rehabilitation for hip fracture. Retrospective cohort study. A total of 1257 inpatient rehabilitation facilities in the United States. Medicare beneficiaries (N = 117,168) receiving inpatient rehabilitation for hip fracture from 2007 to 2009. Receiver operating characteristic curve analyses to assess the overall discriminatory ability of functional status scores (Functional Independence Measure [FIM] total, FIM cognition, and FIM motor) and to identify the functioning threshold that best differentiates patients by discharge setting. Discharge setting (community versus institutional). Approximately 68% of patients were discharged to the community after inpatient rehabilitation for hip fracture. Receiver operating characteristic curve analyses indicate that discharge FIM motor ratings (area under the curve: 0.84) alone are as effective as a multivariable model (area under the curve: 0.85), including sociodemographic and clinical factors, in discriminating patients discharged to the community from those discharged to an institution. A discharge FIM motor rating of 58 yielded the best balance in sensitivity and specificity for classifying patients by discharge setting. Discharge FIM motor ratings demonstrated good discriminatory ability for classifying discharge setting. An FIM motor rating of 58 may serve as a clinical tool to guide treatment plans and/or as additional information in complex discharge planning decisions for patients with hip fracture. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Chandra, Subhash; Morrison, George H.
1995-05-01
The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.
Petitpierre, Nicolas Julien; Trombetti, Andrea; Carroll, Iain; Michel, Jean-Pierre; Herrmann, François Richard
2010-05-01
the main objective was to evaluate if the admission functional independence measure (FIM) score could be used to predict the risk of falls in geriatric inpatients. a 10-year retrospective study was performed. the study was conducted in a 298-bed geriatric teaching hospital in Geneva, Switzerland. all patients discharged from the hospital from 1 January 1997 to 31 December 2006 were selected. measures used were FIM scores at admission using the FIM instrument and number of falls extracted from the institution's fall report forms. during the study period, there were 23,966 hospital stays. A total of 8,254 falls occurred. Of these, 7,995 falls were linked to 4,651 stays. Falls were recorded in 19.4% of hospital stays, with a mean incidence of 7.84 falls per 1,000 patients-days. Although there was a statistically significant relationship between total FIM score, its subscales, and the risk of falling, the sensitivity, specificity, positive predictive value and negative predictive value obtained with receiver operating characteristic curves were insufficient to permit fall prediction. This might be due in part to a non-linear relationship between FIM score and fall risk. in this study, the FIM instrument was found to be unable to predict risk of falls in general geriatric wards.
Popovici, Cornel; Adélaïde, José; Ollendorff, Vincent; Chaffanet, Max; Guasch, Géraldine; Jacrot, Michèle; Leroux, Dominique; Birnbaum, Daniel; Pébusque, Marie-Josèphe
1998-01-01
Chromosome 8p11–12 is the site of a recurrent breakpoint in a myeloproliferative disorder that involves lymphoid (T- or B-cell), myeloid hyperplasia and eosinophilia, and evolves toward acute leukemia. This multilineage involvement suggests the malignant transformation of a primitive hematopoietic stem cell. In this disorder, the 8p11–12 region is associated with three different partners 6q27, 9q33, and 13q12. We describe here the molecular characterization of the t(8;13) translocation that involves the FGFR1 gene from 8p12, encoding a tyrosine kinase receptor for members of the fibroblast growth factor family, and a gene from 13q12, tentatively named FIM (Fused In Myeloproliferative disorders). FIM is related to DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1; this defines a gene family involved in different human pathologies. The two reciprocal fusion transcripts, FIM/FGFR1 and FGFR1/FIM are expressed in the malignant cells. The FIM/FGFR1 fusion protein contains the FIM putative zinc finger motifs and the catalytic domain of FGFR1. We show that it has a constitutive tyrosine kinase activity. PMID:9576949
Reistetter, Timothy A; Graham, James E; Deutsch, Anne; Granger, Carl V; Markello, Samuel; Ottenbacher, Kenneth J
2010-03-01
To evaluate the ability of patient functional status to differentiate between community and institutional discharges after rehabilitation for stroke. Retrospective cross-sectional design. Inpatient rehabilitation facilities contributing to the Uniform Data System for Medical Rehabilitation. Patients (N=157,066) receiving inpatient rehabilitation for stroke from 2006 and 2007. Not applicable. Discharge FIM rating and discharge setting (community vs institutional). Approximately 71% of the sample was discharged to the community. Receiver operating characteristic curve analyses revealed that FIM total performed as well as or better than FIM motor and FIM cognition subscales in differentiating discharge settings. Area under the curve for FIM total was .85, indicating very good ability to identify persons discharged to the community. A FIM total rating of 78 was identified as the optimal cut point for distinguishing between positive (community) and negative (institution) tests. This cut point yielded balanced sensitivity and specificity (both=.77). Discharge planning is complex, involving many factors. Identifying a functional threshold for classifying discharge settings can provide important information to assist in this process. Additional research is needed to determine if the risks and benefits of classification errors justify shifting the cut point to weight either sensitivity or specificity of FIM ratings. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Pinterich, Tamara; Wang, Jian
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid
2016-06-01
Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Wang, Yang; Pinterich, Tamara; Wang, Jian
2018-03-30
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C
2016-12-01
With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.
Sliwa, James A; Shahpar, Samman; Huang, Mark E; Spill, Gayle; Semik, Patrick
2016-02-01
Literature supporting the benefits of inpatient rehabilitation for cancer patients is increasing. Many cancer patients, however, do not qualify for inclusion in the Centers for Medicare and Medicaid 60% rule and consequently may not receive services. The benefit of inpatient rehabilitation in this specific cancer group has not been investigated and is the focus of this study. To investigate functional gains made during inpatient rehabilitation by patients impaired by cancer, and to compare the functional gains made during inpatient rehabilitation for patients impaired by cancer in relation to the presence or absence of metastatic disease and compliance or noncompliance with the Medicare 60% rule. Freestanding university-affiliated rehabilitation hospital. A total of 176 adult patients admitted for inpatient rehabilitation due to cancer. Retrospective chart review of patients admitted for inpatient rehabilitation with deficits identified related to cancer. Demographic data including cancer type, presence of metastasis, age, gender, marital status, ethnicity, length of stay (LOS), discharge destination, and transfer to acute care. Functional status including admission and discharge Functional Independence Measure Score (FIM), total, motor, and cognitive FIM gains, total, motor, and cognitive FIM efficiency for the study sample, for patients with and without a diagnosis compliant with the 60% rule and for patients with and without metastatic disease. In all, 176 cases met inclusion criteria. An admission coded diagnosis that was compliant with the 60% rule was present in 97 cases (55.1%). In 153 cases, the presence or absence of metastatic disease was known. Metastatic disease was present in 69 cases (45%). All groups (total sample, metastatic versus nonmetastatic, compliant versus noncompliant) made significant functional gains. Patients with a diagnosis noncompliant with the 60% rule had higher admission total FIM (P = .001), discharge total FIM (P = .014), admission motor FIM (P = .005), admission cognitive FIM (P = .008), and discharge cognitive FIM (P < .001) scores than those with a compliant diagnosis. Patients with metastatic disease had higher admission total FIM (P = .026) and admission (P = .001) and discharge (P = .02) cognitive FIM scores than patients with nonmetastatic disease. There were no significant differences between groups regarding total, motor, or cognitive FIM gains or total motor or cognitive FIM efficiencies. Differences in age, length of stay, and admission motor and discharge FIM scores between groups were related to cancer types and source of impairment. Patients with functional limitations resulting from cancer or its treatment made significant functional gains in inpatient rehabilitation. There were no significant differences in functional gains made by those with or without metastatic disease or those compliant versus noncompliant with the 60% rule. The presence of metastatic disease or a diagnosis not compliant with the 60% rule does not preclude cancer patients from making significant functional gains. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Shirai, Mitsuyuki; Nomura, Ryota; Kato, Yukio; Murakami, Masaru; Kondo, Chihiro; Takahashi, Soraaki; Yamasaki, Yoshie; Matsumoto-Nakano, Michiyo; Arai, Nobuaki; Yasuda, Hidemi; Nakano, Kazuhiko; Asai, Fumitoshi
2015-10-01
Porphyromonas gulae, a suspected pathogen for periodontal disease in dogs, possesses approximately 41-kDa fimbriae (FimA) that are encoded by the fimA gene. In the present study, the association of fimA genotypes with mitral regurgitation (MR) was investigated. Twenty-five dogs diagnosed with MR (age range 6-13 years old, average 10.8 years) and 32 healthy dogs (8-15 years old, average 10.8 years) were selected at the participating clinics in a consecutive manner during the same time period. Oral swab specimens were collected from the dogs and bacterial DNA was extracted, then polymerase chain reaction analysis was performed using primers specific for each fimA genotype, with the dominant genotype determined. The rate for genotype C dominant specimens was 48.0% in the MR group, which was significantly higher than that in the control group (18.8%) (P <0.05). These results suggest that P. gulae fimA genotype C is associated with MR. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...
2018-03-15
Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.
Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.
2000-01-01
Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080
GABAergic drug use and global, cognitive, and motor functional outcomes after stroke.
Schwitzguébel, A J-P; Benaïm, C; Carda, S; Torea Filgueira, A M; Frischknecht, R; Rapin, P-A
2016-12-01
In animal models and healthy volunteers, the use of GABA A receptor agonists (GABA-AGs) seem deleterious for functional recovery. The agents are widely used for subacute stroke, but their effect on functional recovery remains unclear. We aimed to evaluate the association between GABA-AG use and functional recovery after stroke. We retrospectively recruited 434 survivors of subacute stroke admitted for inpatient rehabilitation between 2000 and 2013 in our institution (107 with and 327 without GABA-AG use). We used multivariate regression to assess the association of GABA-AG use and successful functional recovery, defined as reaching, between admission and discharge, the minimal clinically important difference (MCID) of 22 points on the global Functional Independence Measure (FIM). Secondary analyses were the associations of GABA-AG with cognitive and motor FIM MCID and constant GABA-AG exposure (24h/24 GABA-AG) with global, cognitive and motor FIM MCID. A new estimation of the MCID was performed with the standard error of measurement. Reaching the global FIM MCID was associated with GABA-AG use (adjusted odds ratio [aOR] 0.54 [95% CI 0.31-0.91], P=0.02) as well as 24h/24 GABA-AG use (aOR 0.25 [0.08-0.83]; P=0.02). Furthermore, GABA-AG and 24h/24 GABA-AG use was inversely but not always significantly associated with reaching the cognitive FIM MCID (aOR 0.56, P=0.07; aOR 0.26, P=0.06, respectively) and motor FIM MCID (aOR 0.51, P=0.07; aOR 0.13, P=0.01, respectively). The estimated MCID was 19 for global FIM, 4 for cognitive FIM, and 16 for motor FIM. GABA-AG use is associated with not reaching successful functional recovery during stroke rehabilitation. Randomised trials are needed to formally establish the potential deleterious effect of GABA-AG use on functional recovery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities
Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.
2001-01-01
PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.
Helium Ion Secondary Electron Mode Microscopy For Interconnect Material Imaging
NASA Astrophysics Data System (ADS)
Ogawa, Shinichi; Thompson, William; Stern, Lewis; Scipioni, Larry; Notte, John; Farkas, Lou; Barriss, Louise
2010-04-01
The recently developed helium ion microscope (HIM) is now capable of 0.35 nm secondary electron (SE) mode image resolution. When low-k dielectrics or copper interconnects in ultra large scale integrated circuits (ULSI) interconnect structures were imaged in this mode, it was found that unique pattern dimension and fidelity information at sub-nanometer resolution was available for the first time. This paper will discuss the helium ion microscope architecture and the SE imaging techniques that make the HIM observation method of particular value to the low-k dielectric and dual damascene copper interconnect technologies.
USDA-ARS?s Scientific Manuscript database
A rapid, simple, and reliable flow-injection mass spectrometric (FIMS) method was developed to discriminate two major Echinacea species (E. purpurea and E. angustifolia) samples. Fifty-eight Echinacea samples collected from United States were analyzed using FIMS. Principle component analysis (PCA) a...
Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman
2016-08-01
Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag+ ions at different ion fluences ranging from 1 × 1014 to 5 × 1015 ions/cm2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV-Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag+-implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 1014 ions/cm2. Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.
In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes
NASA Astrophysics Data System (ADS)
Sangyuenyongpipat, S.; Yu, L. D.; Brown, I. G.; Seprom, C.; Vilaithong, T.
2007-04-01
A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1-2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work.
Li, Tong; Johansson, Ingegerd; Hay, Donald I.; Strömberg, Nicklas
1999-01-01
Oral strains of Actinomyces spp. express type 1 fimbriae, which are composed of major FimP subunits, and bind preferentially to salivary acidic proline-rich proteins (APRPs) or to statherin. We have mapped genetic differences in the fimP subunit genes and the peptide recognition motifs within the host proteins associated with these differential binding specificities. The fimP genes were amplified by PCR from Actinomyces viscosus ATCC 19246, with preferential binding to statherin, and from Actinomyces naeslundii LY7, P-1-K, and B-1-K, with preferential binding to APRPs. The fimP gene from the statherin-binding strain 19246 is novel and has about 80% nucleotide and amino acid sequence identity to the highly conserved fimP genes of the APRP-binding strains (about 98 to 99% sequence identity). The novel FimP protein contains an amino-terminal signal peptide, randomly distributed single-amino-acid substitutions, and structurally different segments and ends with a cell wall-anchoring and a membrane-spanning region. When agarose beads with CNBr-linked host determinant-specific decapeptides were used, A. viscosus 19246 bound to the Thr42Phe43 terminus of statherin and A. naeslundii LY7 bound to the Pro149Gln150 termini of APRPs. Furthermore, while the APRP-binding A. naeslundii strains originate from the human mouth, A. viscosus strains isolated from the oral cavity of rat and hamster hosts showed preferential binding to statherin and contained the novel fimP gene. Thus, A. viscosus and A. naeslundii display structurally variant fimP genes whose protein products are likely to interact with different peptide motifs and to determine animal host tropism. PMID:10225854
Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R
2011-07-29
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.
FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy.
Pollini, Simona; Maradei, Simona; Pecile, Patrizia; Olivo, Giuseppe; Luzzaro, Francesco; Docquier, Jean-Denis; Rossolini, Gian Maria
2013-01-01
Acquired metallo-β-lactamases (MBLs) are resistance determinants of increasing clinical importance in Gram-negative bacterial pathogens, which confer a broad-spectrum β-lactam resistance, including carbapenems. Several such enzymes have been described since the 1990s. In the present study, a novel acquired MBL, named FIM-1, was identified and characterized. The bla(FIM-1) gene was cloned from a multidrug-resistant Pseudomonas aeruginosa clinical isolate (FI-14/157) cultured from a patient with a vascular graft infection in Florence, Italy. The isolate belonged in the sequence type 235 epidemic clonal lineage. The FIM-1 enzyme is a member of subclass B1 and, among acquired MBLs, exhibited the highest similarity (ca. 40% amino acid identity) with NDM-type enzymes. In P. aeruginosa FI-14/157, the bla(FIM-1) gene was apparently inserted into the chromosome and associated with ISCR19-like elements that were likely involved in the capture and mobilization of this MBL gene. Transfer experiments of the bla(FIM-1) gene to an Escherichia coli strain or another P. aeruginosa strain by conjugation or electrotransformation were not successful. The FIM-1 protein was produced in E. coli and purified by two chromatography steps. Analysis of the kinetic parameters, carried out with the purified enzyme, revealed that FIM-1 has a broad substrate specificity, with a preference for penicillins (except the 6α-methoxy derivative temocillin) and carbapenems. Aztreonam was not hydrolyzed. Detection of this novel type of acquired MBL in a P. aeruginosa clinical isolate underscores the increasing diversity of such enzymes that can be encountered in the clinical setting.
Nishioka, Shinta; Wakabayashi, Hidetaka; Yoshida, Tomomi; Mori, Natsumi; Watanabe, Riko; Nishioka, Emi
2016-01-01
A protective effect of excessive body mass index (BMI) on mortality or functional outcome in patients with stroke is not well established in the Asian population. This study aimed to explore whether obese patients with stroke have advantages for functional improvement in Japanese rehabilitation wards. This retrospective cohort study included consecutive patients with stroke admitted and discharged from convalescent rehabilitation wards between 2011 and 2015. Demographic data, BMI, Functional Independence Measure (FIM) score, and nutritional status were analyzed. Participants were classified into 4 groups according to BMI (underweight <18.5 kg/m(2), standard 18.5-<23 kg/m(2), overweight 23-<27.5 kg/m(2), obese ≥27.5 kg/m(2)). The primary outcome was the FIM gain, and the secondary outcome was the FIM score at discharge. Multiple regression analysis was performed to analyze the relationship between BMI and functional recovery. In total, 897 participants (males 484, females 413; mean age 71.6 years) were analyzed and classified as underweight (134), standard (432), overweight (277), and obese (54). The median FIM gain and the FIM score at discharge were 30 and 114, respectively. The FIM gain in the obese group was significantly higher than those in the other groups. Multiple regression analysis revealed that obesity was independently correlated with the FIM gain, and those at discharge after adjusting for confounders such as age, gender, and FIM score on admission. Obese Japanese convalescent patients with stroke may have some advantages for functional recovery in rehabilitation wards. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.
2011-09-06
By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability ofmore » FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.« less
Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.; Dwivedi, Prabhat; Krishnan, Vengadesan; Cisar, John O.; Das, Asis; Narayana, Sthanam V. L; Ton-That, Hung
2011-01-01
By combining X-ray crystallography and modeling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbors an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbors two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae. PMID:21696465
Nanopatterning of optical surfaces during low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yifan; Xie, Xuhui
2014-06-01
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
The cyclotron energization through auroral wave experiments (CENTAUR 2B)
NASA Technical Reports Server (NTRS)
Winningham, J. D.
1992-01-01
The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.
The impact of patient's weight on post-stroke rehabilitation.
Kalichman, Leonid; Alperovitch-Najenson, Deborah; Treger, Iuly
2016-08-01
Purpose To evaluate the influence of patient's weight on rehabilitation outcomes in first-event stroke patients. Design Retrospective, observational comparative study. 102 first-time stroke male and female patients admitted to the 52-bed neurology rehabilitation department in a rehabilitation hospital were included in the study. Body mass index (BMI), Functional Independence Measure (FIM) on admission and at discharge, as well as the delta-FIM (FIM on admission - FIM at discharge) were evaluated. The Kruskal-Wallis test was used to compare the FIM and the NIHSS scores between BMI groups (normal, overweight, moderate and severe obesity). Results A statistically significant negative correlation (rho = -0.20, p = 0.049) was found between FIM change and BMI, that remained significant after adjustments for age, sex and hospitalisation days. No difference was found between groups in FIM or NIHSS change between BMI groups. Conclusions In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. Further investigations are needed to identify the functional parameters affected by the patients' BMI. Implications for Rehabilitation In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. New rehabilitation strategies should be designed to improve the functional outcomes of rehabilitation of obese patients.
Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F
2014-03-01
System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant approximation, in the context of design optimization of a parallel-hole collimator SPECT system and of an adaptive imaging system (similar to the commercially available D-SPECT).
Microchip and wedge ion funnels and planar ion beam analyzers using same
Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D
2012-10-30
Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.
Jastrowski Mano, Kristen E; Khan, Kimberly Anderson; Ladwig, Renee J; Weisman, Steven J
2011-06-01
To evaluate the psychometric properties of the Family Impact Module (FIM), a parent self-report measure of health-related quality of life (HRQOL) and family functioning, among parents of youth with chronic pain. Parents (N = 458) completed the FIM (Total Impact, HRQOL, and Family Functioning scales); parents and youth (N = 332) completed measures of pain catastrophizing, pediatric quality of life, and emotional/behavioral functioning. The FIM demonstrated strong internal consistency and item-total correlations. All FIM scales were positively associated with pain catastrophizing, functional disability, and emotional/behavioral problems; and inversely related to pediatric quality of life. Mothers reported significantly worse HRQOL than fathers. Mothers and fathers did not differ on reports of Family Functioning. HRQOL and Family Functioning did not differ as a function of pain diagnosis. The FIM appears to be a suitable measure of parent self-reported HRQOL and family functioning in pediatric chronic pain.
Han, Zhenfu; Pinkner, Jerome S.; Ford, Bradley; Chorell, Erik; Crowley, Jan M.; Cusumano, Corinne K.; Campbell, Scott; Henderson, Jeffrey P.; Hultgren, Scott J.; Janetka, James W.
2012-01-01
Herein, we describe the X-ray structure-based design and optimization of biaryl mannoside FimH inhibitors. Diverse modifications to the biaryl ring to improve drug-like physical and pharmacokinetic properties of mannosides were assessed for FimH binding affinity based on their effects on hemagglutination and biofilm formation along with direct FimH binding assays. Substitution on the mannoside phenyl ring ortho to the glycosidic bond results in large potency enhancements of several-fold higher than corresponding unsubstituted matched pairs and can be rationalized from increased hydrophobic interactions with the FimH hydrophobic ridge (Ile13) or “tyrosine gate” (Tyr137 and Tyr48) also lined by Ile52. The lead mannosides have increased metabolic stability and oral bioavailability as determined from in vitro PAMPA predictive model of cellular permeability and in vivo pharmacokinetic studies in mice, thereby representing advanced preclinical candidates with promising potential as novel therapeutics for the clinical treatment and prevention of recurring urinary tract infections. PMID:22449031
Radiation damage in dielectric and semiconductor single crystals (direct observation)
NASA Astrophysics Data System (ADS)
Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.
1998-11-01
The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.
Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong
2018-05-11
A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.
Mobility Functional Outcomes of Neurofibromatosis Patients: A Preliminary Report.
Ngo-Huang, An; Yadav, Rajesh; Fu, Jack B; Liu, Diane; Williams, Janet L; Bruera, Eduardo; Guo, Ying
2018-01-01
The aim of the study was to describe the mobility outcomes of neurofibromatosis (NF) patients who received acute inpatient rehabilitation. This is a retrospective study of 62 consecutive neurofibromatosis patients of any age who received physical medicine and rehabilitation consultations at a comprehensive cancer center. Postoperative, inpatient rehabilitation admission and discharge functional independence measures (FIM scores) of transfers and gait and length of hospital stay were obtained from 37 patients who were transferred to inpatient rehabilitation (acute rehabilitation) and 25 who had an alternative disposition (consultation only). Mean age was 34 yrs. Both groups had similar postoperative FIM transfer and gait scores; however, at approximately postoperative day 10, the consultation only group was discharged with median FIM of 5 (supervision level) as compared with the acute rehabilitation group FIM of 4 (P = 0.000). The acute rehabilitation group had improved mobility FIM scores from postoperative to rehabilitation admission and again from rehabilitation admission to discharge (P < 0.0001). At discharge, the acute rehabilitation group ambulated a significantly longer distance (500 f. vs. 300 ft) (P = 0.04). The median length of hospital stay for the acute rehabilitation and consultation only groups was 20 and 10 days, respectively (P = 0.004). Acute inpatient rehabilitation leads to improvement in mobility-associated FIM scores for neurofibromatosis patients minimizing caregiver needs at home.
Screening and selection of artificial riboswitches.
Harbaugh, Svetlana V; Martin, Jennifer; Weinstein, Jenna; Ingram, Grant; Kelley-Loughnane, Nancy
2018-05-17
Synthetic riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules, and a challenge to select this engineered response requires robust screening tools. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer library with a randomized expression platform followed by in vivo selection and screening. In order to determine response to analyte, we developed a dual-color reporter comprising elements of the E. coli fimbriae phase variation system: recombinase FimE controlled by a synthetic riboswitch and an invertible DNA segment (fimS) containing a constitutively active promoter placed between two fluorescent protein genes. Without an analyte, the fluorescent reporter constitutively expressed green fluorescent protein (GFPa1). Addition of the analyte initiated translation of fimE causing unidirectional inversion of the fimS segment and constitutive expression of red fluorescent protein (mKate2). The dual color reporter system can be used to select and to optimize artificial riboswitches in E. coli cells. In this work, the enriched library of aptamers incorporated into the riboswitch architecture reduces the sequence search space by offering a higher percentage of potential ligand binders. The study was designed to produce structure switching aptamers, a necessary feature for riboswitch function and efficiently quantify this function using the dual color reporter system. Copyright © 2018. Published by Elsevier Inc.
McGilloway, Emer; Mitchell, James; Dharm-Datta, Shreshth; Roberts, Andrew; Tilley, Haydn; Etherington, John
2016-01-01
The aim of this study was to identify the most appropriate rehabilitation outcome measure for use in a young adult population with acquired brain injury. A 2-year prospective study of patients admitted to a UK military neuro-rehabilitation unit with acquired brain injury to compare the appropriateness of the Functional Independence Measure/Functional Assessment Measure (FIM+FAM) vs the Mayo-Portland Adaptability Inventory Version 4 (MPAI-4) in assessing outcomes. Patients were assessed at admission, discharge and at 4-month follow-up using FIM+FAM and MPAI-4. The FIM+FAM total motor score showed a marked ceiling affect, 42% of patients scored the maximum on admission rising to 80% at discharge. The MPAI-4 did not show significant ceiling effects. The other sub-scales of FIM+FAM and MPAI-4 were generally comparable, no more than 17% achieved ceiling at follow-up. This is the first comparative study of FIM+FAM and MPAI-4 in a young adult military population following acquired brain injury. All patients showed improvements in both outcome measures following intensive inpatient rehabilitation. However, the MPAI-4 did not show ceiling effects in motor scores. This measure was, therefore, found to be more appropriate in the cohort.
Modeling secondary electron emission from nanostructured materials in helium ion microscope
NASA Astrophysics Data System (ADS)
Ohya, K.; Yamanaka, T.
2013-11-01
Charging of a SiO2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers (<250 nm) is strongly suppressed due to wide depth and lateral distributions of the He ions in the layer, the voltage of which is much lower than that for the Ga ions and the electrons, where the distributions are much more localized. When the irradiation approaches the edge of a 100-nm-high SiO2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO2 layer.
Biomedical applications of ion-beam technology
NASA Technical Reports Server (NTRS)
Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.
1979-01-01
Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.
Habibi, Mehri; Asadi Karam, Mohammad Reza; Shokrgozar, Mohammad Ali; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid
2015-04-01
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are among the most common infections in the world. Currently there are no vaccines available to confer protection against UTI in humans. In this study, the immune responses and protection of FimH of UPEC with MrpH antigen of P. mirabilis in different vaccine formulations with and without MPL adjuvant were assessed. Mice intranasally immunized with the novel fusion protein MrpH·FimH induced a significant increase in IgG and IgA in serum, nasal wash, vaginal wash, and urine samples. Mice immunized with fusion MrpH·FimH also showed a significant boost in cellular immunity. Addition of MPL as the adjuvant enhanced FimH and MrpH specific humoral and cellular responses in both systemic and mucosal samples. Vaccination with MrpH·FimH alone or in combination with MPL showed the highest efficiency in clearing bladder and kidney infections in mice challenged with UPEC and P. mirabilis. These findings may indicate that the protection observed correlates with the systemic, mucosal and cellular immune responses induced by vaccination with these preparations. Our data suggest MrpH·FimH fusion protein with or without MPL as adjuvant could be potential vaccine candidates for elimination of UPEC and P. mirabilis. These data altogether are promising and these formulations are good candidates for elimination of UPEC and P. mirabilis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
Hershkovitz, Avital; Angel, Corina; Brill, Shai; Nissan, Ran
2018-04-01
Anticholinergic (AC) drugs are associated with significant impairment in cognitive and physical function which may affect rehabilitation in older people. We aimed to evaluate whether AC burden is associated with rehabilitation achievement in post-acute hip-fractured patients. A retrospective cohort study carried out in a post-acute geriatric rehabilitation center on 1019 hip-fractured patients admitted from January 2011 to October 2015. The Anticholinergic Cognitive Burden Scale (ACB) was used to quantify the AC burden. Main outcome measures included the Functional Independence Measure (FIM) instrument, motor FIM (mFIM), Montebello Rehabilitation Factor Score (MRFS) on the mFIM, and length of stay (LOS). The study population was divided into two groups: individuals with low admission AC burden (ACB ≤ 1) and those with high admission AC burden (ACB ≥ 2). The relationship between the admission AC burden and clinical, demographic and comorbidity variables was assessed using the Mann-Whitney and Chi square tests. A multiple linear regression model was used to estimate the association between admission AC burden and discharge FIM score after controlling for sociodemographic characteristics and chronic diseases. Patients with a high admission AC burden had a significantly higher rate of high education, a significantly lower rate reside at home, they waited a longer period of time from surgery to rehabilitation, were less independent pre-fracture, and presented with a higher rate of vascular disorders and depression compared with patients with a lower admission AC burden. These patients also exhibited a significantly lower FIM score on admission and at discharge, a lower FIM score change, and a lower achievement on the MRFS compared with patients with a lower admission AC burden. A multiple linear regression analysis showed that admission AC burden was significantly associated with the discharge FIM score after adjustment for confounding variables. High admission AC drug burden is significantly associated with less favorable discharge functional status in post-acute hip-fractured patients, independent of relevant risk factors.
External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology
NASA Astrophysics Data System (ADS)
Secchi, E.; Munarin, F.; Alaimo, M. D.; Bosisio, S.; Buzzaccaro, S.; Ciccarella, G.; Vergaro, V.; Petrini, P.; Piazza, R.
2014-11-01
Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca2+ ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.
Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.
Chu, Haena; Yun, Seonghun; Lee, Haiwon
2013-12-01
Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K. Y.; Chen, Y.; Li, J.
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
Yu, K. Y.; Chen, Y.; Li, J.; ...
2016-11-28
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
Commissioning of the PRIOR proton microscope
Varentsov, D.; Antonov, O.; Bakhmutova, A.; ...
2016-02-18
Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less
Commissioning of the PRIOR proton microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varentsov, D.; Antonov, O.; Bakhmutova, A.
Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less
NASA Astrophysics Data System (ADS)
Kam, Hosik; Kim, Yong Ha; Hong, Jun-Seok; Lee, Joon-Chan; Choi, Yeon-Ju; Min, Kyung Wook
2014-09-01
The Korea scientific microsatellite, STSAT-1 (Science and Technology Satellite-1), was launched in 2003 and observed far ultraviolet (FUV) airglow from the upper atmosphere with a Far-ultraviolet IMaging Spectrograph (FIMS) at an altitude of 690 km. The FIMS consists of a dual-band imaging spectrograph of 900-1150 Å (S-band) and 1340-1715 Å (L-band). Limb scanning observations were performed only at the S-band, resulting in intensity profiles of OI 989 Å, OI 1026 Å, NII 1085 Å and NI 1134 Å emission lines near the horizon. We compare these emission intensities with those computed by using a theoretical model, the AURIC (Atmospheric Ultraviolet Radiance Integrated Code). The intensities of the OI 1026 Å, NII 1085 Å and NI 1134 Å emissions measured by using the FIMS are overall consistent with the values computed by using AURIC under the thermospheric and solar activity conditions on August 6, 1984, which is close to the FIMS's observation condition. We find that the FIMS dayglow intensity profiles match reasonably well with AURIC intensity profiles for the MSIS90 oxygen atom density profiles within factors of 0.5 and 2. However, the FIMS intensities of the OI 989 Å line are about 2 ˜ 4 times stronger than the AURIC intensities, which is expected because AURIC does not properly simulate resonance scattering of airglow and solar photons at 989 Å by atomic oxygen in the thermosphere. We also find that the maximum tangential altitudes of the oxygen bearing dayglows (OI 989 Å, OI 1026 Å) are higher than those of the nitrogen-bearing dayglows (NII 1085 Å, NI 1134 Å), which is confirmed by using AURIC model calculations. This is expected because the oxygen atoms are distributed at higher altitudes in the thermosphere than the nitrogen molecules. Validations of the qualities of both the FIMS instrument and the AURIC model indicate that AURIC should be updated with improved thermospheric models and with measured solar FUV spectra for better agreement with the observations. Once the updated AURIC model is available, one can extract valuable information on the densities and compositions of the thermosphere from limb scanning observations with an FUV instrument such as FIMS.
On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin, E-mail: benjamin.rotenberg@upmc.fr
Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFGmore » tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.« less
Kokura, Yoji; Maeda, Keisuke; Wakabayashi, Hidetaka; Nishioka, Shinta; Higashi, Sotaro
2016-06-01
The aim of the present study was to establish whether high nutritional-related risk on admission predicts less improvement of Functional Independence Measure (FIM) in geriatric stroke patients. We performed a retrospective cohort study of patients admitted for stroke at 5 major hospitals in the Noto district of Japan from July 2009 to June 2013. Patients were divided into 2 groups according to Geriatric Nutritional Risk Index (GNRI) at admission. Patient characteristics were compared between the low GNRI (<92) and high GNRI (≥92) groups. We assessed nutritional status using GNRI and activities of daily living using the FIM. A total of 540 participants (mean age, 80 years; interquartile range, 75-85 years) were included in the present study. Patients were admitted because of cerebral infarction (394 patients), intracerebral hemorrhage (123 patients), and subarachnoid hemorrhage (23 patients). Univariate analysis of FIM gain demonstrated significant differences between groups. Multivariate analysis of FIM gain adjusting for confounding factors demonstrated age (β = -.139; 95% confidence interval [CI] = -.629 to -.140), cerebral infarction (β = -.264; 95% CI = -12.956 to -6.729), National Institutes of Health Stroke Scale (β = -.180; 95% CI = -.688 to -.248), and GNRI score (β = .089; 95% CI = .010-.347) as independent factors associated with FIM gain (P < .05 for all). GNRI at admission may independently predict FIM gain. Poor nutritional status is a predictor of lower FIM improvement in geriatric stroke patients. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Wang, Qian; Zhou, Xue-dong; Zheng, Qing-hua; Wang, Yao; Tang, Lu; Huang, Ding-ming
2010-11-01
Porphyromonas gingivalis (P. gingivalis) is an anaerobic bacterium involved in root canal infections whose fimbriae are classified into six genotypes (types I-V and Ib) based on nucleotide sequence. Accumulated evidence suggests there is significant association between P. gingivalis and some clinical symptoms of periodontal diseases. The present study aims to determine the prevalence of P. gingivalis fimA genotypes in apical periodontitis and to investigate the correlation between P. gingivalis fimA genotypes and clinical symptoms. Samples were obtained from 158 infected root canals with apical periodontitis. DNA was extracted and analyzed with a polymerase chain reaction-based identification assay. Odds ratios, 95% confidence intervals, and contingency coefficient were calculated for associating the fimA-specific genes with clinical symptoms. P. gingivalis was detected in 39.9% of the inflected root canal samples and was found in 44.5% of P. gingivalis-positive specimens with symptoms. Types II (69.4%) were the most frequent in the symptomatic cases followed by type IV (32.7%). The occurrence of type I (64.3%) was significantly higher than any other genotypes in the asymptomatic apical periodontitis, whereas type II and type Ib were not identified. Statistical analysis revealed that the occurrences of types II, IV, and Ib fimA were associated with greater risk of clinical signs (swelling, sinus tract, or intracanal exudates) than type I. Results from this study reinforce the association between P. gingivalis-specific fimA genotypic clones and apical periodontitis, indicating that fimA genotypes (types II, IV, and Ib) were related to the etiology of symptomatic periradicular diseases. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Muir-Hunter, S W; Fat, G Lim; Mackenzie, R; Wells, J; Montero-Odasso, M
2016-04-01
To quantify the magnitude of functional recovery in older adults with and without dementia admitted to an inpatient geriatric rehabilitation program by measuring change in measures of global physical function and physical therapy treatment outcomes. Retrospective cohort study. Rehabilitation academic hospital. Consecutive subjects, with (N=65, age 81.9±6.0 y) and without (N=157, age 82.8±7.2 y) a dementia diagnosis, had assessment data at admission and discharge from inpatient geriatric rehabilitation unit. Not applicable. The Functional Independence Measure (FIM) was used to estimate level of independence on activities of daily living. The Berg Balance Scale (BBS), Timed Up and Go Test (TUG) and 2 Minute Walk Test (2MWT) were used to estimate functional mobility and endurance. The FIM (total, motor subscale, cognitive subscale scores) were used to calculate rehabilitation efficacy and efficiency scores. After controlling for confounding, there was no group difference for gains on the BBS, TUG, 2MWT; there was no group difference on rehabilitation efficacy and efficiency values based on the FIM motor subscale. The magnitude of the rehabilitation gain using the total FIM score was statistically different between groups, people with dementia having smaller gains. Older adults with a diagnosis of dementia are capable of making motor function recovery during inpatient sub-acute rehabilitation comparable to their peers without a dementia diagnosis. The metric used to evaluate functional recovery influences the determination of rehabilitation success between groups. Rehabilitation success should be defined among people with a dementia diagnosis by a change in the motor subscale of the FIM, rather than the total FIM score or the gain relative to the maximal FIM score.
Henssge, Uta; Do, Thuy; Gilbert, Steven C.; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A. J. M.; Radford, David R.; Beighton, David
2011-01-01
Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established. PMID:21738661
Henssge, Uta; Do, Thuy; Gilbert, Steven C; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A J M; Radford, David R; Beighton, David
2011-01-01
Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established.
FIM-Minimum Data Set Motor Item Bank: Short Forms Development and Precision Comparison in Veterans.
Li, Chih-Ying; Romero, Sergio; Simpson, Annie N; Bonilha, Heather S; Simpson, Kit N; Hong, Ickpyo; Velozo, Craig A
2018-03-01
To improve the practical use of the short forms (SFs) developed from the item bank, we compared the measurement precision of the 4- and 8-item SFs generated from a motor item bank composed of the FIM and the Minimum Data Set (MDS). The FIM-MDS motor item bank allowed scores generated from different instruments to be co-calibrated. The 4- and 8-item SFs were developed based on Rasch analysis procedures. This article compared person strata, ceiling/floor effects, and test SE plots for each administration form and examined 95% confidence interval error bands of anchored person measures with the corresponding SFs. We used 0.3 SE as a criterion to reflect a reliability level of .90. Veterans' inpatient rehabilitation facilities and community living centers. Veterans (N=2500) who had both FIM and the MDS data within 6 days during 2008 through 2010. Not applicable. Four- and 8-item SFs of FIM, MDS, and FIM-MDS motor item bank. Six SFs were generated with 4 and 8 items across a range of difficulty levels from the FIM-MDS motor item bank. The three 8-item SFs all had higher correlations with the item bank (r=.82-.95), higher person strata, and less test error than the corresponding 4-item SFs (r=.80-.90). The three 4-item SFs did not meet the criteria of SE <0.3 for any theta values. Eight-item SFs could improve clinical use of the item bank composed of existing instruments across the continuum of care in veterans. We also found that the number of items, not test specificity, determines the precision of the instrument. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
Jarvis, Cassie; Han, Zhenfu; Kalas, Vasilios; Klein, Roger; Pinkner, Jerome S; Ford, Bradley; Binkley, Jana; Cusumano, Corinne K; Cusumano, Zachary; Mydock-McGrane, Laurel; Hultgren, Scott J; Janetka, James W
2016-02-17
Uropathogenic E. coli (UPEC) employ the mannose-binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half-life in vivo. In a rational design strategy, we obtained an X-ray structure of lead mannosides and then designed mannosides with improved drug-like properties. We show that cyclizing the carboxamide onto the biphenyl B-ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2-methyl-4-(1-oxo-1,2-dihydroisoquinolin-7-yl)phenyl α-d-mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N-Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria-mediated hemagglutination and prevent biofilm formation by UPEC with single-digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phenotypic and genotypic characteristics of Trueperella pyogenes isolated from ruminants.
Rogovskyy, Artem S; Lawhon, Sara; Kuczmanski, Kathryn; Gillis, David C; Wu, Jing; Hurley, Helen; Rogovska, Yuliya V; Konganti, Kranti; Yang, Ching-Yuan; Duncan, Kay
2018-05-01
Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in animals including humans. Data on phenotypic and genotypic properties of T. pyogenes isolated from ruminants, particularly goats and sheep, are lacking. We characterized, by phenotypic and genotypic means, T. pyogenes of caprine and ovine origin, and established their phylogenetic relationship with isolates from other ruminants. T. pyogenes isolates ( n = 50) from diagnostic specimens of bovine ( n = 25), caprine ( n = 19), and ovine ( n = 6) origin were analyzed. Overall, variable biochemical activities were observed among the T. pyogenes isolates. The fimbriae-encoding gene, fimE, and neuraminidase-encoding gene, nanH, were, respectively, more frequently detected in the large ( p = 0.0006) and small ( p = 0.0001) ruminant isolates. Moreover, genotype V ( plo/ nanH/ nanP/ fimA/ fimC) was only detected in the caprine and ovine isolates, whereas genotype IX ( plo/ nanP/ fimA/ fimC/ fimE) was solely present in the isolates of bovine origin ( p = 0.0223). The 16S rRNA gene sequences of all T. pyogenes isolates were clustered with the reference T. pyogenes strain ATCC 19411 and displayed a high degree of identity to each other. Our results highlight phenotypic and genotypic diversity among ruminant isolates of T. pyogenes and reinforce the importance of characterization of more clinical isolates to better understand the pathogenesis of this bacterium in different animal species.
Focused Impedance Method (FIM) and Pigeon Hole Imaging (PHI) for localized measurements - a review
NASA Astrophysics Data System (ADS)
Siddique-e Rabbani, K.
2010-04-01
This paper summarises up to date development in Focused Impedance Method (FIM) initiated by us. It basically involves taking the sum of two orthogonal tetra-polar impedance measurements around a common central region, giving a localized enhanced sensitivity. Although the basic idea requires 8 electrodes, versions with 6- and 4-electrodes were subsequently conceived and developed. The focusing effect has been verified in 2D and 3D phantoms and through numerical analysis. Dynamic stomach emptying, and ventilation of localized lung regions have been studied successfully suggesting further applications in monitoring of gastric acid secretion, artificial respiration, bladder emptying, etc. Multi-frequency FIM may help identify some diseases and disorders including certain cancers. FIM, being much simpler and having less number of electrodes, appears to have the potential to replace EIT for applications involving large and shallow organs. An enhancement of 6-electrode FIM led to Pigeon Hole Imaging (PHI) in a square matrix through backprojection in two orthogonal directions, good for localising of one or two well separated objects.
Franchignoni, F; Tesio, L; Martino, M T; Benevolo, E; Castagna, M
1998-01-01
A model for prediction of length of stay (LOS, in days) of stroke rehabilitation inpatients was developed, based on patients' age (years) and function at admission (scored on the Functional Independence Measure, FIMSM). One hundred and twenty-nine cases, consecutively admitted to three free-standing rehabilitation centres in Italy, were analyzed. A multiple linear regression using forward stepwise selection procedure was adopted. Median admission and discharge scores were: 57 and 75 for the total FIM score, 29 and 48 for the 13-item motor FIM subscore, 29 and 30 for the 5-item cognitive FIM subscore (potential range: 18-126, 13-91, 5-35, respectively). Median LOS was 44 days (interquartile range 30-62). The logLOS predictive model included three FIM items ("toilet transfer", TTr; "social interaction"; "expression") and patient's age (R2 = 0.48). TTr alone explained 31.3% of the variance of logLOS. These results are consistent with previous American studies, showing that FIM scores at admission are strong predictors of patients' LOS, with the transfer items having the greatest predictive power.
FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis
Otto, Nils; Löpmeier, Tim; Valkov, Dimitar; Jiang, Xiaoyi; Klämbt, Christian
2013-01-01
We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel the neural basis of behavior. PMID:23349775
Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, M.; De, N; Bae, N
2009-01-01
Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data andmore » crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.« less
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
Sharma, Gangavaram V M; Manohar, Vennampalli; Dutta, Samit Kumar; Sridhar, Bojja; Ramesh, Venna; Srinivas, Ragampeta; Kunwar, Ajit C
2010-02-19
A cyclic tetrapeptide is prepared from alternating (S)-beta-Caa (C-linked carbo-beta-amino acid) and (R)-Ama (alpha-aminoxy acid). Extensive NMR (in CDCl(3) solution) and mass spectral (MS) studies show its halide binding capacity, with a special affinity to the chloride ion. At higher concentration it was found to form molecular aggregates as evidenced from transmission electron microscopic and atomic force microscopic analysis, confirming the formation of nanorods.
Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej
2015-01-01
We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682
Depth-Resolved Cathodoluminescence of Thorium Dioxide
2013-03-01
exhibited more of an energy dependency than the cut and polished sample. However, in a companion study, ime of flight secondary ion mass spectrometry...Ion Mass Spectrometry (TOF SIMS) ......................17 2.7 Atomic Force Microscope (AFM...1 TOF SIMS……….Time of Flight Secondary Ion Mass Spectroscopy……………….62 1 DEPTH
Hendricks, Carla Tierney; Camara, Kristin; Violick Boole, Kathryn; Napoli, Maureen F; Goldstein, Richard; Ryan, Colleen M; Schneider, Jeffrey C
The prevalence and extent of cognitive-communication disorders and factors that have impact on outcomes are examined in the burn population within an inpatient rehabilitation facility. A retrospective data analysis was conducted on adults diagnosed with burn injury (n = 144). Descriptive statistics were used to identify the prevalence of cognitive-communication deficits on admission and discharge. The main outcomes were cognitive-communication ratings on discharge from inpatient rehabilitation as measured by the memory and problem-solving domains of the Functional Independence Measure (FIM) and composite score of the Functional Communication Measure (FCM). Medical, demographic and rehabilitation predictors of the main outcomes were assessed using regression analyses. On admission to inpatient rehabilitation, 79% of the total population presented with cognitive-communication impairments, and of them, 27% presented with persistent deficits on discharge. Admission FIM memory score, marital status, and age were significant predictors of discharge FIM memory score. Admission FIM problem-solving score, age, marital status, and prehospital living-with were significant predictors of discharge FIM problem-solving score. Admission FCM score and age were significant predictors of discharge FCM cognitive score. Persons with burn injuries are at risk for cognitive-communication impairments, which may persist after inpatient rehabilitation. FIM data obtained on admission can be used as a screening tool to identify these at-risk patients. Future work is needed to assess the efficacy of speech-language pathologist intervention for cognitive-communication deficits within the burn injury population.
Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid
2015-09-01
Urinary tract infections (UTIs) caused by Escherichia coli and Proteus mirabilis are an important cause of morbidity and with the high rate of relapse and spread of multi-drug resistant pathogens, pose a significant public health challenge worldwide. Lack of an efficacious commercial vaccine targeting both uropathogens makes development of a combined vaccine highly desirable. In this study the immunogenicity and protective efficacy of different formulations of FimH of UPEC, MrpH of P. mirabilis and their fusion protein (MrpH.FimH) subcutaneously administered with and without Monophosphoryl lipid A (MPL) adjuvant were evaluated. Our data showed that the subcutaneously administered proteins induced both serum and mucosal IgG, which MPL significantly improved developing a mixed Th1 and Th2 immune response. However, the preparations induced a higher systemic and mucosal IgG and IL-2 levels by this route compared to the intranasal. Immunization of mice with MrpH.FimH fusion with MPL or a mixture of FimH, MrpH and MPL conferred the highest protection of the bladder and kidneys when challenged with UPEC and P. mirabilis in a UTI mouse model. Therefore considering these results MrpH.FimH fusion with MPL administered subcutaneously or intranasally could be a promising vaccine candidate for elimination of UTIs caused by UPEC and P. mirabilis. Copyright © 2015 Elsevier B.V. All rights reserved.
Bindawas, Saad M.; Mawajdeh, Hussam M.; Vennu, Vishal S.; Alhaidary, Hisham M.
2017-01-01
Objective: To examine the functional recovery differences after stroke rehabilitation in patients with uni- or bilateral hemiparesis. Methods: In this retrospective study, we included data from the medical record of all 383 patients with uni- or bilateral hemiparesis after stroke who were admitted to King Fahad Medical City-Rehabilitation Hospital between 2008 and 2014 in Riyadh, Kingdom of Saudi Arabia. According to the site of hemiparesis, we classified patients into 3 groups: right hemiparesis (n=208), left hemiparesis (n=157), and bilateral hemipareses (n=18). The patients (n=49) who did not have either site of hemiparesis were excluded. The Functional Independence Measures (FIM) instrument was used to assess the score at admission and discharge. A post hoc test was conducted to examine the functional recovery differences between groups. Multiple regression analyses were used to confirm the findings. Results: Amongst the three groups, there were significant (p<0.05) differences in the total-FIM score as well as motor- and cognitive-FIM sub-scores between admission and discharge of stroke rehabilitation. The differences were significantly greater in the bilateral hemipareses group than in either unilateral hemiparesis group. Multiple regression analyses also confirmed that the site of hemiparesis significantly (p<0.05) differs in the total-FIM score as well as motor-FIM and cognitive-FIM sub-scores. Conclusion: Our results demonstrate that differences in functional recovery after stroke rehabilitation may be influenced by the site of hemiparesis after stroke. PMID:28678212
Franceschini, Marco; Massimiani, Maria Pia; Paravati, Stefano; Agosti, Maurizio
2016-01-01
Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM-admission FIM)/(Maximum possible FIM-Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
From fluid dynamics to microscopic transport approach
NASA Astrophysics Data System (ADS)
Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright
2018-05-01
Here we are exploring the widespread features or the characteristics of the microscopic transport modeling and also the speculations made for the approach to fit it to the dynamics of high energy heavy ion collisions, when we see its expansion in space-time dimensions. The explanation of initial stages of the hot and high dense region, the hydrodynamics is instigated and further moderate stages of reaction are complemented to microscopic transport.
"Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.
Burkhardt, Juergen; Hunsche, Mauricio
2013-01-01
"Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.
Cowen, T D; Meythaler, J M; DeVivo, M J; Ivie, C S; Lebow, J; Novack, T A
1995-09-01
To determine the relationship between early variables (initial Glasgow Coma Scale [GCS] scores, computed tomography [CT] findings, presence of skeletal trauma, age, length of acute hospitalization) and outcome variables (Functional Independence Measure [FIM] scores, rehabilitation length of stay [LOS], rehabilitation charges) in traumatic brain injury (TBI). Inception cohort. University tertiary care rehabilitation center. 91 patients with TBI. Inpatient rehabilitation. FIM, rehabilitation LOS, and rehabilitation charges. Patients in the severely impaired (GCS = 3 to 7) group showed significantly lower (p = .01) mean admission and discharge motor scores (21.26, 39.83) than patients in the mildly impaired (GCS = 13 to 15) group (38.86, 55.29). Cognitive scores were also significantly lower (p < .01) in the severely impaired group on admission (26.73 vs 54.14) and discharge (42.28 vs 66.48). These findings continued to be statistically significant (p < .01) after regression analysis accounted for the other early variables previously listed. Regression analysis also illustrated that longer acute hospitalization LOS was independently associated with significantly lower admission motor (p < .01) and cognitive (p = .05) scores, and significantly higher (p = .01) rehabilitation charges. Patients with CT findings of intracranial bleed with skull fracture had longer total LOS (70.88 vs 43.08 days; p < .05), rehabilitation LOS (30.01 vs 19.68 days; p < .10), and higher rehabilitation charges ($43,346 vs $25,780; p < .05). Paradoxically, those patients in a motor vehicle crash with an extremity bone fracture had significantly higher (p = .002; p = .04 after regression analysis) FIM cognitive scores on admission (48.30 vs 27.28) and discharge (64.74 vs 45.78) than those without a fracture. Finally, data available on rehabilitation admission were used to predict discharge outcomes. The percentage of explained variance for each outcome variable is as follows: discharge FIM motor score, 69.5%; discharge FIM cognitive score, 71.2%; rehabilitation LOS, 54.1%; rehabilitation charges, 61.1%. The most powerful predictor of LOS and charges was the admission FIM motor score (p < .001), followed by CT findings (p = .02) and age (p = .04). Information readily available on rehabilitation admission, particularly the FIM motor score, may be useful in predicting discharge FIM scores as well as utilization of medical rehabilitation resources. Earlier transfer to rehabilitation may result in higher functional status and lower rehabilitation charges, as well as lower acute hospitalization charges. The presence of extremity fractures encountered during a motor vehicle crash is associated with a more favorable outcome in TBI as evidenced by higher discharge FIM cognitive scores.
Gao, Boyan; Qin, Fang; Ding, Tingting; Chen, Yineng; Lu, Weiying; Yu, Liangli Lucy
2014-08-13
Ultraperformance liquid chromatography mass spectrometry (UPLC-MS), flow injection mass spectrometry (FIMS), and headspace gas chromatography (headspace-GC) combined with multivariate data analysis techniques were examined and compared in differentiating organically grown oregano from that grown conventionally. It is the first time that headspace-GC fingerprinting technology is reported in differentiating organically and conventionally grown spice samples. The results also indicated that UPLC-MS, FIMS, and headspace-GC-FID fingerprints with OPLS-DA were able to effectively distinguish oreganos under different growing conditions, whereas with PCA, only FIMS fingerprint could differentiate the organically and conventionally grown oregano samples. UPLC fingerprinting provided detailed information about the chemical composition of oregano with a longer analysis time, whereas FIMS finished a sample analysis within 1 min. On the other hand, headspace GC-FID fingerprinting required no sample pretreatment, suggesting its potential as a high-throughput method in distinguishing organically and conventionally grown oregano samples. In addition, chemical components in oregano were identified by their molecular weight using QTOF-MS and headspace-GC-MS.
Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue
Knott, Graham; Rosset, Stéphanie; Cantoni, Marco
2011-01-01
This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack. PMID:21775953
van Doorn, J.; Hollinger, T. C.; Oudega, B.
2001-01-01
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222
Ma, Sun-Ting; Ding, Guo-Jie; Huang, Xue-Wei; Wang, Zi-Wei; Wang, Li; Yu, Mei-Ling; Shi, Wen; Jiang, Yan-Ping; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing
2018-03-01
Avian colibacillosis is responsible for economic losses to poultry producers worldwide. To combat this, we aimed to develop an effective oral vaccine for chicken against O78 avian pathogenic Escherichia coli (APEC) infection through a Lactobacillus delivery system. Eight Lactobacillus strains isolated from the intestines of broiler chickens were evaluated based on their in vitro adherence ability to assess their potential as a delivery vector. Fimbrial subunit A (FimA) and outer-membrane protein C (OmpC) of APEC with and without fusion to dendritic cell-targeting peptide (DCpep) and microfold cell-targeting peptide (Co1) were displayed on the surface of Lactobacillus saerimneri M-11 and yielded vaccine groups (pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, respectively). The colonization of the recombinant strains in vivo was assessed and the immunogenicity and protective efficacy of orally administered recombinant strains in chickens were evaluated. The colonization of the recombinant strains in vivo revealed no significant differences between the recombinant and wild-type strains. Chickens orally administered with vaccine groups showed significantly higher levels of OmpC/FimA-specific IgG in serum and mucosal IgA in cecum lavage, nasal lavage and stool compared to the pPG/M-11 group. After challenge with APEC CVCC1553, better protective efficacy was observed in chickens orally immunized with pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, but no significant differences were observed between the two groups. Recombinant chicken-borne L. saerimneri M-11 showed good immunogenicity in chickens, suggesting that it may be a promising vaccine candidate against APEC infections. However, the activity of mammalian DCpep and Co1 was not significant in chickens.
Tillage-induced short-term soil organic matter turnover and respiration
NASA Astrophysics Data System (ADS)
Fiedler, Sebastian Rainer; Leinweber, Peter; Jurasinski, Gerald; Eckhardt, Kai-Uwe; Glatzel, Stephan
2016-09-01
Tillage induces decomposition and mineralisation of soil organic matter (SOM) by the disruption of macroaggregates and may increase soil CO2 efflux by respiration, but these processes are not well understood at the molecular level. We sampled three treatments (mineral fertiliser: MF; biogas digestate: BD; unfertilised control: CL) of a Stagnic Luvisol a few hours before and directly after tillage as well as 4 days later from a harvested maize field in northern Germany and investigated these samples by means of pyrolysis-field ionisation mass spectrometry (Py-FIMS) and hot-water extraction. Before tillage, the Py-FIMS mass spectra revealed differences in relative ion intensities of MF and CL compared to BD most likely attributable to the cattle manure used for the biogas feedstock and to relative enrichments during anaerobic fermentation. After tillage, the CO2 effluxes were increased in all treatments, but this increase was less pronounced in BD. We explain this by restricted availability of readily biodegradable carbon compounds and possibly an inhibitory effect of sterols from digestates. Significant changes in SOM composition were observed following tillage. In particular, lignin decomposition and increased proportions of N-containing compounds were detected in BD. In MF, lipid proportions increased at the expense of ammonia, ammonium, carbohydrates and peptides, indicating enhanced microbial activity. SOM composition in CL was unaffected by tillage. Our analyses provide strong evidence for significant short-term SOM changes due to tillage in fertilised soils.
NASA Astrophysics Data System (ADS)
Jacobs, Luc; Barroo, Cédric; Gilis, Natalia; Lambeets, Sten V.; Genty, Eric; Visart de Bocarmé, Thierry
2018-03-01
To make available atomic oxygen at the surface of a catalyst is the key step for oxidation reactions on Au-based catalysts. In this context, Au-Ag alloys catalysts exhibit promising properties for selective oxidation reactions of alcohols: low temperature activity and high selectivity. The presence of O(ads) and its effects on the catalytic reactivity is studied via the N2O dissociative adsorption and subsequent hydrogenation. Field emission techniques are particularly suited to study this reaction: Field Ion Microscopy (FIM) and Field Emission Microscopy (FEM) enable to image the extremity of sharp metallic tips, the size and morphology of which are close to those of one single catalytic particle. The reaction dynamics is studied in the 300-320 K temperature range and at a pressure of 3.5 × 10-3 Pa. The main results are a strong structure/reactivity relationship during N2O + H2 reaction over Au-8.8 at.%Ag model catalysts. Comparison of high-resolution FIM images of the clean sample and FEM images during reaction shows a sensitivity of the reaction to the local structure of the facets, independently of the used partial pressures of both N2O and H2. This suggests a localised dissociative adsorption step for N2O and H2 with the formation of a reactive interface around the {210} facets.
FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jongseok; Shin, Sooan; Teng, C.-H.
2005-09-02
The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved inmore » FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Varinderjit; Vadas, J.; Steinbach, T. K.
Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.
Lowthian, P; Disler, P; Ma, S; Eagar, K; Green, J; de Graaff, S
2000-10-01
To investigate whether the Australian National Sub-acute and Non-acute Patient Casemix Classification (SNAP) and Functional Independence Measure and Functional Related Group (Version 2) (FIM-FRG2) casemix systems can be used to predict functional outcome, and reduce the variance of length of stay (LOS) of patients undergoing rehabilitation after strokes. The study comprised a retrospective analysis of the records of patients admitted to the Cedar Court Healthsouth Rehabilitation Hospital for rehabilitation after stroke. The sample included 547 patients (83.3% of those admitted with stroke during this period). Patient data were stratified for analysis into the five SNAP or nine FIM-FRG2 groups, on the basis of the admission FIM scores and age. The AN-SNAP classification accounted for a 30.7% reduction of the variance of LOS, and 44.2% of motor FIM, and the FIM-FRG2 accounts for 33.5% and 56.4% reduction respectively. Comparison of the Cedar Court with the national AN-SNAP data showed differences in the LOS and functional outcomes of older, severely disabled patients. Intensive rehabilitation in selected patients of this type appears to have positive effects, albeit with a slightly longer period of inpatient rehabilitation. Casemix classifications can be powerful management tools. Although FIM-FRG2 accounts for more reduction in variance than SNAP, division into nine groups meant that some contained few subjects. This paper supports the introduction of AN-SNAP as the standard casemix tool for rehabilitation in Australia, which will hopefully lead to rational, adequate funding of the rehabilitation phase of care.
Nishioka, Shinta; Wakabayashi, Hidetaka; Nishioka, Emi; Yoshida, Tomomi; Mori, Natsumi; Watanabe, Riko
2016-05-01
Whether nutritional improvement correlates with functional recovery in convalescent stroke patients is unclear. This study was conducted to examine the relationship between nutritional improvement and recovery of activities of daily living among malnourished elderly stroke patients in the convalescent stage. This study used a cross-sectional study design. One hundred seventy-eight malnourished stroke patients aged 65 years and older from convalescent rehabilitation wards in Japan between April 2012 and December 2014 were included in the analyses. The participants were classified into three groups according to the Mini Nutritional Assessment Short-Form (MNA-SF) score at discharge (0 to 7 as no improvement, 8 to 11 as lesser improvement, and 12 to 14 as greater improvement). The primary outcome was functional independence measure (FIM) efficiency (FIM gain/length of hospital stay). The secondary outcomes were FIM gain and discharge outcome. One-way analysis of variance, χ(2) test, and Kruskal-Wallis test were performed for univariate analysis. Linear regression analysis was used to adjust for covariates such as age, sex, length of hospital stay, FIM (motor and cognitive) on admission, and lower-order items of MNA-SF. Binomial logistic analysis for discharge outcome (home/others) was performed to adjust for covariates such as age, sex, and FIM. Study participants included 85 men and 93 women with a mean age of 77 years. Based on MNA-SF, 16 were classified as no improvement, 113 as lesser improvement, and 49 as greater improvement. The median FIM efficiency and length of hospital stay were 0.27 points/day and 151.5 days, respectively. The greater improvement group had significantly higher FIM efficiency than the other groups (P<0.001). Home discharge rate was also higher in the GI group (P=0.014). Linear regression analysis for FIM efficiency indicated that mobility, neuropsychological problems, and weight loss, which were lower-order items of MNA-SF at discharge, were independent explanatory variables (R(2)=0.373; P<0.001). These findings suggest that nutritional improvement such as maintenance of body weight is associated with the efficient recovery of activities of daily living among malnourished elderly convalescent stroke patients. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
FIM measurement properties and Rasch model details.
Wright, B D; Linacre, J M; Smith, R M; Heinemann, A W; Granger, C V
1997-12-01
To summarize, we take issue with the criticisms of Dickson & Köhler for two main reasons: 1. Rasch analysis provides a model from which to approach the analysis of the FIM, an ordinal scale, as an interval scale. The existence of examples of items or individuals which do not fit the model does not disprove the overall efficacy of the model; and 2. the principal components analysis of FIM motor items as presented by Dickson & Köhler tends to undermine rather than support their argument. Their own analyses produce a single major factor explaining between 58.5 and 67.1% of the variance, depending upon the sample, with secondary factors explaining much less variance. Finally, analysis of item response, or latent trait, is a powerful method for understanding the meaning of a measure. However, it presumes that item scores are accurate. Another concern is that Dickson & Köhler do not address the issue of reliability of scoring the FIM items on which they report, a critical point in comparing results. The Uniform Data System for Medical Rehabilitation (UDSMRSM) expends extensive effort in the training of clinicians of subscribing facilities to score items accurately. This is followed up with a credentialing process. Phase 1 involves the testing of individual clinicians who are submitting data to determine if they have achieved mastery over the use of the FIM instrument. Phase 2 involves examining the data for outlying values. When Dickson & Köhler investigate more carefully the application of the Rasch model to their FIM data, they will discover that the results presented in their paper support rather than contradict their application of the Rasch model! This paper is typical of supposed refutations of Rasch model applications. Dickson & Köhler will find that idiosyncrasies in their data and misunderstandings of the Rasch model are the only basis for a claim to have disproven the relevance of the model to FIM data. The Rasch model is a mathematical theorem (like Pythagoras') and so cannot be disproven by empirical data once it has been deduced on theoretical grounds. Sometimes empirical data are not suitable for construction of a measure. When this happens, the routine fit statistics indicate the unsuitable segments of the data. Most FIM data do conform closely enough to the Rasch model to support generalizable linear measures. Science can advance!
McPhail, Steven M; Varghese, Paul N; Kuys, Suzanne S
2014-01-01
This study investigated cognitive functioning among older adults with physical debility not attributable to an acute injury or neurological condition who were receiving subacute inpatient physical rehabilitation. A cohort investigation with assessments at admission and discharge. Three geriatric rehabilitation hospital wards. Consecutive rehabilitation admissions (n = 814) following acute hospitalization (study criteria excluded orthopaedic, neurological, or amputation admissions). Usual rehabilitation care. The Functional Independence Measure (FIM) Cognitive and Motor items. A total of 704 (86.5%) participants (mean age = 76.5 years) completed both assessments. Significant improvement in FIM Cognitive items (Z-score range 3.93-8.74, all P < 0.001) and FIM Cognitive total score (Z-score = 9.12, P < 0.001) occurred, in addition to improvement in FIM Motor performance. A moderate positive correlation existed between change in Motor and Cognitive scores (Spearman's rho = 0.41). Generalized linear modelling indicated that better cognition at admission (coefficient = 0.398, P < 0.001) and younger age (coefficient = -0.280, P < 0.001) were predictive of improvement in Motor performance. Younger age (coefficient = -0.049, P < 0.001) was predictive of improvement in FIM Cognitive score. Improvement in cognitive functioning was observed in addition to motor function improvement among this population. Causal links cannot be drawn without further research.
Carlson, N E; Brenner, L A; Wierman, M E; Harrison-Felix, C; Morey, C; Gallagher, S; Ripley, D
2009-04-01
To investigate the association between hormone levels and functional status during acute TBI rehabilitation. Retrospective cohort study of 43 men with moderate-to-severe TBI admitted to an acute rehabilitation unit during a 1 year period. Labs were drawn on admission, including total and free testosterone (T), prolactin, adrenocorticotropin hormone (ACTH), cortisol, thyroid stimulating hormone (TSH), free thyroxine (fT4) and insulin-like growth factor (IGF-1). Functional Independence Measure (FIM) scores were obtained at admission and discharge. Associations between admission hormone levels and the main outcomes, admission and discharge FIM scores, were assessed using linear regression. Lower total and free T-levels at admission were associated with lower total FIM scores at admission (p < 0.038) and discharge (p < 0.046). Higher cortisol levels at admission were significantly associated with lower admission (p = 0.012) and discharge (p = 0.036) scores on the cognitive-FIM. Prolactin, TSH, fT4 and IGF-1 were not correlated with functional status. In men, lower total and free T-levels at admission to acute rehabilitation correlate with lower admission and discharge FIM scores. These data support the need for studies to investigate the impact of physiological testosterone therapy on outcomes during and post-rehabilitation.
Effects of obesity on rehabilitation outcomes after orthopedic trauma.
Vincent, Heather K; Seay, Amanda N; Vincent, Kevin R; Atchison, James W; Sadasivan, Kalia
2012-12-01
This study examined whether differences existed in inpatient rehabilitation outcomes and therapy participation in nonobese and obese patients with orthopedic trauma. This was a retrospective study of 294 consecutive patients admitted to an inpatient rehabilitation hospital. Main outcomes included participation in therapy sessions, Functional Independence Measure (FIM) ratings, walking distance and stair climb, length of stay, FIM efficiency (FIM score gain/length of stay), and discharge to home. Data were stratified by patient body mass index values (nonobese, <30 kg/m; or obese, ≥30 kg/m). There were no differences in therapy participation or length of stay between groups. Both total and motor FIM ratings at discharge were lower in obese patients compared with nonobese patients (P < 0.05). FIM efficiency was significantly lower in the obese than in the nonobese group (2.6 ± 1.5 vs. 3.1 ± 1.5 points gained per day; P = 0.05). Walking distance and stair climb ability were similar between groups by discharge. Even morbidly obese patients attained some improvement with independence in walking. Obese patients make significant functional improvement during rehabilitation, but at a lesser magnitude and rate as their nonobese counterparts. Even with morbid obesity, small but important functional gains can occur during rehabilitation for orthopedic trauma.
Destructive Single-Event Effects in Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.
2017-01-01
In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.
New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.
Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji
2015-05-01
Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin
2017-12-01
Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.
Short-term turnover of soil organic matter after tillage proven by Pyrolysis-field ionization MS
NASA Astrophysics Data System (ADS)
Fiedler, Sebastian; Jurasinski, Gerald; Leinweber, Peter; Glatzel, Stephan
2015-04-01
Knowledge about the composition and the turnover dynamics of soil organic matter (SOM) is crucial to the fertility of agricultural soils. Even short-term changes of SOM are of fundamental importance. Tillage changes the decomposition and the mineralisation of SOM. By disrupting macroaggregates, tillage induces an increased turnover and hampers the aggregation of SOM. As a consequence, mineralisation of SOM is stimulated which may imply an additional efflux of CO2 and N2O from soil. Pyrolysis-field ionization mass spectrometry (Py-FIMS) has been developed as a key method for SOM research. This powerful analytical tool allows a rapid, global and objective determination of the majority of chemical compound classes and is an appropriate method for the analysis of even small differences of biogeochemical matters. Hence, Py-FIMS may allow for a precise detection of the turnover of SOM and the involved compounds that are affected by tillage in the short-term. Py-FIMS measurements along with the determination of the CO2 and N2O effluxes from soil after tillage at the same site may give new insights into the compounds of SOM which are mineralised and consequently contribute to fundamental processes such as respiration, nitrification and denitrification. We applied Py-FIMS to soil samples from a stagnic Luvisol taken before and after tillage from a harvested maize field in Northern Germany. The samples were taken from two treatments amended with mineral fertiliser (MF) and biogas residues (BR), respectively, and also from an unfertilised control (UC). Tillage was conducted by disc harrowing, followed by mouldboard ploughing up to 30 cm. Simultaneously the soil efflux of CO2 and N2O was measured with a dynamic chamber technique. Before tillage, the mass spectra showed distinct differences in the relative ion intensities: the BR treatment showed much more volatilised matter during pyrolysis indicating an increased amount of SOM. Furthermore, in this treatment, the proportions of carbohydrates, peptides and N-heterocycles were smaller and those of lipids and sterols had larger values than in the other treatments, most likely attributable to the cattle manure used for the biogas feedstock and to relative enrichments during anaerobic fermentation. Only a few days after tillage significant changes in SOM composition were observed, especially in the BR treatment: the proportions of volatilised matter and the relative signal intensities of carbohydrates, phenols + lignin monomers, N-heterocycles and peptides increased, whereas those of lignin dimers, lipids and sterols decreased. In the MF treatment only an increase of lipid proportions at the expense of carbohydrates was observed. The decrease and the increase of carbohydrates in MF and BR, respectively, were reciprocally correlated with the cumulated CO2 efflux. The N2O efflux increased in MF and BR after tillage, but not in UC. Thus, we were able to show significant changes in the quality of SOM due to tillage confirming the sensitivity of Py-FIMS to detected even short-term changes in SOM composition that could be related to the release of gases from soil.
Nii, Maria; Maeda, Keisuke; Wakabayashi, Hidetaka; Nishioka, Shinta; Tanaka, Atsuko
2016-01-01
Malnutrition affects the activities of daily living (ADLs) in convalescent patients with cerebrovascular disorders. We investigated the relationship between nutritional improvement, energy intake at admission, and recovery of ADLs. We evaluated 67 patients with cerebrovascular disorders admitted to our rehabilitation hospital between April 2013 and April 2015. These patients received interventions from the rehabilitation nutritional support team according to the following criteria: weight loss of 2 kg or more and body mass index of 19 kg/m(2) or lower. Exclusion criteria included a body mass index of 25 kg/m(2) or higher, duration of intervention of less than 14 days, or transfer to an acute care hospital because of clinical deterioration. We assessed nutritional status using the Geriatric Nutritional Risk Index (GNRI) and ADL using the Functional Independence Measure (FIM) score, FIM gain, and FIM efficiency. The mean age of the patients was 78.7 ± 8.0 years. The numbers of patients in each category of cerebrovascular disorder were 39 with cerebral infarction, 16 with intracerebral hemorrhage, 8 with subarachnoid hemorrhage, and 4 others. Compared with the counterpart group, the group with an improvement in GNRI had a greater gain in FIM (median 17 and 20, respectively; P = .036) and a higher FIM efficiency (.14 and .22, respectively; P = .020). Multivariate stepwise regression analysis showed that an improvement in GNRI, increasing energy intake at admission, and intracerebral hemorrhage were associated independently with greater FIM efficiency. This study suggested that nutritional improvement and energy intake at admission are associated with recovery of ADL after cerebrovascular disorders. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions
Rashu, Rasheduzzaman; Begum, Yasmin Ara; Ciorba, Matthew A.; Hultgren, Scott J.; Qadri, Firdausi
2017-01-01
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens. PMID:28531220
Bindawas, Saad M; Mawajdeh, Hussam; Vennu, Vishal; Alhaidary, Hisham
2016-08-01
Functional outcomes, length of stay (LOS), and discharge disposition have become frequent outcome measures among stroke patients after rehabilitation programs. To examine the trends of changes in functional outcomes, LOS, and discharge disposition in stroke patients discharged from an inpatient rehabilitation facility.All patients (n = 432) were admitted to a tertiary inpatient rehabilitation hospital in Riyadh, Saudi Arabia with stroke diagnoses from November 2008 to December 2014. The functional independence measure (FIM) instrument used to assess the patient's functional status. The LOS was measured as the number of days the patients spent in the hospital from the day of admission to the day of discharge. The FIM efficiency was used to measure the patient's rehabilitation progress. All of the variables of the prospectively collected data were retrospectively analyzed.There were significant changes by years in the total FIM ranging from 23 to 29 (P < 0.001) and subscores: FIM motor ranging from 20 to 26 (P < 0.001); FIM cognitive ranging from 1.8 to 3 (P < 0.001). The mean LOS remained constant, from 52 days in 2011 to 40 days in 2013. The FIM efficiency was stable between years and ranged from 0.52 to 0.72. The rates of discharge (to home) were significantly unstable and ranged from 100% in 2010 and 2011 to 92% in 2013.Our results suggest that functional outcomes in patients with stroke have improved after an inpatient stroke rehabilitation program between 2008 and 2014 even with a constant LOS. Discharge disposition has remained unstable over this period. To improve the efficiency of the stroke rehabilitation program in Saudi Arabia, there is a need to decrease the LOS and emphasize a comprehensive interdisciplinary approach.
Toh Yoon, Ezekiel Wong; Hirao, Jun; Minoda, Naoko
2016-12-01
The objective of this study was to investigate the outcomes of rehabilitation (with swallowing therapy) after percutaneous endoscopic gastrostomy (PEG) in patients with neurogenic dysphagia. Forty-seven patients (29 males and 18 females) who were transferred to the rehabilitation ward of our hospital after receiving PEG tube placements during a 5-year period were enrolled in this study. Patients' demographic data, comorbidities, nutritional statuses, and laboratory biomarkers before the PEG procedure were collected. Rehabilitation (with swallowing therapy) outcomes such as changes in Functional Independence Measure (FIM) and dysphagia grade (using Fujishima's classification) were evaluated. Significant improvements in FIM scores and dysphagia grades after rehabilitation therapy were observed. Twenty-seven patients (57.4 %) were discharged with some oral intake and 10 patients (21.3%) were discharged PEG-free (defined as the PEG tube not being used or removed). Factors associated with being discharged with some oral intake were increase in FIM score (adjusted OR 1.10, 95 % CI 1.02-1.19) and higher baseline dysphagia grade (adjusted OR 1.88, 95 % CI 1.04-3.39). Factors associated with being discharged PEG-free were longer rehabilitation period (OR 1.03, 95 % CI 1.01-1.04), absence of respiratory disorders (OR 0.12, 95 % CI 0.03-0.35), and increase in FIM score (OR 1.17, 95 % CI 1.08-1.28). Changes in dysphagia grade were significantly correlated with changes in FIM score (r 2 = 0.46, p < 0.0001), indicating that improvement of FIM scores through general rehabilitation therapy may play an important role in the treatment of dysphagia.
Capisizu, Ana; Aurelian, Sorina; Zamfirescu, Andreea; Omer, Ioana; Haras, Monica; Ciobotaru, Camelia; Onose, Liliana; Spircu, Tiberiu; Onose, Gelu
2015-01-01
To assess the impact of socio-demographic and comorbidity factors, and quantified depressive symptoms on disability in inpatients. Observational cross-sectional study, including a number of 80 elderly (16 men, 64 women; mean age 72.48 years; standard deviation 9.95 years) admitted in the Geriatrics Clinic of "St. Luca" Hospital, Bucharest, between May-July, 2012. We used the Functional Independence Measure, Geriatric Depression Scale and an array of socio-demographic and poly-pathology parameters. Statistical analysis included Wilcoxon and Kruskal-Wallis tests for ordinal variables, linear bivariate correlations, general linear model analysis, ANOVA. FIM scores were negatively correlated with age (R=-0.301; 95%CI=-0.439 -0.163; p=0.007); GDS scores had a statistically significant negative correlation (R=-0.322; 95% CI=-0.324 -0.052; p=0.004) with FIM scores. A general linear model, including other variables (gender, age, provenance, matrimonial state, living conditions, education, respectively number of chronic illnesses) as factors, found living conditions (p=0.027) and the combination of matrimonial state and gender (p=0.004) to significantly influence FIM scores. ANOVA showed significant differences in FIM scores stratified by the number of chronic diseases (p=0.035). Our study objectified the negative impact of depression on functional status; interestingly, education had no influence on FIM scores; living conditions and a combination of matrimonial state and gender had an important impact: patients with living spouses showed better functional scores than divorced/widowers; the number of chronic diseases also affected the FIM scores: lower in patients with significant polypathology. These findings should be considered when designing geriatric rehabilitation programs, especially for home--including skilled--cares.
Pham, Kelly L D; Bjornson, Kristie F; Osorio, Marisa; Whitlock, Kathryn B; Massagli, Teresa L
2018-06-01
The incidence of contact isolation for multidrug-resistant organisms is increasing in acute hospitals and inpatient rehabilitation units alike. There is limited evidence on the effect of contact isolation on functional outcomes during inpatient rehabilitation. To determine whether the use of a modified contact isolation protocol (MCI) resulted in noninferior functional outcomes compared with children without contact isolation (NCI) on inpatient rehabilitation. This is a retrospective noninferiority study. One academically affiliated pediatric inpatient rehabilitation unit located in a children's hospital. All children with any diagnosis admitted to inpatient rehabilitation from January 1, 2007, to December 31, 2014. We compared functional outcomes for 2 groups of children. Primary outcome measures included the Functional Independence Measure for Children (WeeFIM) efficiency and the change in the Developmental Functional Quotient (DFQ) for the WeeFIM. Noninferiority margins of 0.63 for the WeeFIM efficiency and 0.092 for the change in DFQ for the WeeFIM were used. There were a total of 949 patients of whom 899 were NCI, 48 MCI, and 2 excluded due to missing information. Patients with MCI had functional outcomes that were noninferior to those with NCI including the WeeFIM efficiency (mean difference 0.002, 95% CI -0.38 to 0.404) and the change in DFQ for the WeeFIM (mean difference -0.05, 95% CI -0.058 to 0.003). The modified contact isolation protocol, having resulted in noninferior functional outcomes in inpatient rehabilitation may provide adequate contact isolation while allowing for noninferior functional outcomes. This may be a guide in the face of an ever-increasing need for contact isolation. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Functional Gain After Inpatient Stroke Rehabilitation: Correlates and Impact on Long-Term Survival.
Scrutinio, Domenico; Monitillo, Vincenzo; Guida, Pietro; Nardulli, Roberto; Multari, Vincenzo; Monitillo, Francesco; Calabrese, Gianluigi; Fiore, Pietro
2015-10-01
Prediction of functional outcome after stroke rehabilitation (SR) is a growing field of interest. The association between SR and survival still remains elusive. We sought to investigate the factors associated with functional outcome after SR and whether the magnitude of functional improvement achieved with rehabilitation is associated with long-term mortality risk. The study population consisted of 722 patients admitted for SR within 90 days of stroke onset, with an admission functional independence measure (FIM) score of <80 points. We used univariable and multivariable linear regression analyses to assess the association between baseline variables and FIM gain and univariable and multivariable Cox analyses to assess the association of FIM gain with long-term mortality. Age (P<0.001), marital status (P=0.003), time from stroke onset to rehabilitation admission (P<0.001), National Institutes of Health Stroke Scale score at rehabilitation admission (P<0.001), and aphasia (P=0.021) were independently associated with FIM gain. The R2 of the model was 0.275. During a median follow-up of 6.17 years, 36.9% of the patients died. At multivariable Cox analysis, age (P<0.0001), coronary heart disease (P=0.018), atrial fibrillation (P=0.042), total cholesterol (P=0.015), and total FIM gain (P<0.0001) were independently associated with mortality. The adjusted hazard ratio for death significantly decreased across tertiles of increasing FIM gain. Several factors are independently associated with functional gain after SR. Our findings strongly suggest that the magnitude of functional improvement is a powerful predictor of long-term mortality in patients admitted for SR. © 2015 American Heart Association, Inc.
Surface Modification Technique of Cathode Materials for
NASA Astrophysics Data System (ADS)
Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan
Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.
Dissecting anode swelling in commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ningxin; Tang, Huaqiong
2012-11-01
An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.
Comparison of technologies for nano device prototyping with a special focus on ion beams: A review
NASA Astrophysics Data System (ADS)
Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A. D.; Hövel, H.
2017-03-01
Nano device prototyping (NDP) is essential for realizing and assessing ideas as well as theories in the form of nano devices, before they can be made available in or as commercial products. In this review, application results patterned similarly to those in the semiconductor industry (for cell phone, computer processors, or memory) will be presented. For NDP, some requirements are different: thus, other technologies are employed. Currently, in NDP, for many applications direct write Gaussian vector scan electron beam lithography (EBL) is used to define the required features in organic resists on this scale. We will take a look at many application results carried out by EBL, self-organized 3D epitaxy, atomic probe microscopy (scanning tunneling microscope/atomic force microscope), and in more detail ion beam techniques. For ion beam techniques, there is a special focus on those based upon liquid metal (alloy) ion sources, as recent developments have significantly increased their applicability for NDP.
Nanoscale visualization of redox activity at lithium-ion battery cathodes.
Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu
2014-11-17
Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...
Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.
2015-01-01
An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)
2014-01-01
Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy
2014-07-01
Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fusion enhancement at near and sub-barrier energies in 19O + 12C
Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; ...
2016-12-12
Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.
Helium ion microscopy of graphene: beam damage, image quality and edge contrast
NASA Astrophysics Data System (ADS)
Fox, D.; Zhou, Y. B.; O'Neill, A.; Kumar, S.; Wang, J. J.; Coleman, J. N.; Duesberg, G. S.; Donegan, J. F.; Zhang, H. Z.
2013-08-01
A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 1013 He+ cm-2 was established, with both graphene samples becoming highly defective at doses over 5 × 1014 He+ cm-2. The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution.
NASA Astrophysics Data System (ADS)
Zhang, L.; Grell, G. A.; McKeen, S. A.; Ahmadov, R.
2017-12-01
The global Flow-following finite-volume Icosahedra Model (FIM), which was developed in the Global Systems Division of NOAA/ESRL and the Finite-volume cubed-sphere dynamical core (FV3) developed by GFDL, have been coupled online with aerosol and gas-phase chemistry schemes (FIM-Chem and FV3-Chem). Within the aerosol and chemistry modules, the models handle wet and dry deposition, chemical reactions, aerosol direct and semi-direct effect, anthropogenic emissions, biogenic emissions, biomass burning, dust and sea-salt emissions. They are able to provide chemical weather predictions at various spatial resolutions and with different levels of complexity. FIM-Chem is also able to quantify the impact of aerosol on numerical weather predictions (NWP). Currently, three different chemical schemes have been coupled with the FIM model. The simplest aerosol modules are from the GOCART model with its simplified parameterization of sulfur/sulfate chemistry. The photochemical gas-phase mechanism RACM was included to determine the impact of additional complexity on the aerosol and gas simulations. We have also implemented a more sophisticated aerosol scheme that includes secondary organic aerosols (SOA) based on the VBS approach. The model performance has been evaluated by comparing with the ATom-1 observations. FIM-Chem is able to reproduce many observed aerosol and gas features very well. A five-day NWP on 120 km horizontal resolution using FIM-Chem has been done for the end of July, 2016 to quantify the impact of the three different chemical schemes on weather forecasts. Compared to a meteorological run that excludes the model chemical schemes, and is driven only by background AODs from the GFS model, the 5-day forecast results shows significant impact on weather predictions when including the prognostic aerosol schemes. This includes convective precipitation, surface temperature, and 700 hPa air temperature. We also use FIM-Chem to investigate the 2012 South American Biomass Burning Analysis (SAMBBA) campaign period to determine whether more complex chemistry provides benefits for global numerical weather prediction.
Shiraishi, Nariaki; Suzuki, Yusuke; Matsumoto, Daisuke; Jeong, Seungwon; Sugiyama, Motoya; Kondo, Katsunori
2017-03-01
To investigate whether self-exercise programs for patients after stroke contribute to improved activities of daily living (ADL) at hospital discharge. Retrospective, observational, propensity score (PS)-matched case-control study. General hospitals. Participants included patients after stroke (N=1560) hospitalized between January 3, 2006, and December 26, 2012, satisfying the following criteria: (1) data on age, sex, duration from stroke to hospital admission, length of stay, FIM score, modified Rankin Scale (mRS) score, Glasgow Coma Scale score, Japan Stroke Scale score, and self-exercise program participation were available; and (2) admitted within 7 days after stroke onset, length of stay was between 7 and 60 days, prestroke mRS score was ≤2, and not discharged because of FIM or mRS exacerbation. A total of 780 PS-matched pairs were selected for each of the self-exercise program and no-self-exercise program groups. Self-exercise program participation. At discharge, FIM motor score, FIM cognitive score, FIM motor score gain (discharge value - admission value), FIM motor score gain rate (gain/length of stay), a binary variable divided by the median FIM motor score gain rate (high efficiency or no-high efficiency), and mRS score. Patients were classified into a self-exercise program (n=780) or a no-self-exercise program (n=780) group. After matching, there were no significant between-group differences, except motor system variables. The receiver operating characteristic curve for PS had an area under the curve value of .71 with a 95% confidence interval of .68 to .73, and the model was believed to have a relatively favorable fit. A logistic regression analysis of PS-matched pairs suggested that the self-exercise program was effective, with an overall odds ratio for ADL (high efficiency or no-high efficiency) of 2.2 (95% confidence ratio, 1.75-2.70). SEPs may contribute to improving ADL. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mahmoud, Husam; Qannam, Hazem; Mortenson, Ben
2017-01-01
Objectives 1) To describe functional status, length of stay (LOS), and time to rehabilitation admission trends. 2) To identify independent predictors of motor function following rehabilitation for traumatic and nontraumatic spinal cord injury (SCI). Participants Adult patients with SCI discharged from inpatient rehabilitation between 2009–2014. Design Retrospective cohort study. Setting Spinal injury rehabilitation unit at the King Fahad Medical City, Riyadh, Saudi Arabia. Methods From retrospective chart reviews of 312 traumatic and 106 nontraumatic SCI, we extracted information on time from injury to rehabilitation admission, rehabilitation LOS, and Functional Independence Measure (FIM) score (admission and discharge). Additionally we collected information on SCI patients’ demographics and injury characteristics. Hierarchical regression was employed to investigate variables associated with FIM motor score at discharge for traumatic SCI and nontraumatic SCI. Outcome measures FIM motor score measured at discharge. Results Mean and median days from injury to rehabilitation admission were not significantly different for traumatic SCI (377±855, 150) and nontraumatic SCI (288±403, 176). Mean and median days for rehabilitation LOS were significantly longer for traumatic SCI (85±60, 70) compared to nontraumatic SCI (64±59, 49) (p=…..). FIM scores improved significantly from admission to discharge in both groups. For individuals with traumatic SCI, after accounting for admission FIM motor score, tetraplegia and time from injury to rehabilitation, admission had a significant but small negative association with discharge FIM motor score. For individuals with nontraumatic SCI, increasing age and AIS score of A or B had a significant negative association with discharge FIM motor score. LOS in rehabilitation was not a significant contributor for either model. Conclusions Decreasing the time from injury to rehabilitation admission may improve outcomes for those with traumatic SCI. Since time spent in rehabilitation was shorter than most other countries, a change in practice in this area may be warranted. Developing new strategies to improve outcomes for older patients with nontraumatic SCI would also be beneficial. PMID:28139661
Marko, Victoria A; Kilmury, Sara L N; MacNeil, Lesley T; Burrows, Lori L
2018-05-18
Type IV pili are expressed by a wide range of prokaryotes, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The pilus is composed mainly of major pilin subunits while the low abundance minor pilins FimU-PilVWXE and the putative adhesin PilY1 prime pilus assembly and are proposed to form the pilus tip. The minor pilins and PilY1 are encoded in an operon that is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 was proposed to be a mechanosensory component that-in conjunction with minor pilins-triggers up-regulation of acute virulence phenotypes upon surface attachment. Here, we investigated the link between the minor pilins/PilY1 and virulence. pilW, pilX, and pilY1 mutants had reduced virulence towards Caenorhabditis elegans relative to wild type or a major pilin mutant, implying a role in pathogenicity that is independent of pilus assembly. We hypothesized that loss of specific minor pilins relieves feedback inhibition on FimS-AlgR, increasing transcription of the AlgR regulon and delaying C. elegans killing. Reporter assays confirmed that FimS-AlgR were required for increased expression of the minor pilin operon upon loss of select minor pilins. Overexpression of AlgR or its hyperactivation via a phosphomimetic mutation reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants required FimS-AlgR expression and activation. We propose that PilY1 and the minor pilins inhibit their own expression, and that loss of these proteins leads to FimS-mediated activation of AlgR that suppresses expression of acute-phase virulence factors and delays killing. This mechanism could contribute to adaptation of P. aeruginosa in chronic lung infections, as mutations in the minor pilin operon result in the loss of piliation and increased expression of AlgR-dependent virulence factors-such as alginate-that are characteristic of such infections.
Functional level during the first 2 years after moderate and severe traumatic brain injury.
Sandhaug, Maria; Andelic, Nada; Langhammer, Birgitta; Mygland, Aase
2015-01-01
Long-term outcomes after TBI are examined to a large extent, but longitudinal studies with more than 1-year follow-up time after injury have been fewer in number. The course of recovery may vary due to a number of factors and it is still somewhat unclear which factors are contributing. The aim of this study was to describe the functional level at four time points up to 24 months after traumatic brain injury (TBI) and to evaluate the predictive impact of pre-injury and injury-related factors. A cohort study. Outpatient. Sixty-five patients with moderate (n = 21) or severe (n = 44) TBI. The patients with TBI were examined with Functional Independence Measure (FIM) and Glasgow Outcome Scale Extended (GOSE) at 3 months, 12 months and 24 months after injury. Possible predictors were analysed in a regression model using FIM total score at 24 months as the outcome measure. FIM scores improved significantly from rehabilitation unit discharge to 24 months after injury, with peak levels at 3 and 24 months after injury (p < 0.001), for the whole TBI group and the group with severe TBI. The moderate TBI group did not show significant FIM score improvement during this time period. GOSE scores for the whole group and the moderate group improved significantly over time, but the severe group did not. FIM at admission to the rehabilitation unit and GCS score at admission to the rehabilitation unit were closest to being significant predictors of FIM total scores 24 months after injury (B = 0.265 and 2.883, R(2 )= 0.39, p = 0.073, p = 0.081). FIM levels improved during the period from rehabilitation unit discharge to 3 months follow-up; thereafter, there was a 'plateauing' of recovery. In contrast, GOSE 'plateauing' of recovery was at 12 months. The study results may indicate that two of the most used outcome measures in TBI research are more relevant for assessment of the functional recovery in a sub-acute phase than in later stages of TBI recovery.
Inpatient rehabilitation performance of patients with paraneoplastic cerebellar degeneration.
Fu, Jack B; Raj, Vishwa S; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S; Bruera, Eduardo
2014-12-01
To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Retrospective review. Referral-based hospitals. Cancer rehabilitation inpatients (N=7) admitted to 3 different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration. Medical records were retrospectively analyzed for demographic, laboratory, medical, and functional data. FIM. All 7 patients were white women (median age, 62y). Primary cancers included ovarian carcinoma (n=2), small cell lung cancer (n=2), uterine carcinoma (n=2), and invasive ductal breast carcinoma (n=1). Mean admission total FIM score was 61±23.97. Mean discharge total FIM score was 73.6±29.35. The mean change in total FIM score was 12.6 (P=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was .73. Of the 7 patients, 5 (71%) were discharged home, 1 (14%) was discharged to a nursing home, and 1 (14%) was transferred to the primary acute care service. To our knowledge, this is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements in inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Inpatient Rehabilitation Performance of Patients with Paraneoplastic Cerebellar Degeneration
Fu, Jack B.; Raj, Vishwa S.; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S.; Bruera, Eduardo
2014-01-01
Objective To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Design Retrospective Review Setting Three tertiary referral based hospitals. Interventions Medical records were retrospectively analyzed for demographic, laboratory, medical and functional data. Main Outcome Measure Functional Independence Measure (FIM) Participants Cancer rehabilitation inpatients admitted to three different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration (n=7). Results All 7 patients were white females. Median age was 62. Primary cancers included ovarian carcinoma (2), small cell lung cancer (2), uterine carcinoma (2), and invasive ductal breast carcinoma. Mean admission total FIM score was 61.0 (SD=23.97). Mean discharge total FIM score was 73.6 (SD=29.35). The mean change in total FIM score was 12.6 (p=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was 0.73. 5/7 (71%) patients were discharged home. 1/7 (14%) was discharged to a nursing home. 1/7 (14%) transferred to the primary acute care service. Conclusions This is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements on inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. PMID:25051460
Impact of the Holocaust on the Rehabilitation Outcome of Older Patients Sustaining a Hip Fracture.
Mizrahi, Eliyahu H; Lubart, Emilia; Heymann, Anthony; Leibovitz, Arthur
2017-04-01
Holocaust survivors report a much higher prevalence of osteoporosis and fracture in the hip joint compared to those who were not Holocaust survivors. To evaluate whether being a Holocaust survivor could affect the functional outcome of hip fracture in patients 64 years of age and older undergoing rehabilitation. A retrospective cohort study compromising 140 consecutive hip fracture patients was conducted in a geriatric and rehabilitation department of a university-affiliated hospital. Being a Holocaust survivor was based on registry data. Functional outcome was assessed by the Functional Independence Measure (FIM)TM at admission and discharge from the rehabilitation ward. Data were analyzed by t-test, chi-square test, and linear regression analysis. Total and motor FIM scores at admission (P = 0.004 and P = 0.006, respectively) and total and motor FIM gain scores at discharge (P = 0.008 and P = 0.004 respectively) were significantly higher in non-Holocaust survivors compared with Holocaust survivors. A linear regression analysis showed that being a Holocaust survivor was predictive of lower total FIM scores at discharge (β = -0.17, P = 0.004). Hip fracture in Holocaust survivors showed lower total, motor FIM and gain scores at discharge compared to non-Holocaust survivor patients. These results suggest that being a Holocaust survivor could adversely affect the rehabilitation outcome following fracture of the hip and internal fixation.
Multiple sclerosis rehabilitation outcomes: analysis of a national casemix data set from Australia.
Khan, F; Turner-Stokes, L; Stevermuer, T; Simmonds, F
2009-07-01
To examine the outcomes of inpatient rehabilitation for persons with multiple sclerosis (pwMS), using the Australian Rehabilitation Outcomes Centre (AROC) database. Deidentified data from the AROC database were analyzed for all rehabilitation admissions during 2003-2007, using four classes for functional level. The outcomes included Functional Independence Measure (FIM) scores and efficiency, hospital length of stay (LOS), and discharge destination. Of 1010 case episodes, 70% were women, admitted from home (n = 851) and discharged into the community (n = 890), and 97% (n = 986) were in the higher three classes for functional level (classes 216, 217, and 218). Majority of the more disabled pwMS were treated in the public hospital system, with a longer LOS compared with private facilities (P < 0.001). The FIM for classes 216-218 showed significant functional improvement during the admission (P < 0.001), and those in higher classes showed less change (likely due to higher FIM admission scores). FIM efficiency was significantly higher in class 217 than other classes (P < 0.001). The year-on-year trend was toward reducing hospital LOS and FIM efficiency, but these did not reach significance (P = 0.107, P = 0.634). The AROC data set is useful for describing rehabilitation outcomes for pwMS. However, additional information needs to be collected to evaluate nature of services provided and service implications.
Early rehabilitation outcome in patients with middle cerebral artery stroke.
Balaban, Birol; Tok, Fatih; Yavuz, Ferdi; Yaşar, Evren; Alaca, Rıdvan
2011-07-12
Although important data on the prognosis and rehabilitation outcome in stroke patients have been reported, data on functional recovery according to stroke subtypes are limited. This retrospective study aimed to evaluate functional outcome in patients with middle cerebral artery (MCA) stroke-the most common subtype of ischemic stroke. The records of stroke patients that underwent the rehabilitation program at our brain injury rehabilitation service between January 2007 and December 2008 were reviewed, and those with MCA stroke were included in the study. Patient demographic and clinical data, and Barthel Index (BI) and Functional Independence Measure (FIM) scores at admission and discharge were collected. The study included 80 MCA stroke patients with a mean age of 63.54 years. FIM and BI scores improved significantly post rehabilitation (P<0.05). Age was negatively correlated with both BI and FIM scores at admission and discharge. Length of stay was not correlated with improvement in BI or FIM scores during hospitalization. The patients that had ≤1 month of inpatient rehabilitation had similar outcomes as those that had >1 month of inpatient rehabilitation (P>0.05). Length of time after stroke onset was not correlated with BI or FIM scores at admission. Regardless of initial functional status, prediction of discharge functional status was misleading. Physiatrists should keep in mind that functional improvement does not always increase with duration of inpatient therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis
Hannan, Thomas J.; Mysorekar, Indira U.; Chen, Swaine L.; Walker, Jennifer N.; Jones, Jennifer M.; Pinkner, Jerome S.; Hultgren, Scott J.; Seed, Patrick C.
2013-01-01
Summary Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved PAI contributes to UPEC pathogenesis in acute cystitis. In the human UPEC strain UTI89, spontaneous excision of PAI IIUTI89 disrupts the adjacent leuX tRNA locus. Loss of wild-type leuX-encoded tRNA5Leu significantly delayed, but did not eliminate, FimB recombinase-mediated phase variation of type 1 pili. FimX, an additional FimB-like, leuX-independent recombinase, was also found to mediate type 1 pili phase variation. However, whereas FimX activity is relatively slow in vitro, it is rapid in vivo as a non-piliated strain lacking the other fim recombinases rapidly expressed type 1 pili upon experimental infection. Finally, we found that disruption of leuX, but not loss of PAI IIUTI89 genes, reduced bladder epithelial invasion and intracellular proliferation, independent of type 1 piliation. These findings indicate that the predominant mechanism for preservation of PAI IIUTI89 during the establishment of acute cystitis is maintenance of wild-type leuX, and not PAI IIUTI89 gene content. PMID:18036139
Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3
Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...
2015-04-01
The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less
Lin, Lily Yun; Tiemann, Kristin M; Li, Yali; Pinkner, Jerome S; Walker, Jennifer N; Hultgren, Scott J; Hunstad, David A; Wooley, Karen L
2012-03-07
Amphiphilic block copolymer nanoparticles are conjugated with uropathogenic Escherichia coli type 1 pilus adhesin FimH(A) through amidation chemistry to enable bladder epithelial cell binding and internalization of the nanoparticles in vitro. © 2012 American Chemical Society
SPM observation of nano-dots induced by slow highly charged ions
NASA Astrophysics Data System (ADS)
Nakamura, Nobuyuki; Terada, Masashi; Nakai, Yoichi; Kanai, Yasuyuki; Ohtani, Shunsuke; Komaki, Ken-ichiro; Yamazaki, Yasunori
2005-05-01
We have observed nano-dots on a highly oriented pyrolytic graphite (HOPG) surface produced by highly charged ion impacts with a scanning probe microscope. In order to clarify the role of potential and kinetic energies in surface modification, we have measured the kinetic energy and incident ion charge dependences of the dot size. The results showed that the potential energy or the incident ion charge has strong influence on the surface modification rather than the kinetic energy.
Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.
Gutierrez-Urrutia, Ivan
2017-01-01
We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi
2015-05-01
A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.
Microscopic dynamics of charge separation at the aqueous electrochemical interface.
Kattirtzi, John A; Limmer, David T; Willard, Adam P
2017-12-19
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.
Microscopic dynamics of charge separation at the aqueous electrochemical interface
Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.
2017-01-01
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368
Determining transport coefficients for a microscopic simulation of a hadron gas
NASA Astrophysics Data System (ADS)
Pratt, Scott; Baez, Alexander; Kim, Jane
2017-02-01
Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.
Petrocelli, Silvana; Arana, Maite R; Cabrini, Marcela N; Casabuono, Adriana C; Moyano, Laura; Beltramino, Matías; Moreira, Leandro M; Couto, Alicia S; Orellano, Elena G
2016-12-01
Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.
Same But Different: FIM Summary Scores May Mask Variability in Physical Functioning Profiles.
Fisher, Steve R; Middleton, Addie; Graham, James E; Ottenbacher, Kenneth J
2018-02-08
To examine how similar summary scores of physical functioning using the FIM can represent different patient clinical profiles. Retrospective cohort study. Inpatient rehabilitation facilities. Medicare fee-for-service beneficiaries (N=765,441) discharged from inpatient rehabilitation. Not applicable. We used patients' scores on items of the FIM to quantify their level of independence on both self-care and mobility domains. We then identified patients as requiring "no physical assistance" at discharge from inpatient rehabilitation by using a rule and score-based approach. In those patients with FIM self-care and mobility summary scores suggesting no physical assistance needed, we found that physical assistance was in fact needed frequently in bathroom-related activities (eg, continence, toilet and tub transfers, hygiene, clothes management) and with stairs. It was not uncommon for actual performance to be lower than what may be suggested by a summary score of those domains. Further research is needed to create clinically meaningful descriptions of summary scores from combined performances on individual items of physical functioning. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik
2015-12-01
We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.
2015-06-01
The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.
A unifying approach to lattice dynamical and electronic properties of solids
NASA Astrophysics Data System (ADS)
Falter, C.
1988-06-01
A unified analysis of lattice dynamical and electronic properties of solids with special emphasis on the interaction between electrons and phonons is presented. The article is roughly divided into two parts reflecting different points of view. The density response of the electrons provides the link between these parts. In the first part, the microscopic theory in terms of the density response in crystals is discussed. Relations are pointed out between the density response approach and the density functional theory. The latter is used for a representation of the exchange-correlation interaction and the microscopic force constants. Relevant methods, as recently proposed by various authors for the calculation of the density response in inhomogeneous solids are discussed. Particular attention is paid to the development of a renormalized response description. Applications of this method to lattice dynamical and electronic properties are presented. In the second part an alternative physical concept, the quasi-ion approach, is outlined. This concept is shown to provide a microscopic basis for electronic charge localization in crystals and proves the importance of the correlation between crystal symmetry and many-body effects. Is is derived that within linear response theory an appropriate decomposition of the valence charge density leads uniquely to a spatially localized density contribution at the individual ion which follows its motion rigidly. The composite consisting of this partial density and the ion core is taken to be an individual entity, denoted as quasi-ion, from which the crystal is built up. In a certain sense this is a generalization of Ziman's concept of neutral pseudo-atoms being approximately valid in simple metals. New insight into the bonding mechanism and charge relaxation processes is shown to follow from this concept. In particular, we discuss the covalent, ionic and metallic bonding mechanisms, using the localized picture provided by the partial densities, on the same basis. The quasi-ion approach is also applied to the calculation of phonon-induced charge density redistributions and to the construction of a simplified formulation of microscopic lattice dynamics. Investigations of the phonon dispersion for different bonding types are given within a rigid quasi-ion model and extensions of this model are outlined. Among other things, these calculations indicate that bonding dynamics of (covalent) molecules and crystals can be described by relative rotations of the quasi-ions under the condition of rotational invariance of the system. Finally, possible applications of the quasi-ion concept to an approximate formulation of anharmonic lattice dynamics and the interaction between electrons and phonons are discussed. A numerical investigation of this interaction is presented and compared with the results from the rigid-ion model. As a consequence of the quasi-ion concept a consistent calculation of the phonon dispersion, the electronic band structure and the electron-phonon interaction becomes possible.
Kose, E; Hirai, T; Seki, T; Hidaka, S; Hamamoto, T
2018-05-16
Anticholinergic drugs are associated with risks of falls, confusion and cognitive dysfunction. However, the effect of anticholinergic drug use on rehabilitation outcomes after a stroke is poorly documented. We therefore aimed to establish whether the anticholinergic load was associated with functional recovery among geriatric patients convalescing after stroke. Consecutive geriatric stroke patients admitted and discharged from a convalescence rehabilitation ward between 2010 and 2016 were included in this retrospective cohort study. Anticholinergic load was assessed by the Anticholinergic Risk Scale (ARS), and functional recovery was assessed by the Functional Independence Measure (FIM). The primary outcome was cognitive FIM (FIM-C) gain, but we also assessed the interaction of other putative factors identified from univariate analysis. Multivariate analyses were performed, adjusting for confounding factors. We included 418 participants (171 males, 247 females) with a median age of 78 years (interquartile range, 72-84 years). Multiple regression analysis revealed that ARS change, length of stay, and epilepsy were independently and negatively correlated with cognitive FIM gain. Multiple logistic regression analysis indicated that the "Comprehension" and "Memory" items of the cognitive FIM gain were independently and negatively associated with anticholinergic load. A causal relationship cannot be established, but increased ARS scores during hospitalization may predict limited cognitive functional improvement in geriatric patients after stroke. Alternatively, cognitive impairment may lead to increased use of anticholinergic drugs. © 2018 John Wiley & Sons Ltd.
Ikenaga, Yasunori; Nakayama, Sayaka; Taniguchi, Hiroki; Ohori, Isao; Komatsu, Nahoko; Nishimura, Hitoshi; Katsuki, Yasuo
2017-05-01
Percutaneous endoscopic gastrostomy may be performed in dysphagic stroke patients. However, some patients regain complete oral intake without gastrostomy. This study aimed to investigate the predictive factors of intake, thereby determining gastrostomy indications. Stroke survivors admitted to our convalescent rehabilitation ward who underwent gastrostomy or nasogastric tube placement from 2009 to 2015 were divided into 2 groups based on intake status at discharge. Demographic data and Functional Independence Measure (FIM), Dysphagia Severity Scale (DSS), National Institutes of Health Stroke Scale, and Glasgow Coma Scale (GCS) scores on admission were compared between groups. We evaluated the factors predicting intake using a stepwise logistic regression analysis. Thirty-four patients recovered intake, whereas 38 achieved incomplete intake. Mean age was lower, mean body mass index (BMI) was higher, and mean time from stroke onset to admission was shorter in the complete intake group. The complete intake group had less impairment in terms of GCS, FIM, and DSS scores. In the stepwise logistic regression analysis, BMI, FIM-cognitive score, and DSS score were significant independent factors predicting intake. The formula of BMI × .26 + FIM cognitive score × .19 + DSS score × 1.60 predicted recovery of complete intake with a sensitivity of 88.2% and a specificity of 84.2%. Stroke survivors with dysphagia with a high BMI and FIM-cognitive and DSS scores tended to recover oral intake. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Buchmueller, Karen L; Staples, Andrew M; Uthe, Peter B; Howard, Cameron M; Pacheco, Kimberly A O; Cox, Kari K; Henry, James A; Bailey, Suzanna L; Horick, Sarah M; Nguyen, Binh; Wilson, W David; Lee, Moses
2005-01-01
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, -ImPy- and -PyPy-. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and DeltaT (M) experiments. The f/Py pairing, when placed next to the -ImPy- or -PyPy- central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With -ImPy- central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson-Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the -PyPy- central pairings.
A specialized bioengineering ion beam line
NASA Astrophysics Data System (ADS)
Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.
2007-04-01
A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.
NASA Astrophysics Data System (ADS)
Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong
2018-03-01
A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.
Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.
1987-03-07
were constructed of aluminium : the thermo- limitations in the melt are not expected to dominate couple sheath was stainless steel. the exchange rate...silver ion, D is its T, C0 , and t) with Schott 8011 glass (left) and a Fisher self-diffusion coefficient, and t is the time of diffusion. microscope
Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.
In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less
PecS regulates the urate-responsive expression of type 1 fimbriae in Klebsiella pneumoniae CG43.
Wang, Zhe-Chong; Liu, Chia-Jui; Huang, Ying-Jung; Wang, Yu-Seng; Peng, Hwei-Ling
2015-12-01
In the Klebsiella pneumoniae CG43 genome, the divergently transcribed genes coding for PecS, the MarR-type transcription factor, and PecM, the drug metabolite transporter, are located between the type 1 and type 3 fimbrial gene clusters. The intergenic sequence pecO between pecS and pecM contains three putative PecS binding sites and a CpxR box. Electrophoretic mobility shift assay revealed that the recombinant PecS and CpxR could specifically bind to the pecO sequence, and the specific interaction of PecS and pecO could be attenuated by urate. The expression of pecS and pecM was negatively regulated by CpxAR and PecS, and was inducible by exogenous urate in the absence of cpxAR. Compared with CG43S3ΔcpxAR, the derived mutants CG43S3ΔcpxARΔpecS and CG43S3ΔcpxARΔpecSΔpecM exerted similar levels of sensitivity to H2O2 or paraquat, but higher levels of mannose-sensitive yeast agglutination activity and FimA production. The promoter activity and transcript levels of fimA in CG43S3ΔcpxAR were also increased by deleting pecS. However, no binding activity between PecS and the fimA promoter could be observed. Nevertheless, PecS deletion could reduce the expression of the global regulator HNS and release the negative effect of HNS on FimA expression. In CG43S3ΔcpxAR, the expression of FimA as well as PecS was inducible by urate, whilst urate-induced FimA expression was inhibited by the deletion of pecS. Taken together, we propose that K. pneumoniae PecS indirectly and negatively regulates the expression of type 1 fimbriae, and the regulation is urate-inducible in the absence of CpxAR.
Kuwahara, Hiroyuki; Myers, Chris J; Samoilov, Michael S
2010-03-26
Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.
Glasgow Coma Scale score, mortality, and functional outcome in head-injured patients.
Udekwu, Pascal; Kromhout-Schiro, Sharon; Vaslef, Steven; Baker, Christopher; Oller, Dale
2004-05-01
Preresuscitation Glasgow Coma Scale (P-GCS) score is frequently obtained in injured patients and incorporated into mortality prediction. Data on functional outcome in head injury is sparse. A large group of patients with head injuries was analyzed to assess relationships between P-GCS score, mortality, and functional outcome as measured by the Functional Independence Measure (FIM). Records for patients with International Classification of Diseases, Ninth Revision diagnosis codes indicating head injury in a statewide trauma registry between 1994 and 2002 were selected. P-GCS score, mortality, and FIM score at hospital discharge were integrated and analyzed. Of 138,750 patients, 22,924 patients were used for the mortality study and 7,150 patients for the FIM study. A good correlation exists between P-GCS score and FIM, as determined by rank correlation coefficients, whereas mortality falls steeply between a P-GCS score of 3 and a P-GCS score of 7 followed by a shallow fall. Although P-GCS score is related to mortality in head-injured patients, its relationship is nonlinear, which casts doubt on its use as a continuous measure or an equivalent set of categorical measures incorporated into outcome prediction models. The average FIM scores indicate substantial likelihood of good outcomes in survivors with low P-GCS scores, further complicating the use of the P-GCS score in the prediction of poor outcome at the time of initial patient evaluation. Although the P-GCS score is related to functional outcome as measured by the FIM score and mortality in head injury, current mortality prediction models may need to be modified to account for the nonlinear relationship between P-GCS score and mortality. The P-GCS score is not a good clinical tool for outcome prediction in individual head-injured patients, given the variability in mortality rates and functional outcomes at all scores.
Potential biomedical applications of ion beam technology
NASA Technical Reports Server (NTRS)
Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.
1976-01-01
Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.
Potential biomedical applications of ion beam technology
NASA Technical Reports Server (NTRS)
Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.
1976-01-01
Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.
NASA Astrophysics Data System (ADS)
Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.
2017-12-01
Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was used to measure aerosol hygroscopic growth. Such a system reduced the time of measuring the hygroscopic properties of submicron aerosols (six sizes) to less than three minutes in total, with an error within 1%. Pinterich et al. (2017) Aerosol Sci. Technol. accepted Spielman et al. (2017) Aerosol Sci. Technol. accepted Wang et al. (2016) Nature 539:416-419
Optical Properties of Silver Nanoparticulate Glasses
NASA Astrophysics Data System (ADS)
Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.
The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.
The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell
NASA Astrophysics Data System (ADS)
Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen
2015-02-01
For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.
High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Shabbir, Faizan; Gong, Chao
2015-04-13
We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje
2016-05-01
The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.
Effect of Curcumin on the metal ion induced fibrillization of Amyloid-β peptide
NASA Astrophysics Data System (ADS)
Banerjee, Rona
2014-01-01
The effect of Curcumin on Cu(II) and Zn(II) induced oligomerization and protofibrillization of the amyloid-beta (Aβ) peptide has been studied by spectroscopic and microscopic methods. Curcumin could significantly reduce the β-sheet content of the peptide in a time dependent manner. It also plays an antagonistic role in β-sheet formation that is promoted by metal ions like Cu(II) and Zn(II) as observed by Circular Dichroism (CD) spectroscopy. Atomic force microscopic (AFM) images show that spontaneous fibrillization of the peptide occurs in presence of Cu(II) and Zn(II) but is inhibited on incubation of the peptide with Curcumin indicating the beneficial role of Curcumin in preventing the aggregation of Aβ peptide.
Gervais, David; Corn, Tim; Downer, Andrew; Smith, Stuart; Jennings, Alan
2014-07-01
In order to generate further characterisation data for the lyophilised product Erwinia chrysanthemi L-asparaginase, reconstituted drug product (DP; marketed as Erwinase or Erwinaze) was analysed for subvisible (2-10 μm) particulate content using both the light obscuration (LO) method and the newer flow-imaging microscopy (FIM) technique. No correlation of subvisible particulate counts exists between FIM and LO nor do the counts correlate with activity at both release and on stability. The subvisible particulate content of lyophilised Erwinia L-asparaginase appears to be consistent and stable over time and in line with other parenteral biopharmaceutical products. The majority (ca. 75%) of subvisible particulates in L-asparaginase DP were at the low end of the measurement range by FIM (2-4 μm). In this size range, FIM was unable to definitively classify the particulates as either protein or non-protein. More sensitive measurement techniques would be needed to classify the particulates in lyophilised L-asparaginase into type (protein and non-protein), so the LO technique has been chosen for on-going DP analyses. E. chrysanthemi L-asparaginase has a lower rate of hypersensitivity compared with native Escherichia coli preparations, but a subset of patients develop hypersensitivity to the Erwinia enzyme. A DP lot that had subvisible particulate counts on the upper end of the measurement range by both LO and FIM had the same incidence of allergic hypersensitivity in clinical experience as lots at all levels of observed subvisible particulate content, suggesting that the presence of L-asparaginase subvisible particulates is not important with respect to allergic response.
Bell, Shannon M; Edwards, Stephen W
2015-11-01
There are > 80,000 chemicals in commerce with few data available describing their impacts on human health. Biomonitoring surveys, such as the NHANES (National Health and Nutrition Examination Survey), offer one route to identifying possible relationships between environmental chemicals and health impacts, but sparse data and the complexity of traditional models make it difficult to leverage effectively. We describe a workflow to efficiently and comprehensively evaluate and prioritize chemical-health impact relationships from the NHANES biomonitoring survey studies. Using a frequent itemset mining (FIM) approach, we identified relationships between chemicals and health biomarkers and diseases. The FIM method identified 7,848 relationships between 219 chemicals and 93 health outcomes/biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the FIM approach is able to identify published relationships. Because the relationships are derived from the vast majority of the chemicals monitored by NHANES, the resulting list of associations is appropriate for evaluating results from targeted data mining or identifying novel candidate relationships for more detailed investigation. Because of the computational efficiency of the FIM method, all chemicals and health effects can be considered in a single analysis. The resulting list provides a comprehensive summary of the chemical/health co-occurrences from NHANES that are higher than expected by chance. This information enables ranking and prioritization on chemicals or health effects of interest for evaluation of published results and design of future studies. Bell SM, Edwards SW. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Perspect 123:1193-1199; http://dx.doi.org/10.1289/ehp.1409138.
Effect of vitamin C supplementation on stroke recovery: a case-control study.
Rabadi, Meheroz H; Kristal, Bruce S
2007-01-01
Epidemiological studies have associated increased dietary intake of antioxidants (vitamin C, E, and beta-carotene) in preventing and decreasing the extent of ischemic brain injury. The effect of vitamin C supplementation on functional recovery after stroke has not been studied. In this retrospective, case-control study of 23 patients with ischemic stroke taking vitamin C were identified and matched for age, sex, onset to admission, and admission total functional independence measure (TFIM) with 23 patients with ischemic stroke not taking Vitamin C supplementation. Vitamin C 1000 mg daily was prescribed on admission to our unit mainly to patients who were undernourished (defined as significant weight loss and/or 90% or less ideal body weight for age and sex) and those with pressure sores. The outcome measures were: change in the TFIM, FIM-Cognition (FIM-Cog), and FIM-Motor sub-scores, discharge disposition, and length of stay (LOS). The change in TFIM (20 +/- 13 standard deviation [SD] vs. 26 +/- 6, p = 0.20), FIM-Cog (3 +/- 3 SD vs. 4 +/- 5, p = 0.41), FIM-Motor (15 +/- 11 SD vs. 20 +/- 13, p = 0.21) sub-scores were less in the vitamin C treated group, but these differences did not reach statistical significance. Similarly, no significant differences were found in LOS (21 +/- 9 SD vs. 23 +/- 9, p = 0.59), and discharge disposition (home/institution) (9/10 vs. 13/9, p = 0.60) between the vitamin C and the control groups. This study suggests vitamin C supplementation did not enhance functional recovery in undernourished ischemic stroke patients.
Wang, Yuh-Shuh; Motes, Christy M; Mohamalawari, Deepti R; Blancaflor, Elison B
2004-10-01
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins. Copyright 2004 Wiley-Liss, Inc.
Guo, Ying; Shin, Ki Y; Hainley, Susan; Bruera, Eduardo; Palmer, J Lynn
2011-04-01
The aim of this study was to compare functional outcomes in asthenic patients with hematologic malignancies with those of asthenic patients with solid tumors after inpatient rehabilitation. We hypothesized that asthenic patients with hematologic malignancies are less likely than patients with solid tumors to make functional improvement after rehabilitation. The records of 60 asthenic cancer patients (30 consecutive patients with solid tumors and 30 consecutive patients with hematologic malignancies) who underwent inpatient rehabilitation at a comprehensive cancer center between October 2005 and October 2007 were retrospectively reviewed. Patients with focal neurologic deficits were excluded. All patients admitted to the inpatient rehabilitation unit received 3 hrs of more of therapy per weekday. The main outcomes included total, motor, and cognitive Functional Independence Measure (FIM) scores, hospital and rehabilitation length of stay, and FIM efficiency. The mean total FIM score significantly improved in patients with solid tumors (mean, 15; range, -6 to 38) and in patients with hematologic malignancies (mean, 17; range, -3 to 27); however, between-group differences in FIM scores were not significant (P = 0.31). The solid tumor patients were significantly older than the hematologic malignancy patients (71 ± 11 vs. 64 ± 12 yrs; P = 0.02), but the mean rehabilitation lengths of stay were the same for each group (9.5 days; P = 0.82). The mean FIM efficiency in the hematologic malignancy group was higher than that of the solid tumor group (1.9 vs.1.4; P = 0.049). Asthenic patients with solid tumors or hematologic malignancies could benefit from inpatient rehabilitation and make significant functional gain.
Poor oral status is associated with rehabilitation outcome in older people.
Shiraishi, Ai; Yoshimura, Yoshihiro; Wakabayashi, Hidetaka; Tsuji, Yuri
2017-04-01
Poor oral status is associated with increased physical dependency and cognitive decline. Malnutrition, a potential result of poor oral status, is associated with poorer rehabilitation outcome and physical function. However, the association between oral status and rehabilitation outcome is not fully understood. The present study investigated the association of poor oral status with rehabilitation outcome in older patients. A retrospective cohort study was carried out of 108 consecutive patients (mean age 80.5 ± 6.8 years; 50.9% men) who were admitted to convalescent rehabilitation wards. The Revised Oral Assessment Guide was used to evaluate oral status. Rehabilitation outcome was evaluated by the Functional Independence Measure (FIM) on discharge. Multivariate analyses were applied to examine the associations between poor oral status and motor-FIM on discharge. According to the Revised Oral Assessment Guide score, 14.8% of participants had normal oral status, 52.8% had slight to moderate oral problems and 32.4% had severe oral problems. The median scores of motor-FIM on admission and on discharge were 52 (interquartile range 25-70) and 75 (interquartile range 51-89), respectively. Multivariate analysis showed that the Revised Oral Assessment Guide score and the motor-/cognitive-FIM scores on admission were significant independent factors for motor-FIM on discharge, after adjusted for sex, age, length of stay, nutritional status, handgrip and causative diseases (P < 0.001). Poor oral status is associated with rehabilitation outcome in older people. Geriatr Gerontol Int 2017; 17: 598-604. © 2016 Japan Geriatrics Society.
The stroke impairment assessment set: its internal consistency and predictive validity.
Tsuji, T; Liu, M; Sonoda, S; Domen, K; Chino, N
2000-07-01
To study the scale quality and predictive validity of the Stroke Impairment Assessment Set (SIAS) developed for stroke outcome research. Rasch analysis of the SIAS; stepwise multiple regression analysis to predict discharge functional independence measure (FIM) raw scores from demographic data, the SIAS scores, and the admission FIM scores; cross-validation of the prediction rule. Tertiary rehabilitation center in Japan. One hundred ninety stroke inpatients for the study of the scale quality and the predictive validity; a second sample of 116 stroke inpatients for the cross-validation study. Mean square fit statistics to study the degree of fit to the unidimensional model; logits to express item difficulties; discharge FIM scores for the study of predictive validity. The degree of misfit was acceptable except for the shoulder range of motion (ROM), pain, visuospatial function, and speech items; and the SIAS items could be arranged on a common unidimensional scale. The difficulty patterns were identical at admission and at discharge except for the deep tendon reflexes, ROM, and pain items. They were also similar for the right- and left-sided brain lesion groups except for the speech and visuospatial items. For the prediction of the discharge FIM scores, the independent variables selected were age, the SIAS total scores, and the admission FIM scores; and the adjusted R2 was .64 (p < .0001). Stability of the predictive equation was confirmed in the cross-validation sample (R2 = .68, p < .001). The unidimensionality of the SIAS was confirmed, and the SIAS total scores proved useful for stroke outcome prediction.
Flight Deck Interval Management Avionics: Eye-Tracking Analysis
NASA Technical Reports Server (NTRS)
Latorella, Kara; Harden, John W.
2015-01-01
Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).
Buchmueller, Karen L.; Staples, Andrew M.; Uthe, Peter B.; Howard, Cameron M.; Pacheco, Kimberly A. O.; Cox, Kari K.; Henry, James A.; Bailey, Suzanna L.; Horick, Sarah M.; Nguyen, Binh; Wilson, W. David; Lee, Moses
2005-01-01
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, –ImPy– and –PyPy–. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and ΔTM experiments. The f/Py pairing, when placed next to the –ImPy– or –PyPy– central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With –ImPy– central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson–Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the –PyPy– central pairings. PMID:15703305
Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.
Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin
2018-03-01
Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.
USDA-ARS?s Scientific Manuscript database
A simple and efficient flow-injection mass spectrometric (FIMS) method was developed to differentiate cinnamon (Cinnamomum) bark (CB) samples of the four major species (C. burmannii, C. verum, C. aromaticum, and C. loureiroi) of cinnamon. Fifty cinnamon samples collected from China, Vietnam, Indon...
NASA Astrophysics Data System (ADS)
Samoilov, Michael
2010-03-01
The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.
Agrawal, Mahima; Joshi, Mrinal
2014-01-01
To describe the functional level after 1 year in moderate and severe traumatic brain injury (TBI). Prospective, cross-sectional study. Seventy individuals with TBI were admitted directly from acute care hospitals to a rehabilitation facility in Sawai Mansingh Medical College and Hospital, Jaipur (SMS). A follow-up of 58 patients was done up to 1 year later in the period from July 2011 to July 2012. Mean change in FIM scores from admission to discharge was 51.26 and from admission to 12 months it was 85.3 in the moderate injury group. Mean change in DRS from admission to discharge was -8.19 and from admission to 12 months it was -17.76 in the moderate injury group and -8.55 and -19 in the severe injury group, respectively. The correlation coefficient (r) between FIM and GOSE was 0.570 and between FIM and DRS was -0.8190, both of which were significant. All individuals improved significantly in the inpatient rehabilitation facility in the acute phase, with maximum gain in function seen from admission to discharge as assessed on FIM and DRS. The majority of the individuals continued to improve up to 6 months post-injury.
Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.
Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim
2018-05-30
To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.
Ion beam sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1976-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.
Ion-beam-sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1977-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.
Investigation of argon ion sputtering on the secondary electron emission from gold samples
NASA Astrophysics Data System (ADS)
Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai
2016-09-01
Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.
Helium Ion Beam Microscopy for Copper Grain Identification in BEOL Structures
NASA Astrophysics Data System (ADS)
van den Boom, Ruud J. J.; Parvaneh, Hamed; Voci, Dave; Huynh, Chuong; Stern, Lewis; Dunn, Kathleen A.; Lifshin, Eric
2009-09-01
Grain size determination in advanced metallization structures requires a technique with resolution ˜2 nm, with a high signal-to-noise ratio and high orientation-dependant contrast for unambiguous identification of grain boundaries. Ideally, such a technique would also be capable of high-throughput and rapid time-to-knowledge. The Helium Ion Microscope (HIM) offers one possibility for achieving these aims in a single platform. This article compares the performance of the HIM with Focused Ion Beam, Scanning Electron and Transmission Electron Microscopes, in terms of achievable image resolution and contrast, using plan-view and cross-sectional imaging of electroplated samples. Although the HIM is capable of sub-nanometer beam diameter, the low signal-to-noise ratio in the images necessitates signal averaging, which degrades the measured image resolution to 6-8 nm. Strategies for improving S/N are discussed in light of the trade-off between beam current and probe size, accelerating voltage, and dwell time.
Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.
Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A
2017-10-01
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
Modeling of Yb3+/Er3+-codoped microring resonators
NASA Astrophysics Data System (ADS)
Vallés, Juan A.; Gălătuş, Ramona
2015-03-01
The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.
Functional outcomes of adult patients with West Nile virus admitted to a rehabilitation hospital.
Hoffman, Julie E; Paschal, Karen A
2013-01-01
The clinical manifestation of West Nile Virus (WNV) varies in individuals from mild flu-like symptoms to acute flaccid paralysis. Advanced age is the most significant risk factor for developing severe neurological disease and for death. The broad range of neurologic symptoms associated with WNV infection leads to varied body structure and function limitations and participation restrictions that may require rehabilitation. The purpose of this study is to describe the functional impairments upon admission and the functional outcomes at discharge of 48 adult patients admitted with WNV to a rehabilitation facility in the Midwest from 2002 to 2009. A retrospective chart review was completed on 48 patients (29 male, 19 female) with mean age 67.8 (SD = 16.6, range = 24-91) years and median age 72.5 years, admitted to inpatient rehabilitation with a diagnosis of WNV after January 1, 2002, and discharged prior to December 31, 2009. General information (sex, age, social history, employment, and living environment), past medical history, and information specific to the current hospitalization (medical conditions, functional status and activity level on admission and discharge as measured by the Functional Independence Measure [FIM], lengths of stay [LOSs] in the acute care and rehabilitation hospital, physical therapy care, discharge destination, and follow-up care provisions) were gathered. The standardized response mean (SRM) was calculated for total, motor, and cognitive FIM scores to provide insight into the effect size and the responsiveness of the FIM for the patients with WNV in this study. All patients were admitted to the rehabilitation hospital from acute care hospitals following LOSs ranging from 1 to 62 days. The rehabilitation hospital LOS ranged from 2 to 304 days. These patients had significant comorbidities including hypertension (43.75%), diabetes mellitus (41.67%), acute respiratory failure (37.5%), ventilator dependency/tracheostomy (33.33%), and pneumonia (29.17%). Their admission FIM scores ranged from 13 to 116 (mean = 45.8 ± 28.2) and discharge FIM scores ranged from 18 to 121 (mean = 75.1 ± 34.2). The change in FIM during inpatient rehabilitation was statistically significant (P < .001). The calculated SRM for the total (1.06) and motor (1.12) FIM indicate a large effect size, whereas the SRM for the cognitive FIM (0.79) indicates a moderate effect. The majority of patients were discharged home or to a nursing facility (46%), skilled or extended care (38%) with a need for continued rehabilitation services. The manifestation of the WNV and functional outcomes after comprehensive rehabilitation vary from patient to patient. Higher numbers of comorbid conditions lead to more complex presentation and challenge rehabilitation professionals to design individualized plans of care to enable these patients to achieve the highest functional outcomes. Most patients require follow-up physical therapy care after discharge from rehabilitation.
Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion
2010-09-27
Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission
Dykas, M M; Poddar, K; Yoong, S L; Viswanathan, V; Mathew, S; Patra, A; Saha, S; Pastorin, G; Venkatesan, T
2018-01-01
Carbon nanotubes (CNTs) have become an important nano entity for biomedical applications. Conventional methods of their imaging, often cannot be applied in biological samples due to an inadequate spatial resolution or poor contrast between the CNTs and the biological sample. Here we report a unique and effective detection method, which uses differences in conductivities of carbon nanotubes and HeLa cells. The technique involves the use of a helium ion microscope to image the sample with the surface charging artefacts created by the He + and neutralised by electron flood gun. This enables us to obtain a few nanometre resolution images of CNTs in HeLa Cells with high contrast, which was achieved by tailoring the He + fluence. Charging artefacts can be efficiently removed for conductive CNTs by a low amount of electrons, the fluence of which is not adequate to discharge the cell surface, resulting in high image contrast. Thus, this technique enables rapid detection of any conducting nano structures on insulating cellular background even in large fields of view and fine spatial resolution. The technique demonstrated has wider applications for researchers seeking enhanced contrast and high-resolution imaging of any conducting entity in a biological matrix - a commonly encountered issue of importance in drug delivery, tissue engineering and toxicological studies. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Microscopic study of heavy-ion reactions with n-rich nuclei: dynamic excitation energy and capture
NASA Astrophysics Data System (ADS)
Oberacker, Volker; Umar, A. S.
2010-11-01
Heavy-ion reactions at RIB facilities allow us to form new exotic neutron-rich nuclei. These experiments present numerous challenges for a microscopic theoretical description. We study reactions between neutron-rich ^132Sn nuclei and ^96Zr within a dynamic microscopic theory, and we compare the properties to those of the stable system ^124Sn+^96Zr. The calculations are carried out on a 3-D lattice using the density-constrained Time-Dependent Hartree-Fock (DC-TDHF) method [1- 3]. In particular, we calculate the dynamic excitation energy E^*(t) and the quadrupole moment of the dinuclear system Q20(t) during the initial stages of the collision. Regarding the heavy-ion interaction potential V(R), we find that the fusion barrier height and width increase dramatically with increasing beam energy. The fusion barriers of the neutron-rich system ^132Sn+^96Zr are systematically 1-2 MeV higher than those of the stable system. Large differences (9 MeV) are found in the interaction barriers of the two systems. Capture cross sections are analyzed in terms of dynamic effects and a comparison with recently measured capture-fission data is given. [1] Umar and Oberacker, PRC 76, 014614 (2007). [2] Umar, Oberacker, Maruhn, and Reinhard, PRC 80, 041601(R) (2009). [3] Umar, Maruhn, Itagaki, and Oberacker, PRL 104, 212503 (2010).
Method for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong
1999-01-01
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.
Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong
1998-01-01
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelke, R.; Earl, W.L.; Rohlfing, C.M.
1986-01-01
We present microscopic evidence that the aci ion (H/sub 2/CNO/sup -//sub 2/) of nitromethane (H/sub 3/CNO/sub 2/) plays an important role in the detonation kinetics of liquid-phase nitromethane. It is known from previous detonation experiments that very minute additions of organic bases (e.g., amines) have a profound effect on the detonation properties of nitromethane; i.e., the explosive is strongly sensitized. Here we show that, under conditions similar to the detonation experiments, the only new chemical species generated in nitromethane by the bases sodium hydroxide (NaOH), diethylenetriamine (NH/sub 2/CH/sub 2/CH/sub 2/NHCH/sub 2/CH/sub 2/NH/sub 2/), and pyridine (C/sub 5/H/sub 5/N) is themore » aci ion, within the sensitivity of the experiments. The primary tool used to demonstrate this is /sup 13/C NMR spectroscopy. Ab initio quantum-mechanical calculations of the chemical shifts are used to support the experimental interpretation. Qualitative arguments concerning the increased reactivity of the aci ion, relative to normal nitromethane, are given. We review earlier work and relate it to the current findings.« less
Helium-ion microscopy, helium-ion irradiation and nanoindentation of Eurofer 97 and ODS Eurofer
NASA Astrophysics Data System (ADS)
Bergner, F.; Hlawacek, G.; Heintze, C.
2018-07-01
Understanding of unsolved details of helium embrittlement requires experimental evidence for dedicated sets of materials and over a wide range of irradiation conditions. The study is focussed on the comparison of a reduced-activation ferritic-martensitic 9%Cr steel (Eurofer 97) with its oxide dispersion strengthened counterpart (ODS Eurofer) with respect to irradiation-induced hardening. Imaging and He-ion irradiation in the He-ion microscope at 30 °C in a wide range of appm He (from 0.9 × 102 to 1.8 × 106) and displacements per atom (dpa) (from 3 × 10-3 to 65) were combined with post-irradiation nanoindentation in order to detect blistering and irradiation-induced hardness changes. The applicability of this combination of techniques is demonstrated and pros and cons are discussed. We have found that the indentation hardness increases significantly after in-microscope irradiation to 3 dpa (0.9 × 105 appm He). The irradiation-induced hardness increase is higher and the onset of significant hardening tends to occur at lower fluence for Eurofer 97 than for ODS Eurofer, indicating that the presence of oxide nanoparticles is efficient to reduce the detrimental effect of He under the applied irradiation conditions.
Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa
2014-06-01
Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cluster Analysis of Vulnerable Groups in Acute Traumatic Brain Injury Rehabilitation.
Kucukboyaci, N Erkut; Long, Coralynn; Smith, Michelle; Rath, Joseph F; Bushnik, Tamara
2018-01-06
To analyze the complex relation between various social indicators that contribute to socioeconomic status and health care barriers. Cluster analysis of historical patient data obtained from inpatient visits. Inpatient rehabilitation unit in a large urban university hospital. Adult patients (N=148) receiving acute inpatient care, predominantly for closed head injury. Not applicable. We examined the membership of patients with traumatic brain injury in various "vulnerable group" clusters (eg, homeless, unemployed, racial/ethnic minority) and characterized the rehabilitation outcomes of patients (eg, duration of stay, changes in FIM scores between admission to inpatient stay and discharge). The cluster analysis revealed 4 major clusters (ie, clusters A-D) separated by vulnerable group memberships, with distinct durations of stay and FIM gains during their stay. Cluster B, the largest cluster and also consisting of mostly racial/ethnic minorities, had the shortest duration of hospital stay and one of the lowest FIM improvements among the 4 clusters despite higher FIM scores at admission. In cluster C, also consisting of mostly ethnic minorities with multiple socioeconomic status vulnerabilities, patients were characterized by low cognitive FIM scores at admission and the longest duration of stay, and they showed good improvement in FIM scores. Application of clustering techniques to inpatient data identified distinct clusters of patients who may experience differences in their rehabilitation outcome due to their membership in various "at-risk" groups. The results identified patients (ie, cluster B, with minority patients; and cluster D, with elderly patients) who attain below-average gains in brain injury rehabilitation. The results also suggested that systemic (eg, duration of stay) or clinical service improvements (eg, staff's language skills, ability to offer substance abuse therapy, provide appropriate referrals, liaise with intensive social work services, or plan subacute rehabilitation phase) could be beneficial for acute settings. Stronger recruitment, training, and retention initiatives for bilingual and multiethnic professionals may also be considered to optimize gains from acute inpatient rehabilitation after traumatic brain injury. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bolger, Ashlee; Collins, Andrew; Michels, Michelle; Pruitt, David
2018-03-14
Conversion disorder (CD) can lead to impaired functioning. Few studies present demographic and outcome data for pediatric patients. Many have had success with rehabilitation; however, further details are not known. To identify characteristics and outcomes of children admitted to a pediatric inpatient rehabilitation program with CD symptoms. Retrospective study. Inpatient rehabilitation unit within a large children's hospital. All patients with diagnosis of CD or functional gait disorder (FGD) during designated time period. Data were obtained from chart review and United Data Systems for Medical Rehabilitation. Descriptive statistics and Wilcoxon signed rank tests were used to analyze data. A P value of <.05 was statistically significant. Average length of stay, Functional Independence Measure for Children (WeeFIM) scores, WeeFIM change, WeeFIM efficiency, recommended therapies, number of repeat admissions to the same hospital for conversion disorder symptoms in the 12 months following discharge, and school reentry characteristics. 30 admissions were identified that met criteria. Before diagnosis, duration of symptoms was 58 ± 145 days, physician visits averaged 1.9 ± 2.1, hospital admissions to the same hospital averaged 0.7 ± 0.9, and absence from school was 6 ± 12 weeks. Overall, 83% exhibited mixed symptoms. Length of inpatient rehabilitation stay was 8.4 ± 4.2 days with WeeFIM score change of 30 ± 11.9 (P <.001). WeeFIM efficiency was 4.8 ± 4.1 points/d. For patients with documented WeeFIM scores at 3 months, all were improved or maintained. More than three-fourths (80%) had no documented readmission to the same hospital for CD symptoms for one year after discharge from inpatient rehabilitation. Close to half (47%) returned to school within one week of discharge from inpatient rehabilitation (when school was in session). This study suggests that a multidisciplinary inpatient rehabilitation approach is a potentially effective and efficient treatment for children and adolescents with conversion disorder and leads to sustained functional improvement and return to school after discharge. ?? Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Granger, Carl V; Karmarkar, Amol M; Graham, James E; Deutsch, Anne; Niewczyk, Paulette; Divita, Margaret A; Ottenbacher, Kenneth J
2012-04-01
This study aimed to provide benchmarking information from a large national sample of patients receiving inpatient rehabilitation after a traumatic spinal cord injury. This was an analysis of secondary data from 891 inpatient medical rehabilitation facilities in the United States that contributed traumatic spinal cord injury data to the Uniform Data System for Medical Rehabilitation from January 2002 to December 2010. Variables analyzed included demographic information (age, sex, marital status, race/ethnicity, prehospital living setting, discharge setting), hospitalization information (length of stay, program interruptions, payer, onset date, rehabilitation impairment group, International Classification of Diseases 9 codes for admitting diagnosis, co-morbidities), and functional status (Functional Independence Measure [FIM] instrument ratings at admission and discharge, FIM efficiency, FIM gain). The final sample included 47,153 patients with traumatic spinal cord injury. Overall, the mean length of stay was 26.2 ± 23.2 days: yearly means ranged from 29.7 ± 25.4 in 2002 to 22.9 ± 18.9 in 2009. FIM total admission and discharge ratings also declined during the 8-yr study period; admission decreased from 60.5 ± 17.4 to 55.9 ± 16.3; discharge decreased from 86.1 ± 23.8 to 82.4 ± 23.4. Rehabilitation efficiency (FIM gain per day) remained relatively stable over time (1.6 ± 1.7 points per day). The percentage of all patients discharged to the community ranged from 75.8% to 71.5% per year. Wheelchair users stayed in rehabilitation longer than did persons who could walk (34.6 ± 217.4 vs. 17.4 ± 14.1 days) and also experienced less functional improvement (21.6 ± 15.8 vs. 29.6 ± 16.3 FIM points). National data from persons with traumatic spinal cord injury in 2002-2010 indicate that lengths of stay declined, but efficiency in functional independence was stable to slightly increased. More than 70% of patients were consistently discharged to community settings after inpatient rehabilitation.
Cognition in patients with burn injury in the inpatient rehabilitation population.
Purohit, Maulik; Goldstein, Richard; Nadler, Deborah; Mathews, Katie; Slocum, Chloe; Gerrard, Paul; DiVita, Margaret A; Ryan, Colleen M; Zafonte, Ross; Kowalske, Karen; Schneider, Jeffrey C
2014-07-01
To analyze potential cognitive impairment in patients with burn injury in the inpatient rehabilitation population. Rehabilitation patients with burn injury were compared with the following impairment groups: spinal cord injury, amputation, polytrauma and multiple fractures, and hip replacement. Differences between the groups were calculated for each cognitive subscale item and total cognitive FIM. Patients with burn injury were compared with the other groups using a bivariate linear regression model. A multivariable linear regression model was used to determine whether differences in cognition existed after adjusting for covariates (eg, sociodemographic factors, facility factors, medical complications) based on previous studies. Inpatient rehabilitation facilities. Data from Uniform Data System for Medical Rehabilitation from 2002 to 2011 for adults with burn injury (N=5347) were compared with other rehabilitation populations (N=668,816). Not applicable. Comparison of total cognitive FIM scores and subscales (memory, verbal comprehension, verbal expression, social interaction, problem solving) for patients with burn injury versus other rehabilitation populations. Adults with burn injuries had an average total cognitive FIM score ± SD of 26.8±7.0 compared with an average FIM score ± SD of 28.7±6.0 for the other groups combined (P<.001). The subscale with the greatest difference between those with burn injury and the other groups was memory (5.1±1.7 compared with 5.6±1.5, P<.001). These differences persisted after adjustment for covariates. Adults with burn injury have worse cognitive FIM scores than other rehabilitation populations. Future research is needed to determine the impact of this comorbidity on patient outcomes and potential interventions for these deficits. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin
Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.
2012-01-01
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400
Stabel, Henriette Holm; Pedersen, Asger Roer; Johnsen, Søren Paaske; Nielsen, Jørgen Feldbæk
2017-12-01
Patients with non-traumatic rupture of an aneurysm located at the anterior communicating artery (ACoA) often experience cognitive disabilities. It is unknown whether location of aneurysm also affects the possibility for improvement in functional independence compared to patients with an aneurysmal subarachnoid hemorrhage (a-SAH) located elsewhere. The aim was to explore the association between location of aneurysm (ACoA versus other) and level of functional independence, measured by Functional Independence Measure (FIM), at discharge from rehabilitation. Additionally, age and FIM at admission were explored. Historical cohort study among 107 patients with a-SAH based on data from a clinical database and a population-based register. Data were analyzed using multivariable logistic regression. Patients with ACoA were admitted with poorer cognitive FIM (median 6 (IQR 5-14) compared to patients with aneurysms located elsewhere (median 12 (IQR 6-23) (p = 0.0129); no difference at discharge. No association between aneurysm location and functional independence was observed. Higher age was associated with poorer outcome in bowel management OR 0.54 (95% CI 0.31-0.92), bladder management OR 0.59 (95% CI 0.35-0.98), comprehension OR 0.53 (95% CI 0.30-0.94), and memory OR 0.48 (95% CI 0.25-0.93). Overall, FIM at admission was associated with functional independence at discharge with the exception of stair walking and bladder management which did not reach statistical significance. ACoA was not associated with poorer level of functional independence compared to patients with a-SAH located elsewhere. Higher age was associated with poorer outcome in continence, comprehension, and memory, whereas higher FIM was associated with better functional independence across items at discharge.
Arlandis Guzmán, S; Martínez Cuenca, E; Martínez García, R; Bonillo García, M A; Rejas, J; Broseta-Rico, E
2017-06-01
The OAB-FIM was developed as a measure of the impact of an overactive bladder (OAB) on relatives who live with the patient. The objective of this study was conduct a cultural adaptation to Spanish (Spain) of the OAB-FIM questionnaire. The adaptation included a conceptual and linguistic validation phase, as well as a phase for measuring the psychometric properties in 25 relatives [mean age, 63.0 years (SD, 14.3); 44% women] who regularly live with patients with OAB, who are of either sex and 18 years of age or older. We measured conceptual and linguistic equivalence, internal reliability, construct validity and content validity. We assessed the applicability and administration load. The OAB-FIM was conceptually and linguistically equivalent to the original, maintaining its 6 domains: social, travel, worry, irritability, sleep and sex. The interagreement correctly placed all items in their domain, except for number 10, which was placed more in worry than in irritability, motivates its reformulation. Some 2.95% of the items were missing. The floor and ceiling effects of the items varied, respectively, between 20-28%, and 0-16%. The mean time for completing the questionnaire was 5.2minutes (SD, 2.8), and 24% of the participants required some type of assistance. The α-Cronbach coefficient varied between 0.948-0.839. The correlations with similar scales in the family were moderate-high (0.407-0.753) or small-moderate with those administered to the patient (0.004-0.423). We obtained a Spanish (Spain) version of the OAB-FIM that was conceptually and linguistically equivalent to the original. The questionnaire showed good internal consistency, content and construct validity and applicability. Copyright © 2017. Publicado por Elsevier España, S.L.U.
Effect of vitamin C supplementation on stroke recovery: A case-control study
Rabadi, Meheroz H; Kristal, Bruce S
2007-01-01
Background and purpose: Epidemiological studies have associated increased dietary intake of antioxidants (vitamin C, E, and β-carotene) in preventing and decreasing the extent of ischemic brain injury. The effect of vitamin C supplementation on functional recovery after stroke has not been studied. Method: In this retrospective, case-control study of 23 patients with ischemic stroke taking vitamin C were identified and matched for age, sex, onset to admission, and admission total functional independence measure (TFIM) with 23 patients with ischemic stroke not taking Vitamin C supplementation. Vitamin C 1000 mg daily was prescribed on admission to our unit mainly to patients who were undernourished (defined as significant weight loss and/or 90% or less ideal body weight for age and sex) and those with pressure sores. The outcome measures were: change in the TFIM, FIM-Cognition (FIM-Cog), and FIM-Motor sub-scores, discharge disposition, and length of stay (LOS). Results: The change in TFIM (20 ± 13 standard deviation [SD] vs. 26 ± 6, p = 0.20), FIM-Cog (3 ± 3 SD vs. 4 ± 5, p = 0.41), FIM-Motor (15 ± 11 SD vs. 20 ± 13, p = 0.21) sub-scores were less in the vitamin C treated group, but these differences did not reach statistical significance. Similarly, no significant differences were found in LOS (21 ± 9 SD vs. 23 ± 9, p = 0.59), and discharge disposition (home/institution) (9/10 vs. 13/9, p = 0.60) between the vitamin C and the control groups. Conclusion: This study suggests vitamin C supplementation did not enhance functional recovery in undernourished ischemic stroke patients. PMID:18044087
Riviere, Marie-Karelle; Ueckert, Sebastian; Mentré, France
2016-10-01
Non-linear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal design based on the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. In recent years, estimation algorithms for NLMEMs have transitioned from linearization toward more exact higher-order methods. Optimal design, on the other hand, has mainly relied on first-order (FO) linearization to calculate the FIM. Although efficient in general, FO cannot be applied to complex non-linear models and with difficulty in studies with discrete data. We propose an approach to evaluate the expected FIM in NLMEMs for both discrete and continuous outcomes. We used Markov Chain Monte Carlo (MCMC) to integrate the derivatives of the log-likelihood over the random effects, and Monte Carlo to evaluate its expectation w.r.t. the observations. Our method was implemented in R using Stan, which efficiently draws MCMC samples and calculates partial derivatives of the log-likelihood. Evaluated on several examples, our approach showed good performance with relative standard errors (RSEs) close to those obtained by simulations. We studied the influence of the number of MC and MCMC samples and computed the uncertainty of the FIM evaluation. We also compared our approach to Adaptive Gaussian Quadrature, Laplace approximation, and FO. Our method is available in R-package MIXFIM and can be used to evaluate the FIM, its determinant with confidence intervals (CIs), and RSEs with CIs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050
Recent progress in understanding the imaging and metrology using the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladar, Andras E.; Ming, Bin
2009-05-01
Nanotechnology is pushing imaging and measurement instrument technology to high levels of required performance. As this continues, new barriers confronting innovation in this field are encountered. Particle beam instrument resolution remains one of these barriers. A new tool for imaging and metrology for nanotechnology is the scanning Helium Ion Microscope (HIM). The HIM is a new approach to imaging and metrology for nanotechnology which may be able to push this barrier lower. As a new methodology, it is just beginning to show promise and the number of potentially advantageous applications for nanotechnology and nanometrology has yet to be fully exploited. This presentation will discuss some of the progress made at NIST in collaboration with the manufacturing community in understanding the imaging and metrology for this new technology.
NASA Astrophysics Data System (ADS)
Ogasawara, M.; Kato, K.
2009-04-01
We invented a novel methodology for identifying origin of archaeological bitumen by use of field-ionization mass spectrometry (FI-MS). In the FI-MS method, fragmentation of molecular ions is minimal and there is a unit charge on each molecule. Thus, the observed mass spectra directly reflect the distribution of the molecular weights of the alkane components in bitumen. The distribution could be a molecular criterion for characterizing the bitumen sources from which each bitumen sample was derived. Actually, we decomposed the FI-MS spectra by Z-numbers into several components: the Z-number refers to z in the formula CnH2n+z and 2n-z is equivalent to the deficit number of H atoms when compared to the corresponding saturated hydrocarbon, which, in turn, is correlated to the ring number in alkanes. The integrated intensities of the component spectra corresponding to the Z-number were compared to each other. The difference in the observed spectra is reflected by the difference in concentration of alkane groups with different Z-number. In this way, the intensities data of the component spectra were used as indexes to search for the origin of the bitumen. FI-MS measurements were performed on 67 samples from five different bitumen sources and 41 bitumen samples excavated from archaeological sites in Honshu and Hokkaido, the largest and the second largest island in Japan, and Sakhalin island in Russia. By use of the spectral intensities of the seven alkane components in each sample, multiple discriminant analysis was employed for the data of raw bitumen samples and excavated samples from archaeological sites. The GC-MS chromatograms obtained from the archaeological samples from the Honshu area were all consistent with the results obtained by multivariate analysis, and thus the validity of the newly developed Z-number analysis was confirmed. As for the archaeological bitumen samples in Hokkaido, It was found that bitumen from Niigata, one of the main sources in Honshu, spread to the north in 2000 BC. It reached a small island near the north end of Hokkaido. Bitumen from Sakhalin reached the central lowland in Hokkaido, but it did not go into Honshu. Bitumen from Akita, another main source in Honshu, was predominated in the northeastern part of Honshu and the Oshima peninsula located at the southeastern end of Hokkaido. The story is consistent with a strong cultural tie between the Oshima peninsula and the northern Honshu throughout the Jomon period, the long lasting cultural period in Japanese prehistory. The long trade route along the coast of the Sea of Japan is being argued due to the recent archaeological findings obtained by excavations. Our results will shed more light on the geopolitical situation in the Jomon period of the area.
Tuning wettability of hydrogen titanate nanowire mesh by Na+ irradiation
NASA Astrophysics Data System (ADS)
Das, Pritam; Chatterjee, Shyamal
2018-04-01
Hydrogen titanate (HT) nanowires have been widely studied for remarkable properties and various potential applications. However, a handful studies are available related to ion beam induced structural changes and influence on wetting behavior of the HT nanowire surface. In this work, we exposed HT nanowires to 5 keV Na+ at an ion fluence of 1×1016 ions.cm-2. Scanning electron microscope shows that at this ion fluence nanowires are bent arbitrarily and they are welded to each other forming an interlinked network structure. Computer simulation shows that ion beam induces defect formation in the nanowires, which plays major role in such structural modifications. An interesting alteration of surface wetting property is observed due to ion irradiation. The hydrophilic pristine surface turns into hydrophobic after ion irradiation.
Ventilation mapping of chest using Focused Impedance Method (FIM)
NASA Astrophysics Data System (ADS)
Kadir, M. Abdul; Ferdous, Humayra; Baig, Tanvir Noor; Siddique-e-Rabbani, K.
2010-04-01
Focused Impedance Method (FIM) provides an opportunity for localized impedance measurement down to reasonable depths within the body using surface electrodes, and has a potential application in localized lung ventilation study. This however needs assessment of normal values for healthy individuals. In this study, localized ventilation maps in terms of electrical impedance in a matrix formation around the thorax, both from the front and the back, were obtained from two normal male subjects using a modified configuration of FIM. For this the focused impedance values at full inspiration and full expiration were measured and the percentage difference with respect to the latter was used. Some of the measured values would have artefacts due to movements of the heart and the diaphragm in the relevant anatomical positions which needs to be considered with due care in any interpretation.
NASA Astrophysics Data System (ADS)
Ahmed, Qazi Salman; Bashir, Shazia; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa
2016-07-01
Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm2 was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 106 ions/cm2 to 1.8 × 108 ions/cm2 controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 104 to 1.82 × 104 K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.
NASA Astrophysics Data System (ADS)
Ward, Bill
2011-03-01
In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.
NASA Astrophysics Data System (ADS)
Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.
2016-02-01
We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.
Nanopore fabrication and characterization by helium ion microscopy
NASA Astrophysics Data System (ADS)
Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.
2016-04-01
The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.
Cognitive Strategies and Skill Acquisition.
1981-02-09
Behavior (Acadmic Press, N.Y., 1974). ( 9). Craik , F.I.M., 8 Lockhart , R.S., Levels of processing : A frame- work for memory research, Journal of...C.D., a Stein, B.S., Some general constraints on learning and memory research, in: F.I.M. Craik 6 L.S. Cermak.(eds.), Levels of Processing and...instructions, or instructions in the use of particular strategies. (Belmont & Butterfield, 1971; Craik & Lockhart , 1972; Weinstein, 1978) have had
An Analysis of the Organizational Structures Supporting PPBE within the Military Departments
2008-06-01
correlation between the offices on the military side and offices on the civilian side. The top portion of the figure, the green part, is the...Management) (DASA( FIM )); Chief, Congressional Budget Liaison; Chief, Comptroller Proponency. The Military Deputy for Budget, although not directly...fall under the cognizance of the Military Deputy for Budget. The DASA( FIM ) oversees the financial management systems and processes within the Army to
The features of Gait Exercise Assist Robot: Precise assist control and enriched feedback.
Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanikawa, Hiroki; Sasaki, Shinya; Kato, Daisuke; Kagaya, Hitoshi; Itoh, Norihide; Konosu, Hitoshi
2017-01-01
In a patient with severe hemiplegia, the risk of the knee giving way is high during the early stage of gait exercise with an ankle-foot orthosis. However, use of a knee-ankle-foot orthosis has many problems such as large amount of assistance and compensatory motions. To resolve these problems, we have engaged in the development of the Gait Exercise Assist Robot (GEAR). To evaluate the improvement efficiency of walk with GEAR in a stroke patient. The subject was a 70-year-old man presented with left thalamus hemorrhage and right hemiplegia. The patient underwent exercise with the GEAR 5 days a week, for 40 minutes per day. We evaluated the Functional Independence Measure score for walk (FIM-walk score) every week. The control group consisted of 15 patients aged 20-75 years with hemiplegia after primary stroke, who had equivalent walking ability with the subject at start. As the primary outcome, we defined improvement efficiency of FIM-walk, which was gain of FIM-walk divided the number of required weeks. Improvement efficiency of FIM-walk of the subject was 1.5, while that of control group was 0.48±3.2 (mean±SD). GEAR is potentially useful for gait exercise in hemiplegic patients.
Horn, Susan D.; Corrigan, John D.; Bogner, Jennifer; Hammond, Flora M.; Seel, Ronald T.; Smout, Randall J.; Barrett, Ryan S.; Dijkers, Marcel P.; Whiteneck, Gale G.
2015-01-01
Objective To describe study design, patients, centers, treatments, and outcomes of a traumatic brain injury (TBI) practice-based evidence (PBE) study and to evaluate the generalizability of the findings to the US TBI inpatient rehabilitation population. Design Prospective, longitudinal observational study Setting 10 inpatient rehabilitation centers (9 US, 1 Canada) Participants Patients (n=2130) enrolled between October 2008 and Sept 2011, and admitted for inpatient rehabilitation after an index TBI injury Interventions Not applicable Main Outcome Measures Return to acute care during rehabilitation, rehabilitation length of stay, Functional Independence Measure (FIM) at discharge, residence at discharge, and 9 months post-discharge rehospitalization, FIM, participation, and subjective wellbeing. Results Level of admission FIM Cognitive score was found to create relatively homogeneous subgroups for subsequent analysis of best treatment combinations. There were significant differences in patient and injury characteristics, treatments, rehabilitation course, and outcomes by admission FIM Cognitive subgroups. TBI-PBE study patients overall were similar to US national TBI inpatient rehabilitation populations. Conclusions This TBI-PBE study succeeded in capturing naturally occurring variation within patients and treatments, offering opportunities to study best treatments for specific patient deficits. Subsequent papers in this issue report differences between patients and treatments and associations with outcomes in greater detail. PMID:26212396
Mahmoud, Husam; Qannam, Hazem; Mortenson, Ben
2017-01-01
Objectives 1) To describe trends in time to rehabilitation admission and rehabilitation length of stay (LOS), and functional status, 2) To identify independent predictors of functional outcomes following rehabilitation. Design Retrospective cohort study. Setting Traumatic brain injuries rehabilitation unit of King Fahad Medical City, Riyadh, Saudi Arabia. Participants Adult patients with TBI discharged from inpatient rehabilitation between 2009–2014. Methods We collected information on time from injury to rehabilitation admission, rehabilitation LOS, Functional Independence Measure (FIM) score (admission and discharge), and demographic variables by chart review. Hierarchical regression was employed to investigate variables associated with FIM score at rehabilitation discharge. Results Data from 208 patients were obtained. Mean time from injury to rehabilitation admission was 263±274 days. Rehabilitation LOS was 66±43 days. FIM scores improved significantly during rehabilitation. After controlling for other variables, increasing time from injury to rehabilitation admission was associated with lower FIM score at discharge from rehabilitation. Conclusions Time from injury to rehabilitation admission is notably longer than reported elsewhere. Decreasing this time may improve functional outcome at discharge from rehabilitation. Ensuring that information regarding TBI severity is included throughout the continuum of care would benefit patients and provide insight into TBI aetiology in Saudi Arabia. PMID:28362120
Functional independence of residents in urban and rural long-term care facilities in Taiwan.
Lin, Kwan-Hwa; Wu, Shiao-Chi; Hsiung, Chia-Ling; Hu, Ming-Hsia; Hsieh, Ching-Lin; Lin, Jau-Hong; Kuo, Mei-Ying
2004-02-04
To compare the score of functional independence measure (FIM) between urban and rural residents living in long-term care facilities (LTCF) in Taiwan. A total of 437 subjects in 112 licensed LTCF in Taiwan were randomly selected by stratification strategy. Physical therapists interviewed the subjects in nursing homes (NH) and intermediate care facilities (ICF) to obtain the basic data, and the FIM score. (1) There was no significant difference in basic demographic data between urban and rural LTC subjects. (2) Most of the subjects in urban and rural LTCF were males, less than 80 years old, single/widowed, having multiple diseases, using more than one assistive devices, and having social welfare financial support. (3) Motor abilities (eating, grooming, and transfer) and cognition (comprehension, social interaction and problem solving) in rural LTCF subjects were significantly (p < 0.05) higher than those in urban areas as revealed by the FIM assessment. (4) The median of FIM total score of rural LTCF subjects was 90.5, which was significantly (p < 0.05) higher than that of urban LTCF subjects (median = 76). Some of the functional performance of subjects in rural long-term care institutions is better than those in urban areas. Our results may provide guidelines for the manpower and equipment supply estimation.
Suzuki, Ikuko; Yanagi, Hisako; Tomura, Shigeo
2007-02-01
We conducted a longitudinal study using Functional Independence Measures to clarify factor related to independence of activities of daily living of elderly receiving in-home service under the long-term care insurance system Fifty-four elderly users of the in-home service of Ibaraki Prefecture assented to participate in this study and were analyzed. A researcher conducted survey at the baseline and after follow-up by visiting the elderly at each home. The evaluation standards used here were the Japanese version of Functional Independence Measure (FIM), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS-15). The FIM score (mean+/-SD) was decreased 83.6+/-36.4 to 81.7+/-37.4 during the 112+/-22.2 day follow up period. Thirty-nine elderly demonstrated improvement or no change in FIM and 15 had declining scores. To clarify independent factors related to FIM change, we conducted a step-wise multifactor logistic regression analysis, and the results suggested importance for "in-home service availability" and "home care period less than one year". Our study suggested that it is important for maintenance or improvement of ADL in home care elderly to provide sufficient home .care services from the beginning under the long-term care insurance system.
Verification of high efficient broad beam cold cathode ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.
2016-08-15
An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less
High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke
2014-11-01
A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating by the helium ion beam, it was observed that an original probe shape was transformed. AFM measurement of a reference sample (pitch 100-500 nm, depth 100 nm) of the lines and spaces was performed using the above probes. The conventional probes which did not bring up platinum was not able to get into the ditch enough. Therefore it was found that a salient was big and a reentrant was shallow. On the other hand, the probe which brought up platinum was able to enter enough to the depths of the ditch.jmicro;63/suppl_1/i30-a/DFU075F1F1DFU075F1Fig.1.SHIM image of the AFM probe with the Pt nano-pillar fabricated by ion-beam induced deposition. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Method for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.
1999-03-09
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.
Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.
1998-04-28
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.
2014-01-01
propellant. Since coarse AP in particles larger than about 150 microns are used in great majority for AP oxidized solid propellants, the nature of...Microscopic amounts of liquid containing water were contained in the reactive centers. The maximum size for reactive centers was reasoned to be...bond in the original chlorate ion. Oxygen atom swapping between chlorate and perchlorate ions would provide chlorate migration without use of forces
Bagchi, Sharmistha; Lalla, N P
2008-06-11
The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.
Self-consistent simulation of high-frequency driven plasma sheaths
NASA Astrophysics Data System (ADS)
Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf
2011-10-01
Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.
2013-08-15
OVERVIEW OF THE MATERIALS DIAGNOSTIC LABORATORY. THE NEAR END SHOWS THE SURFACE ANALYSIS INSTRUMENTS SUCH AS THE SECONDARY ION MASS SPECTROSCOPE (CLOSEST) AND THE TWO ELECTRON SPECTROSCOPY INSTRUMENTS, WHILE THE FAR END SHOWS THE NEW SCANNING ELECTRON MICROSCOPES
Electron microscope aperture system
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1976-01-01
An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.
NASA Technical Reports Server (NTRS)
Miller, Ronald H.; Winske, Dan; Gary, S. P.
1992-01-01
A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.
Electron-ion relaxation in a dense plasma. [supernovae core physics
NASA Technical Reports Server (NTRS)
Littleton, J. E.; Buchler, J.-R.
1974-01-01
The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
1986-08-01
Craik and Lockhart describes the various levels of information processing involved in memory (8). The preliminary level ...A prevalent malfunction. Anesthesia and Analg~esia, 1985, 64: 745-747. 8. Craik , F.I.M., Lockhart , R.S. Levels of processing : A framework for memory...research. Journal of Verbal Learning and Behavior, 1972, 11: 671-684. 9. Craik , F.I.M., Lockhart , R.S. Levels of processing : A * framework for
Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F
2000-01-01
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.
The pilus usher controls protein interactions via domain masking and is functional as an oligomer.
Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G
2015-07-01
The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.
The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer
Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.
2015-01-01
The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892
Cognitive flexibility in young children: General or task-specific capacity?
Deák, Gedeon O; Wiseheart, Melody
2015-10-01
Cognitive flexibility is the ability to adapt to changing tasks or problems. To test whether cognitive flexibility is a coherent cognitive capacity in young children, we tested 3- to 5-year-olds' performance on two forms of task switching, rule-based (Three Dimension Changes Card Sorting, 3DCCS) and inductive (Flexible Induction of Meaning-Animates and Objects, FIM-Ob and FIM-An), as well as tests of response speed, verbal working memory, inhibition, and reasoning. Results suggest that cognitive flexibility is not a globally coherent trait; only the two inductive word-meaning (FIM) tests showed high inter-test coherence. Task- and knowledge-specific factors also determine children's flexibility in a given test. Response speed, vocabulary size, and causal reasoning skills further predicted individual and age differences in flexibility, although they did not have the same predictive relation with all three flexibility tests. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas
2012-01-01
NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.
The use of the functional independence measure in elderly.
Ribeiro, Dâmarys Kohlbeck de Melo Neu; Lenardt, Maria Helena; Lourenço, Tânia Maria; Betiolli, Susanne Elero; Seima, Marcia Daniele; Guimarães, Carlos Alberto
2018-06-07
To analyze in scientific publications how the Functional Independence Measure (FIM) has been employed to evaluate the elderly. Integrative review of periodical publications between 2011 and 2015, available online in full-text in Portuguese, English and Spanish. 129 articles were found; after the application of the criteria, they resulted in 21. The studies were categorized into two groups: A) follow or compare scores in FIM (cohort studies, case-control, clinical trials), focusing on rehabilitation, evaluation of programs and changes in the functional level after procedures/interventions; and B) measure/associate the functionality of the elderly (cross-sectional studies), focused on evaluation protocols in elderly health and associations to the caregiver burden, hospital stay, balance, satisfaction with life, cognition and clinical/socio-demographic aspects. The FIM was used in several scenarios of healthcare for the elderly, particularly in rehabilitation and outpatient clinics or health centers.
Inoue, Tatsuro; Misu, Shogo; Tanaka, Toshiaki; Kakehi, Tetsuya; Ono, Rei
2018-02-15
Several hip fracture patients are malnourished, but no study has attempted to determine the optimal nutritional screening tool for predicting functional outcomes. We investigated the association between each nutritional status assessed by four nutritional screening tools at admission and functional outcomes during the postoperative acute phase in hip fracture patients. The Mini Nutritional Assessment-Short Form (MNA-SF), the Malnutrition Universal Screening Tool (MUST), the Nutritional Risk Score 2002 (NRS-2002) and the Geriatric Nutritional Risk Index (GNRI) were assessed at admission before surgery. We evaluated the motor domain of the functional independence measure (motor-FIM) score at discharge, efficiency on the motor-FIM (change in the motor-FIM score after postoperative rehabilitation divided by postoperative length of hospital stay), and 10-m walking speed at postoperative 14 days as functional outcomes. Two hundred and five patients (mean patient age, 83.5 ± 7.0 years; range, 65-100 years; 82% female) were included. The MNA-SF evaluation classified 56 patients as well-nourished, 103 as at risk of malnutrition and 46 as malnourished. The MUST evaluation classified 97 patients as low risk, 42 as medium risk and 66 as high risk. The NRS-2002 evaluation classified 89 patients as well-nourished, 69 as medium risk and 47 as nutritionally at risk. The GNRI evaluation classified 44 patients as no risk, 74 as low risk and 87 as a major risk. Multiple linear regression analysis revealed that MNA-SF had a significant association with discharge motor-FIM (well-nourished vs. at risk of malnutrition, standardised β = -0.06, p = 0.04; vs. malnourished, standardised β = -0.32, p < 0.01), efficiency on the motor-FIM (well-nourished vs. malnourished, standardised β = -0.19, p = 0.02) and 10-m walking speed (well-nourished vs. malnourished, standardised β = -0.30, p < 0.01). The GNRI was significantly associated with 10-m walking speed (no risk vs. mild risk, standardised β = -0.23, p = 0.02; vs. major risk, standardised β = -0.37, p < 0.01), but not of motor-FIM and efficiency on the motor-FIM. No significant relationships were found among MUST and NRS-2002 and any functional outcomes. The MNA-SF was found to be an optimal nutritional screening tool to associate with functional outcomes during the postoperative acute phase of elderly hip fracture patients. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Ünaldı, Tevfik; Mızrak, İbrahim; Kadir, Selahattin
2013-12-01
Physicochemical characterisation of natural K-clinoptilolite and heavy-metal (Ag+, Cd2+, Cr3+ and Co3+) forms was accomplished through ion exchange by batch, X-ray diffractometric (XRD), X-ray fluorescence (XRF), infrared-spectral (FT-IR), differential thermal analysis-thermal gravimetric (DTA-TG) and scanning-electron microscopic (SEM) methods. Increasing the normality in the cases of heavy-metal forms resulted in decrease in crystallinity and increases in unit-cell volume, rate of ion exchange, and percentage of ion selectivity. In this study, the order of ion-selectivity percentages (rather than ion selectivity) of heavy-metal forms was determined to be Ag+ > Cd2+ > Cr3+ > Co3+. This finding is consistent with the results of worldwide research on the order of ion selectivity in modified clinoptilolite.
NASA Astrophysics Data System (ADS)
Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu
2015-02-01
Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.
Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam
NASA Astrophysics Data System (ADS)
Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun
2017-10-01
In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.
NASA Astrophysics Data System (ADS)
Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.
2014-06-01
Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.
1988-02-05
for understanding the microscopic processes of electrical discharges and for designing gaseous discharge switches. High power gaseous discharge switches...half-maximum) energy resolution. The electron gun and ion extraction were of the same design of Srivastava at the Jet Propulsion Laboratory. Ions...photons. - The observed current switching can be applied to the design of discharge switches. Elec- tron transport parameters are needed for the
2007-05-28
104 N2 103 N2 (a) (b) (c) Fig. 1: Confocal microscope images of NV centers created in bulk diamond through ion implantation of (a) gallium ions...nitrogen defects in diamond by chemical vapour deposition, J. R. Rabeau, S. Prawer, Y.L. Chin, F. Jelezko, T. Gaebel, and J. Wrachtrup, Applied...Physics Letters, 86, 31926, (2005) 2. Diamond Chemical Vapour Deposition on Opitcal Fibres for Fluorescence Waveguiding, J.R. Rabeau, S.T
Song, Chen; Corry, Ben
2011-01-01
The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex ‘catenary’ channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction. PMID:21731672
Song, Chen; Corry, Ben
2011-01-01
The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.
NASA Technical Reports Server (NTRS)
Gray, H. R.
1972-01-01
Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Do dielectric nanostructures turn metallic in high-electric dc fields?
Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A
2014-11-12
Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Keller, L. P.
2007-01-01
Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.
Live cell imaging at the Munich ion microbeam SNAKE - a status report.
Drexler, Guido A; Siebenwirth, Christian; Drexler, Sophie E; Girst, Stefanie; Greubel, Christoph; Dollinger, Günther; Friedl, Anna A
2015-02-18
Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.
Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.
Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B
2017-03-01
To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.
Wang, Xizheng; Zhou, Wenbo; DeLisio, Jeffery B; Egan, Garth C; Zachariah, Michael R
2017-05-24
Nanothermites offer high energy density and high burn rates, but are mechanistically only now being understood. One question of interest is how initiation occurs and how the ignition temperature is related to microscopic controlling parameters. In this study, we explored the potential role of oxygen ion transport in Bi 2 O 3 as a controlling mechanism for condensed phase ignition reaction. Seven different doped δ-Bi 2 O 3 were synthesized by aerosol spray pyrolysis. The ignition temperatures of Al/doped Bi 2 O 3 , C/doped Bi 2 O 3 and Ta/doped Bi 2 O 3 were measured by temperature-jump/time-of-flight mass spectrometer coupled with a high-speed camera respectively. These results were then correlated to the corresponding oxygen ion conductivity (directly proportional to ion diffusivity) for these doped Bi 2 O 3 measured by impedance spectroscopy. We find that ignition of thermite with doped Bi 2 O 3 as oxidizer occurs at a critical oxygen ion conductivity (∼0.06 S cm -1 ) of doped Bi 2 O 3 in the condensed-phase so long as the aluminum is in a molten state. These results suggest that oxygen ion transport limits the condensed state Bi 2 O 3 oxidized thermite ignition. We also find that the larger oxygen vacancy concentration and the smaller metal-oxide bond energy in doped Bi 2 O 3 , the lower the ignition temperature. The latter suggests that we can consider the possibility of manipulating microscopic properties within a crystal, to tune the resultant energetic properties.
1980-11-30
of processing , the greater the retention in long term memory (see Butter- field, Wambold, & Belmont, 1968; Craik and Lockhart , 1972). Interestingly...L.S., & Craik , F.I.M. (Eds.) Levels of processing in human memory. Hillsdale, NJ: Erlbaum, 1979. Chicago Board of Education. Chicago Mastery Learning...Child Psychology, 1973, 15, 169-186. Lockhart , R.S., Craik , F.I.M., & Jacoby, L. Depth of processing , recogni- tion, and recall. In J. Brown (Ed
FIM Avionics Operations Manual
NASA Technical Reports Server (NTRS)
Alves, Erin E.
2017-01-01
This document describes the operation and use of the Flight Interval Management (FIM) Application installed on an electronic flight bag (EFB). Specifically, this document includes: 1) screen layouts for each page of the interface; 2) step-by-step instructions for data entry, data verification, and input error correction; 3) algorithm state messages and error condition alerting messages; 4) aircraft speed guidance and deviation indications; and 5) graphical display of the spatial relationships between the Ownship aircraft and the Target aircraft.
Masaki, Mitsuhiro; Ikezoe, Tome; Kamiya, Midori; Araki, Kojiro; Isono, Ryo; Kato, Takehiro; Kusano, Ken; Tanaka, Masayo; Sato, Syunsuke; Hirono, Tetsuya; Kita, Kiyoshi; Tsuboyama, Tadao; Ichihashi, Noriaki
2018-04-19
This study aimed to examine the association of independence in ADL with the loads during step ascent motion and other motor functions in 32 nursing home-residing elderly individuals. Independence in ADL was assessed by using the functional independence measure (FIM). The loads at the upper (i.e., pulling up) and lower (i.e., pushing up) levels during step ascent task was measured on a step ascent platform. Hip extensor, knee extensor, plantar flexor muscle, and quadriceps setting strengths; lower extremity agility using the stepping test; and hip and knee joint pain severities were measured. One-legged stance and functional reach distance for balance, and maximal walking speed, timed up-and-go (TUG) time, five-chair-stand time, and step ascent time were also measured to assess mobility. Stepwise regression analysis revealed that the load at pushing up during step ascent motion and TUG time were significant and independent determinants of FIM score. FIM score decreased with decreased the load at pushing up and increased TUG time. The study results suggest that depending on task specificity, both one step up task's push up peak load during step ascent motion and TUG, can partially explain ADL's FIM score in the nursing home-residing elderly individuals. Lower extremity muscle strength, agility, pain or balance measures did not add to the prediction.
Justo, Dan; Vislapu, Natalia; Shvedov, Victor; Fickte, Marina; Danylesko, Alexander; Kimelman, Polina; Merdler, Charlotte; Lerman, Yaffa
2011-01-01
We sought to determine if ANSS used for evaluating pressure sore risk also correlate with rehabilitation outcome and length following hip arthroplasty in elderly patients. This was a retrospective study conducted in a geriatric rehabilitation department during 2009. ANSS, admission albumin serum levels, mini-mental state examination (MMSE) scores, discharge walking functional independence measure (FIM) scores, and rehabilitation length were studied. The final cohort included 201 patients: 160 (79.6%) females and 41 (20.4%) males. Mean age was 82.7±6.5 years. Mean discharge walking FIM score was 5.2±0.9. Mean length of rehabilitation was 19.9±7.8 days. ANSS correlated with discharge walking FIM scores (r=0.28; p=0.002), and with length of rehabilitation (r=-0.22; p=0.014) following adjustment for age, admission albumin serum levels, and MMSE scores. Linear regression analysis showed that ANSS were associated with the discharge walking FIM scores (p<0.0001) and rehabilitation length (p=0.027) independent of age, admission albumin serum levels, gender, type of hip surgery, and the appearance of pressure sores. We conclude that the Norton scoring system may be used for predicting the outcome and the duration of rehabilitation in elderly patients following hip arthroplasty. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J
2018-07-01
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.
Kaczmarek, Agnieszka; Budzynska, Anna; Gospodarek, Eugenia
2012-10-01
Multiplex PCR was used to detect genes encoding selected virulence determinants associated with strains of Escherichia coli with K1 antigen (K1(+)) and non-K1 E. coli (K1(-)). The prevalence of the fimA, fimH, sfa/foc, ibeA, iutA and hlyF genes was studied for 134 (67 K1(+) and 67 K1(-)) E. coli strains isolated from pregnant women and neonates. The fimA gene was present in 83.6 % of E. coli K1(+) and in 86.6 % of E. coli K1(-) strains. The fimH gene was present in all tested E. coli K1(+) strains and in 97.0 % of non-K1 strains. E. coli K1(+) strains were significantly more likely to possess the following genes than E. coli K1(-) strains: sfa/foc (37.3 vs 16.4 %, P = 0.006), ibeA (35.8 vs 4.5 %, P<0.001), iutA (82.1 vs 35.8 %, P<0.001) and hlyF (28.4 vs 6.0 %, P<0.001). In conclusion, E. coli K1(+) seems to be more virulent than E. coli K1(-) strains in developing severe infections, thereby increasing possible sepsis or neonatal bacterial meningitis.
Method of forming aperture plate for electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1974-01-01
An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.
Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K
2008-05-01
Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.
Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.
Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less
Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes
Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; ...
2017-03-06
Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less
Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn
2017-05-01
To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of interventions used in rehabilitation, it is necessary to select measures with relevant content and scale properties that enable evaluation of change in the constructs that are expected to change, as a result of the rehabilitation intervention.
Naghdi, Soofia; Ansari, Noureddin Nakhostin; Raji, Parvin; Shamili, Aryan; Amini, Malek; Hasson, Scott
2016-01-01
To translate and cross-culturally adapt the Functional Independence Measure (FIM) into the Persian language and to test the reliability and validity of the Persian FIM (PFIM) in patients with stroke. In this cross-sectional study carried out in an outpatient stroke rehabilitation center, 40 patients with stroke (mean age 60 years) were participated. A standard forward-backward translation method and expert panel validation was followed to develop the PFIM. Two experienced occupational therapists (OTs) assessed the patients independently in all items of the PFIM in a single session for inter-rater reliability. One of the OTs reassessed the patients after 1 week for intra-rater reliability. There were no floor or ceiling effects for the PFIM. Excellent inter-rater and intra-rater reliability was noted for the PFIM total score, motor and cognitive subscales (ICC(agreement)0.88-0.98). According to the Bland-Altman agreement analysis, there was no systematic bias between raters and within raters. The internal consistency of the PFIM was with Cronbach's alpha from 0.70 to 0.96. The principal component analysis with varimax rotation indicated a three-factor structure: (1) self-care and mobility; (2) sphincter control and (3) cognitive that jointly accounted for 74.8% of the total variance. Construct validity was supported by a significant Pearson correlation between the PFIM and the Persian Barthel Index (r = 0.95; p < 0.001). The PFIM is a highly reliable and valid instrument for measuring functional status of Persian patients with stroke. The Functional Independence Measure (FIM) is an outcome measure for disability based on the International Classification of Functioning, Disability and Health (ICF). The FIM was cross-culturally adapted and validated into Persian language. The Persian version of the FIM (PFIM) is reliable and valid for assessing functional status of patients with stroke. The PFIM can be used in Persian speaking countries to assess the limitations in activities of daily living of patients with stroke.
An Exploratory Analysis of Functional Staging Using an Item Response Theory Approach
Tao, Wei; Haley, Stephen M.; Coster, Wendy J.; Ni, Pengsheng; Jette, Alan M.
2009-01-01
Objectives To develop and explore the feasibility of a functional staging system (defined as the process of assigning subjects, according to predetermined standards, into a set of hierarchical levels with regard to their functioning performance in mobility, daily activities, and cognitive skills) based on item response theory (IRT) methods using short-forms of the Activity Measure for Post-Acute Care (AM-PAC); and to compare the criterion validity and sensitivity of the IRT-based staging system to a non-IRT-based staging system developed for the FIM instrument. Design Prospective, longitudinal cohort study of patients interviewed at hospital discharge and 1, 6, and 12 months after inpatient rehabilitation. Setting Follow-up interviews conducted in patients’ homes. Participants Convenience sample of 516 patients (47% men; sample mean age, 68.3y) at baseline (retention at the final follow-up, 65%) with neurologic, lower-extremity orthopedic, or complex medical conditions. Interventions Not applicable Main Outcome Measures AM-PAC basic mobility, daily activity, and applied cognitive activity stages; FIM executive control, mobility, activities of daily living, and sphincter stages. Stages refer to the hierarchical levels assigned to patient’s functioning performance. Results We were able to define IRT-based staging definitions and create meaningful cut scores based on the 3 AM-PAC short-forms. The IRT stages correlated as well or better to the criterion items than the FIM stages. Both the IRT-based stages and the FIM stages were sensitive to changes throughout the 6-month follow-up period. The FIM stages were more sensitive in detecting changes between baseline and 1-month follow-up visit. The AM-PAC stages were more discriminant in the follow-up visits. Conclusions An IRT-based staging approach appeared feasible and effective in classifying patients throughout long-term follow-up. Although these stages were developed from short-forms, this staging methodology could also be applied to improve the meaning of scores generated from IRT-based computerized adaptive testing in future work. PMID:18503798
Graham, J. C.; Leathart, J. B. S.; Keegan, S. J.; Pearson, J.; Bint, A.; Gally, D. L.
2001-01-01
Escherichia coli isolates from patients with bacteriuria of pregnancy were compared by PCR with isolates from patients with community-acquired cystitis for the presence of established virulence determinants. The strains from patients with bacteriuria of pregnancy were less likely to carry genes for P-family, S-family, and F1C adhesins, cytotoxic necrotizing factor 1, and aerobactin, but virtually all of the strains carried the genes for type 1 fimbriae. Standard mannose-sensitive agglutination of yeast cells showed that only 15 of 42 bacteriuria strains (36%) expressed type 1 fimbriae compared with 32 of 42 strains from community-acquired symptomatic infections (76%) (P < 0.01). This difference was confirmed by analysis of all isolates for an allele of the type 1 fimbrial regulatory region (fim switch), which negates type 1 fimbrial expression by preventing the fim switch from being inverted to the on phase. This allele, fimS49, was found in 8 of 47 bacteriuria strains from pregnant women (17.0%) compared with 2 of 60 strains isolated from patients with cystitis (3.3%) (P < 0.05). Determination of the phase switch orientation in vivo by analysis of freshly collected infected urine from patients with bacteriuria showed that the fim switch was detectable in the off orientation in 17 of 23 urine samples analyzed (74%). These data indicate that type 1 fimbriae are not necessary to maintain the majority of E. coli bacteriurias in pregnant women since there appears to be selection against their expression in this particular group. This is in contrast to the considered role of this adhesin in community-acquired symptomatic infections. The lack of type 1 fimbria expression is likely to contribute to the asymptomatic nature of bacteriuria in pregnant women, although approximately one-third of the bacteriuria isolates do possess key virulence determinants. If left untreated, this subset of isolates pose the greatest threat to the health of the mother and unborn child. PMID:11159970
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation
He, Haibing; Ma, Fuyu; Yang, Ru; Chen, Lin; Jia, Biao; Cui, Jing; Fan, Hua; Wang, Xin; Li, Li
2013-01-01
Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity. PMID:24340087
Floyd, Kyle A.; Moore, Jessica L.; Eberly, Allison R.; Good, James A. D.; Shaffer, Carrie L.; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P.; Caprioli, Richard M.; Hadjifrangiskou, Maria
2015-01-01
Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we have demonstrated that this technology can be used to interrogate subpopulations within bacterial biofilms. PMID:25738819
Simulation of Galactic Cosmic Rays and Dose-Rate Effects in RITRACKS
NASA Technical Reports Server (NTRS)
Plante, Ianik; Ponomarev, Artem; Slaba, Tony; Blattnig, Steve; Hada, Megumi
2017-01-01
The NASA Space Radiation Laboratory (NSRL) facility has been used successfully for many years to generate ion beams for radiation research experiments by NASA investigators. Recently, modifications were made to the beam lines to allow rapid switching between different types of ions and energies, with the aim to simulate the Galactic Cosmic Rays (GCR) environment. As this will be a focus of space radiation research for upcoming years, the stochastic radiation track structure code RITRACKS (Relativistic Ion Tracks) was modified to simulate beams of various ion types and energies during time intervals specified by the user at the microscopic and nanoscopic scales. For example, particle distributions of a mixed 344.1-MeV protons (18.04 cGy) and 950-MeV/n iron (5.64 cGy) beam behind a 20 g/cm(exp 2) aluminum followed by a 10 g/cm(exp 2) polyethylene shield as calculated by the code GEANT4 were used as an input field in RITRACKS. Similarly, modifications were also made to simulate a realistic radiation environment in a spacecraft exposed to GCR by sampling the ion types and energies from particle spectra pre-calculated by the code HZETRN. The newly implemented features allows RITRACKS to generate time-dependent differential and cumulative 3D dose voxel maps. These new capabilities of RITRACKS will be used to investigate dose-rate effects and synergistic interactions of various types of radiations for many end points at the microscopic and nanoscopic scales such as DNA damage and chromosome aberrations.
Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju
2006-03-01
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.
Design and performance of a Near Ultra High Vacuum Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Poelsema, Bene; van Gastel, Raoul; Hlawacek, Gregor; Zandvliet, Harold J. W.
2012-02-01
The advent of He Ion Microscopy (HIM) as a new nanoscopic technique to image materials has enabled a new look at materials that is based on the interaction of swift light ions with matter. Initial HIM instruments have demonstrated high-resolution imaging, combined with great surface sensitivity, the ability to neutralize charge very efficiently, and with enhanced materials contrast when ion induced secondary electrons are used for imaging. To achieve ultimate performance, the chamber vacuum of the existing platform may be improved. For instance, carbon deposits due to beam interaction are readily seen due to the surface sensitivity of the technique. At high current densities the sharply focused beam may very efficiently decompose residual hydrocarbons. Not only can this obscure a clear view of the sample, thereby negating the benefits of the small spot size, it also limits the available acquisition time. This has proven extremely useful for nanopatterning for sensors, and other device fabrication applications at the sub-10nm level. However, it is undesirable when the instrument is used for materials characterization. We will discuss the basic considerations that went into the design of a Near-UHV He Ion Microscope [1]. First applications that the instrument was used for will be highlighted and its impact in surface physics and other research areas that require increased imaging sensitivity will be discussed. [4pt] [1] R.van Gastel et al, Microscopy and Microanalysis 17, 928-929 (2011)
NASA Astrophysics Data System (ADS)
Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li
2018-01-01
The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
SPM observation of slow highly charged ion induced nanodots on highly orientated pyrolytic graphite
NASA Astrophysics Data System (ADS)
Mitsuda, Y.; Nakamura, B. E. O'Rourke1 N.; Kanai, Y.; Ohtani, S.; Yamazaki, Y.
2007-03-01
We have observed nanodots on a highly orientated pyrolytic graphite (HOPG) surface produced by highly charged ion impacts using a scanning tunneling microscope. Previous measurements have con.rmed the dominant role of the potential energy or the incident ion charge state on the size and height of the observed nanodots. The present results extend these previous measurements to much lower kinetic energy. It appears that there is no observable influence on the lateral size of the nanodots due to the incident ion kinetic energy down to approximately 200 eV. In contrast some slight reduction in the nanodot height was observed as the kinetic energy was reduced.
NASA Astrophysics Data System (ADS)
Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li
2008-02-01
The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.
1991-03-21
FIM and Ni-Cr Alloy Microstructures (Ren 9:10 D3 Research on AP-FIM and Element Distribution in Ni-Al Alloy ( Sun Jia(unclear)yan and Ren Dagang...Accumulated Si02(unclear) Thin Membrane Research (Jing J h a sun Qing) ........................ 11:30 E9 Percolation Mechanisms of Electrical...Tunnel Structures ( Sun Chengjie, Liu Kelin, and Gao Zhonglin) ............. . 48 10:10 Break 10:30 F6 Research on a New Type of Noncry-taline Semiconductor
Graphene Nanoribbons Fabricated by Helium Ion microscope
NASA Astrophysics Data System (ADS)
Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.
2010-03-01
Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .
NASA Astrophysics Data System (ADS)
Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin
2012-07-01
TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.
NASA Astrophysics Data System (ADS)
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-07-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-01-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690
Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1984-01-01
The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.
Ion beams in radiotherapy - from tracks to treatment planning
NASA Astrophysics Data System (ADS)
Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.
2012-07-01
Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications.
Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A
2016-02-01
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.
Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections.
Mydock-McGrane, Laurel; Cusumano, Zachary; Han, Zhenfu; Binkley, Jana; Kostakioti, Maria; Hannan, Thomas; Pinkner, Jerome S; Klein, Roger; Kalas, Vasilios; Crowley, Jan; Rath, Nigam P; Hultgren, Scott J; Janetka, James W
2016-10-27
Gram-negative uropathogenic Escherichia coli (UPEC) bacteria are a causative pathogen of urinary tract infections (UTIs). Previously developed antivirulence inhibitors of the type 1 pilus adhesin, FimH, demonstrated oral activity in animal models of UTI but were found to have limited compound exposure due to the metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having the O-glycosidic bond replaced with carbon linkages had improved stability and inhibitory activity against FimH. We report on the design, synthesis, and in vivo evaluation of this promising new class of carbon-linked C-mannosides that show improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically modulated by hydroxyl substitution on the methylene linker, where the R-hydroxy isomer has a 60-fold increase in potency. This new class of C-mannoside antagonists have significantly increased compound exposure and, as a result, enhanced efficacy in mouse models of acute and chronic UTI.
Ingram, G C; Goodrich, J; Wilkinson, M D; Simon, R; Haughn, G W; Coen, E S
1995-09-01
The unusual floral organs (ufo) mutant of Arabidopsis has flowers with variable homeotic organ transformations and inflorescence-like characteristics. To determine the relationship between UFO and previously characterized meristem and organ identity genes, we cloned UFO and determined its expression pattern. The UFO gene shows extensive homology with FIMBRIATA (FIM), a gene mediating between meristem and organ identity genes in Antirrhinum. All three UFO mutant alleles that we sequenced are predicted to produce truncated proteins. UFO transcripts were first detected in early floral meristems, before organ identity genes had been activated. At later developmental stages, UFO expression is restricted to the junction between sepal and petal primordia. Phenotypic, genetic, and expression pattern comparisons between UFO and FIM suggest that they are cognate homologs and play a similar role in mediating between meristem and organ identity genes. However, some differences in the functions and genetic interactions of UFO and FIM were apparent, indicating that changes in partially redundant pathways have occurred during the evolutionary divergence of Arabidopsis and Antirrhinum.
The pilus usher controls protein interactions via domain masking and is functional as an oligomer
Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...
2015-06-08
The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less
Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions
Dodson, Karen W; Hazen, Jennie E; Conover, Matt S; Wang, Fengbin; Svenmarker, Pontus; Luna-Rico, Areli; Francetic, Olivera; Andersson, Magnus; Egelman, Edward H
2018-01-01
Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases. PMID:29345620
Characterizing speech and language pathology outcomes in stroke rehabilitation.
Hatfield, Brooke; Millet, Deborah; Coles, Janice; Gassaway, Julie; Conroy, Brendan; Smout, Randall J
2005-12-01
Hatfield B, Millet D, Coles J, Gassaway J, Conroy B, Smout RJ. Characterizing speech and language pathology outcomes in stroke rehabilitation. To describe a subset of speech-language pathology (SLP) patients in the Post-Stroke Rehabilitation Outcomes Project and to examine outcomes for patients with low admission FIM levels of auditory comprehension and verbal expression. Observational cohort study. Five inpatient rehabilitation hospitals. Patients (N=397) receiving post-stroke SLP with admission FIM cognitive components at levels 1 through 5. Not applicable. Increase in comprehension and expression FIM scores from admission to discharge. Cognitively and linguistically complex SLP activities (problem-solving and executive functioning skills) were associated with greater likelihood of success in low- to mid-level functioning communicators in the acute post-stroke rehabilitation period. The results challenge common clinical practice by suggesting that use of high-level cognitively and linguistically complex SLP activities early in a patient's stay may result in more efficient practice and better outcomes regardless of the patient's functional communication severity level on admission.
Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my
2014-07-01
The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less
Comparative Study of the Energetics of Ion Permeation in Kv1.2 and KcsA Potassium Channels
Baştuğ, Turgut; Kuyucak, Serdar
2011-01-01
Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics. PMID:21281577
Gunn, Sarah; Burgess, Gerald H; Maltby, John
2018-04-30
To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. A National Health Service acute acquired brain injury inpatient rehabilitation hospital. Referred sample of N=447 adults admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation INTERVENTION: Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory factor analysis suggested a 2-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory factor analysis suggested a 3-factor bifactor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the exploratory factor analysis, and by a general factor explaining the majority of the variance in scores on confirmatory factor analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (eg, motor, psychosocial, and communication function) after brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A role for ion implantation in quantum computing
NASA Astrophysics Data System (ADS)
Jamieson, David N.; Prawer, Steven; Andrienko, Igor; Brett, David A.; Millar, Victoria
2001-04-01
We propose to create arrays of phosphorus atoms in silicon for quantum computing using ion implantation. Since the implantation of the ions is essentially random, the yield of usefully spaced atoms is low and therefore some method of registering the passage of a single ion is required. This can be accomplished by implantation of the ions through a thin surface layer consisting of resist. Changes to the chemical and/or electrical properties of the resist will be used to mark the site of the buried ion. For chemical changes, the latent damage will be developed and the atomic force microscope (AFM) used to image the changes in topography. Alternatively, changes in electrical properties (which obviate the need for post-irradiation chemical etching) will be used to register the passage of the ion using scanning tunneling microscopy (STM), the surface current imaging mode of the AFM. We address the central issue of the contrast created by the passage of a single ion through resist layers of PMMA and C 60.
Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility.
1980-08-01
with pure titanium ( 4 ], it is of interest to pursue the effects on titanium -palladium alloys, to evaluate their susceptibility to stress corrosion...cracking due to hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ...characterized as 99.99+ percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium
NASA Astrophysics Data System (ADS)
Khalyapin, D. L.; Kim, J.; Stolyar, S. V.; Turpanov, I. A.; Kim, P. D.; Kim, I.
2003-11-01
The crystal structure of the thin films of metastable Co 13Cu 87 alloy prepared by magnetron sputtering was investigated by transmission electron microscope. As-deposited films have a nanocrystal structure with an fcc lattice. As a result of the prolonged ion polishing with a beam of Ar ions with the energy of 4.7 keV, the four-layer 4H dhcp structure was formed.
Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE
NASA Astrophysics Data System (ADS)
Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.
2015-04-01
In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.
Nitrogen implantation with a scanning electron microscope.
Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J
2018-01-08
Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.
NASA Astrophysics Data System (ADS)
Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun
2017-04-01
In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.
NASA Astrophysics Data System (ADS)
Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi
2013-08-01
Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.
Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations
NASA Astrophysics Data System (ADS)
Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli
2018-03-01
Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.
Nishioka, Shinta; Wakabayashi, Hidetaka; Momosaki, Ryo
2018-07-01
Several studies have suggested that malnutrition impedes functional recovery in patients with hip fracture, but there are few reports on improvement in nutritional status and return to activities of daily living (ADL) in these patients. This study was conducted to evaluate the relationship between change in nutritional status and recovery of ADL in malnourished patients after hip fracture and to identify predictors of functional recovery among the characteristic features of undernutrition. This was a retrospective observational cohort study. Data for patients aged ≥65 years with hip fracture and malnutrition (Mini Nutritional Assessment-Short Form [MNA-SF] score ≤7) at the time of admission to convalescent rehabilitation units were obtained from the Japan Rehabilitation Nutrition Database between November 2015 and August 2017. The main outcome measures were Functional Independence Measure (FIM) at discharge and the proportion of patients discharged home. Patients were divided into two groups based on MNA-SF scores at discharge: improvement in nutritional status (>7, IN group) and non-improvement in nutritional status (≤7, NN group). Clinical characteristics and outcomes were compared between the groups. Multivariable regression analysis was performed to adjust for confounders including age, sex, comorbidity, pre-fracture ADL level, and FIM score on admission. Of 876 patients, 110 met the eligibility criteria (mean age, 85 years; 78.2% female); 77 of the patients were assigned to the IN group and 33 to the NN group. The patients in the IN group were younger and had higher FIM and MNA-SF scores on admission than those in the NN group. At discharge, the median FIM score was significantly higher in the IN group than in the NN group (110 vs 83, P<0.001). Multivariable analysis revealed a significant association between improvement in nutritional status and higher FIM score at discharge (B=7.377 [B=partial regression coefficient], P=0.036) but no association with discharge to home. Mobility, neuropsychological impairment, and weight loss subscores of MNA-SF were independently associated with discharge FIM score (R 2 =0.659). In older patients with hip fracture and malnutrition, improvement in nutritional status was independently associated with improved performance of ADL during inpatient rehabilitation. Weight loss may be an important nutritional indicator for these patients. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Turner-Stokes, Lynne; Williams, Heather; Bill, Alan; Bassett, Paul; Sephton, Keith
2016-02-24
To evaluate functional outcomes, care needs and cost-efficiency of specialist rehabilitation for a multicentre cohort of inpatients with complex neurological disability, comparing different diagnostic groups across 3 levels of dependency. A multicentre cohort analysis of prospectively collected clinical data from the UK Rehabilitation Outcomes Collaborative (UKROC) national clinical database, 2010-2015. All 62 specialist (levels 1 and 2) rehabilitation services in England. Working-aged adults (16-65 years) with complex neurological disability. all episodes with length of stay (LOS) 8-400 days and complete outcome measures recorded on admission and discharge. Total N=5739: acquired brain injury n=4182 (73%); spinal cord injury n=506 (9%); peripheral neurological conditions n=282 (5%); progressive conditions n=769 (13%). Specialist inpatient multidisciplinary rehabilitation. Dependency and care costs: Northwick Park Dependency Scale/Care Needs Assessment (NPDS/NPCNA). Functional independence: UK Functional Assessment Measure (UK Functional Independence Measure (FIM)+FAM). Cost-efficiency: (1) time taken to offset rehabilitation costs by savings in NPCNA-estimated costs of ongoing care, (2) FIM efficiency (FIM gain/LOS days), (3) FIM+FAM efficiency (FIM+FAM gain/LOS days). Patients were analysed in 3 groups of dependency. Mean LOS 90.1 (SD 66) days. All groups showed significant reduction in dependency between admission and discharge on all measures (paired t tests: p<0.001). Mean reduction in 'weekly care costs' was greatest in the high-dependency group at £760/week (95% CI 726 to 794)), compared with the medium-dependency (£408/week (95% CI 370 to 445)), and low-dependency (£130/week (95% CI 82 to 178)), groups. Despite longer LOS, time taken to offset the cost of rehabilitation was 14.2 (95% CI 9.9 to 18.8) months in the high-dependency group, compared with 22.3 (95% CI 16.9 to 29.2) months (medium dependency), and 27.7 (95% CI 15.9 to 39.7) months (low dependency). FIM efficiency appeared greatest in medium-dependency patients (0.54), compared with the low-dependency (0.37) and high-dependency (0.38) groups. Broadly similar patterns were seen across all 4 diagnostic groups. Specialist rehabilitation can be highly cost-efficient for all neurological conditions, producing substantial savings in ongoing care costs, especially in high-dependency patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy
NASA Astrophysics Data System (ADS)
Wu, Yingwei; Peng, Kun
2018-06-01
Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.
Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2017-03-01
The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.
Kim, Yang Seon; Yoon, Ki Young; Park, Jae Hong; Hwang, Jungho
2011-01-15
We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. Copyright © 2010 Elsevier B.V. All rights reserved.
The effects on γ-LiAlO2 induced by nuclear energy losses during Ga ions implantation
NASA Astrophysics Data System (ADS)
Zhang, Jing; Song, Hong-Lian; Qiao, Mei; Yu, Xiao-Fei; Wang, Tie-Jun; Wang, Xue-Lin
2017-09-01
To explore the evolution of γ-LiAlO2 under ion irradiation at low energy, we implanted Ga ions of 30, 80 and 150 keV at fluences of 1 × 1014 and 1 × 1015 ions/cm2 in z-cut γ-LiAlO2 samples, respectively. The implantation resulted in damage regions dominated by nuclear energy losses at depth of 232 Å, 514 Å, and 911 Å beneath the surface, respectively, which was simulated by the Stopping and Range of Ions in Matter program. The irradiated γ-LiAlO2 were characterized with atomic force microscope, Raman spectroscopy, X-ray diffraction and Rutherford backscattering in a channeling mode for morphology evolution, structure information and damage profiles. The interesting and partly abnormal results showed the various behaviors in modification of surface by Ga ions implantation.
Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
Timilsina, Rajendra; Rack, Philip D
2013-12-13
A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.
Ion-induced electron emission microscopy
Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.
2001-01-01
An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.
Fast and Adaptive Auto-focusing Microscope
NASA Astrophysics Data System (ADS)
Obara, Takeshi; Igarashi, Yasunobu; Hashimoto, Koichi
Optical microscopes are widely used in biological and medical researches. By using the microscope, we can observe cellular movements including intracellular ions and molecules tagged with fluorescent dyes at a high magnification. However, a freely motile cell easily escapes from a 3D field of view of the typical microscope. Therefore, we propose a novel auto-focusing algorithm and develop a auto-focusing and tracking microscope. XYZ positions of a microscopic stage are feedback controlled to focus and track the cell automatically. A bright-field image is used to estimate a cellular position. XY centroids are used to estimate XY positions of the tracked cell. To estimate Z position, we use a diffraction pattern around the cell membrane. This estimation method is so-called Depth from Diffraction (DFDi). However, this method is not robust for individual differences between cells because the diffraction pattern depends on each cellular shape. Therefore, in this study, we propose a real-time correction of DFDi by using 2D Laplacian of an intracellular area as a goodness of the focus. To evaluate the performance of our developed algorithm and microscope, we auto-focus and track a freely moving paramecium. In this experimental result, the paramecium is auto-focused and kept inside the scope of the microscope during 45s. The evaluated focal error is within 5µm, while a length and a thickness of the paramecium are about 200µm and 50µm, respectively.
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
Maity, Shubhra B; Banerjee, Saikat; Sunwoo, Kyoung; Kim, Jong Seung; Bharadwaj, Parimal K
2015-04-20
A new BODIPY derivative with 2,2'-(ethane-1,2-diylbis(oxy))bis(N,N-bis(pyridine-2-ylmethyl)aniline unit as the metal receptor has been designed and synthesized. The dye selectively detects either Cd(2+) or Hg(2+) ions in the presence of hosts of other biologically important and environmentally relevant metal ions in aqueous medium at physiological pH. Binding of metal ions causes a change in the emission behavior of the dye from weakly fluorescent to highly fluorescent. Confocal microscopic experiments validate that the dye can be used to identify changes in either Hg(2+) or Cd(2+) levels in living cells.
Facius, R; Reitz, G; Schafer, M
1994-10-01
For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions.
Imaging of dynamic ion signaling during root gravitropism.
Monshausen, Gabriele B
2015-01-01
Gravitropic signaling is a complex process that requires the coordinated action of multiple cell types and tissues. Ca(2+) and pH signaling are key components of gravitropic signaling cascades and can serve as useful markers to dissect the molecular machinery mediating plant gravitropism. To monitor dynamic ion signaling, imaging approaches combining fluorescent ion sensors and confocal fluorescence microscopy are employed, which allow the visualization of pH and Ca(2+) changes at the level of entire tissues, while also providing high spatiotemporal resolution. Here, I describe procedures to prepare Arabidopsis seedlings for live cell imaging and to convert a microscope for vertical stage fluorescence microscopy. With this imaging system, ion signaling can be monitored during all phases of the root gravitropic response.
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.
2018-06-01
Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.
Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E
2001-05-01
Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.
Activities report in nuclear physics and particle acceleration
NASA Astrophysics Data System (ADS)
Jansen, J. F. W.; Demeijer, R. J.
1984-04-01
Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.
NASA Technical Reports Server (NTRS)
Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.
2004-01-01
Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-01-01
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery
NASA Astrophysics Data System (ADS)
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-03-01
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery.
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-03-08
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.
Distance scaling of electric-field noise in a surface-electrode ion trap
NASA Astrophysics Data System (ADS)
Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.
2018-02-01
We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.
Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas
2001-01-01
Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both types of fimbria on the investigated Actinomyces strains. PMID:11705891
Granger, Carl V.; Karmarkar, Amol M.; Graham, James E.; Deutsch, Anne; Niewczyk, Paulette; DiVita, Margaret A.; Ottenbacher, Kenneth J.
2012-01-01
Objective Provide benchmarking information from a large national sample of patients receiving inpatient rehabilitation following a traumatic spinal cord injury. Design Analysis of secondary data from 891 inpatient medical rehabilitation facilities in the United States that contributed traumatic spinal cord injury data to the Uniform Data System for Medical Rehabilitation (UDSmr) during the period January 2002 through December 2010. Variables analyzed included demographic information (age, sex, marital status, race/ethnicity, pre-hospital living setting, discharge setting), hospitalization information (length of stay, program interruptions, payer, onset date, rehabilitation impairment group, ICD-9 codes for admitting diagnosis, comorbidities), and functional status (FIM® instrument [“FIM”] ratings at admission and discharge, FIM efficiency, FIM gain). Results The final sample included 47,153 patients with traumatic spinal cord injury. Overall mean length of stay = 26.2 (±23.2) days: yearly means ranged from 29.7 (±25.4) in 2002 to 22.9 (±18.9) in 2009. FIM total admission and discharge ratings also declined over the 8-year study period: admission decreased from 60.5 (± 17.4) to 55.9 (±16.3); discharge decreased from 86.1 (±23.8) to 82.4 (±23.4). Rehabilitation efficiency (FIM gain per day) remained relatively stable over time (1.6 ±1.7 points per day). The percentage of all patients discharged to the community ranged from 75.8% to 71.5% per year. Wheelchair users stayed in rehabilitation longer than persons who could walk (34.6 ±217.4 vs. 17.4 ±14.1 days) and also experienced less functional improvement (21.6 ±15.8 vs. 29.6 ±16.3 FIM points). Conclusions National data from persons with traumatic spinal cord injury in 2002-2010 indicate that lengths of stay declined, but efficiency in functional independence was stable to slightly increased. Over seventy percent of patients were consistently discharged to community settings following inpatient rehabilitation. PMID:22407160
Does early functional outcome predict 1-year mortality in elderly patients with hip fracture?
Dubljanin-Raspopović, Emilija; Marković-Denić, Ljiljana; Marinković, Jelena; Nedeljković, Una; Bumbaširević, Marko
2013-08-01
Hip fractures in the elderly are followed by considerable risk of functional decline and mortality. The purposes of this study were to (1) explore predictive factors of functional level at discharge, (2) evaluate 1-year mortality after hip fracture compared with that of the general population, and (3) evaluate the affect of early functional outcome on 1-year mortality in patients operated on for hip fractures. A total of 228 consecutive patients (average age, 77.6 ± 7.4 years) with hip fractures who met the inclusion criteria were enrolled in an open, prospective, observational cohort study. Functional level at discharge was measured with the motor Functional Independence Measure (FIM) score, which is the most widely accepted functional assessment measure in use in the rehabilitation community. Mortality rates in the study population were calculated in absolute numbers and as the standardized mortality ratio. Multivariate regression analysis was used to explore predictive factors for motor FIM score at discharge and for 1-year mortality adjusted for important baseline variables. Age, health status, cognitive level, preinjury functional level, and pressure sores after hip fracture surgery were independently related to lower discharge motor FIM scores. At 1-year followup, 57 patients (25%; 43 women and 14 men) had died. The 1-year hip fracture mortality rate compared with that of the general population was 31% in our population versus 7% for men and 23% in our population versus 5% for women 65 years or older. The 1-year standardized mortality rate was 341.3 (95% CI, 162.5-520.1) for men and 301.6 (95% CI, 212.4-391.8) for women, respectively. The all-cause mortality rate observed in this group was higher in all age groups and in both sexes when compared with the all-cause age-adjusted mortality of the general population. Motor FIM score at discharge was the only independent predictor of 1-year mortality after hip fracture. Functional level at discharge is the main determinant of long-term mortality in patients with hip fracture. Motor FIM score at discharge is a reliable predictor of mortality and can be recommended for clinical use.
Fortin, Christian D.; Voth, Jennifer; Jaglal, Susan B.
2015-01-01
Objective To compare and describe demographic characteristics, clinical, and survival outcomes in patients admitted for inpatient rehabilitation following malignant spinal cord compression (MSCC) or other causes of non-traumatic spinal cord injury (NT-SCI). Design A retrospective cohort design was employed, using data retrieved from administrative databases. Setting Rehabilitation facilities or designated rehabilitation beds in Ontario, Canada, from April 2007 to March 2011. Participants Patients with incident diagnoses of MSCC (N = 143) or NT-SCI (N = 1,274) admitted for inpatient rehabilitation. Outcome measures Demographic, impairment, functional outcome (as defined by the Functional Independence Measure (FIM)), discharge, healthcare utilization, survival, and tumor characteristics. Results There was a significant improvement in the FIM from admission to discharge (mean change 20.1 ± 14.3, <0.001) in the MSCC cohort. NT-SCI patients demonstrated a higher FIM efficiency (1.2 ± 1.7 vs. 0.8 ± 0.8, <0.001) and higher total (24.0 ± 14.4 vs. 20.1 ± 14.3, <0.001) FIM gains relative to MSCC cases. However, there were no differences between the MSCC and NT-SCI cohorts in length of stay (34.6 ± 30.3 vs. 37.5 ± 35.2, P = 0.8) or discharge FIM (100.7 ± 19.6 vs. 103.3 ± 18.1, P = 0.1). Three-month, 1-year, and 3-year survival rates in the MSCC and NT-SCI cohorts were 76.2% vs. 97.6%, 46.2% vs. 93.7%, and 27.3% vs. 86.7%, respectively. The majority (65.0%) of patients with MSCC was discharged home and met their rehabilitation goals (75.5%) at comparable rates to patients with NT-SCI (69.7 and 81.3%). Conclusion Despite compromised survival, patients with MSCC make clinically significant functional gains and exhibit favorable discharge outcomes following inpatient rehabilitation. Current administrative data suggests the design and scope of inpatient rehabilitation services should reflect the unique survival-related prognostic factors in patients with MSCC. PMID:25615237
Şimşek, Tülay Tarsuslu; Çekok, Kübra
2016-12-01
The aim of this study was to investigate the effects of Nintendo Wii(TM)-based balance and upper extremity training on activities of daily living and quality of life in patients with subacute stroke. 42 adults with stroke (mean age (SD) = 58.04 (16.56) years and mean time since stroke (SD) = (55.2 ± 22.02 days (∼8 weeks)) were included in the study. Participants were enrolled from the rehabilitation department of a medical center (a single inpatient rehabilitation facility). Participants were randomly assigned to Nintendo Wii group (n = 20) or Bobath neurodevelopmental treatment (NDT) (n = 22). The treatments were applied for 10 weeks (45-60 minutes/day, 3 days/week) for both of two groups. Nintendo Wii group used five games selected from the Wii sports and Wii Fit packages for upper limb and balance training, respectively. The patients in Bobath NDT group were applied a therapy program included upper extremity activites, strength, balance gait and functional training. The functional independence in daily life activities and health-related quality of life was assessed with Functional Independence Measure (FIM) and Nottingham Health Profile (NHP), respectively. Participant's treatment satisfaction was recorded by using Visual Analogue Scale. A second evaluation (FIM and NHP) occurred after 10 weeks at the end of rehabilitative treatment (post-training). Treatment satisfaction was measured after 10 sessions. There were significant difference between FIM and NHP values in NDT and Nintendo Wii group (p < 0.05). However, a significant difference was not found between the groups with regard to FIM and NHP (p > 0.05). The patients in Nintendo Wii group were detected to be better satisfied from the therapy (p < 0.05). A significant difference was found between subparameters and total FIM score, all subparameters and total NHP score in both groups (p < 0.05). These findings suggested that the Nintendo Wii training was as effective as Bobath NDT on daily living functions and quality of life in subacute stroke patients.
Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development.
Reardon-Robinson, Melissa E; Wu, Chenggang; Mishra, Arunima; Chang, Chungyu; Bier, Naomi; Das, Asis; Ton-That, Hung
2014-03-11
The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.
McCunniff, Peter T; Ramey, James S; Scott, Meredith L; Roach, Mary J; Vallier, Heather A; Moore, Timothy A; Kelly, Michael L
2017-10-01
Surgery for patients with gunshot wound spinal cord injury (GSCI) remains controversial. Few recent studies provide standardized follow-up and detailed functional outcomes. To our knowledge, the research we present in this study is unique in that we are the first to incorporate Functional Independence Measure (FIM) scores as an outcomes measure for neurologic recovery in patients with GSCI. Patients with GSCI were divided into surgical and nonsurgical groups. Neurologic function was measured according to the American Spinal Injury Association impairment scale and defined as either complete or incomplete injury. Outcomes were then analyzed separately for complete and incomplete GSCI groups during hospitalization and rehabilitation. Baseline admissions characteristics were similar between surgical and nonsurgical groups except for a greater median injury severity score in the nonsurgical group (34 vs. 27; P = 0.02). For complete GSCI, total length of stay (LOS) was significantly longer in the surgical group (52 vs. 42 days; P = 0.04), and no difference was observed in overall FIM scores (58 vs. 54; P = 0.7). For incomplete GSCI, rehabilitation LOS was longer (35 vs. 21; P = 0.02) and a trend towards longer total LOS was observed in the surgical group (40 vs. 32; P = 0.07). No difference was observed in overall FIM scores (61 vs. 62; P = 0.9). Surgery for patients with GSCI is associated with increased LOS and is not associated with improved FIM scores for patients with either complete or incomplete spinal cord injuries. Copyright © 2017 Elsevier Inc. All rights reserved.
Ozelie, Rebecca; Gassaway, Julie; Buchman, Emily; Thimmaiah, Deepa; Heisler, Lauren; Cantoni, Kara; Foy, Teresa; Hsieh, Ching-Hui (Jean); Smout, Randall J.; Kreider, Scott E. D.; Whiteneck, Gale
2012-01-01
Background/objective Describe associations of occupational therapy (OT) interventions delivered during inpatient spinal cord injury (SCI) rehabilitation and patient characteristics with outcomes at the time of discharge and 1-year post-injury. Methods Occupational therapists at six inpatient rehabilitation centers documented detailed information about treatment provided. Least squares regression modeling was used to predict outcomes at discharge and 1-year injury anniversary for a 75% subset; models were validated with the remaining 25%. Functional outcomes for injury subgroups (motor complete low tetraplegia and motor complete paraplegia) also were examined. Results OT treatment variables explain a small amount of variation in Functional Independence Measure (FIM) outcomes for the full sample and significantly more in two functionally homogeneous subgroups. For patients with motor complete paraplegia, more time spent in clothing management and hygiene related to toileting was a strong predictor of higher scores on the lower body items of the self-care component of the discharge motor FIM. Among patients with motor complete low tetraplegia, higher scores for the FIM lower body self-care items were associated with more time spent on lower body dressing, manual wheelchair mobility training, and bathing training. Active patient participation during OT treatment sessions also was predictive of FIM and other outcomes. Conclusion OT treatments add to explained variance (in addition to patient characteristics) for multiple outcomes. The impact of OT treatment on functional outcomes is more evident when examining more homogeneous patient groupings and outcomes specific to the groupings. Note This is the third of nine articles in the SCIRehab series. PMID:23318035
2016-01-01
Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM—admission FIM)/(Maximum possible FIM—Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself. PMID:27780215
Michel, Gérard P F; Aguzzi, Anthony; Ball, Geneviève; Soscia, Chantal; Bleves, Sophie; Voulhoux, Romé
2011-07-01
Although classical type II secretion systems (T2SSs) are widely present in Gram-negative bacteria, atypical T2SSs can be found in some species. In Pseudomonas aeruginosa, in addition to the classical T2SS Xcp, it was reported that two genes, xphA and xqhA, located outside the xcp locus were organized in an operon (PaQa) which encodes the orphan PaQa subunit. This subunit is able to associate with other components of the classical Xcp machinery to form a functional hybrid T2SS. In the present study, using a transcriptional lacZ fusion, we found that the PaQa operon was more efficiently expressed (i) on solid LB agar than in liquid LB medium, (ii) at 25 °C than at 37 °C and (iii) at an early stage of growth. These results suggested an adaptation of the hybrid system to particular environmental conditions. Transposon mutagenesis led to the finding that vfr and fimV genes are required for optimal expression of the orphan PaQa operon in the defined growth conditions used. Using an original culturing device designed to monitor secretion on solid medium, the ring-plate system, we found that T2SS-dependent secretion of exoproteins, namely the elastase LasB, was affected in a fimV deletion mutant. Our findings led to the discovery of an interplay between FimV and the global regulator Vfr triggering the modulation of the level of Vfr and consequently the modulation of T2SS-dependent secretion on solid medium.
Mishra, Kirtisudha; Ramachandran, Smita; Firdaus, Saima; Rath, Bimbadhar
2015-03-01
The multi-dimensional impact on the quality of life (QOL) of families of children with the nephrotic syndrome (NS) has not been studied sufficiently in the literature. We aimed to study this aspect and the predictors of poor QOL among Indian families having children with NS. A cross-sectional study was conducted to compare the parents of children with chronic NS on treatment for at least one year with parents of a matched healthy control group. The parents of both groups were asked to complete the standard self-administered multi-dimensional questionnaire of Pediatric Quality of Life Inventory 4 (PedsQL TM ) Family Impact Module (FIM). Descriptive and analytical statistics were performed to compare scores between the two groups. Possible predictors of poor outcome in each of the summary scales among the cases were assessed by both univariate and multivariate analysis. The parents of 61 cases and 72 controls completed the PedsQL TM FIM questionnaire. The scores in each of the categories, namely FIM Total Scale Score, Parent HRQOL Summary Score, Family Functioning Summary Score and eight individual domains, were found to be significantly higher among controls. Female gender of the affected child was an independent risk factor for poor Family Functioning Summary Score. Also, presence of serious complications during the course of the disease independently predicted poor Total FIM and Parent HRQOL Summary Scores. Even a relatively benign and potentially curable chronic disorder in children, like the NS, can disturb the QOL of parents in multiple domains of functioning.
Lee, Jiwon; Lim, Jae Kuk; Lee, Min Jun; Jo, Yoon-Sik; Park, Jae Sung; Kim, Jong Moon
2015-01-01
Objective To evaluate changes in activity of daily living before and after provision of electric-powered indoor/outdoor chair (EPIOC), discuss problems of current activities of daily living (ADL) evaluating tools for EPIOC users, and provide preliminary data to develop ADL evaluation tool for EPIOC user. Methods A total of 70 users who were prescribed EPIOC and had been using for more than 1 year were recruited in this study. Before and after provision of EPIOC, MBI and FIM scores were measured and a questionnaire consisting of six categories (general socioeconomic states, currently using state, whether EPIOC was helpful for social participation and occupational chances, psychiatric influences, self-reported degrees of independency, and barriers of using EPIOC) was used. Results No difference in MBI scores before and after provision of EPIOC was observed. However, the wheelchair ambulation category showed a significant difference. While motor FIM was not significantly different from MBI, FIM score were significantly (p<0.05) higher than MBI. For questions regarding social participation frequency, helpfulness of EPIOC on confidence, refreshing patients' emotions and self-reported degrees of independence, all of them showed positive responses. Especially, EPIOC users' self-reported degree of independency showed favorable results. There was discrepancy in MBI or FIM measured by physicians. Conclusion Our study showed that there was a gap between the existing ADL evaluation tool and the ADL level that EPIOC users were actually feeling. Thus, it is necessary to develop an evaluation tool specifically for EPIOC. PMID:25932425
Jackson, Diana; Seaman, Karla; Sharp, Kristylee; Singer, Rachel; Wagland, Janet; Turner-Stokes, Lynne
2017-01-01
To compare the UK Functional Assessment Measure (UK FIM+FAM) and Mayo-Portland Adaptability Inventory (MPAI-4) as measures of functional change in patients with brain injury receiving a staged residential post-acute community-based rehabilitation programme. Longitudinal cohort study of consecutive admissions (N = 42) over 3 years. Patients were assessed at admission and discharge/annual review. We examined groups according to stage of independence on admission: Maximum support (stages 1 and 2: N = 17); moderate/maximum self-care/household support (stage 3: N = 15); minimal self-care and moderate household/community support (stages 4-6: N = 10). Median (IQR) age: 50 (37-56) years. Male:female ratio: (71%:29%). Aetiology: stroke (50%), traumatic (36%) and other brain injuries (14%). Both tools demonstrated significant gains in overall scores and all subscales (p < 0.01). However, the UK FIM+FAM provides more detailed evaluation of personal activities of daily living and mobility, which were most relevant in clients admitted in graduation stages 1 and 2 of the programme, whereas the MPAI-4 was more sensitive to changes in adjustment and participation for clients admitted in the later stages (4-6). The UK FIM+FAM and MPAI-4 provide complementary evaluation across functional tasks ranging from self-care to participation. This study supports their use for longitudinal outcome evaluation in community residential rehabilitation services that take patients at different stages of recovery.
Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.
Ziegler, Andreas; Fabritius, Helge; Hagedorn, Monica
2005-01-01
Terrestrial isopods (Crustacea) are excellent model organisms to study epithelial calcium-transport and the regulation of biomineralization processes. They molt frequently and resorb cuticular CaCO(3) before the molt to prevent excessive loss of Ca(2+) ions when the old cuticle is shed. The resorbed mineral is stored in CaCO(3) deposits within the ecdysial gap of the first four anterior sternites. After the molt, the deposits are quickly resorbed to mineralise the posterior part of the new cuticle. The deposits contain numerous small spherules composed of an organic matrix and amorphous CaCO(3), which has a high solubility and, therefore, facilitates quick mobilization of Ca(2+) and HCO(3)(-) ions. During the formation and resorption of the deposits large amounts of Ca(2+), HCO(3)(-) and H(+) are transported across the anterior sternal epithelial cells. Within the last years, various light and electron microscopical techniques have been used to characterize the CaCO(3) deposits and the cellular mechanisms involved in biomineralization. The work on the CaCO(3) deposits includes studies on the ultrastructure of the deposits, the sequence of events during deposit formation and dissolution, and the mineral composition of the sternal deposits. The differentiation of the anterior sternal epithelial cells and the mechanisms of epithelial ion transport required for the mineralization and demineralisation of the deposits was studied using various analytical light and electron microscopical techniques including polarized light microscopy, immunocytochemistry, electron microprobe analysis, electron energy loss spectroscopy and electron spectroscopic imaging. Comparative analysis of deposit morphology and the differentiation of the sternal epithelia provide information on the evolution of CaCO(3) deposit formation in relation to the degree of adaptation to terrestrial environments.
Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials
NASA Astrophysics Data System (ADS)
Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.
2017-12-01
High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.
NASA Astrophysics Data System (ADS)
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
NASA Astrophysics Data System (ADS)
Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu
2011-03-01
Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.
Sprint, Gina; Cook, Diane J.; Weeks, Douglas L.; Borisov, Vladimir
2016-01-01
Evaluating patient progress and making discharge decisions regarding inpatient medical rehabilitation rely upon standard clinical assessments administered by trained clinicians. Wearable inertial sensors can offer more objective measures of patient movement and progress. We undertook a study to investigate the contribution of wearable sensor data to predict discharge functional independence measure (FIM) scores for 20 patients at an inpatient rehabilitation facility. The FIM utilizes a 7-point ordinal scale to measure patient independence while performing several activities of daily living, such as walking, grooming, and bathing. Wearable inertial sensor data were collected from ecological ambulatory tasks at two time points mid-stay during inpatient rehabilitation. Machine learning algorithms were trained with sensor-derived features and clinical information obtained from medical records at admission to the inpatient facility. While models trained only with clinical features predicted discharge scores well, we were able to achieve an even higher level of prediction accuracy when also including the wearable sensor-derived features. Correlations as high as 0.97 for leave-one-out cross validation predicting discharge FIM motor scores are reported. PMID:27054054
Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis
Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei
2016-01-01
Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652
Characterization of Noble Gas Ion Beam Fabricated Single Molecule Nanopore Detectors
NASA Astrophysics Data System (ADS)
Rollings, Ryan; Ledden, Bradley; Shultz, John; Fologea, Daniel; Li, Jiali; Chervinsky, John; Golovchenko, Jene
2006-03-01
Nanopores fabricated with low energy noble gas ion beams in a silicon nitride membrane can be employed as the fundamental element of single biomolecule detection and characterization devices [1,2]. With the help of X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS), we demonstrate that the electrical noise properties, and hence ultimate sensitivity of nanopore single molecule detectors depends on ion beam species and nanopore annealing conditions. .1. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169. 2. Li, J., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nature Materials, 2003. 2: p. 611-615.
Fabrication and ab initio study of downscaled graphene nanoelectronic devices
NASA Astrophysics Data System (ADS)
Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.
2012-09-01
In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.
NASA Astrophysics Data System (ADS)
Arisawa, You; Sawano, Kentarou; Usami, Noritaka
2017-06-01
The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.
Heavy-ion damage of an amorphous metallic alloy
NASA Astrophysics Data System (ADS)
Chaki, T. K.; Li, J. C. M.
1986-09-01
A Ni base amorphous alloy BN12 (Ni 69.2Cr 6.6Si 13.7B 7.9Fe 2.6 supplied by Allied Corporation), with its shiny surface polished and covered with a 20-30 nm Al film to avoid contamination and sputtering, was irradiated with 70 MeV Ni +6 ions at a dose of about {10 16}/{cm 2}. The Al film was removed by 2 g NaOH dissolved in 1 liter water solution. A Dektak surface profilometer showed surface swelling of the irradiated spot by about 200 nm surrounded by higher ridges. Optical and scanning electron microscopic observations revealed considerable roughness within the irradiated spot. Annealing for 3 h at each 50 K. increment of temperature between 500 and 800 K did not remove the swelling. However, transmission electron microscopic studies gave no indication of voids. It seems that swelling may not associate with structural damage. This important possibility is discussed in the light of generation and disappearance of point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Atom Resolved Electron Microscpe Images of Polyvinylidene Fluoride Nanofibers for Water Desalination
NASA Astrophysics Data System (ADS)
Liu, Suqi; Reneker, Darrell
Ultra-thin nanofibers of polyvinylidene fluoride (PVDF), observed with an aberration corrected transmission electron microscope, in a through focus series of 50 images, revealed three-dimensional positions and motions of some molecular segments. The x,y positions of fluorine atoms in the PVDF segments were observed at high resolution as described in (DOI: 10.1039/c5nr01619c). The methods described in (DOI:10.1038/nature11074) were used to measure the positions of fluorine atoms along the observation direction of the microscope. PVDF is widely used to separate salt ions from water in reverse osmosis systems. The observed separation depends on the atomic scale positions and motions of segments of the PVDF molecules. Conformational changes and the associated changes in the directions of the dipole moments of PVDF segments distinguish the diffusion of dipolar water molecules from diffusion of salt ions to accomplish desalination. Authors thank Coalescence Filtration Nanofibers Consortium at The University of Akron for support.
Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.
Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E
2018-04-17
The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.
Microscopic heavy-ion theory. Final Report. February 2014-June 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, David J.; Oberacker, Volker E.; Umar, A. Sait
The Vanderbilt nuclear theory group conducts research in the areas of low-energy nuclear reactions and in neutrino oscillations. Specically, we study dynamics of nuclear reactions microscopically, in particular for neutron-rich nuclei which will be accessible with current and future radioactive ion beam facilities. The neutrino work concentrates on constructing computational tools for analyzing neutrino oscillation data. The most important of these is the analysis of the Super K atmospheric data. Our research concentrates on the following topics which are part of the DOE Long-Range Plan: STUDIES OF LOW-ENERGY REACTIONS OF EXOTIC NUCLEI (Professors Umar and Oberacker), including sub-barrier fusion crossmore » sections, capture cross sections for superheavy element production, and nuclear astrophysics applications. Our theory project is strongly connected to experiments at RIB facilities around the world, including NSCL-FRIB (MSU) and ATLAS-CARIBU (Argonne). PHENOMENOLOGY OF NEUTRINO OSCILLATIONS (Prof. Ernst), extracting information from existing neutrino oscillation experiments and proposing possible future experiments in order to better understand the oscillation phenomenon.« less
Radiation biophysical aspects of charged particles: From the nanoscale to therapy
NASA Astrophysics Data System (ADS)
Scifoni, Emanuele
2015-06-01
Charged particle applications for radiotherapy are motivated by their specific advantages in terms of dose delivery and biological effect. These advantages have to a large extent originated from the peculiarities of ion beam energy deposition patterns in the medium on a microscopic, down to a nanoscopic scale. A large amount of research was conducted in this direction, especially in the last two decades, profiting also from the parallel investigations going on in radiation protection for space exploration. The main biophysical aspects of charged particles, which are relevant to hadrontherapy are shortly reviewed in the present contribution, namely focusing on relative biological effectiveness (RBE), oxygen enhancement ratio (OER) and combination with radiosensitizers. A summary of present major research direction on both microscopic and macroscopic assessment of the specific mechanism of radiation damage will be given, as well as several open challenges for a better understanding of the whole process, which still limit the full exploitation of ion beams for radiotherapy.
NASA Astrophysics Data System (ADS)
Zhang, Zhian; Yang, Xing; Fu, Yun; Du, Ke
2015-11-01
Ultrathin molybdenum diselenide nanosheets are decorated on the surface of multi-walled carbon nanotubes (MWCNT) via a one-step hydrothermal method. Uniform MoSe2 nanosheets are firmly anchored on MWCNT according to the characterizations of scanning electron microscope (SEM), transmission electron microscope (TEM). When evaluated as anodes for sodium storage, the MoSe2@MWCNT composites deliver a reversible specific capacity of 459 mAh g-1 at a current of 200 mA g-1 over 90 cycles, and a specific capacity of 385 mAh g-1 even at a current rate of 2000 mAh g-1, which is better than the MoSe2 nanosheets. The enhanced electrochemical performance of the MoSe2@MWCNT composites can be ascribed to the synergic effects of MoSe2 nanosheets and MWCNT. The high capacity and good rate performance reveal that the MoSe2@MWCNT composites are very promising for applications in sodium-ion batteries.
Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra
2014-10-07
A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.
NASA Technical Reports Server (NTRS)
Hudson, W. R.
1976-01-01
A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.
NASA Astrophysics Data System (ADS)
Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo
2014-08-01
All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.
Zhao, Xin; Hayner, Cary M; Kung, Mayfair C; Kung, Harold H
2011-11-22
The unique combination of high surface area, high electrical conductivity and robust mechanical integrity has attracted great interest in the use of graphene sheets for future electronics applications. Their potential applications for high-power energy storage devices, however, are restricted by the accessible volume, which may be only a fraction of the physical volume, a consequence of the compact geometry of the stack and the ion mobility. Here we demonstrated that remarkably enhanced power delivery can be realized in graphene papers for the use in Li-ion batteries by controlled generation of in-plane porosity via a mechanical cavitation-chemical oxidation approach. These flexible, holey graphene papers, created via facile microscopic engineering, possess abundant ion binding sites, enhanced ion diffusion kinetics, and excellent high-rate lithium-ion storage capabilities, and are suitable for high-performance energy storage devices. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.
X-ray microanalysis in an analytical electron microscope is a proven technique for the measurement of solute segregation in alloys. Solute segregation under equilibrium or nonequilibrium conditions can strongly influence material performance. X-ray microanalysis in an analytical electron microscope provides an alternative technique to measure grain boundary segregation, as well as segregation to other defects not accessible to Auger analysis. The utility of the technique is demonstrated by measurements of equilibrium segregation to boundaries in an antimony containing stainless steel, including the variation of segregation with boundary character and by measurements of nonequilibrium segregation to boundaries and dislocations in an ion-irradiatedmore » stainless steel.« less
Departure of microscopic friction from macroscopic drag in molecular fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp
2016-03-07
Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.
The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory
NASA Astrophysics Data System (ADS)
Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark
2011-06-01
Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.
Crépin, Sébastien; Porcheron, Gaëlle; Houle, Sébastien; Harel, Josée
2017-01-01
ABSTRACT The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC. This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model. IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics. PMID:28924030
Crépin, Sébastien; Porcheron, Gaëlle; Houle, Sébastien; Harel, Josée; Dozois, Charles M
2017-12-15
The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC ( adrA in Salmonella ) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA , affecting at the same time the inversion of the fim promoter switch ( fimS ). In the pst mutant, inactivation of yaiC restored fim -dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC , which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model. IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics. Copyright © 2017 American Society for Microbiology.
Quantum molecular dynamics a microscopic model from UNILAC to CERN energies
NASA Astrophysics Data System (ADS)
Hartnack, C.; Zhuxia, Li; Neise, L.; Peilert, G.; Rosenhauer, A.; Sorge, H.; Aichelin, J.; Stöcker, H.; Greiner, W.
1989-04-01
We demonstrate that the microscopic QMD approach is useful to study heavy ion collisions from fusion fussion phenomena to the quest for signals of the quark gluon plasma. We discuss the possibilities and difficulties to determine the nuclear equation of state from heavy ion collisions. We investigate the influence of momentum dependent interactions and of in medium corrections to the nucleon-nucleon cross sections in the framework of the QMD model. The model is extended to low energies by including a Pauli potential in the nucleon-nucleon interaction. We show that it is possible to extract information on the effective cross sections from the experimental rapidity distributions of the fragments. We also investigate the transverse momentum of complex fragments with and without in medium corrections. The experimental data yield evidence for a stiff equation of state. A covariant extension of the QMD model is presented, which is applied to very high energy (10…200 AGeV) heavy ion collisions. Particle production and decay of heavy resonances are included. Predictions of the stopping power at AGS and SPS are presented. The importance of secondary scattering and nuclear stopping up to the highest energies is demonstrated. This is particularly important for the recently observed enhancement of strangeness production, which was proposed as a signal for QGP formation.
de Souza, Wanderley; Attias, Marcia
2015-07-01
The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya
2013-08-07
Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linearmore » shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.« less
Electron microscopic and ion scattering studies of heteroepitaxial tin-doped indium oxide films
NASA Astrophysics Data System (ADS)
Kamei, Masayuki; Shigesato, Yuzo; Takaki, Satoru; Hayashi, Yasuo; Sasaki, Mikio; Haynes, Tony E.
1994-08-01
The microstructure of heteroepitaxial tin-doped indium oxide (ITO) films were studied in detail. The surface morphology of the heteroepitaxial ITO film consisted of square-shaped, in-plane oriented subgrains (˜300 Å) in contrast to that of the polycrystalline film (characteristic grain-subgrain structure). The subgrain boundaries were predominantly formed along the {110} planes in the ITO film and dislocations were observed primarily along the subgrain boundaries. Ion channeling measurements showed the dislocation density of this film to be approximately 3×1010/cm2, and the angular distribution of the ion channeling yield showed that the subgrains are aligned to within better than 0.3° (standard deviation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, T.Q.; Buczkowski, A.; Radzimski, Z.J.
The electrical activity of as-grown and intentionally decorated misfit dislocations in an epitaxial Si/Si(Ge) heterostructure was examined using the electron beam induced current (EBIC) technique in a scanning electron microscope. Misfit dislocations, which were not visible initially, were subsequently activated either by an unknown processing contaminant or a backside metallic impurity. Passivation of these contaminated dislocations was then studied using low energy deuterium ion implantation in a Kaufman ion source. EBIC results show that the recombination activity of the decorated misfit dislocations was dramatically reduced by the deuterium treatment. Although a front side passivation treatment was more effective than amore » backside treatment, a surface ion bombardment damage problem is still evident. 5 refs., 3 figs.« less
Shao, Jicheng; Yu, Xiaoniu; Zhou, Min; Cai, Xiaoqing; Yu, Chuang
2018-06-04
The removal efficiency of Cu(II) in aqueous solution by bentonite, graphene oxide (GO), and nanoscale iron decorated on bentonite (B-nZVI) and nanoscale iron decorated on bentonite/graphene oxide (GO-B-nZVI) was investigated. The results indicated that GO-B-nZVI had the best removal efficiency in different experimental environments (with time, pH, concentration of copper ions, and temperature). For 16 hours, the removal efficiency of copper ions was 82% in GO-B-nZVI, however, it was 71% in B-nZVI, 26% in bentonite, and 18% in GO. Bentonite, GO, B-nZVI, and GO-B-nZVI showed an increased removal efficiency of copper ions with the increase of pH under a certain pH range. The removal efficiency of copper ions by GO-B-nZVI first increased and then fluctuated slightly with the increase of temperature, while B-nZVI and bentonite increased and GO decreased slightly with the increase of temperature. Lorentz-Transmission Electron Microscope (TEM) images showed the nZVI particles of GO-B-nZVI dispersed evenly with diameters ranging from 10 to 86.93 nm. Scanning electron microscope (SEM) images indicated that the nanoscale iron particles were dispersed evenly on bentonite and GO with no obvious agglomeration. The q e,cal (73.37 mg·g -1 and 83.89 mg·g -1 ) was closer to the experimental value q e,exp according to the pseudo-second-order kinetic model. The q m of B-nZVI and GO-B-nZVI were 130.7 mg·g -1 and 184.5 mg·g -1 according to the Langmuir model.
Rate Dependency of Silver Vanadium Phosphorous Oxide Reduction
NASA Astrophysics Data System (ADS)
Cheng, Po-Jen
2011-12-01
The silver vanadium phosphorus oxide (Ag2VO2PO 4) is a high-capacity and good-compatibility material for the cathode in the battery. Due to their innovative properties, they are used as cathode in lithium batteries. Therefore, when the lithium batteries begin to discharge, the anodes of the cell perform an electrochemical oxidation and release electrons. In the mean time, the cathodes in the cells perform the electrochemical reduction and catch the electrons. For reduction of Ag2VO2PO 4, two silver ions (Ag+) catch two electrons to form silver particles, and the vanadium ions (V5+) catch two electrons to form V3+. It means that four electrons will be released by lithium anode. We call this four electrons discharge as 100% discharge. In my most of the projects, the Ag2VO2PO4 material is tested by differential scanning calorimetry (DSC) to check purity. My study is based on the discharge of batteries, and I focus on the morphology and the intensity of silver particles on the cathode after discharge. Depending on different adjustment of factors, such as discharge time, discharge rate, storage time, storage temperature, I try to investigate the silver intensity, conductivity as a function of DOD (Depth of Discharge). The silver particles could be examined by optical microscope, and scanning electron microscope (SEM). Moreover, I do some x-ray diffraction analysis to quantify the silver particles after discharge. Also, I perform magnetic susceptibility measurement to check the mechanism of the reduction of vanadium ions. Under the research on silver ions and vanadium ions, I will know a big frame of reduction process on silver vanadium phosphorous oxide and the time effect on this cathode material.
Optical and electrical properties of ion beam textured Kapton and Teflon
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1977-01-01
An electron bombardment argon ion source was used to ion etch polyimide (Kapton) and fluorinated ethylene, FEP (Teflon). Samples of polyimide and FEP were exposed to (0.5-1.0) keV Ar ions at ion current densities of (1.0-1/8) mA/sq cm for various exposure times. Changes in the optical and electrical properties of the samples were used to characterize the exposure. Spectral reflectance and transmittance measurements were made between 0.33 and 2.16 micron m using an integrating sphere after each exposure. From these measurements, values of solar absorptance were obtained. Total emittance measurements were also recorded for some samples. Surface resistivity was used to determine changes in the electrical conductivity of the etched samples. A scanning electron microscope recorded surface structure after exposure. Spectral optical data, resistivity measurements, calculated absorptance and emittance measurements are presented along with photomicrographs of the surface structure for the various exposures to Ar ions.
Enhancement of Ag nanoparticles concentration by prior ion implantation
NASA Astrophysics Data System (ADS)
Mu, Xiaoyu; Wang, Jun; Liu, Changlong
2017-09-01
Thermally grown SiO2 layer on Si substrates were singly or sequentially implanted with Zn or Cu and Ag ions at the same fluence of 2 × 1016/cm2. The profiles of implanted species, structure, and spatial distribution of the formed nanoparticles (NPs) have been characterized by the cross-sectional transmission electron microscope (XTEM) and Rutherford backscattering spectrometry (RBS). It is found that pre-implantation of Zn or Cu ions could suppress the self sputtering of Ag atoms during post Ag ion implantation, which gives rise to fabrication of Ag NPs with a high density. Moreover, it has also been demonstrated that the suppressing effect strongly depends on the applied energy and mobility of pre-implanted ions. The possible mechanism for the enhanced Ag NPs concentration has been discussed in combination with SRIM simulations. Both vacancy-like defects acting as the increased nucleation sites for Ag NPs and a high diffusivity of prior implanted ions in SiO2 play key roles in enhancing the deposition of Ag implants.
Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana
2018-05-17
We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.
2015-04-01
Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.
Artifacts introduced by ion milling in Al-Li-Cu alloys.
Singh, A K; Imam, M A; Sadananda, K
1988-04-01
Ion milling is commonly used to prepare specimens for observation under transmission electron microscope (TEM). This technique sometimes introduces artifacts in specimens contributing to misleading interpretation of TEM results as observed in the present investigation of Al-Li-Cu alloys. This type of alloy, in general, contains several kinds of precipitates, namely delta', T1, and theta'. It is found that ion milling even for a short time produces drastic changes in the precipitate characteristics as compared to standard electropolishing methods of specimen preparation for TEM. Careful analysis of selected area diffraction patterns and micrographs shows that after ion milling delta' precipitates are very irregular, whereas other precipitates coarsen and they are surrounded by misfit dislocations. In situ hot-stage TEM experiments were performed to relate the microstructure to that observed in the ion-milled specimen. Results and causes of ion milling effects on the microstructure are discussed in relation to standard electropolishing techniques and in situ hot-stage experiment.
Ions in water: Free energies, surface effects, and geometrical constraints
NASA Astrophysics Data System (ADS)
Herce, Henry David
In this work, we present our results for ion solvation in finite and infinite water clusters. Molecular Dynamic simulations are used to connect the fundamental macroscopic quantities such as free energy, internal energy and entropy with the underlying microscopic description. Molecular dynamics studies complement experimental results and lead to a deeper insight into the solvation and diffusion of ionic species. Beyond its intrinsic interest, the ion solvation problem has practical relevance because of its role as ideal model system with which to construct and test ion-water interaction potentials. The ionic charging free energy is a very sensitive probe for the treatment of electrostatics in any given simulation setting. In this work, we present methods to compute the ionic charging free energy in systems characterized by atomic charges, and higher-order multipoles, mainly dipoles and quadrupoles. The results of these methods under periodic boundary conditions and spherical boundary conditions are then compared. For the treatment of spherical boundary conditions, we introduce a generalization of Gauss' law that links the microscopic variables to the relevant thermodynamic quantities. Ionic solvation in finite clusters is a problem relevant for many areas of chemistry and biology, such as the gas-liquid interface of tropospheric aerosol particles, or the interphase between water and proteins, membranes, etc. Careful evaluations of the free energy, internal energy and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following: (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodine-like ion in a polarizable water cluster, but not in a non-polarizable water cluster.
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Baker, S L; Robinson, J C
2006-02-22
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less
Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; Bugga, Ratnakumar
2003-01-01
Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.
The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke.
Kiper, Paweł; Piron, Lamberto; Turolla, Andrea; Stożek, Joanna; Tonin, Paolo
2011-01-01
Reinforced feedback in virtual environment (RFVE) therapy is emerging as an innovative method in rehabilitation, which may be advantageous in the treatment of the affected arm after stroke. The purpose of this study was to investigate the impact of assisted motor training in a virtual environment for the treatment of the upper extremity (UE) after stroke compared to traditional neuromotor rehabilitation (TNR), studying also if differences exist related to the type of stroke (haemorrhagic or ischaemic). Eighty patients affected by a stroke (48 ischaemic and 32 haemorrhagic) that occurred at least 1 year before were enrolled. The clinical assessment comprising the Fugl-Meyer UE (F-M UE), modified Ashworth (Bohannon and Smith) and Functional Independence Measure scale (FIM) was administered before and after the treatment. A statistically significant difference between RFVE and TNR groups (Mann-Whitney U-test) was observed in the clinical outcomes of F-M UE and FIM (both p < 0.001), but not Ashworth (p = 0.053). The outcomes of F-M UE and FIM improved in the RFVE haemorrhagic group and in the TNR haemorrhagic group with a significant difference between groups (both p < 0.001), but not for Ashworth (p = 0.651). Comparing the RFVE ischaemic group to the TNR ischaemic group, statistically significant differences emerged in F-M UE (p < 0.001), FIM (p < 0.001), and Ashworth (p = 0.036). The RFVE therapy in combination with TNR showed better improvements compared to the TNR treatment only. The RFVE therapy combined with the TNR treatment was more effective than the TNR double training, in both post-ischaemic and post-haemorrhagic groups. We observed improvements in both groups of patients: post-haemorrhagic and post-ischaemic stroke after RFVE training.
Koyama, Tetsuo; Domen, Kazuhisa
2017-08-01
This study aimed to determine the relationship between fiber tract degeneration measured by diffusion-tensor imaging (DTI) and outcome of patients after cerebral infarction. Fractional anisotropy (FA) maps were generated by DTI in patients 14-21 days after the first infarction and were analyzed by tract-based spatial statistics (TBSS). Mean FA values within the corticospinal tract (CST) and the superior longitudinal fasciculus (SLF) were extracted from individual TBSS data. Relationships between FA ratios (rFAs, lesioned to non-lesioned hemisphere) and outcomes assessed by Brunnstrom stage (BRS) and Functional Independence Measure (FIM) motor and cognition scores were examined using Spearman's rank correlation test. Forty patients (21 left and 19 right hemisphere lesions) were entered into an analytical database. BRS ranged from 1 to 6 (median, 5) for shoulder, elbow, or forearm; from 2 to 6 (median, 4.5) for hand or finger; and from 3 to 6 (median, 5) for lower extremity. FIM motor ranged from 51 to 91 (median, 79.5), and FIM cognition ranged from 16 to 35 (median, 29). rFA values in the CST ranged from .692 to 1.053 (median, .933), and those in the SLF ranged from .778 to 1.076 (median, .965). Mann-Whitney U test (P <.05) revealed no significant differences between the left and the right hemisphere lesion groups. Individual rFA values in the CST correlated with BRS scores (r = .585-0.654), whereas those in the SLF correlated with FIM cognition scores (r = .409, P <.05). DTI-FA values in the SLF and CST may be useful for outcome prediction of cognitive function and extremity function, respectively. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Inoue, Tatsuro; Misu, Syogo; Tanaka, Toshiaki; Sakamoto, Hiroki; Iwata, Kentaro; Chuman, Yuki; Ono, Rei
2017-10-01
Malnutrition is common in patients with hip fractures, and elderly patients with hip fractures lose functional independence and often fail to recover previous functional status. The aim of this study was to determine whether pre-fracture nutritional status predicts functional status of patients with hip fracture at discharge from acute hospitals. In the present multicenter prospective cohort study, pre-fracture nutritional status was assessed using the Mini Nutritional Assessment Short-Form (MNA-SF). At discharge from acute hospitals, functional status was evaluated using a functional independent measurement instrument (FIM). Subsequently, multiple regression analyses were performed using FIM as the dependent variable and MNA-SF as the independent variable. Among the 204 patients analyzed in the present study, the mean length of hospital stay was 26.2 ± 12.6 days, and according to MNA-SF assessments, 51 (25.0%) patients were malnourished, 98 (48.0%) were at risk of malnutrition, and 55 (27.0%) were well-nourished before fracture. At discharge, FIM scores were higher in patients who were well-nourished than in those who were malnourished or were at risk of malnutrition (p < 0.01). After adjustment for confounding factors, multiple regression analyses showed that MNA-SF was a significant independent predictor for FIM at discharge (well-nourished vs. malnourished, β = -0.86, p < 0.01). Pre-fracture nutritional status was a significant independent predictor for functional status at discharge during the acute phase, warranting early assessment of nutritional status and early intervention for successful postoperative rehabilitation. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Simms, Amy N.; Mobley, Harry L. T.
2008-01-01
Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression. PMID:18359812
Russell, Colin W.; Fleming, Brittany A.; Jost, Courtney A.; Tran, Alexander; Stenquist, Alan T.; Wambaugh, Morgan A.; Bronner, Mary P.
2018-01-01
ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH. These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut. PMID:29311232
Recovery From Disablement: What Functional Abilities Do Rehabilitation Professionals Value the Most?
Rist, Pamela M.; Freas, Damean W.; Maislin, Greg; Stineman, Margaret G.
2010-01-01
Objective To determine whether rehabilitation clinicians representing different therapeutic disciplines would choose to recover from profound disability differently. Design Applying recovery preference exploration as a data-collection tool, clinicians imagined recovery from complete disability in each of the 18 activities assessed on the FIM instrument. We hypothesized that recovery-choice pathways would vary among the disciplines because of differences in training and practice focus. We compared each clinician’s preference for imagined recovery of the ability to perform each FIM activity relative to the other 17. Item-level preferences were explored by discipline. The mean absolute difference (MAD) in the medians of the 18 FIM recovery preference values between each of the disciplines was used to quantify overall differences. Setting Inpatient rehabilitation unit within a larger tertiary care urban hospital of an academic medical center. Participants Ninety-three clinicians actively providing care to patients in an inpatient rehabilitation setting classified into 5 groups anticipated to have similar types of practices: physicians and medical students (physician group), nurses, occupational and recreational therapists (occupational therapy [OT] group), physical therapists (physical therapy [PT] group), and neuropsychologists and social workers (psychology group). Interventions Not applicable. Main Outcome Measures Relative recovery preferences in 18 FIM activities. Results The MAD value between the 2 groups with the least similar recovery values (physician and psychology groups) was 1.78 times larger than the MAD value between the 2 groups with the most similar recovery values (PT and OT groups). Conclusions There were subtle differences in recovery choice pathways that may logically relate to differences in the cognitive processes used in clinical decision making among the therapeutic discipline groups. PMID:18597736
A novel method for purification of the endogenously expressed fission yeast Set2 complex.
Suzuki, Shota; Nagao, Koji; Obuse, Chikashi; Murakami, Yota; Takahata, Shinya
2014-05-01
Chromatin-associated proteins are heterogeneously and dynamically composed. To gain a complete understanding of DNA packaging and basic nuclear functions, it is important to generate a comprehensive inventory of these proteins. However, biochemical purification of chromatin-associated proteins is difficult and is accompanied by concerns over complex stability, protein solubility and yield. Here, we describe a new method for optimized purification of the endogenously expressed fission yeast Set2 complex, histone H3K36 methyltransferase. Using the standard centrifugation procedure for purification, approximately half of the Set2 protein separated into the insoluble chromatin pellet fraction, making it impossible to recover the large amounts of soluble Set2. To overcome this poor recovery, we developed a novel protein purification technique termed the filtration/immunoaffinity purification/mass spectrometry (FIM) method, which eliminates the need for centrifugation. Using the FIM method, in which whole cell lysates were filtered consecutively through eight different pore sizes (53-0.8μm), a high yield of soluble FLAG-tagged Set2 was obtained from fission yeast. The technique was suitable for affinity purification and produced a low background. A mass spectrometry analysis of anti-FLAG immunoprecipitated proteins revealed that Rpb1, Rpb2 and Rpb3, which have all been reported previously as components of the budding yeast Set2 complex, were isolated from fission yeast using the FIM method. In addition, other subunits of RNA polymerase II and its phosphatase were also identified. In conclusion, the FIM method is valid for the efficient purification of protein complexes that separate into the insoluble chromatin pellet fraction during centrifugation. Copyright © 2014 Elsevier Inc. All rights reserved.
Reliability and Validity of Korean Version of Apraxia Screen of TULIA (K-AST).
Kim, Soo Jin; Yang, You-Na; Lee, Jong Won; Lee, Jin-Youn; Jeong, Eunhwa; Kim, Bo-Ram; Lee, Jongmin
2016-10-01
To evaluate the reliability and validity of Korean version of AST (K-AST) as a bedside screening test of apraxia in patients with stroke for early and reliable detection. AST was translated into Korean, and the translated version received authorization from the author of AST. The performances of K-AST in 26 patients (21 males, 5 females; mean age 65.42±17.31 years) with stroke (23 ischemic, 3 hemorrhagic) were videotaped. To test the reliability and validity of K-AST, the recorded performances were assessed by two physiatrists and two occupational therapists twice at a 1-week interval. The patient performances at admission in Korean version of Mini-Mental State Examination (K-MMSE), self-care and transfer categories of Functional Independence Measure (FIM), and motor praxis area of Loewenstein Occupational Therapy Cognitive Assessment, the second edition (LOTCA-II) were also evaluated. Scores of motor praxis area of LOTCA-II was used to assess the validity of K-AST. Inter-rater reliabilities were 0.983 (p<0.001) at the first assessment and 0.982 (p<0.001) at the second assessment. For intra-rater (test-retest) reliabilities, the values of four raters were 0.978 (p<0.001), 0.957 (p<0.001), 0.987 (p<0.001), and 0.977 (p<0.001). K-AST showed significant correlation (r=0.758, p<0.001) with motor praxis area of LOTCA-II test. K-AST also showed positive correlations with the total FIM score (r=0.694, p<0.001), the selfcare category of FIM (r=0.705, p<0.001) and the transfer category of FIM (r=653, p<0.001). K-AST is a reliable and valid test for bedside screening of apraxia.
Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Hasan, Samiul; Mayanovic, R. A.; Benamara, Mourad
2018-05-01
Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM) core covered by a ferromagnetic (FM) or ferrimagnetic (FiM) shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K) makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs) comprised of a NiO (AFM) core and a shell consisting of a NixCo1-xO (FiM) compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.
Motor recovery in post-stroke patients with aphasia: the role of specific linguistic abilities.
Ginex, Valeria; Veronelli, Laura; Vanacore, Nicola; Lacorte, Eleonora; Monti, Alessia; Corbo, Massimo
2017-09-01
Aphasia is a serious consequence of stroke but aphasics patients have been routinely excluded from participation in some areas of stroke research. To assess the role of specific linguistic and non-verbal cognitive abilities on the short-term motor recovery of patients with aphasia due to first-ever stroke to the left hemisphere after an intensive rehabilitation treatment. 48 post-acute aphasic patients, who underwent physiotherapy and speech language therapy, were enrolled for this retrospective cohort-study. Four types of possible predictive factors were taken into account: clinical variables, functional status, language and non-verbal cognitive abilities. The motor FIM at discharge was used as the main dependent variable. Patients were classified as follows: 6 amnestic, 9 Broca's, 7 Wernicke's, and 26 global aphasics. Motor FIM at admission (p = 0.003) and at discharge (p = 0.042), all linguistic subtests of Aachener AphasieTest (p = 0.001), and non-verbal reasoning abilities (Raven's CPM, p = 0.006) resulted significantly different across different types of aphasia. Post-hoc analyses showed differences only between global aphasia and the other groups. A Multiple Linear Regression shows that admission motor FIM (p = 0.001) and Token test (p = 0.040), adjusted for clinical, language, and non-verbal reasoning variables, resulted as independent predictors of motor FIM scores at discharge, while Raven's CPM resulted close to statistical significance. Motor function at admission resulted as the variable that most affects the motor recovery of post-stroke patients with aphasia after rehabilitation. A linguistic test requiring also non-linguistic abilities, including attention and working memory (i.e. Token test) is an independent predictor as well.
The use of hydrotherapy for the management of spasticity.
Kesiktas, N; Paker, N; Erdogan, N; Gülsen, G; Biçki, D; Yilmaz, H
2004-12-01
Spasticity is a major problem for the rehabilitation team. Physiotherapy is a vital component of therapy. Oral medication and other modalities such as heat, cold, ultrasound, electrical stimulation, and surgery (neuro-surgical or orthopedic) can also be used. The aim of this study was to compare the effects of hydrotherapy on spasticity and Functional Independence Measure (FIM) scores of patients with spinal cord injury (SCI). This is a control case matched study. Twenty SCI patients were divided into 2 groups and matched for age, gender, injury time, Ashworth scores, oral baclofen intake, American Spinal Injury Association, and FIM scores. The control group received passive range of motion exercise twice a day and oral baclofen for 10 weeks. The study group also received passive range of motion and oral baclofen, as well as 20 min of water exercises (at 71 degrees F, full immersion) 3 times per week. The authors evaluated spasm severity, FIM scores, oral baclofen intake, and Ashworth scales, between groups at the beginning and at the end of the treatment period. Both groups demonstrated a significant increase in FIM scores. However, the hydrotherapy group demonstrated a larger increase (P < 0.0001) than the control group. There was a statistically significant decrease in oral baclofen intake in the hydrotherapy group (P < 0.01). There was no statistical change in the control group. Spasticity was evaluated by the Ashworth scale. There was a statistical improvement in each group (P < 0.01, P < 0.02). However, when compared to the control group, the use of hydrotherapy produced a significant decrease in spasm severity (P < 0.02). Side effects are often seen when using oral drug treatment for spasticity. Adding hydrotherapy to the rehabilitation program can be helpful in decreasing the amount of medication required. Future studies must evaluate benefits of hydrotherapy for rehabilitation.
Formica, Vincenzo; Del Monte, Girolamo; Giacchetti, Ilaria; Grenga, Italia; Giaquinto, Salvatore; Fini, Massimo; Roselli, Mario
2011-06-01
Rehabilitation for cancer patients with central nervous system (CNS) involvement is rarely considered and data on its use are limited. The purpose of the present study is to collect all available published data on neuro-oncology rehabilitation and perform a meta-analysis where results were presented in a comparable manner. Moreover, the authors report results on cancer patients with neurological disabilities undergoing rehabilitation at their unit. A PubMed search was performed to identify studies regarding cancer patients with CNS involvement undergoing inpatient physical rehabilitation. Studies with a complete functional evaluation at admission and discharge were selected. As the most common evaluation scales were Functional Independence Measure (FIM) and Barthel Index (BI), only articles with complete FIM and/or BI data were selected for the meta-analysis. Moreover, 23 cancer patients suffering from diverse neurological disabilities underwent standard rehabilitation program between April 2005 and December 2007 at the San Raffaele Pisana Rehabilitation Center. Patient demographics and relevant clinical data were collected. Motricity Index, Trunk Control Test score, and BI were monitored during rehabilitation to assess patient progresses. BI results of patients in this study were included in the meta-analysis. The meta-analysis included results of a total of 994 patients. A statistically significant (P < .05) improvement of both BI and FIM scores was demonstrated after rehabilitation (standardized mean difference = 0.60 and 0.75, respectively). Functional status determined by either FIM or BI improved on average by 36%. Published data demonstrate that patients with brain tumors undergoing inpatient rehabilitation appear to make functional gains in line with those seen in similar patients with nonneoplastic conditions.
Association Between Facility Type During Pediatric Inpatient Rehabilitation and Functional Outcomes
Fuentes, Molly M.; Apkon, Susan; Jimenez, Nathalia; Rivara, Frederick P.
2017-01-01
Objective To compare functional outcomes between children receiving inpatient rehabilitation at children’s hospitals and those at other facilities. Design Retrospective cohort study. Setting Inpatient rehabilitation facilities. Participants Children (N=28,793) aged 6 months to 18 years who received initial inpatient rehabilitation. Interventions Not applicable. Main Outcome Measures Total, cognitive, and motor developmental functional quotients (DFQs; which is the WeeFIM score divided by age-adjusted norms and multiplied by 100) at discharge from inpatient rehabilitation and WeeFIM efficiency (the change in WeeFIM score from admission to discharge divided by the length of the rehabilitation stay), adjusting for age, sex, race, insurance, region, admission function, impairment type, discharge year, and length of stay. Results A total of 12,732 children received rehabilitation at 25 children’s hospitals and 16,061 at 36 other facilities (general hospitals or freestanding rehabilitation hospitals). Adjusting for clustering by facility, patients at children’s hospitals had a lower cognitive DFQ at admission (difference between children’s hospitals and other facility types, −3.8; 95% confidence interval [CI], −7.7 to −0.1), a shorter length of stay (median, 16d vs 22d; P<.001), and a higher WeeFIM efficiency (difference, 0.63; 95% CI, 0.25–1.00) than did children at other facility types. Rehabilitation in a children’s hospital was independently associated with a higher discharge cognitive DFQ (regression coefficient, 2.3; 95% CI, 0.3–4.2) and more efficient rehabilitation admissions (regression coefficient, 0.3; 95% CI, 0.1–0.6). Conclusions Children who receive inpatient rehabilitation at children’s hospitals have more efficient inpatient rehabilitation admissions, a shorter median length of stay, and a slight improvement in cognitive function than do children at other facility types. PMID:27026580
Koyama, Tetsuo; Marumoto, Kohei; Miyake, Hiroji; Domen, Kazuhisa
2014-10-01
Magnetic resonance diffusion tensor fractional anisotropy (DTI-FA) is often used to characterize neural damage after stroke. Here we assessed the relationship between DTI-FA and long-term motor outcome in patients after middle cerebral artery (MCA) infarction. Fractional anisotropy (FA) maps were generated from diffusion tensor brain images obtained from 16 patients 14-18 days postinfarction, and tract-based spatial statistics (TBSS) analysis was applied. Regions of interest were set within the right and left corticospinal tracts, and mean FA values were extracted from individual TBSS data. Hemiparesis motor outcome was evaluated according to Brunnstrom stage (BRS: 1-6, severe-normal) for separate shoulder/elbow/forearm, hand, and lower extremity functions, as well as the motor component score of the Functional Independence Measure (FIM-motor: 13-91, null-full) 5-7 months after onset. Ratios between FA values in the affected and unaffected hemispheres (rFA) were assessed by BRS and FIM-motor scores. rFA values were .636-.984 (median, .883) and BRS scores were 1-6 (median, 3) for shoulder/elbow/forearm, 2-6 (median, 3) for hand, and 3-6 (median, 5) for the lower extremities. FIM-motor scores were 51-90 (median, 75). Analysis revealed significant relationships between rFA and BRS data (correlation coefficient: .687 for shoulder/elbow/forearm, .579 for hand, and .623 for lower extremities) but no significance relationship between rFA and FIM-motor scores. The results suggest that DTI-FA is applicable for predicting the long-term outcome of extremity functions after MCA infarction. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Study on structural recovery of graphite irradiated with swift heavy ions at high temperature
NASA Astrophysics Data System (ADS)
Pellemoine, F.; Avilov, M.; Bender, M.; Ewing, R. C.; Fernandes, S.; Lang, M.; Li, W. X.; Mittig, W.; Schein, M.; Severin, D.; Tomut, M.; Trautmann, C.; Zhang, F. X.
2015-12-01
Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 1015 ions/cm2 lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.
Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)
2010-03-01
protective layer was deposited on the top of YBCNO film by dc sputtering . A 200 nm 200 nm area film was selected and cut with a Ga ion beam (30 kV...200 TEM at 200 kV. Samples for TEM were prepared using a focused ion beam (FIB (Eindhoven, The Netherlands)) microscope. For TEM examination, a thin Pt...by dc magnetron sputtering deposition of Ag with 93 mm thickness. Transport current measurements were made in liquid nitrogen with the 4-probe method
Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.
Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J
2016-02-01
Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Alp, Murat; Cucinotta, Francis A.
2017-01-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (>100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. PMID:28554507
NASA Astrophysics Data System (ADS)
Alp, Murat; Cucinotta, Francis A.
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.
Alp, Murat; Cucinotta, Francis A
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3 He and 12 C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. Copyright © 2017. Published by Elsevier Ltd.
Kenawy, I M; Ismail, M A; Hafez, M A H; Hashem, M A
2018-04-21
The new ion-imprinted guanyl-modified cellulose (II.Gu-MC) was prepared for the separation and determination of Cu (II) ions in different real samples. Several techniques such as Fourier Transform Infrared (FT-IR), scanning electron microscope (SEM), thermal analysis, potentiograph and elemental analysis have been utilized for the characterization of II.Gu-MC. The adsorption behavior of the ion imprinted polymer (II.Gu-MC) was evaluated and compared to the non ion-imprinted polymer (NII.Gu-MC) at the optimum conditions. The selectivity and the adsorption capacity were greatly enhanced by using the ion-imprinted polymer, indicating its validation for the separation and determination of Cu 2+ ions in different matrices. The adsorption capacity by chelating fibers II.Gu-MC & NII.Gu-MC agreed with the second-order model, and the sorption-isotherm experiments revealed best agreement with Langmuir model. The adsorption capacity of II.Gu-MC and NII.Gu-MC were 115 and 55 mg·g -1 , respectively. The II.Gu-MC was successfully employed for the selective separation and determination of Cu(II) ions with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains
NASA Technical Reports Server (NTRS)
Crozaz, G.; Zinner, E.
1985-01-01
A new ion probe method for quantitative measurements of the concentrations of all the REE down to the ppm level in 5-20 micron spots is presented. The first application of the method is the determination of REE abundances in meteoritic phosphates. Results are shown to be in good agreement with previous INAA and ion probe determinations. The merrillites in the St. Severin amphoterite are richer in REE than the apatites (the enrichment factors, for various REE, range from 2.3 to 14.2) in contradiction with the results of Ebihara and Honda (1983). Provided good standards for other mineral phases are found or implanted marker ion techniques are used, the method should find a wide range of applications for the study of both terrestrial and extraterrestrial crystals at the microscopic level.
NASA Astrophysics Data System (ADS)
van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.
2015-02-01
We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.
NASA Astrophysics Data System (ADS)
Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.
2007-05-01
First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).
NASA Astrophysics Data System (ADS)
Arifeen, W. U.; Dong, T.; Kurniawan, R.; Ko, T. J.
2018-03-01
In this paper, the manufacturing process and morphology of nano fibrous membranes are discussed. These membranes are explored as separators in rechargeable lithium ion batteries. The function of separator is to allow the flow of ions while protecting the physical contact between positive and negative electrode. Therefore, the porosity, mechanical strength and thermal stability of separators possess significant importance. The separators are manufactured by electrospinning process and later the morphology is studied with the help of scanning electron microscope (SEM) images. The separator is prepared by polyacrylonitrile (PAN) and then exposed to the hot plate. The uniform, continuous and dense nano fibrous membrane is prepared with the help of electrospinning process providing the prevention of physical contact between electrode and stable enough to work in high temperatures leading to high performance lithium ion batteries separators.
NASA Astrophysics Data System (ADS)
Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.
Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.
Nanocrystalline SnO2 formation using energetic ion beam.
Mohanty, T; Batra, Y; Tripathi, A; Kanjilal, D
2007-06-01
Nanocrystalline tin oxide (SnO2) thin films grown by RF magnetron sputtering technique were characterized by UV-Visible absorption spectroscopy and Photoluminescence spectroscopy. From atomic force microscopic (AFM) and Glancing angle X-ray diffraction (GAXRD) measurements, the radius of grains was found to be approximately 6+/-2 nm. The thin films were bombarded with 250 keV Xe2+ ion beam to observe the stability of nanophases against radiation. For ion bombarded films, optical absorption band edge is shifted towards red region. Atomic force microscopy studies show that the radius of the grains was increased to approximately 8 +/- 1 nm and the grains were nearly uniform in size. The size of the grains has been reduced after ion bombardment in the case of films grown on Si. During this process, defects such as vacancies, voids were generated in the films as well as in the substrates. Ion bombardment induces local temperature increase of thin films causing melting of films. Ion beam induced defects enhances the diffusion of atoms leading to uniformity in size of grains. The role of matrix on ion beam induced grain growth is discussed.
Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy
2018-02-01
Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Which Factors Influence Functional Patients Improvements During Rehabilitation?
Gabriele, Messina; Lorena, Rasimelli; Chiara, Bonavita; Emma, Ceriale; Cecilia, Quercioli; Nicola, Nante
2014-01-01
Background: Rehabilitation in patients with disabilities is an important aspect of tertiary prevention. Severity of disability, evaluated by global measures of autonomy, is essential for functional outcome evaluation. Aim: To determine the effectiveness of a rehabilitation programme in terms of percentage functional improvement (PFI); to verify the role of gender, age and length of stay (LOS), by motor and cognitive domains, on PFI. Design: Longitudinal study. Setting: An intensive rehabilitation hospital. Population: 305 inpatients. Methods: The disability has been investigated using the Functional Independence Measure (FIM). Percentage differences between discharge and admission were calculated for FIM score. Wilcoxon matched pair test for the six areas and the two domains of the FIM score were calculated. The effect of LOS, gender and age on PFI were studied with Robust regression. Results: Neurological and Orthopaedic patients had improvements on Motor and Cognitive domains. The greatest gains were in the Self Care, Sphintere Control, Transfer and Locomotion Areas (p=<0.001). LOS was associated (p<0.001) with PFI while age resulted borderline significant (p=0.049) in the cognitive domain in Neurological patients. Conclusion: The rehabilitation improved the overall conditions of neurological and orthopaedic patients. LOS emerged as the most important determinant in PFI. PMID:24762348
Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S
2016-01-01
Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P < .001), with no changes in control and PP. Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.
Influence of the rehabilitation outcome on returning to drive after neurological impairment.
Čižman, Urša Š; Vidmar, Gaj; Drnovšek, Petra
2017-06-01
In traumatic brain injury (TBI) and stroke rehabilitation, the question of reintegration of the driver into traffic is faced very often. Driving is an important domain and for some patients, return to driving represents a crucial event for community inclusion. The aim of our study was to examine the utility of Glasgow Coma Scale within the first 24 h of injury and the Functional Independence Measure (FIM) at rehabilitation admission for predicting the return to driving. We included 72 patients after TBI or stroke. Driving outcome was assessed in terms of being allowed to drive without restrictions as opposed to failing the test or being allowed to drive with restrictions. We examined two samples: the TBI patients only and the entire sample including patients after stroke. The results indicate that for TBI patients, Glasgow Coma Scale and motor FIM could be predictors of driving outcome; in the entire sample, the unrestricted driving outcome was also associated with a high score on the FIM motor scale. Early prediction of return to driving after TBI and stroke is important for the patients, their families and the rehabilitation teams to set realistic goals that enable the best possible reintegration after rehabilitation.
Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study
NASA Astrophysics Data System (ADS)
Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.
2010-04-01
Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.
Kushner, David S; Peters, Kenneth M; Johnson-Greene, Doug
2015-07-01
To evaluate the Siebens Domain Management Model (SDMM) for geriatric inpatient rehabilitation (IR) to increase functional independence and dispositions to home. Before and after study. IR facility. During 2010 (preintervention), 429 patients aged ≥75 years who were on average admitted to IR 8.2 days postacute care, and during 2012 (postintervention), 524 patients aged ≥75 years who were on average admitted to IR 5.5 days postacute care. Case-mix group (CMG) comorbidity tier severity, preadmission living setting, and living support were similar in both groups. The SDMM involving weekly adjustments of IR care focused on potential barriers to discharge home. FIM efficiency, length of stay (LOS), and disposition rates to community/home, acute care, and long-term care (LTC) to compare pre-/postintervention facility data and comparison of facility to national CMG-adjusted data from the Uniform Data System for Medical Rehabilitation for both years (2010/2012). Pre-/postintervention group admission FIM scores were similar (t=2.96, P<.003), but the preintervention group had on average 2.6 days greater LOS during IR and greater time to onset of IR (8.2 vs 5.5d) from acute care. Preintervention FIM efficiency was 2.1, whereas postintervention FIM efficiency was 2.76, a significant difference (t=4.1, P<.0001). There were significantly more discharges to the community in the postintervention group (74.4%) than the preintervention group (58.5%, χ(2)=26.2, P<.0001). There were significantly fewer patients discharged to LTC in the postintervention group (χ(2)=30.47, P<.0001). The preintervention group did not significantly differ from the 2010 national data, but the postintervention group significantly differed from the 2012 national data for both greater FIM efficiency (t=-5.5, P<.0001) and greater discharge to community (χ(2)=34, P<.0001). LOS decreased by 2.6 days in the postintervention group compared with the preintervention group, whereas LOS decreased by only 0.6 days nationally from 2010 to 2012, a significant difference with postintervention LOS lower than the national data (t=31.1, P<.0001). Use of the SDMM during IR in geriatric patients is associated with increased functional independence and discharges to home/community and reduced institutionalization. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim
2018-03-01
Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamlah, Florentine, E-mail: Kamlah@staff.uni-marburg.de; Haenze, Joerg; Arenz, Andrea
2011-08-01
Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug,more » allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a phenomenon that could not be observed with carbon ion irradiation. Thus, in this model system evaluating angiogenesis, carbon ion irradiation may have a therapeutic advantage. This observation should be confirmed in orthotopic lung tumor models.« less
NASA Astrophysics Data System (ADS)
Kundhikanjana, W.; Yang, Y.; Tanga, Q.; Zhang, K.; Lai, K.; Ma, Y.; Kelly, M. A.; Li, X. X.; Shen, Z.-X.
2013-02-01
Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.
Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate
NASA Astrophysics Data System (ADS)
Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting
2009-01-01
Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H.
We discuss the results of SEM and TEM measurements with the BPRML test samples fabricated from a BPRML (WSi2/Si with fundamental layer thickness of 3 nm) with a Dual Beam FIB (focused ion beam)/SEM technique. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-raymore » microscopes. Corresponding work with x-ray microscopes is in progress.« less
Holography and hydrodynamics in small systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik
2014-05-20
Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.
Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F
2015-10-01
The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
Scanning microwave microscopy applied to semiconducting GaAs structures
NASA Astrophysics Data System (ADS)
Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry
2018-02-01
A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.
Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin
2015-01-01
The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.
NASA Astrophysics Data System (ADS)
Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal
2017-12-01
Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.
NASA Astrophysics Data System (ADS)
Wei, Nana; Hou, Yanhua; Lu, Zongbao; Yu, Huatong; Wang, Quanfu
2018-01-01
In this study, C-phycocyanin as protective agent, AgNO3 as raw material and NaBH4 as reducing agent synthesized C-phycocyanin-Ag nanoparticles (PC-AgNPs). The synthesis conditions of PC-AgNPs were determined by optimization. The maximum UV absorption peak of PC-AgNPs at 400 nm. The fluorescence excitation wavelength was 580 nm and the emission wavelength was 625 nm. PC-AgNPs was spherical in transmission electron microscope and the particles sizes were about 10-25 nm. In addition, fluorescence quenching was observed after adding copper ions to PC-AgNPs, which indicated that PC-AgNPs has potential applications in the detection of copper ions in diverse water environment.