Sample records for ion pair complexes

  1. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    PubMed

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  2. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes

    NASA Astrophysics Data System (ADS)

    Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.

  3. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.

  4. Intermolecular electron-transfer mechanisms via quantitative structures and ion-pair equilibria for self-exchange of anionic (dinitrobenzenide) donors.

    PubMed

    Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K

    2005-05-25

    Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.

  5. Reshaping and linking of molecules in ion-pair traps

    NASA Astrophysics Data System (ADS)

    Cochrane, Bryce; Naumkin, Fedor Y.

    2016-01-01

    A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.

  6. Heteroditopic receptors for ion-pair recognition.

    PubMed

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An ion-pair principle for enantioseparations of basic analytes by nonaqueous capillary electrophoresis using the di-n-butyl L-tartrate-boric acid complex as chiral selector.

    PubMed

    Wang, Li-Juan; Liu, Xiu-Feng; Lu, Qie-Nan; Yang, Geng-Liang; Chen, Xing-Guo

    2013-04-05

    A chiral recognition mechanism of ion-pair principle has been proposed in this study. It rationalized the enantioseparations of some basic analytes using the complex of di-n-butyl l-tartrate and boric acid as the chiral selector in methanolic background electrolytes (BGEs) by nonaqueous capillary electrophoresis (NACE). An approach of mass spectrometer (MS) directly confirmed that triethylamine promoted the formation of negatively charged di-n-butyl l-tartrate-boric acid complex chiral counter ion with a complex ratio of 2:1. And the negatively charged counter ion was the real chiral selector in the ion-pair principle enantioseparations. It was assumed that triethylamine should play its role by adjusting the apparent acidity (pH*) of the running buffer to a higher value. Consequently, the effects of various basic electrolytes including inorganic and organic ones on the enantioseparations in NACE were investigated. The results showed that most of the basic electrolytes tested were favorable for the enantioseparations of basic analytes using di-n-butyl l-tartrate-boric acid complex as the chiral ion-pair selector. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    PubMed Central

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  9. Extractive Spectrophotometric Methods for the Determination of Zolmitriptan in Bulk Drug and Pharmaceutical Formulation Using Bromocresol Green

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Swamy, N.; Basavaiah, K.

    2013-11-01

    Considering the basic property of zolmitriptan (ZMT) to generate ion-pairs with sulfonephthalein dyes two methods have been developed for its assay in bulk drug and dosage form. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug:dye) of ZMT with bromocresol green (BCG) at pH 4.20 ± 0.01 and extraction of the complex into chloroform followed by measurement of the yellow ion-pair complex at 435 nm. In the second method (method B), the drug-dye ion-pair complex was treated with ethanolic potassium hydroxide in ethanolic medium and the resulting base form of the dye was measured at 630 nm. Beer's law was obeyed in the concentration range of 0.8-18.0 and 0.08-1.4 μg/ml for method A and B, respectively, and the corresponding molar absorptivity values were 1.50ṡ104 and 1.52ṡ105 l/(molṡcm). The Sandell sensitivity values were 0.0191 and 0.0019 μg/cm2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the drug and dye (1:1) was determined by Job's continuous variation method and the stability constant of the complex was also calculated. The proposed method was successfully extended to dosage form (tablets).

  10. Modified Extraction-Free Ion-Pair Methods for the Determination of Flunarizine Dihydrochloride in Bulk Drug, Tablets, and Human Urine

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Basavaiah, K.

    2018-01-01

    Two simple and sensitive extraction-free spectrophotometric methods are described for the determination of flunarizine dihydrochloride. The methods are based on the ion-pair complex formation between the nitrogenous compound flunarizine (FNZ), converted from flunarizine dihydrochloride (FNH), and the acidic dye phenol red (PR), in which experimental variables were circumvented. The first method (method A) is based on the formation of a yellow-colored ion-pair complex (1:1 drug:dye) between FNZ and PR in chloroform, which is measured at 415 nm. In the second method (method B), the formed drug-dye ion-pair complex is treated with ethanolic potassium hydroxide in an ethanolic medium, and the resulting base form of the dye is measured at 580 nm. The stoichiometry of the formed ion-pair complex between the drug and dye (1:1) is determined by Job's continuous variations method, and the stability constant of the complex is also calculated. These methods quantify FNZ over the concentration ranges 5.0-70.0 in method A and 0.5-7.0 μg/mL in method B. The calculated molar absorptivities are 6.17 × 103 and 5.5 × 104 L/mol·cm-1 for method A and method B, respectively, with corresponding Sandell sensitivity values of 0.0655 and 0.0074 μg/cm2. The methods are applied to the determination of FNZ in pure drug and human urine.

  11. Metal cation detection in positive ion mode electrospray ionization mass spectrometry using a tetracationic salt as a gas-phase ion-pairing agent: evaluation of the effect of chelating agents on detection sensitivity.

    PubMed

    Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W

    2012-12-30

    The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the analysis of metal ions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs. cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent extraction system, either with chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride thanmore » for the cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a very polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion-pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  13. Ion-pair extraction of multi-OH compounds by complexation with organoboronate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randel, L.A.; Chow, T.K.F.; King, C.J.

    1994-08-01

    Ion-pair extraction with organoboronate has been investigated as a regenerable means of removal and recovery of multi -OH compounds from aqueous solution. The extractant utilized was 3-nitrophenylboronate (NPB[sup [minus

  14. Thermodynamics and kinetics of Na+/K+-formate ion pairs association in polarizable water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong T. M.; Nguyen, Van T.; Annapureddy, Harsha V. R.; Dang, Liem X.; Do, D. D.

    2012-12-01

    To enhance our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on the interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, a stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, which is in agreement with experimental and theoretical studies [1-4]. The kinetics of ion-pair inter-conversions was studied using the transition rate theory, along with a number of theoretical approaches such as the Kramers and Grote-Hynes theories. These kinetic results were used to predict solvent effects on dynamical features of ion-pair association, in which we have found that the dynamics of K+-formate pairs is faster than Na+-formate pairs.

  15. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    NASA Astrophysics Data System (ADS)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  16. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuzuki, Seiji, E-mail: s.tsuzuki@aist.go.jp; Shinoda, Wataru; Miran, Md. Shah

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative)more » than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.« less

  17. Spectrophotometric determination of dopaminergic drugs used for Parkinson's disease, cabergoline and ropinirole, in pharmaceutical preparations.

    PubMed

    Onal, Armağan; Cağlar, Sena

    2007-04-01

    Simple and reproducible spectrophotometric methods have been developed for determination of dopaminergic drugs used for Parkinson's disease, cabergoline (CAB) and ropinirole hydrochloride (ROP), in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents [methyl orange (MO), bromocresol green (BCG) and bromophenol blue (BPB)] producing yellow colored ion-pair complexes in acidic buffers, after extracting in dichloromethane, which are spectrophotometrically determined at the appropriate wavelength of ion-pair complexes. Beer's law was obeyed within the concentration range from 1.0 to 35 microg ml(-1). The developed methods were applied successfully for the determination of these drugs in tablets.

  18. Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2017-12-01

    Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.

  19. Cooperativity and complexity in the binding of anions and cations to a tetratopic ion-pair host.

    PubMed

    Howe, Ethan N W; Bhadbhade, Mohan; Thordarson, Pall

    2014-05-21

    Cooperative interactions play a very important role in both natural and synthetic supramolecular systems. We report here on the cooperative binding properties of a tetratopic ion-pair host 1. This host combines two isophthalamide anion recognition sites with two unusual "half-crown/two carbonyl" cation recognition sites as revealed by the combination of single-crystal X-ray analysis of the free host and the 1:2 host:calcium cation complex, together with two-dimensional NMR and computational studies. By systematically comparing all of the binding data to several possible binding models and focusing on four different variants of the 1:2 binding model, it was in most cases possible to quantify these complex cooperative interactions. The data showed strong negative cooperativity (α = 0.01-0.05) of 1 toward chloride and acetate anions, while for cations the results were more variable. Interestingly, in the competitive (CDCl3/CD3OD (9:1, v/v)) solvent, the addition of calcium cations to the tetratopic ion-pair host 1 allosterically switched "on" chloride binding that is otherwise not present in this solvent system. The insight into the complexity of cooperative interactions revealed in this study of the tetratopic ion-pair host 1 can be used to design better cooperative supramolecular systems for information transfer and catalysis.

  20. Ion pair particles at the air–water interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-11-01

    Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air–water interface are yet to be examined. In this work, we have performed Born–Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formation from HMSA and (R1)(R2)NH (for NH3, R1 = R2 = H; for CH3NH2, R1 = H and R2 = CH3; and for CH3NH2, R1 = R2 = CH3) at the air–water interface. The results show that, at the air–water interface, HMSA deprotonates within a few picoseconds and results in the formation of methanesulfonate ion (MSA‑)ṡṡH3O+ ion pair. However, this ion pair decomposes immediately, explaining why HMSA and water alone are not sufficient for forming stable particles in atmosphere. Interestingly, the particle formation from the gas-phase hydrogen-bonded complexes of HMSA with (R1)(R2)NH on the water droplet is observed with a few femtoseconds, suggesting a mechanism for the gas to particle conversion in aqueous environments. The reaction involves a direct proton transfer between HMSA and (R1)(R2)NH, and the resulting MSA‑ṡṡ(R1)(R2)NH2+ complex is bound by one to four interfacial water molecules. The mechanistic insights gained from this study may serve as useful leads for understanding about the ion pair particle formation from other precursors in forested and polluted urban environments.

  1. A newly developed highly selective Zn2+-AcO- ion-pair sensor through partner preference: equal efficiency under solitary and colonial situation.

    PubMed

    Karar, Monaj; Paul, Suvendu; Biswas, Bhaskar; Majumdar, Tapas; Mallick, Arabinda

    2018-05-10

    Unusual self-sorting of an ion-pair under highly crowded conditions driven by a synthesized intelligent molecule 2-((E)-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxypropyl imino)methyl)-6-methoxyphenol, hereafter HBP, is described. When a mixture of various metal salts was allowed to react with HBP, only a specific ion-pair ZnII/AcO- in the solution simultaneously reacted, resulting in high-fidelity ion-pair recognition of HBP. This phenomenon was evidenced by significant changes in the absorption spectra and huge enhancement in emission intensity of HBP. The property that one molecule preferring one particular cation-anion pair over others is a rare but interesting phenomenon. Thus, the potential to interact selectively with the targeted ion-pair resulting in the formation of a specific complex recognized HBP as a new class of molecule that might find future applications in real time and on-site monitoring and separation of new molecules.

  2. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ionpaired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for themore » cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  3. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  4. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Tsuyoshi; Mataga, Noboru

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths ofmore » the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.« less

  5. Calculation of Vibrational Spectra for Coordinated Thiocyanate Ion in Acetonitrile

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.

    2016-07-01

    The impact of the association of lithium cation with NCS- ion in acetonitrile on the vibrational spectrum was studied by the density-functional method in the B3LYP/6-31+G(d,p) approximation. The best agreement between experimental and calculated ionic association data was achieved taking into account the nonspecific solvation, oversolvation, and solubility of ionic complexes within the discrete-continuum model. The microstructures of the thiocyanate ion in a contact ion pair with lithium cation and ion-pair dimer and trimer in acetonitrile were established.

  6. Thermodynamics and Kinetics of Na+/K+-Formate Ion Pairs Association in Polarizable Water: A Molecular Dynamics Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Phuong T.; Nguyen, Van T.; Annapureddy, Harsha V.

    2012-12-03

    To elevate our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, a finding that agrees with experimental and theoretical studies of these systems. The kinetics of ion-pair interconversions were studied using transition rate theory, along with a variety of theoretical approachesmore » such as the Kramers and Grote Hynes theories. These rate results were used to predict solvent effects on dynamical features of contact ion-pair association, in which faster dynamics were found for K+-formate pairs than for Na+-formate pairs. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.« less

  7. Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair.

    PubMed

    Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes

    2011-04-21

    Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.

  8. Saturated fatty acid determination method using paired ion electrospray ionization mass spectrometry coupled with capillary electrophoresis.

    PubMed

    Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol

    2017-09-01

    A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2  > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    PubMed

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  10. Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing.

    PubMed

    Dai, Wei-Guo; Dong, Liang C

    2007-05-04

    An insulin/lauryl sulfate complex was prepared by hydrophobic ion pairing (HIP). The physiochemical and biological properties of the HIP complex were characterized using octanol/water partition measurement, isothermal titration calorimetry (ITC), ultraviolet-circular dichroism (UV-CD) and Fourier transform infrared spectroscopy (FTIR). Sodium dodecyl sulfate (SDS) bound to the insulin in a stoichiometric manner. The formed complex exhibited lipophilicity, and its insulin retained its native structure integrity. The in vivo bioactivity of the complex insulin was evaluated in rats by monitoring the plasma glucose level after intravenous (i.v.) injection, and the glucose level was compared with that for free insulin. The pharmacodynamic study result in rats showed that the complex insulin had in vivo bioactivity comparable to free insulin.

  11. A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes.

    PubMed

    Kim, Sung Kuk; Sessler, Jonathan L; Gross, Dustin E; Lee, Chang-Hee; Kim, Jong Seung; Lynch, Vincent M; Delmau, Laetitia H; Hay, Benjamin P

    2010-04-28

    An ion-pair receptor, the calix[4]pyrrole-calix[4]arene pseudodimer 2, bearing a strong anion-recognition site but not a weak cation-recognition site, has been synthesized and characterized by standard spectroscopic means and via single-crystal X-ray diffraction analysis. In 10% CD(3)OD in CDCl(3) (v/v), this new receptor binds neither the Cs(+) cation nor the F(-) anion when exposed to these species in the presence of other counterions; however, it forms a stable 1:1 solvent-separated CsF complex when exposed to these two ions in concert with one another in this same solvent mixture. In contrast to what is seen in the case of a previously reported crown ether "strapped" calixarene-calixpyrrole ion-pair receptor 1 (J. Am. Chem. Soc. 2008, 130, 13162-13166), where Cs(+) cation recognition takes place within the crown, in 2.CsF cation recognition takes place within the receptor cavity itself, as inferred from both single-crystal X-ray diffraction analyses and (1)H NMR spectroscopic studies. This binding mode is supported by calculations carried out using the MMFF94 force field model. In 10% CD(3)OD in CDCl(3) (v/v), receptor 2 shows selectivity for CsF over the Cs(+) salts of Cl(-), Br(-), and NO(3)(-) but will bind these other cesium salts in the absence of fluoride, both in solution and in the solid state. In the case of CsCl, an unprecedented 2:2 complex is observed in the solid state that is characterized by two different ion-pair binding modes. One of these consists of a contact ion pair with the cesium cation and chloride anion both being bound within the central binding pocket and in direct contact with one another. The other mode involves a chloride anion bound to the pyrrole NH protons of a calixpyrrole subunit and a cesium cation sandwiched between two cone shaped calix[4]pyrroles originating from separate receptor units. In contrast to what is seen for CsF and CsCl, single-crystal X-ray structural analyses and (1)H NMR spectroscopic studies reveal that receptor 2 forms a 1:1 complex with CsNO(3), with the ions bound in the form of a contact ion pair. Thus, depending on the counteranion, receptor 2 is able to stabilize three different ion-pair binding modes with Cs(+), namely solvent-bridged, contact, and host-separated.

  12. Investigation of drug loading and in vitro release mechanisms of insulin-lauryl sulfate complex loaded PLGA nanoparticles.

    PubMed

    Shi, K; Cui, F; Yamamoto, H; Kawashima, Y

    2008-12-01

    Insulin, a water soluble peptide hormone, was hydrophobically ion-paired with sodium lauryl sulfate (SDS) at the stoichiometric molar ratio of 6:1. The obtained insulin-SDS complex precipitation was subsequently formulated in biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles by a modified spontaneous emulsion solvent diffusion method. Compared with a conventional method for free insulin encapsulation, direct dissolution of SDS-paired insulin in the non-aqueous organic phase led to an increase in drug recovery from 42.5% to 89.6%. The more hydrophobic complex contributes to the improved affinity of insulin to the polymer matrix, resulting in a higher drug content in the nanoparticles. The drug loading was investigated by determining initial burst release at the first 30 min. The results showed that 64.8% of recovered drug were preferentially surface bound on complex loaded nanoparticles. The in vitro drug release was characterized by an initial burst and subsequent delayed release in dissolution media of deionized water and phosphate buffer saline (PBS). Compared with that in PBS, nanoparticles in deionized water medium presented very low initial burst release (15% vs. 65%) and incomplete cumulative release (25% vs. 90%) of the drug. In addition, dialysis experiments were performed to clarify the form of the released insulin in the dissolution media. The results suggested that the ion-pair complex was sensitive to ionic strength, insulin was released from the particular matrix as complex form and subsequently suffered dissociation from SDS in buffer saline. Moreover, the in vivo bioactivity of the SDS-paired insulin and nanoparticulate formulations were evaluated in mice by estimation of their blood sugar levels. The results showed that the bioactivity of insulin was unaltered after the ion-pairing process.

  13. The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman

    2001-06-01

    We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.

  14. Identification of ion-pair structures in solution by vibrational stark effects

    DOE PAGES

    Hack, John; Mani, Tomoyasu; Grills, David C.; ...

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  15. Identification of ion-pair structures in solution by vibrational stark effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, John; Mani, Tomoyasu; Grills, David C.

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  16. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    DOE R&D Accomplishments Database

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  17. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  19. Broadband ion mobility deconvolution for rapid analysis of complex mixtures.

    PubMed

    Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj

    2018-05-04

    High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.

  20. Bifacial Base-Pairing Behaviors of 5-Hydroxyuracil DNA Bases through Hydrogen Bonding and Metal Coordination.

    PubMed

    Takezawa, Yusuke; Nishiyama, Kotaro; Mashima, Tsukasa; Katahira, Masato; Shionoya, Mitsuhiko

    2015-10-12

    A novel bifacial ligand-bearing nucleobase, 5-hydroxyuracil (U(OH) ), which forms both a hydrogen-bonded base pair (U(OH) -A) and a metal-mediated base pair (U(OH) -M-U(OH) ) has been developed. The U(OH) -M-U(OH) base pairs were quantitatively formed in the presence of lanthanide ions such as Gd(III) when U(OH) -U(OH) pairs were consecutively incorporated into DNA duplexes. This result established metal-assisted duplex stabilization as well as DNA-templated assembly of lanthanide ions. Notably, a duplex possessing U(OH) -A base pairs was destabilized by addition of Gd(III) ions. This observation suggests that the hybridization behaviors of the U(OH) -containing DNA strands are altered by metal complexation. Thus, the U(OH) nucleobase with a bifacial base-pairing property holds great promise as a component for metal-responsive DNA materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The influence of self-assembling supramolecular structures on the passive membrane transport of ion-paired molecules.

    PubMed

    Benaouda, F; Brown, M B; Shah, B; Martin, G P; Jones, S A

    2012-12-15

    Weak ion-ion interactions, such as those associated with ion-pair formation, are difficult to isolate and characterise in the liquid state, but they have the potential to alter significantly the physicochemical behaviour of molecules in solution. The aim of this work was to gain a better understanding of how ion-ion interactions influenced passive membrane transport. The test system was composed of propylene (PG) glycol, water and diclofenac diethylamine (DDEA). Infrared spectroscopy was employed to determine the nature of the DDEA ion-pair interactions and the drug-vehicle association. Passive transport was assessed using homogeneous synthetic membranes. Solution-state analysis demonstrated that the ion-pair was unperturbed by vehicle composition changes, but the solvent-DDEA interactions were modified. DDEA-PG/water hydrogen bonding influenced the ion-pair solubility (X(dev)) and the solvent interactions slowed transport rate in PG-rich vehicles (0.84±0.05 μg cm(-2) h(-1), at ln(X(dev))=0.57). In water-rich co-solvents, the presence of strong water structuring facilitated a significant increase (p<0.05) in transmembrane penetration rate (e.g. 4.33±0.92 μg cm(-2) h(-1), at ln(X(dev))=-0.13). The data demonstrates that weak ion-ion interactions can result in the embedding of polar entities within a stable solvent complex and spontaneous supramolecular assembly should be considered when interpreting transmembrane transport processes of ionic molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  3. SOILSOLN: A Program for Teaching Equilibria Modeling of Soil Solution Composition.

    ERIC Educational Resources Information Center

    Wolt, Jeffrey D.

    1989-01-01

    Presents a computer program for use in teaching ion speciation in soil solutions. Provides information on the structure of the program, execution, and software specifications. The program estimates concentrations of ion pairs, hydrolytic species, metal-organic complexes, and free ions in solutions. (Author/RT)

  4. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  5. Reversed-phase ion-pair liquid chromatography method for purification of duplex DNA with single base pair resolution

    PubMed Central

    Wysoczynski, Christina L.; Roemer, Sarah C.; Dostal, Vishantie; Barkley, Robert M.; Churchill, Mair E. A.; Malarkey, Christopher S.

    2013-01-01

    Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications. PMID:24013567

  6. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.

    PubMed

    Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang

    2018-07-01

    The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2006-10-15

    Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.

  8. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  9. Supersaturated calcium carbonate solutions are classical

    PubMed Central

    Henzler, Katja; Fetisov, Evgenii O.; Galib, Mirza; Baer, Marcel D.; Legg, Benjamin A.; Borca, Camelia; Xto, Jacinta M.; Pin, Sonia; Fulton, John L.; Schenter, Gregory K.; Govind, Niranjan; Siepmann, J. Ilja; Mundy, Christopher J.; Huthwelker, Thomas; De Yoreo, James J.

    2018-01-01

    Mechanisms of CaCO3 nucleation from solutions that depend on multistage pathways and the existence of species far more complex than simple ions or ion pairs have recently been proposed. Herein, we provide a tightly coupled theoretical and experimental study on the pathways that precede the initial stages of CaCO3 nucleation. Starting from molecular simulations, we succeed in correctly predicting bulk thermodynamic quantities and experimental data, including equilibrium constants, titration curves, and detailed x-ray absorption spectra taken from the supersaturated CaCO3 solutions. The picture that emerges is in complete agreement with classical views of cluster populations in which ions and ion pairs dominate, with the concomitant free energy landscapes following classical nucleation theory. PMID:29387793

  10. Supersaturated calcium carbonate solutions are classical.

    PubMed

    Henzler, Katja; Fetisov, Evgenii O; Galib, Mirza; Baer, Marcel D; Legg, Benjamin A; Borca, Camelia; Xto, Jacinta M; Pin, Sonia; Fulton, John L; Schenter, Gregory K; Govind, Niranjan; Siepmann, J Ilja; Mundy, Christopher J; Huthwelker, Thomas; De Yoreo, James J

    2018-01-01

    Mechanisms of CaCO 3 nucleation from solutions that depend on multistage pathways and the existence of species far more complex than simple ions or ion pairs have recently been proposed. Herein, we provide a tightly coupled theoretical and experimental study on the pathways that precede the initial stages of CaCO 3 nucleation. Starting from molecular simulations, we succeed in correctly predicting bulk thermodynamic quantities and experimental data, including equilibrium constants, titration curves, and detailed x-ray absorption spectra taken from the supersaturated CaCO 3 solutions. The picture that emerges is in complete agreement with classical views of cluster populations in which ions and ion pairs dominate, with the concomitant free energy landscapes following classical nucleation theory.

  11. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2016-12-01

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  12. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids.

    PubMed

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E; Forsman, Jan

    2016-12-21

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  13. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  14. Solvation-controlled lithium-ion complexes in a nonflammable solvent containing ethylene carbonate: structural and electrochemical aspects.

    PubMed

    Sogawa, Michiru; Kawanoue, Hikaru; Todorov, Yanko Marinov; Hirayama, Daisuke; Mimura, Hideyuki; Yoshimoto, Nobuko; Morita, Masayuki; Fujii, Kenta

    2018-02-28

    The structural and electrochemical properties of lithium-ion solvation complexes in a nonflammable organic solvent, tris(2,2,2-trifluoroethyl)phosphate (TFEP) containing ethylene carbonate (EC), were investigated using vibrational spectroscopic and electrochemical measurements. Based on quantitative Raman and infrared (IR) spectral analysis of the Li bis(trifluoromethanesulfonyl)amide (TFSA) salt in TFEP + EC electrolytes, we successfully evaluated the individual solvation numbers of EC (n EC ), TFEP (n TFEP ), and TFSA - (n TFSA ) in the first solvation sphere of the Li-ion. We found that the n EC value linearly increased with increasing EC mole fraction (x EC ), whereas the n TFEP and n TFSA values gradually decreased with increasing n EC . The ionic conductivity and viscosity (Walden plots) indicated that mainly Li + TFSA - ion pairs formed in neat TFEP (x EC = 0). This ion pair gradually dissociated into positively charged Li-ion complexes as x EC increased, which was consistent with the Raman/IR spectroscopy results. The redox reaction corresponding to an insertion/desertion of Li-ion into/from the graphite electrode occurred in the LiTFSA/TFEP + EC system at x EC ≥ 0.25. The same was not observed in the lower x EC cases. We discussed the relation between Li-ion solvation and electrode reaction behaviors at the molecular level and proposed that n EC plays a crucial role in the electrode reaction, particularly in terms of solid electrolyte interphase formation on the graphite electrode.

  15. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation.

    PubMed

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-15

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400×10(3), 1.218×10(3) and 1.02×10(4) L mol(-1) cm(-1) for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48h. Beer's law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL(-1) for BCG, BTB complexes and 1-95 μg mL(-1) for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job's method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Confirming Indicators of Qualitative Results by Chromatography-mass Spectrometry in Biological Samples].

    PubMed

    Liu, S D; Zhang, D M; Zhang, W; Zhang, W F

    2017-04-01

    Because of the exist of complex matrix, the confirming indicators of qualitative results for toxic substances in biological samples by chromatography-mass spectrometry are different from that in non-biological samples. Even in biological samples, the confirming indicators are different in various application areas. This paper reviews the similarities and differences of confirming indicators for the analyte in biological samples by chromatography-mass spectrometry in the field of forensic toxicological analysis and other application areas. These confirming indicators include retention time (RT), relative retention time (RRT), signal to noise (S/N), characteristic ions, relative abundance of characteristic ions, parent ion-daughter ion pair and abundance ratio of ion pair, etc. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  17. Hydration and ion pair formation in aqueous Y(3+)-salt solutions.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2015-11-14

    Raman spectra of aqueous yttrium perchlorate, triflate (trifluoromethanesulfonate), chloride and nitrate solutions were measured over a broad concentration range (0.198-3.252 mol L(-1)). The spectra range from low wavenumbers to 4200 cm(-1). A very weak mode at 384 cm(-1) with a full width at half height at 50 cm(-1) in the isotropic spectrum suggests that the Y(3+)- octa-aqua ion is thermodynamically stable in dilute perchlorate solutions (∼0.5 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The octa-hydrate, [Y(OH2)8](3+) was also detected in a 1.10 mol L(-1) aqueous Y(CF3SO3)3 solution. Furthermore, very weak and broad depolarized modes could be detected which are assigned to [Y(OH2)8](3+)(aq) at 100, 166, 234 and 320 cm(-1) confirming that a hexa-hydrate is not compatible with the hydrated species in solution. In yttrium chloride solutions contact ion pair formation was detected over the measured concentration range from 0.479-3.212 mol L(-1). The contact ion pairs in YCl3(aq) are fairly weak and disappear with dilution. At a concentration <0.2 mol L(-1) almost all complexes have disappeared. In YCl3 solutions, with additional HCl, chloro-complexes of the type [Y(OH2)8-nCln](+3-n) (n = 1,2) are formed. The Y(NO3)3(aq) spectra were compared with a spectrum of a dilute NaNO3 solution and it was concluded that in Y(NO3)3(aq) over the concentration range from 2.035-0.198 mol L(-1) nitrato-complexes [Y(OH2)8-n(NO3)ln](+3-n) (n = 1,2) are formed. The nitrato-complexes are weak and disappear with dilution <0.1 mol L(-1). DFT geometry optimizations and frequency calculations are reported for both the yttrium-water cluster in the gas phase and the cluster within a polarizable continuum model in order to implicitly describe the presence of the bulk solvent. The bond distance and angle for the square antiprismatic cluster geometry of [Y(OH2)8](3+) with the polarizable dielectric continuum is in good agreement with data from recent structural experimental measurements. The DFT frequency of the Y-O stretching mode of the [Y(OH2)8](3+) cluster, in a polarizable continuum, is at 372 cm(-1) in satisfactory agreement with the experimental value.

  18. ANALYTICAL METHODS AND QUALITY ASSURANCE CRITERIA FOR LC/ES/MS DETERMINATION OF PFOS IN FISH

    EPA Science Inventory

    PFOS, perfluorooctanesulfonate, has recently received much attention from environmental researchers. Previous analytical methods were based upon complexing with a strong ion-pairing reagent and extraction into MTBE. Detection was done on a concentrate using negative ion LC/ES/MS/...

  19. Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol)

    NASA Astrophysics Data System (ADS)

    Schantz, S.; Torell, L. M.; Stevens, J. R.

    1988-08-01

    Raman spectra of LiClO4 complexed in poly(propylene-glycol) (PPG) have been obtained for concentrations of the monomer to salt ratio (ether oxygen):Li in the range 30:1-5:1. Splitting of the symmetric stretching mode of the ClO4- anion was observed with an intensity profile that varied with salt concentration. This phenomenon indicates a changing environment about the anion. A two-component band analysis leads to the identification of dissociated ions on one hand and solvent-separated ion pairs on the other. The concentration of ion pairs is relatively low compared to that of the dissociated ions, which are predominant for all concentrations. Despite the observed increase in the absolute number of dissociated ions at higher salt concentration, the electrical conductivity is reported to decrease in the same range. This indicates that the number of ``free'' charge carriers is of less importance for the conductivity than the mobility, which is damped in this concentration range. Frequency shifts of the disordered longitudinal-acoustic mode and increased hypersonic velocities, measured with Raman and Brillouin scattering techniques, respectively, indicate increased stiffness of the polymer matrix for increasing salt concentration, which probably results in decreased ion mobility.

  20. Product ion isotopologue pattern: A tool to improve the reliability of elemental composition elucidations of unknown compounds in complex matrices.

    PubMed

    Kaufmann, A; Walker, S; Mol, G

    2016-04-15

    Elucidation of the elemental compositions of unknown compounds (e.g., in metabolomics) generally relies on the availability of accurate masses and isotopic ratios. This study focuses on the information provided by the abundance ratio within a product ion pair (monoisotopic versus the first isotopic peak) when isolating and fragmenting the first isotopic ion (first isotopic mass spectrum) of the precursor. This process relies on the capability of the quadrupole within the Q Orbitrap instrument to isolate a very narrow mass window. Selecting only the first isotopic peak (first isotopic mass spectrum) leads to the observation of a unique product ion pair. The lighter ion within such an isotopologue pair is monoisotopic, while the heavier ion contains a single carbon isotope. The observed abundance ratio is governed by the percentage of carbon atoms lost during the fragmentation and can be described by a hypergeometric distribution. The observed carbon isotopologue abundance ratio (product ion isotopologue pattern) gives reliable information regarding the percentage of carbon atoms lost in the fragmentation process. It therefore facilitates the elucidation of the involved precursor and product ions. Unlike conventional isotopic abundances, the product ion isotopologue pattern is hardly affected by isobaric interferences. Furthermore, the appearance of these pairs greatly aids in cleaning up a 'matrix-contaminated' product ion spectrum. The product ion isotopologue pattern is a valuable tool for structural elucidation. It increases confidence in results and permits structural elucidations for heavier ions. This tool is also very useful in elucidating the elemental composition of product ions. Such information is highly valued in the field of multi-residue analysis, where the accurate mass of product ions is required for the confirmation process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Lead and selenite adsorption at water–goethite interfaces from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Kevin; Criscenti, Louise J.

    Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less

  2. Lead and selenite adsorption at water–goethite interfaces from first principles

    DOE PAGES

    Leung, Kevin; Criscenti, Louise J.

    2017-08-04

    Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less

  3. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg 2+ ion in the active site and a putative RNA-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA.more » The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.« less

  4. Characterization of homoionic Fe 2+-type montmorillonite: Potential chemical species of iron contaminant

    NASA Astrophysics Data System (ADS)

    Kozai, Naofumi; Inada, Koichi; Adachi, Yoshifusa; Kawamura, Sachi; Kashimoto, Yusuke; Kozaki, Tamotsu; Sato, Seichi; Ohnuki, Toshihiko; Sakai, Takuro; Sato, Takahiro; Oikawa, Masakazu; Esaka, Fumitaka; Mitamura, Hisayoshi

    2007-08-01

    Fe 2+-montmorillonite with Fe 2+ ions occupying cation exchange sites is an ideal transformation product in bentonite buffer material. In our previous study on preparation and characterization of Fe 2+-montmorillonite, the montmorillonite sample that adsorbed Fe 2+ ions on almost all of the cation exchange sites was prepared using a FeCl 2 solution under an inert gas condition [N. Kozai, Y. Adachi, S. Kawamura, K. Inada, T. Kozaki, S. Sato, H. Ohashi, T. Ohnuki, T. Banba, J. Nucl. Sci. Technol. 38 (2001) 1141]. In view of the unstable nature of iron(II) chemical species, this study attempted to determine the potential contaminant iron chemical species in the sample. Nondestructive elemental analysis revealed that a small amount of chloride ions remained dispersed throughout the clay particles. The chloride ion retention may be due to the adsorption of FeCl + ion pairs in the initial FeCl 2 solution and the subsequent containment of the Cl - ions that are dissociated from the FeCl + ion pairs during excess salt removal treatment. Two explanations are advanced for the second process: the slow release of the remaining Cl - ions from the collapsed interlayer of the montmorillonite, and the transformation of a minor fraction of the remaining FeCl + ion pairs to iron(III) hydroxide chloride complexes having low solubility.

  5. Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca

    USGS Publications Warehouse

    Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.

    2000-01-01

    Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.

  6. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  7. Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts

    NASA Astrophysics Data System (ADS)

    Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.

    2013-09-01

    Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.

  8. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  9. The Crab Pulsar and Relativistic Wind

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  10. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  11. In situ synthesis of twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes and their applications as chiral ion-pair selectors in nonaqueous capillary electrophoresis.

    PubMed

    Wang, Li-Juan; Yang, Juan; Yang, Geng-Liang; Chen, Xing-Guo

    2012-07-27

    In this paper, twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes were in situ synthesized by the reaction of different dialkyltartrates or polyols with boric acid in methanol containing triethylamine. All of the twelve dialkyltartrate-boric acid complexes were found to have relatively good chiral separation performance in nonaqueous capillary electrophoresis (NACE). Their chiral recognition effects in terms of both enantioselectivity (α) and resolution (R(s)) were similar when the number of carbon atoms was below six in the alkyl group of alcohol moiety. The dialkyltartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, also provided similar chiral recognition effects. Furthermore, it was demonstrated for the first time that two methanol insoluble polyols, D-mannitol and D-sorbitol, could react with boric acid to prepare chiral ion-pair selectors using methanol as the solvent medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  13. Effect of ionophores on the rate of intramolecular cation exchange in durosemiquinone ion pairs

    NASA Technical Reports Server (NTRS)

    Eastman, M. P.; Bruno, G. V.; Mcguyer, C. A.; Gutierrez, A. R.; Shannon, J. M.

    1979-01-01

    The effects of the ionophores 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DBC) and cryptand 222 (C222) on intramolecular cation exchange in ion pairs of the sodium salt of the durosemiquinone anion in benzene solution are investigated. Electron paramagnetic resonance spectra of the 18C6 and 15C5 complexes with durosemiquinone reduced by contact with a sodium mirror show an alternating line width which indicates that the sodium ion is being exchanged between equivalent sites near the oxygens of the semiquinone with activation energies of 8.7 and 6.0 kcal/mole and Arrhenius preexponential factors of 9 x 10 to the 12th/sec and 10 to the 12th/sec, respectively. Spectra obtained for the DBC complexes show no evidence of exchange, while those of C222 indicate rapid exchange. It is also noted that the hyperfine splitting constants measured do not change over the 50-K temperature interval studied.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of freemore » ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.« less

  15. Vibrational studies of flexible solid polymer electrolyte based on PCL-EC incorporated with proton conducting NH4SCN

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Arof, A. K.

    2016-05-01

    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50 wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94 × 10- 7 Scm- 1 to 3.82 × 10- 5 Scm- 1. Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN- stretching mode (2030-2090 cm- 1). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4+ complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.

  16. High payload nanostructured lipid carriers fabricated with alendronate/polyethyleneimine ion complexes.

    PubMed

    Abd El-Hamid, Basma N; Swarnakar, Nitin K; Soliman, Ghareb M; Attia, Mohamed A; Pauletti, Giovanni M

    2018-01-15

    Oral bioavailability of the anti-osteoporotic drug alendronate (AL) is limited to ≤ 1% due to unfavorable physicochemical properties. To augment absorption across the gastrointestinal mucosa, an ion pair complex between AL and polyethyleneimine (PEI) was formed and incorporated into nanostructured lipid carriers (NLCs) using a modified solvent injection method. When compared to free AL, ion pairing with PEI increased drug encapsulation efficiency in NLCs from 10% to 87%. Drug release from NLCs measured in vitro using fasted state simulated intestinal fluid, pH 6.5 (FaSSIF-V2) was significantly delayed after PEI complexation. Stability of AL/PEI was pH-dependent resulting in 10-fold faster dissociation of AL in FaSSIF-V2 than measured at pH 7.4. Intestinal permeation properties estimated in vitro across Caco-2 cell monolayers revealed a 3-fold greater flux of AL encapsulated as hydrophobic ion complex in NLCs when compared to AL solution (P app  = 8.43 ± 0.14 × 10 -6 cm/s and vs. 2.76 ± 0.42 × 10 -6 cm/s). Cellular safety of AL/PEI-containing NLCs was demonstrated up to an equivalent AL concentration of 2.5 mM. These results suggest that encapsulation of AL/PEI in NLCs appears a viable drug delivery strategy for augmenting oral bioavailability of this clinically relevant bisphosphonate drug and, simultaneously, increase gastrointestinal safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Extraction-Free Ion-Pair Methods for the Assay of Trifluoperazine Dihydrochloride in Bulk Drug, Tablets, and Spiked Human Urine Using Three Sulfonphthalein Dyes

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Swamy, N.; Basavaiah, K.

    2014-11-01

    Three simple and sensitive extraction-free spectrophotometric methods are described for the determination of trifluoperazine dihydrochloride (TFH). The methods are based on ion pair complex formation between the nitrogenous compound trifluoperazine (TFP) converted from trifluoperazine dihydrochloride and sulfonphthalein dyes, namely, bromocresol green (BCG), bromothymol blue (BTB), and bromophenol blue (BPB) in dichloromethane medium in which all the above experimental variables were circumvented. The colored products are measured at 425 nm in the BCG method, 415 nm in the BTB method, and 420 nm in the BPB method. The stoichiometry of the ion-pair complexes formed between the drug and dye (1:1) was determined by Job's continuous variations method, and the stability constants of the complexes were also calculated. These methods quantify TFP over the concentration ranges of 1.25-20.0 μg/ml in the BCG method, 1.5-21.0 μg/ml in the BTB method, and 1.5-18.0 μg/ml in the BPB method. The molar absorptivity (l·mol-1·cm-1) and Sandell sensitivity (ng/cm2) were calculated to be 2.06·104 and 0.0197; 1.82·104 and 0.0224; and 2.22·104 and 0.0183 for the BCG, BTB, and BPB methods, respectively. The methods were successfully applied to the determination of TFP in pure drug, pharmaceuticals, and in spiked human urine with good accuracy and precision.

  18. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  19. Exploration of bulk and interface behavior of gas molecules and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using equilibrium and nonequilibrium molecular dynamics simulation and quantum chemical calculation.

    PubMed

    Yang, Quan; Achenie, Luke E K

    2018-04-18

    Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.

  20. Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins.

    PubMed

    Langeslay, Derek J; Urso, Elena; Gardini, Cristina; Naggi, Annamaria; Torri, Giangiacomo; Larive, Cynthia K

    2013-05-31

    Heparin is a complex mixture of sulfated linear carbohydrate polymers. It is widely used as an antithrombotic drug, though it has been shown to have a myriad of additional biological activities. Heparin is often partially depolymerized in order to decrease the average molecular weight, as it has been shown that low molecular weight heparins (LMWH) possess more desirable pharmacokinetic and pharmacodynamic properties than unfractionated heparin (UFH). Due to the prevalence of LMWHs in the market and the emerging availability of generic LMWH products, it is important that analytical methods be developed to ensure the drug quality. This work explores the use of tributylamine (TrBA), dibutylamine (DBA), and pentylamine (PTA) as ion-pairing reagents in conjunction with acetonitrile and methanol modified mobile phases for reversed-phase ion-pairing ultraperformance liquid chromatography coupled to mass spectrometry (RPIP-UPLC-MS) for fingerprint analysis of LMWH preparations. RPIP-UPLC-MS fingerprints are presented and compared for tinzaparinand enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Relationship between ion pair geometries and electrostatic strengths in proteins.

    PubMed Central

    Kumar, Sandeep; Nussinov, Ruth

    2002-01-01

    The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384

  2. Preferential Solvation of an Asymmetric Redox Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ionmore » pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.« less

  3. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    PubMed

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  4. Combined effects of metal complexation and size expansion in the electronic structure of DNA base pairs

    NASA Astrophysics Data System (ADS)

    Brancolini, Giorgia; Di Felice, Rosa

    2011-05-01

    Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolstoe, Simon E.; Jenvey, Michelle C.; Purvis, Alan

    Serum amyloid P component is a pentameric plasma glycoprotein that recognizes and binds to amyloid fibres in a calcium-dependent fashion and is likely to contribute to their deposition and persistence in vivo. Five molecules of the drug CPHPC avidly cross-link pairs of protein pentamers and the decameric complex is rapidly cleared in vivo. Crystal structures of the protein in complex with a bivalent drug and cadmium ions, which improve crystal quality, allow the definition of the preferred bound drug isomers. Under physiological conditions, the pentameric human plasma protein serum amyloid P component (SAP) binds hexanoyl bis(d-proline) (R-1-(6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl) pyrrolidine-2-carboxylic acid; CPHPC)more » through its d-proline head groups in a calcium-dependent interaction. Cooperative effects in binding lead to a substantial enhancement of affinity. Five molecules of the bivalent ligand cross-link and stabilize pairs of SAP molecules, forming a decameric complex that is rapidly cleared from the circulation by the liver. Here, it is reported that X-ray analysis of the SAP complex with CPHPC and cadmium ions provides higher resolution detail of the interaction than is observed with calcium ions. Conformational isomers of CPHPC observed in solution by HPLC and by X-ray analysis are compared with the protein-bound form. These are discussed in relation to the development of CPHPC to provide SAP depletion for the treatment of amyloidosis and other indications.« less

  6. Evaluation of coal-related model compounds using a tandem mass spectrometry.

    PubMed

    Li, Guo-Sheng; Dong, Xueming; Fan, Xing; You, Chun-Yan; Wu, Ge; Zhao, Yun-Peng; Lu, Yao; Wei, Xian-Yong; Ma, Feng-Yun

    2018-05-08

    Gas chromotography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in chemical industry. To further enhance practical potentials of GC/MS in chemical industry, a tandem MS method for the selection of ion pair applied in monitoring coal conversions was established by using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened. Fourteen coal-related model compounds (CRMCs) were analyzed using a GC/Q-TOF MS with different collision induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process. The precursor ions of aromatic hydrocarbons without alkyl chain were hard to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-open reactions. Compared to C alk -C ar bond, C ar -C ar bond was hard to fragment duo to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to screening ion pair. The CID technique of GC/Q-TOF MS will contribute to the studies on the organic composition of coals and building monitoring methods for coal conversions via fragmentation and ion pair selection. This article is protected by copyright. All rights reserved.

  7. ESI-MS of Cucurbituril Complexes Under Negative Polarity.

    PubMed

    Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P

    2017-11-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.

  8. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V)

    NASA Astrophysics Data System (ADS)

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at λmax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 μg mL -1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  9. [The study of complex-formation of DNA with the antimicrobial drug decamethoxine].

    PubMed

    Sorokin, V A; Blagoĭ, Iu P; Valeev, V A; Gladchenko, G O; Sukhodub, L F; Volianskiĭ, Iu L

    1990-01-01

    The interaction of effective antibacterial drug decametoxyn with natural DNA was studied by UV-spectroscopy. Decametoxyn shows a specificity to nucleotides: it decreases the cooperativity of melting and the thermal stability of DNA parts enriched by AT pairs. The characteristics of the helix-coil transition on the DNA parts enriched by GC-pairs are invariable. Interaction with AT-pairs results in their partial or complete melting at room temperature, followed by intermolecule aggregation. Interacting with phosphates decametoxyn manifests itself not as a dication but as two single-charged ions.

  10. A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal

    NASA Astrophysics Data System (ADS)

    Liu, Honggang; Zheng, Wenchen

    2018-01-01

    Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.

  11. Technological applications arising from the interactions of DNA bases with metal ions.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2014-08-01

    An intense interest has grown in the unique interactions of nucleic acids with metal ions, which lead to the formation of metal-base pairs and the generation of fluorescent nanomaterials. In this review, different types of metal-base pairs, especially those formed from naturally occurring nucleosides, are described with emphasis also being given to recent advances made in employing these complexes to govern enzymatic reactions. The review also contains a comprehensive description of DNA-templated inorganic nanomaterials such as silver nanoclusters which possess excellent fluorescence properties. Finally, a summary is given about how these materials have led to recent advances in the field of nanobiotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dimension-controlled assemblies of anion-responsive π-electronic systems bearing aryl substituents with fan-shaped geometries.

    PubMed

    Lakshmi, Vellanki; Haketa, Yohei; Yamakado, Ryohei; Yasuda, Nobuhiro; Maeda, Hiromitsu

    2017-03-30

    Pyrrole-4-aryl-substituted dipyrrolyldiketone BF 2 complexes as anion-responsive π-electronic molecules were synthesized via a 3,5-dimethylpyrrole precursor. Mesophases were observed in derivatives that possessed long alkyl chains on the pyrrole-4-aryl groups along with their anion complexes as ion-pairing assemblies in combination with appropriate cations.

  13. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  14. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmieri, M.D.; Fritz, J.S.

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV),more » Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.« less

  16. Low temperature thermally regenerative electrochemical system

    DOEpatents

    Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping

    1983-01-01

    A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  17. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O

    2007-06-15

    A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.

  18. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    PubMed

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can be complemented with a rigorous description of aqueous phase and ion chemistry (pH, speciation, complexation). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Formation of ion-pairs in aqueous solutions of diclofenac salts.

    PubMed

    Fini, A; Fazio, G; Gonzalez-Rodriguez, M; Cavallari, C; Passerini, N; Rodriguez, L

    1999-10-05

    In this work we studied the ability of the diclofenac anion to form ion-pairs in aqueous solution in the presence of organic and inorganic cations: ion-pairs have a polarity and hydrophobicity more suitable to the partition than each ion considered separately and can be extracted by a lipid phase. The cations considered were those of the organic bases diethylamine, diethanolamine, pyrrolidine, N-(2-hydroxyethyl) pyrrolidine and N-(2-hydroxyethyl) piperidine; the inorganic cations studied were Li(+), Na(+), K(+), Rb(+), Cs(+). Related to each cation we determined the equilibrium constant (K(XD)) for the ion-pair formation with the diclofenac anion in aqueous solution and the water/n-octanol partition coefficient (P(XD)) for each type of ion-pair formed. Among the alkali metal cations, only Li(+) shows some interaction with the diclofenac anion, in agreement with its physiological behaviour of increasing clearance during the administration of diclofenac. The influence of the ionic radius and desolvation enthalpy of the alkali metal cations on the ion-pair formation and partition was briefly discussed. Organic cations promote the formation of ion-pairs with the diclofenac anion better than the inorganic ones, and improve the partition of the ion-pair according to their hydrophobicity. The values of the equilibrium parameters for the formation and partition of ion-pairs are not high enough to allow the direct detection of their presence in the aqueous solution. Their formation can be appreciated in the presence of a lipid phase that continuously extracts the ion-pair. Extraction constants (E(XD)=P(XD) times K(XD)) increase passing from inorga to organic cations. This study could help to clarify the mechanism of the percutaneous absorption of diclofenac in the form of a salt, a route where the formation of ion-pairs appears to play an important role.

  20. DETERMINATION OF ALKYLATED & SULFONATED DIPHENYL OXIDE SULFACTANT BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    Methods for the determination of the anionic surfactant Dowfax 8390 are described. Dowfax is a complex mixture of various alkylated and sulfonated diphenyl oxides. The primary component of Dowfax is monoalkylated disulfonated diphenyl oxide (MADS). This work uses ion pairing chro...

  1. DEVELOPMENT OF AN ELECTROSPRAY MASS SPECTROMETRIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    An electrospray mass spectrometric method has been developed for application to agricultural and horticultural fertilizers to determine perchlorate. After fertilizers are leached or dissolved in water, the method relies on the formation of stable ion pair complex of the perchlor...

  2. Multiple reaction monitoring-ion pair finder: a systematic approach to transform nontargeted mode to pseudotargeted mode for metabolomics study based on liquid chromatography-mass spectrometry.

    PubMed

    Luo, Ping; Dai, Weidong; Yin, Peiyuan; Zeng, Zhongda; Kong, Hongwei; Zhou, Lina; Wang, Xiaolin; Chen, Shili; Lu, Xin; Xu, Guowang

    2015-01-01

    Pseudotargeted metabolic profiling is a novel strategy combining the advantages of both targeted and untargeted methods. The strategy obtains metabolites and their product ions from quadrupole time-of-flight (Q-TOF) MS by information-dependent acquisition (IDA) and then picks targeted ion pairs and measures them on a triple-quadrupole MS by multiple reaction monitoring (MRM). The picking of ion pairs from thousands of candidates is the most time-consuming step of the pseudotargeted strategy. Herein, a systematic and automated approach and software (MRM-Ion Pair Finder) were developed to acquire characteristic MRM ion pairs by precursor ions alignment, MS(2) spectrum extraction and reduction, characteristic product ion selection, and ion fusion. To test the reliability of the approach, a mixture of 15 metabolite standards was first analyzed; the representative ion pairs were correctly picked out. Then, pooled serum samples were further studied, and the results were confirmed by the manual selection. Finally, a comparison with a commercial peak alignment software was performed, and a good characteristic ion coverage of metabolites was obtained. As a proof of concept, the proposed approach was applied to a metabolomics study of liver cancer; 854 metabolite ion pairs were defined in the positive ion mode from serum. Our approach provides a high throughput method which is reliable to acquire MRM ion pairs for pseudotargeted metabolomics with improved metabolite coverage and facilitate more reliable biomarkers discoveries.

  3. Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses.

    PubMed

    Tsuchida, Jefferson Esquina; Ferri, Fabio Aparecido; Pizani, Paulo Sergio; Martins Rodrigues, Ana Candida; Kundu, Swarup; Schneider, José Fabián; Zanotto, Edgar Dutra

    2017-03-01

    In this work, mixed alkali metaphosphate glasses based on K-Na, Rb-Na, Rb-Li, Cs-Na and Cs-Li combinations were studied by differential scanning calorimetry (DSC), complex impedance spectroscopy, and Raman spectroscopy. DSC analyses show that both the glass transition (T g ) and melting temperatures (T m ) exhibit a clear mixed-ion effect. The ionic conductivity shows a strong mixed-ion effect and decreases by more than six orders of magnitude at room temperature for Rb-Na or Cs-Li alkali pairs. This study confirms that the mixed-ion effect may be explained as a natural consequence of random ion mixing because ion transport is favoured between well-matched energy sites and is impeded due to the structural mismatch between neighbouring sites for dissimilar ions.

  4. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  5. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    PubMed

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  6. A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Saleem, H.

    2007-01-01

    A criterion is presented to decide whether a produced plasma can be called a pure pair-ion plasma or not. The theory is discussed in the light of recent experiments which claim that a pure pair-ion fullerene (C60±) plasma has been produced. It is also shown that the ion acoustic wave is replaced by the pair ion convective cell (PPCC) mode as the electron density becomes vanishingly small in a magnetized plasma comprised of positive and negative ions. The nonlinear dynamics of pure pair plasmas is described by two coupled equations which have no analog in electron-ion plasmas. In a stationary frame, it becomes similar to the Hasegawa-Mima equation but does not contain drift waves and ion acoustic waves.

  7. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2011-01-01

    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  8. Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles.

    PubMed

    Gohain, Biren; Dutta, Robin K

    2008-07-15

    The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.

  9. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    PubMed

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  10. Spectrophotometric determination of trazodone, amineptine and amitriptyline hydrochlorides through ion-pair formation with molybdenum and thiocyanate

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; Khalil, S. M.; Mohamed, Nehad A.

    2006-12-01

    Extraction spectrophotometric method has been developed for the determination of tricyclic drugs such as trazodone (TZH), amineptine (APH) and amitriptyline (ATPH) hydrochlorides in pure form and in the dosage forms coming from different Egyptian markets. The method based on the formation of ion-pairs between these drugs under investigation and inorganic complex of Mo(V)-thiocyanate followed by its extraction with methylene chloride. The optimum conditions for the ion-pairs formation are established. The method permits the determination of TZH, APH and ATPH over the concentration range of 2-28, 2-32 and 1-30 μg ml -1, respectively. The Sandell sensitivity ( S) is found to be 0.105, 0.138 and 0.118 g cm -2 for TZH, APH and ATPH, respectively. The SD is found to be 0.16-0.377, 0.12-0.259 and 0.091-0.286 and the R.S.D. are 0.14-0.55, 0.12-0.399 and 0.095-0.485 for TZH, APH and ATPH, respectively. The method is applicable for the assay of the investigated drugs in different dosage forms and the results are in good agreement with those obtained by the official method.

  11. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-09-15

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the smallmore » amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.« less

  12. Electrostatic shocks and solitons in pair-ion plasmas in a two-dimensional geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Mahmood, S.; Imtiaz, N.

    2009-12-15

    Nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion plasmas in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The Kadomtsev-Petviashvili-Burger equation is derived using the small amplitude expansion method. The Kadomtsev-Petviashvili equation for pair-ion plasmas is also presented by ignoring the dissipative effects. Both compressive and rarefactive shocks and solitary waves are found to exist in pair-ion plasmas. The dependence of compression and rarefaction on the temperature ratios between the ion species is numerically shown. The present study maymore » have relevance to the understanding of the formation of electrostatic shocks and solitons in laboratory produced pair-ion plasmas.« less

  13. Alkali-metal-ion catalysis and inhibition in the nucleophilic displacement reaction of y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates with alkali-metal ethoxides: effect of changing the electrophilic center from P=O to P=S.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Park, Jee-Eun; Kang, Ji-Sun; Buncel, Erwin

    2012-01-16

    A kinetic study of the nucleophilic substitution reaction of Y-substituted phenyl diphenylphosphinothioates 2 a-g with alkali-metal ethoxides (MOEt; M = Li, Na, K) in anhydrous ethanol at (25.0±0.1) °C is reported. Plots of pseudo-first-order rate constants (k(obsd)) versus [MOEt], the alkali ethoxide concentration, show distinct upward (KOEt) and downward (LiOEt) curvatures, respectively, pointing to the importance of ion-pairing phenomena and a differential reactivity of dissociated EtO(-) and ion-paired MOEt. Based on ion-pairing treatment of the kinetic data, the k(obsd) values were dissected into k EtO - and k(MOEt), the second-order rate constants for the reaction with the dissociated EtO(-) and ion-paired MOEt, respectively. The reactivity of MOEt toward 2 b (Y = 4-NO(2)) increases in the order LiOEtNaOEt>KOEt>EtO(-). The current study based on Yukawa-Tsuno analysis has revealed that the reactions of 2 a-g (P=S) and Y-substituted phenyl diphenylphosphinates 1 a-g (P=O) with MOEt proceed through the same concerted mechanism, which indicates that the contrasting selectivity patterns are not due to a difference in reaction mechanism. The P=O compounds 1 a-g are approximately 80-fold more reactive than the P=S compounds 2 a-g toward the dissociated EtO(-) (regardless of the electronic nature of substituent Y) but are up to 3.1×10(3)-fold more reactive toward ion-paired LiOEt. The origin of the contrasting selectivity patterns is further discussed on the basis of competing electrostatic effects and solvational requirements as a function of anionic electric field strength and cation size (Eisenman's theory). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion-Pair Extractive Spectrophotometric Assay of Terbinafine Hydrochloride in Pharmaceuticals and Spiked Urine Using Bromocresol Purple

    NASA Astrophysics Data System (ADS)

    Salem Qarah, N. A.; Basavaiah, K.; Swamy, N.

    2016-09-01

    Two simple, rapid, selective, and sensitive methods were developed and validated for the determination of terbinafi ne hydrochloride (TBH) in pharmaceuticals and urine. The fi rst method (method A) is based on the formation of a yellow ion-pair complex of TBH and bromocresol purple (BCP), a sulfonephthalein dye, in Walpole buffer of pH 3.61, which was extracted into chloroform and investigated at 420 nm. For the second method (method B) the drug-dye ion-pair was broken in alkaline KOH medium, and the resulting free dye color was measured at 610 nm. All variables were studied to optimize the reaction conditions. The regression analysis of Beer's law plots showed good correlation in the concentration ranges of 1-10 and 0.1-2.0 μg/mL for method A and method B, respectively. Molar absorptivity values were 2.99 × 104, and 1.51×105 L/(mol × cm) for measurements by these methods. The methods were also validated for limits of detection (LOD) and quantifi cation (LOQ), intra-day and inter-day accuracy and precision, selectivity, robustness and ruggedness. The composition of the ion-pair (drug-dye) used in the method A was found to be 1:1 by both mole-ratio and Job's methods. The developed methods were applied to tablets, and the results were in good agreement with the label claim and those of the reference method. Because of its high sensitivity, method A was applied to spiked human urine with percent recoveries in the range 96.58-107.3 and a standard deviation <2%.

  15. Low-temperature thermally regenerative electrochemical system

    DOEpatents

    Loutfy, R.O.; Brown, A.P.; Yao, N.P.

    1982-04-21

    A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadoss, C.; Fessenden, R.W.

    The transient that is produced in the quenching of triplet benzophenone by 1,4-diazabicyclo(2.2.2)octane (DABCO) has been examined by use of nano- and picosecond laser photolysis. The initial step in all solvents, both polar and nonpolar, is electron transfer to form a triplet contact ion pair. In nonpolar solvents, the ion pair remains in this form until it decays. For polar solvents, the spectra change somewhat over the first 100 ps showing that the solvation changes and the ion pair becomes solvent separated. The lifetime of the ion pair varies greatly with the solvent. In saturated hydrocarbons it is about 80more » ps. Nonpolar solvents with either {pi} electrons or a lone pair of electrons stabilize the ion pair on the nanosecond to microsecond time scale. A small amount of alcohol in benzene also stabilizes the ion pair by hydrogen bonding. A shift in the peak position with time toward the blue accompanies the formation of hydrogen bonds in this case.« less

  17. Ionomers for Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  18. Raman Spectroscopic Observations of the Ion Association between Mg(2+) and SO4(2-) in MgSO4-Saturated Droplets at Temperatures of ≤380 °C.

    PubMed

    Wan, Ye; Wang, Xiaolin; Hu, Wenxuan; Chou, I-Ming

    2015-08-27

    Liquid–liquid phase separation was observed in aqueous MgSO4 solutions with excess H2SO4 at elevated temperatures; the aqueous MgSO4/H2SO4 solutions separated into MgSO4-rich droplets (fluid F1) and a MgSO4-poor phase (fluid F2) during heating. The phase separation temperature increases with SO4(2–)/Mg2+ ratio at a constant MgSO4 concentration. At a MgSO4/H2SO4 ratio of 5, the liquid–liquid phase separation temperature decreases with an increase in MgSO4 concentration up to ∼1.0 mol/kg and then increases at higher concentrations, showing a typical macroscale property of polymer solutions with a lower critical solution temperature (LCST) of ∼271.4 °C. In situ Raman spectroscopic analyses show that the MgSO4 concentration in fluid F1 increases with an increase in temperature, whereas that in fluid F2 decreases with an increase in temperature. In addition, HSO4(–), which does not readily form complexes with Mg(2+), tends to accumulate in fluid F2. Analyses of the v1(SO4(2–)) bands confirmed the presence of four-sulfate species of unassociated SO4(2–) (∼980 cm(–1)), contact ion pairs (CIPs; ∼995 cm(–1)), and triple ion pairs (TIPs; ∼1005 cm(–1)) in aqueous solution, and more complex ion pair chain structure (∼1020 cm(–1)) in fluid F1. Comparison of the sulfate species in fluids F1 and F2 at 280 °C suggests that SO4(2–) in fluid F2 is less associated with Mg(2+). On the basis of in situ visual and Raman spectroscopic observations, we suggest that the formation of the complex Mg(2+)–SO4(2–) ion association might be responsible for the liquid–liquid phase separation. In addition, Raman spectroscopic analyses of the OH stretching bands indicate that the hydrogen bonding in fluid F1 is stronger than that in fluid F2, which might be ascribed to the increasing probability of collision of H2O with Mg(2+) and SO4(2–) in fluid F1.

  19. Marcus Theory of Ion-Pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalentmore » ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less

  20. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    PubMed

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  2. Highly versatile heteroditopic ligand scaffolds for accommodating group 8, 9 & 11 heterobimetallic complexes.

    PubMed

    Gatus, Mark R D; Bhadbhade, Mohan; Messerle, Barbara A

    2017-10-24

    Two highly versatile xanthene scaffolds containing pairs of heteroditopic ligands were found to be capable of accommodating a range of transition metal ions, including Au(i), Ir(i), Ir(iii), Rh(i), and Ru(ii) to generate an array of heterobimetallic complexes. The metal complexes were fully characterised and proved to be stable in the solid and solution state, with no observed metal-metal scrambling. Heterobimetallic complexes containing the Rh(i)/Ir(i) combinations were tested as catalysts for the two-step dihydroalkoxylation reaction of alkynediols and sequential hydroamination/hydrosilylation reaction of alkynamines.

  3. Method for improving the durability of ion insertion materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.

    2002-01-01

    The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.

  4. Interactions between Hofmeister anions and the binding pocket of a protein.

    PubMed

    Fox, Jerome M; Kang, Kyungtae; Sherman, Woody; Héroux, Annie; Sastry, G Madhavi; Baghbanzadeh, Mostafa; Lockett, Matthew R; Whitesides, George M

    2015-03-25

    This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to—and to alter the charge and hydration structure of—polar, nonpolar, and topographically complex concavities on the surfaces of proteins.

  5. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.

    PubMed

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.

  6. ETMB-RBF: Discrimination of Metal-Binding Sites in Electron Transporters Based on RBF Networks with PSSM Profiles and Significant Amino Acid Pairs

    PubMed Central

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059

  7. Ion Pair Formation between Tertiary Aliphatic Amines and Perchlorate in the Biphasic Water/Dichloromethane System.

    PubMed

    Badocco, Denis; Di Marco, Valerio; Venzo, Alfonso; Frasconi, Marco; Frezzato, Diego; Pastore, Paolo

    2017-10-12

    The ability of aliphatic amines (AAs), namely, tripropylamine (TPrA), trisobutylamine (TisoBuA), and tributylamine (TBuA), to form ion pairs with perchlorate anion (ClO 4 - ) in biphasic aqueous/dichloromethane (CH 2 Cl 2 ) mixtures containing ClO 4 - 0.1 M has been demonstrated by GC with flame ionization (FID) and mass detectors (MS) and by NMR measurements. The extraction efficiency of the AAs to the organic phase was modeled by equations that were used to fit the experimental GC data, allowing us to determine values for K P (partition constant of the free AA), K IP (formation constant of the ion pair), and K P IP (partition constant of the ion pair) for TPrA, TisoBuA, and TBuA at 25 °C. Ion pairs were shown to form in CH 2 Cl 2 also when ClO 4 - is replaced by other inorganic anions, like NO 3 - , ClO 3 - , Cl - , H 2 PO 4 - , and IO 3 - . No ion pairs formed when CH 2 Cl 2 was replaced by n-hexane, suggesting that aliphatic amine ion pairs can form in polar organic solvents but not in nonpolar ones.

  8. Anion dependent ion pairing in concentrated ytterbium halide solutions

    NASA Astrophysics Data System (ADS)

    Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina

    2018-06-01

    We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.

  9. Structural evolution of trimesic acid (TMA)/Zn2 + ion network on Au(111) to final structure of (10√3 × 10√3)

    NASA Astrophysics Data System (ADS)

    Kim, Jandee; Lee, Jaesung; Rhee, Choong Kyun

    2016-02-01

    Presented is a scanning tunneling microscopy (STM) study of structural evolution of TMA/Zn2 + ion network on Au(111) to the final structure of (10√3 × 10√3) during solution phase post-modification of pristine trimesic acid (TMA) network of a (5√3 × 5√3) structure with Zn2 + ions. Coordination of Zn2 + ions into adsorbed TMA molecules transforms crown-like TMA hexamers in pristine TMA network to chevron pairs in TMA/Zn2 + ion network. Two ordered transient structures of TMA/Zn2 + ion network were observed. One is a (5√7 × 5√7) structure consisting of Zn2 + ion-containing chevron pairs and Zn2 + ion-free TMA dimers. The other is a (5√39 × 5√21) structure made of chevron pairs and chevron-pair-missing sites. An STM image showing domains of different stages of crystallization of chevron pairs demonstrates that the TMA/Zn2 + network before reaching to the final one is quite dynamic. The observed structural evolution of the TMA/Zn2 + ion network is discussed in terms of modification of configurations of adsorbed TMA as accommodating Zn2 + ions and re-ordering of Zn2 + ion-containing chevron pairs.

  10. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    NASA Astrophysics Data System (ADS)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  11. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less

  12. Water-separated ion pairs cause the slow dielectric mode of magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Mamatkulov, Shavkat I.; Rinne, Klaus F.; Buchner, Richard; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-06-01

    We compare the dielectric spectra of aqueous MgSO4 and Na2SO4 solutions calculated from classical molecular dynamics simulations with experimental data, using an optimized thermodynamically consistent sulfate force field. Both the concentration-dependent shift of the static dielectric constant and the spectral shape match the experimental results very well for Na2SO4 solutions. For MgSO4 solutions, the simulations qualitatively reproduce the experimental observation of a slow mode, the origin of which we trace back to the ion-pair relaxation contribution via spectral decomposition. The radial distribution functions show that Mg2+ and SO42 - ions form extensive water-separated—and thus strongly dipolar—ion pairs, the orientational relaxation of which provides a simple physical explanation for the prominent slow dielectric mode in MgSO4 solutions. Remarkably, the Mg2+-SO42 - ion-pair relaxation extends all the way into the THz range, which we rationalize by the vibrational relaxation of tightly bound water-separated ion pairs. Thus, the relaxation of divalent ion pairs can give rise to widely separated orientational and vibrational spectroscopic features.

  13. Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR).

    PubMed

    Chang, Feng-Ming James; Martin, Julia E; Giedroc, David P

    2015-04-21

    The copper-sensing operon repressor (CsoR) is an all-α-helical disc-shaped D2-symmetric homotetramer that forms a 2:1 tetramer/DNA operator complex and represses the expression of copper-resistance genes in a number of bacteria. A previous bioinformatics analysis of CsoR-family repressors distributes Cu(I)-sensing CsoRs in four of seven distinct clades on the basis of global sequence similarity. In this work, we define energetically important determinants of DNA binding in the apo-state (ΔΔGbind), and for allosteric negative coupling of Cu(I) binding to DNA binding (ΔΔGc) in a model clade IV CsoR from Geobacillus thermodenitrificans (Gt) of known structure, by selectively targeting for mutagenesis those charged residues uniquely conserved in clade IV CsoRs. These include a folded N-terminal "tail" and a number of Cu(I)-sensor and clade-specific residues that when mapped onto a model of Cu(I)-bound Gt CsoR define a path across one face of the tetramer. We find that Cu(I)-binding prevents formation of the 2:1 "sandwich" complex rather than DNA binding altogether. Folding of the N-terminal tail (residues R18, E22, R74) upon Cu-binding to the periphery of the tetramer inhibits assembly of the 2:1 apoprotein-DNA complex. In contrast, Ala substitution of residues that surround the central "hole" (R65, K101) in the tetramer, as well R48, impact DNA binding. We also identify a quaternary structural ion-pair, E73-K101″, that crosses the tetramer interface, charge-reversal of which restores DNA binding activity, allosteric regulation by Cu(I), and transcriptional derepression by Cu(I) in cells. These findings suggest an "electrostatic occlusion" model, in which basic residues important for DNA binding and/or allostery become sequestered via ion-pairing specifically in the Cu(I)-bound state, and this aids in copper-dependent disassembly of a repression complex.

  14. Extractive Spectrophotometric Determination of Nortriptyline Hydrochloride Using Sudan II, IV and Black B.

    PubMed

    Amin, A S; Saleh, H M

    2017-08-17

    A simple spectrophotometric methods has been developed for the determination of nortriptyline hydrochloride in pure and in pharmaceuticalformulations based on the formation of ion-pair complexes with sudun II (S II ), sudan (IV) (S IV ) and sudan black B (S BB ). The selectivity of the method was improved through extraction with chloroform. The optimum conditions for complete extracted colour development were assessed. The absorbance measurements were made at 534, 596 and 649 nm for S II , S IV and S BB complexes, respectively. The calibration graph was linear in the ranges 0.5- 280. 0.5- 37.5 and 0.5 - 31.0 μg ml -1 of the drug usiny the same reagents, respectively. The precision of the procedure was checked by calculating the relative standard deviation of ten replicate determinations on 15 μg ml -1 of nortriptyline HCI and was found to be 1.7, 1.3 and 1.55% using S II , S IV , and S BB complexes, respectively. The molar absorptivity and Sandell sensitivity for each ion-pair were calculated. The proposed methods were successfully applied to the deterniination of pure nortriptyline HCI and in pharmaceutical formulations, and the results demonstrated that the method is equally accurate, precise and reproducible as the official method.

  15. Theoretical study on the identity ion pair SN2 reactions of LiX with CH3SX (X=Cl, Br, and I): structure, mechanism, and potential energy surface.

    PubMed

    Ren, Yi; Gai, Jing-Gang; Xiong, Yan; Lee, Kuo-Hsing; Chu, San-Yan

    2007-07-26

    Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.

  16. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  17. Direct two-photon excitation of Sm3+, Eu3+, Tb3+, Tb.DOTA-, and Tb.propargylDO3A in solution

    NASA Astrophysics Data System (ADS)

    Sørensen, Thomas Just; Blackburn, Octavia A.; Tropiano, Manuel; Faulkner, Stephen

    2012-07-01

    We have observed direct two-photon excitation of samarium, europium and terbium ions in solution upon near IR excitation using a tuneable pulsed light source, and have also studied two-photon processes in a pair of related terbium complexes, namely [Tb.DOTA]- and Tb.propargylDO3A. Direct two-photon excitation of lanthanides is observed in simple systems in the absence of sensitizing chromophores. Where even simple chromophores such as a triple bond are present in the complex, then single and two-photon excitation of chromophore excited states competes with direct two-photon excitation of the ions and is the dominant pathway for sensitizing formation of the lanthanide excited state.

  18. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    PubMed

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  19. DETERMINATION OF SURFACTANT SODIUM LAURYL ETHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION

    EPA Science Inventory

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES)....

  20. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Department of Chemistry, Bohai University, Jinzhou 121000; Zhang, Ruiting

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significantmore » deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.« less

  1. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  2. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide.

    PubMed

    Dang, Liem X; Schenter, Gregory K

    2018-06-14

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  3. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  4. Ion-pair partition of quarternary ammonium drugs: the influence of counter ions of different lipophilicity, size, and flexibility.

    PubMed

    Takács-Novák, K; Szász, G

    1999-10-01

    The ion-pair partition of quaternary ammonium (QA) pharmacons with organic counter ions of different lipophilicity, size, shape and flexibility was studied to elucidate relationships between ion-pair formation and chemical structure. The apparent partition coefficient (P') of 4 QAs was measured in octanol/pH 7.4 phosphate buffer system by the shake-flask method as a function of molar excess of ten counter ions (Y), namely: mesylate (MES), acetate (AC), pyruvate (PYRU), nicotinate (NIC), hydrogenfumarate (HFUM), hydrogenmaleate (HMAL), p-toluenesulfonate (PTS), caproate (CPR), deoxycholate (DOC) and prostaglandin E1 anion (PGE1). Based on 118 of highly precise logP' values (SD< 0.05), the intrinsic lipophilicity (without external counter ions) and the ion-pair partition of QAs (with different counter ions) were characterized. Linear correlation was found between the logP' of ion-pairs and the size of the counter ions described by the solvent accessible surface area (SASA). The lipophilicity increasing effect of the counter ions were quantified and the following order was established: DOC approximate to PGE1 > CPR approximate to PTS > NIC approximate to HMAL > PYRU approximate to AC approximate to MES approximate to HFUM. Analyzing the lipophilicity/molar ratio (QA:Y) profile, the differences in the ion-pair formation were shown and attributed to the differences in the flexibility/rigidity and size both of QA and Y. Since the largest (in average, 300 X) lipophilicity enhancement was found by the influence of DOC and PGE1 and considerable (on average 40 X) increase was observed by CPR and PTS, it was concluded that bile acids and prostaglandin anions may play a significant role in the ion-pair transport of quaternary ammonium drugs and caproic acid and p-toluenesulfonic acid may be useful salt forming agents to improve the pharmacokinetics of hydrophilic drugs.

  5. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    PubMed

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 < 2 < 3 with K = 4000, 4400, and 7000 M(-1). (1)H NMR studies in CD3CN also revealed evidence for iodide ion pairs and indicated that they occur predominantly with iodide localization near the tmam ligand(s). The diastereotopic H atoms on the methylene carbon that link the amine to the bipyridine ring were uniquely sensitive to the presence of iodide; analysis revealed that an iodide "binding pocket" exists wherein iodide forms an adduct with the 3 and 3' bipyridyl H atoms and the quaternized amine. The MLCT excited states were efficiently quenched by iodide. Time-resolved photoluminescence measurements of 1 revealed a static component consistent with rapid electron transfer from iodide in the "binding pocket" to the Ru metal center in the excited state, ket > 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  7. Analysis of a variety of inorganic and organic additives in food products by ion-pairing liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    Kaufmann, Anton; Widmer, Mirjam; Maden, Kathryn; Butcher, Patrick; Walker, Stephan

    2018-03-05

    A reversed-phase ion-pairing chromatographic method was developed for the detection and quantification of inorganic and organic anionic food additives. A single-stage high-resolution mass spectrometer (orbitrap ion trap, Orbitrap) was used to detect the accurate masses of the unfragmented analyte ions. The developed ion-pairing chromatography method was based on a dibutylamine/hexafluoro-2-propanol buffer. Dibutylamine can be charged to serve as a chromatographic ion-pairing agent. This ensures sufficient retention of inorganic and organic anions. Yet, unlike quaternary amines, it can be de-charged in the electrospray to prevent the formation of neutral analyte ion-pairing agent adducts. This process is significantly facilitated by the added hexafluoro-2-propanol. This approach permits the sensitive detection and quantification of additives like nitrate and mono-, di-, and triphosphate as well as citric acid, a number of artificial sweeteners like cyclamate and aspartame, flavor enhancers like glutamate, and preservatives like sorbic acid. This is a major advantage, since the currently used analytical methods as utilized in food safety laboratories are only capable in monitoring a few compounds or a particular category of food additives. Graphical abstract Deptotonation of ion pair agent in the electrospray interface.

  8. New longitudinal mode and compression of pair ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com; Tsintsadze, N. L.

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density ofmore » pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.« less

  9. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  10. Metal-ion interactions with carbohydrates. Crystal structure and FT-IR study of the SmCl3-ribose complex.

    PubMed

    Lu, Yan; Guo, Jianyu

    2006-04-10

    A single-crystal of SmCl3.C5H10O5.5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is alpha-D-ribopyranose in the 4C1 conformation and the other one is beta-D-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the D-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.

  11. Counteranion Driven Homochiral Assembly of a Cationic C3-Symmetric Gelator through Ion-Pair Assisted Hydrogen Bond.

    PubMed

    Maity, Arunava; Gangopadhyay, Monalisa; Basu, Arghya; Aute, Sunil; Babu, Sukumaran Santhosh; Das, Amitava

    2016-09-07

    The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.

  12. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Jordan, Michael T.; Carbonell, David

    2005-04-01

    A paired-watershed budget study was used to quantify the annual water and major ion (sodium, potassium, magnesium, calcium, chloride, and sulfate) budgets of two adjacent lowland rain forest watersheds in Costa Rica. Interbasin groundwater flow (IGF) accounted for about two thirds of the water input and about 97% of the solute input (an average over the six major ions) to one watershed but little or none of the inputs to the adjacent watershed in which IGF was at most marginally distinguishable from zero. Results underscore the significance of IGF as a potential control on the hydrology and water quality of lowland watersheds, the spatial complexity of its occurrence in lowlands (where its influence may range from dominating to negligible on adjacent watersheds), and the importance of accounting for IGF in the design and execution of watershed studies and in water management.

  13. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  14. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    PubMed

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  16. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    PubMed

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  17. General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels

    PubMed Central

    Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I

    2008-01-01

    Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027

  18. Defect states of complexes involving a vacancy on the boron site in boronitrene

    NASA Astrophysics Data System (ADS)

    Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.

    2011-12-01

    First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.

  19. Ion-pair cloud-point extraction: a new method for the determination of water-soluble vitamins in plasma and urine.

    PubMed

    Heydari, Rouhollah; Elyasi, Najmeh S

    2014-10-01

    A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  1. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante

    2007-07-07

    The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.

  2. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    PubMed Central

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  3. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples.

    PubMed

    Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz

    2018-05-09

    A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.

  5. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte.

    PubMed

    Arya, Anil; Sharma, A L

    2018-04-25

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO 8 -NaPF 6 +  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ([Formula: see text]) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ([Formula: see text]) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot ([Formula: see text]) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  6. RAPID AND AUTOMATED PROCESSING OF MALDI-FTICR/MS DATA FOR N-METABOLIC LABELING IN A SHOTGUN PROTEOMICS ANALYSIS.

    PubMed

    Jing, Li; Amster, I Jonathan

    2009-10-15

    Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.

  7. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    PubMed

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  8. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  9. Increasing ion sorption and desorption rates of conductive electrodes

    DOEpatents

    DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

    2014-12-30

    An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

  10. Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome

    PubMed Central

    Guo, Zuojun; Gibson, Meghan; Sitha, Sanyasi; Chu, Steven; Mohanty, Udayan

    2011-01-01

    The fidelity of translation selection begins with the base pairing of codon-anticodon complex between the m-RNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. To test this conjecture, we have developed a theoretical technique to determine the probability that the ternary complex, as a result of large thermal fluctuations, forms contacts leading to stabilization of the GTPase activated state. We argue that the configurational searches for such processes are in the tail end of the probability distribution and show that the probability for this event is localized around the most likely configuration. Small variations in the repositioning of cognate relative to near-cognate complexes lead to rate enhancement of the cognate complex. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome. PMID:21368154

  11. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    NASA Astrophysics Data System (ADS)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  12. Very strong Rydberg atom scattering in K(12p)-CH3NO2 collisions: Role of transient ion pair formation

    NASA Astrophysics Data System (ADS)

    Kelley, M.; Buathong, S.; Dunning, F. B.

    2017-05-01

    Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3NO2-ions, the data provide no evidence for production of long-lived K+⋯ CH3NO2 - ion pair states. Rather, the data show that collisions result in unusually strong Rydberg atom scattering. This behavior is attributed to ion-ion scattering resulting from formation of transient ion pair states through transitions between the covalent K(12p) + CH3NO2 and ionic K+ + (dipole bound) CH3NO2-terms in the quasimolecule formed during collisions. The ion-pair states are destroyed through rapid dissociation of the CH3NO2 - ions induced by the field of the K+ core ion, the detached electron remaining bound to the K+ ion in a Rydberg state. Analysis of the experimental data shows that ion pair lifetimes ≳10 ps are sufficient to account for the present observations. The present results are consistent with recent theoretical predictions that Rydberg collisions with CH3NO2 will result in strong collisional quenching. The work highlights a new mechanism for Rydberg atom scattering that could be important for collisions with other polar targets. For purposes of comparison, results obtained following K(12p)-SF6 collisions are also included.

  13. Magnetosonic shock wave in collisional pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com

    2016-06-15

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  14. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    NASA Astrophysics Data System (ADS)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  15. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    NASA Astrophysics Data System (ADS)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  16. Experimental and computational studies on the DNA translocation mechanism of the T4 viral packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy; Arya, Gaurav; Smith, Douglas E.

    2012-10-01

    Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the proposed ratcheting mechanism.

  17. Spectroscopic studies of Cr{sup 3+} ions doped in poly(vinylalcohol) complexed polyethylene glycol polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, T. Rajavardhana; Raju, Ch. Linga, E-mail: drchlraj-phy@yahoo.com; Brahmam, K. Veera

    2015-05-15

    Polymer films of Poly(vinylalcohol) (PVA) complexed with Polyethylene glycol (PEG) with different dopant concentrations of Cr{sup 3+} ions are prepared by solution cast technique. Electron paramagnetic resonance (EPR), Optical absorption and FT-IR studies have been carried out on the polymer films. The EPR spectra of the entire samples exhibit resonance signal at g ≈1.97 which is attributed to the isolated Cr{sup 3+} pairs. The temperature variation EPR studies show that the population of spin-levels participating in the resonance decreases with an increase in temperature, which is in accordance with the Boltzmann Law. The paramagnetic susceptibilities (X) have been calculated frommore » the EPR data at different temperatures. The linewidth of the g ≈1.97 resonance signal has been found to be decreasing with an increase in temperature, which confirms the pairing mechanism between Cr{sup 3+} ions. The Optical absorption spectrum of chromium ions in (PVA+PEG) polymer films exhibits three bands, corresponding to the d-d transitions {sup 4}A{sub 2g}(F)→{sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F)→{sup 4}T{sub 2g}(F) and {sup 4}A{sub 2g}(F)→{sup 2}T{sub 1g}(G), in the order of decreasing energy. The crystal field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. From the ultraviolet absorption edges, Optical band gap (E{sub opt}) and Urbach (ΔE) energies are evaluated. FT-IR spectrum exhibits few bands which are attributed to O-H, CH, C=C and C=O groups of stretching and bending vibrations.« less

  18. How Mg2+ ion and water network affect the stability and structure of non-Watson-Crick base pairs in E. coli loop E of 5S rRNA: a molecular dynamics and reference interaction site model (RISM) study.

    PubMed

    Shanker, Sudhanshu; Bandyopadhyay, Pradipta

    2017-08-01

    The non-Watson-Crick (non-WC) base pairs of Escherichia coli loop E of 5S rRNA are stabilized by Mg 2+ ions through water-mediated interaction. It is important to know the synergic role of Mg 2+ and the water network surrounding Mg 2+ in stabilizing the non-WC base pairs of RNA. For this purpose, free energy change of the system is calculated using molecular dynamics (MD) simulation as Mg 2+ is pulled from RNA, which causes disturbance of the water network. It was found that Mg 2+ remains hexahydrated unless it is close to or far from RNA. In the pentahydrated form, Mg 2+ interacts directly with RNA. Water network has been identified by two complimentary methods; MD followed by a density-based clustering algorithm and three-dimensional-reference interaction site model. These two methods gave similar results. Identification of water network around Mg 2+ and non-WC base pairs gives a clue to the strong effect of water network on the stability of this RNA. Based on sequence analysis of all Eubacteria 5s rRNA, we propose that hexahydrated Mg 2+ is an integral part of this RNA and geometry of base pairs surrounding it adjust to accommodate the [Formula: see text]. Overall the findings from this work can help in understanding the basis of the complex structure and stability of RNA with non-WC base pairs.

  19. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2017-06-01

    The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  1. Rate theory of solvent exchange and kinetics of Li+ - BF4-/PF6- ion pairs in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li+ and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li+ in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li+-[BF4] and Li+-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li+. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li+-[BF4] and Li+-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  2. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    PubMed

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with ΔE int for all 1-butylpyridinium ion pairs (R 2 = 0.9918). The ionic crystal density values calculated by using DFT-based MESP showed only slight variations from experimentally reported values.

  3. Structure and electronic properties of ion pairs accompanying cyclic morpholinium cation and alkylphosphite anion based ionic liquids

    NASA Astrophysics Data System (ADS)

    Verma, Prakash L.; Singh, Priti; Gejji, Shridhar P.

    2017-07-01

    Molecular insights for the formation of ion pairs accompanying the cyclic ammonium cation based room temperature ionic liquids (RTILs) composed of alkyl substituted N-methylmorpholinium (RMMor) and alkylphosphite [(Rsbnd O)2PHdbnd O] (Rdbnd ethyl, butyl, hexyl, octyl) anion have been derived from the M06-2x level of theory. Electronic structures, binding energies, and spectral characteristics of the ion pairs underlying these RTILs have been characterized. The ion pair formation is largely governed by Csbnd H⋯O and other intermolecular interactions. Calculated binding energies increase with the increasing alkyl chain on either cation or alkylphosphite anion. The cation-anion binding reveals signature in the frequency down-(red) shift of the characteristic anionic Pdbnd O stretching whereas the Psbnd H stretching exhibits a shift in the opposite direction in vibrational spectra which has further been rationalized through molecular electron density topography. Correlations of measured electrochemical stability with the separation of frontier orbital energies and binding energies in the ion pairs have further been established.

  4. Separation of metalloporphyrins from metallation reactions by liquid chromatography and electrophoresis.

    PubMed

    Duff, G A; Yeager, S A; Singhal, A K; Pestel, B C; Ressner, J M; Foster, N

    1987-04-24

    The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.

  5. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    NASA Astrophysics Data System (ADS)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution spectra were assigned to solvent shared pairs. Yet, the striking resemblance with our spectral data raises questions about the type assigned, pointing out that CIPs could be more present in these electrolyte solutions than previously thought. The novelty of the gas phase approach to investigate neutral ion pairs, opens the door for various new spectroscopic studies, paving the way to greater knowledge regarding the properties of ion pairs in many scientific fields. 1. Gloaguen, E.; Mons, M.; Topics in Current Chemistry, 2015, Vol 364, 225-270 2. Rudolph, W.W.; Fischer, D.; Irmer, G.; Dalton Transactions 2014, 43, (8), 3174-3185

  6. Electrostatic wave modulation in collisional pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Sikdar, Arnab; Adak, Ashish; Ghosh, Samiran; Khan, Manoranjan

    2018-05-01

    The effects of ion-neutral collision on the electrostatic wave packets in the absence of the magnetic field in a pair-ion plasma have been investigated. Considering a two-fluid plasma model with the help of the standard perturbation technique, two distinct electrostatic modes have been observed, namely, a low-frequency ion acoustic mode and a high-frequency ion plasma mode. The dynamics of the modulated wave is governed by a damped nonlinear Schrödinger equation. Damping of the soliton occurs due to the ion-neutral collision. The analytical and numerical investigation reveals that the ion acoustic mode is both stable and unstable, which propagates in the form of dark solitons and bright solitons, respectively, whereas the ion plasma mode is unstable, propagating in the form of a bright soliton. Results are discussed in the context of the fullerene pair-ion plasma experiments.

  7. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  8. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    NASA Astrophysics Data System (ADS)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  9. Spin-crossover phenomena of the mononuclear Mn(III) complex tuned by metal dithiolene counteranions.

    PubMed

    Chen, Ying; Cao, Fan; Wei, Rong-Min; Zhang, Yang; Zhang, Yi-Quan; Song, You

    2014-03-07

    Three ion-pair complexes based on spin-crossover [Mn(5-Br-sal-N-1,5,8,12)]ClO4 with TBA2[Ni(mnt)2], TBA2[Pt(mnt)2] (mnt = maleonitriledithiolate) and TBA[Ni(dmit)2] respectively (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato) have been synthesized and structurally characterized. Complexes [Mn(5-Br-sal-N-1,5,8,12)]2[Ni(mnt)2] and [Mn(5-Br-sal-N-1,5,8,12)]2[Pt(mnt)2] are isomorphic and show the axial compression of the octahedral coordination environment of Mn(III) ions. With the temperature increasing the equatorial metal-ligand bond lengths show significant elongation, but the axial bond lengths remain unchanged. Complex [Mn(5-Br-sal-N-1,5,8,12)][Ni(dmit)2]·CH3CN contains π-π, p-π and H-bonds weak interactions. Magnetic investigation shows the spin-crossover phenomena for and , and T1/2 has been increased by 230 K comparing with the reactant complex. However, no spin-crossover was observed in complex , and theoretical calculations show that there are weak antiferromagnetic couplings mediated through π-π interactions.

  10. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, A. L.

    2018-04-01

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ({{τ }{{\\varepsilon \\prime}}}>~{{τ }tanδ }>{{τ }z}>{{τ }m} ) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ({{σ }\\prime\\prime}~versus~{{σ }\\prime} ) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole–Cole plot ({{\\varepsilon }\\prime\\prime}~versus~{{\\varepsilon }\\prime} ) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  11. Polyelectrolyte properties of single stranded DNA measured using SAXS and single molecule FRET: beyond the wormlike chain model

    PubMed Central

    Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois

    2013-01-01

    Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337

  12. Spiers Memorial Lecture. Ions at aqueous interfaces.

    PubMed

    Jungwirth, Pavel

    2009-01-01

    Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a local model of interactions of ions with proteins with the aim to rationalize at the molecular level ion-specific Hofmeister effects, e.g. the salting out of proteins.

  13. Solvation and Ion Pair Association in Aqueous Metal Sulfates: Interpretation of NDIS raw data by isobaric-isothermal molecular dynamics simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chialvo, Ariel A; Simonson, J Michael

    2010-01-01

    We analyzed the solvation behavior of aqueous lithium, nickel, and ytterbium sulfates at ambient conditions in terms of the relevant radial distributions functions and the corresponding first-order difference of the sulfur-site neutronweighted distribution functions generated by isothermal-isobaric molecular dynamics simulation. We determined of the partial contributions to the neutronweighted distribution functions, to identify the main peaks, and the effect of the contact ion-pair configuration on the resulting H ! S coordination number. Finally, we assessed the extent of the ion-pair formation according to Poirier- DeLap formalism and highlighted the significant increase of the ion-pair association exhibited by these salts withmore » cation charge.« less

  14. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.

  15. NEXAFS spectroscopy of ionic liquids: experiments versus calculations.

    PubMed

    Fogarty, Richard M; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt-Talbot, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Bourne, Richard A; Chamberlain, Thomas W; Vander Hoogerstraete, Tom; Thompson, Paul B J; Hunt, Patricia A; Besley, Nicholas A; Lovelock, Kevin R J

    2017-11-29

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.

  16. Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.

    Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.

  17. Uncovering the Atomistic Mechanism for Calcite Step Growth

    DOE PAGES

    De La Pierre, Marco; Raiteri, Paolo; Stack, Andrew G.; ...

    2017-04-13

    Determining a complete atomic-level picture of how minerals grow from aqueous solution remains a challenge as macroscopic rates can be a convolution of many reactions. For the case of calcite (CaCO 3) in water, computer simulations have been used in this paper to map the complex thermodynamic landscape leading to growth of the two distinct steps, acute and obtuse, on the basal surface. The carbonate ion is found to preferentially adsorb at the upper edge of acute steps while Ca 2+ only adsorbs after CO 3 2-. In contrast to the conventional picture, ion pairs prefer to bind at themore » upper edge of the step with only one ion, at most, coordinated to the step and lower terrace. Finally, migration of the first carbonate ion to a growth site is found to be rate-limiting for kink nucleation, with this process having a lower activation energy on the obtuse step.« less

  18. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide.

    PubMed

    Kim, Yeon-Hwan; Hong, Jong-In

    2002-03-07

    Synthesis and complexation behavior of ditopic neutral receptors composed of both a Lewis-acidic binding site (zinc porphyrin moiety) and a Lewis-basic binding site (crown ether moiety) are reported; the receptors bound only NaCN in a ditopic fashion with a color change, and in contrast other sodium salts bound to the receptors in a monotopic fashion without a color change.

  19. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sensitive and Selective Spectrophotometric Determination of Gabapentin in Capsules Using Two Nitrophenols as Chromogenic Agents

    PubMed Central

    Abdulrahman, Sameer A. M.; Basavaiah, Kanakapura

    2011-01-01

    Two simple and selective spectrophotometric methods have been proposed for the determination of gabapentin (GBP) in pure form and in capsules. Both methods are based on the proton transfer from the Lewis acid such as 2,4,6-trinitrophenol (picric acid; PA) or 2,4-dinitrophenol (2,4-DNP) to the primary amino group of GBP which works as Lewis base and formation of yellow ion-pair complexes. The ion-pair complexes formed show absorption maximum at 415 and 420 nm for PA and 2,4-DNP, respectively. Under the optimized experimental conditions, Beer's law is obeyed over the concentration ranges of 1.25–15.0 and 2.0–18.0 μg mL−1 GBP for PA and 2,4-DNP methods, respectively. The molar absorptivity, Sandell's sensitivity, detection and, quantification limits for both methods are also reported. The proposed methods were applied successfully to the determination of GBP in pure form and commercial capsules. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level, and there was no significant difference between the reference and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique. PMID:21760787

  1. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  2. Probing Long-Range Configurations of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    McCormack, Elizabeth

    2011-05-01

    Very long-range molecular configurations are of interest in a variety of contexts, for example, in the astro-chemistry of cold molecular clouds and in planetary atmospheres, including our own. Such states can be more than 10 times the size of the ground state and often possess energies above multiple ionization potentials and dissociation limits resulting in diverse and complex decay dynamics. Many of these configurations possess a double-well character arising from the interaction of molecular Rydberg states, repulsive doubly-excited states, and ionic states. The ion pair in hydrogen, an unusual molecular configuration consisting of one proton shrouded in a cloud of two electrons separated very far from the other proton, is notoriously difficult to create and study. We report results from on our investigation of such states using resonantly enhanced multi-photon ionization via the E,F v = 6, J = 0, 1, and 2 states to probe the H(n = 1) + H(n = 3) dissociation threshold energy region. Both molecular and atomic ion production were detected as a function of wavelength by using a time-of-flight mass spectrometer. Below threshold a series of highly excited vibrational levels of several long range states are observed. Above threshold broad resonances are observed with energies that agree well with the predictions of a mass-scaled Rydberg formula for bound states of the H+ H- ion pair. Measured linewidths, quantum defects, and rotational dependences are reported for ion pair principal quantum numbers in the range of n = 130 to 206. Our new results can be compared to recent experimental work using a different excitation scheme, which was the first spectroscopic observation of heavy Rydberg states in hydrogen, and new ab initio theoretical work. Supported by the National Science Foundation.

  3. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ion funnel device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Chen, Tsung-Chi; Harrer, Marques B.

    2017-11-21

    An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.

  5. Ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 2. Photoinduced electron transfer to counterions in solution.

    PubMed

    Bragg, Arthur E; Schwartz, Benjamin J

    2008-04-24

    The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by other factors that alter the solution environment local to the CTTS anion, including the presence of cosolutes, cosolvents, and other ions. In this paper, we examine the ultrafast CTTS dynamics of iodide in liquid tetrahydrofuran (THF) with a particular focus on how the solvent dynamics and the CTTS electron-ejection process are altered in the presence of various counterions. In weakly polar solvents such as THF, iodide salts can be strongly ion-paired in solution; the steady-state UV-visible absorption spectroscopy of various iodide salts in liquid THF indicates that the degree of ion-pairing changes from strong to weak to none as the counterion is switched from Na+ to tetrabutylammonium (t-BA+) to crown-ether-complexed Na+, respectively. In our ultrafast experiments, we have excited the I- CTTS transition of these various iodide salts at 263 nm and probed the dynamics of the CTTS-detached electrons throughout the visible and near-IR. In the previous paper of this series (Bragg, A. E.; Schwartz, B. J. J. Phys. Chem. B 2008, 112, 483-494), we found that for "counterion-free" I- (obtained by complexing Na+ with a crown ether) the CTTS electrons were ejected approximately 6 nm from their partner iodine atoms, the result of significant nonadiabatic coupling between the CTTS excited state and extended electronic states supported by the naturally existing solvent cavities in liquid THF, which also serve as pre-existing electron traps. In contrast, for the highly ion-paired NaI/THF system, we find that approximately 90% of the CTTS electrons are "captured" by a nearby Na+ to form (Na+, e-)THF "tight-contact pairs" (TCPs), which are chemically and spectroscopically distinct from both solvated neutral sodium atoms and free solvated electrons. A simple kinetic model is able to reproduce the details of the electron capture process, with 63% of the electrons captured quickly in approximately 2.3 ps, 26% captured diffusively in approximately 63 ps, and the remaining 11% escaping out into the solution on subnanosecond time scales. We also find that the majority of the CTTS electrons are ejected to within 1 or 2 nm of the Na+. This demonstrates that the presence of the nearby cation biases the relocalization of CTTS-generated electrons from I- in THF, changing the nonadiabatic coupling to the extended, cavity-supported electronic states in THF to produce a much tighter distribution of electron-ejection distances. In the case of the more loosely ion-paired t-BA+-I-/THF system, we find that only 10-15% of the CTTS-ejected electrons associate with t-BA+ to form "loose-contact pairs" (LCPs), which are characterized by a much weaker interaction between the electron and cation than occurs in TCPs. The formation of (t-BA+, e-)THF LCPs is characterized by a Coulombically induced blue shift of the free eTHF- spectrum on a approximately 5-ps time scale. We argue that the weaker interaction between t-BA+ and the parent I- results in little change to the CTTS-ejection process, so that only those electrons that happen to localize in the vicinity of t-BA+ are captured to form LCPs. Finally, we interpret the correlation between electron capture yield and counterion-induced perturbation of the I- CTTS transition as arising from changes in the distribution of ion-pair separations with cation identity, and we discuss our results in the context of relevant solution conductivity measurements.

  6. Assessment of effect of Yb3+ ion pairs on a highly Yb-doped double-clad fibre laser

    NASA Astrophysics Data System (ADS)

    Vallés, J. A.; Martín, J. C.; Berdejo, V.; Cases, R.; Álvarez, J. M.; Rebolledo, M. Á.

    2018-03-01

    Using a previously validated characterization method based on the careful measurement of the characteristic parameters and fluorescence emission spectra of a highly Yb-doped double-clad fibre, we evaluate the contribution of ion pair induced processes to the output power of a double-clad Yb-doped fibre ring laser. This contribution is proved to be insignificant, contrary to analysis by other authors, who overestimate the role of ion pairs.

  7. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  8. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  9. Potential of ethylenediaminedi(o-hydroxyphenylacetic acid) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid for the determination of metal ions by capillary electrophoresis.

    PubMed

    Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T

    2000-08-25

    Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.

  10. Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; Murph, Mandi M.; Bartlett, Michael G.

    2017-08-01

    Alkylamines are widely used as ion-pairing agents during LC-MS of oligonucleotides. In addition to a better chromatographic separation, they also assist with the desorption of oligonucleotide ions into the gas phase, cause charge state reduction, and decrease cation adduction. However, the choice of such ion-pairing agents has considerable influence on the MS signal intensity of oligonucleotides as they can also cause significant ion suppression. Interestingly, optimal ion-pairing agents should be selected on a case by case basis as their choice is strongly influenced by the sequence of the oligonucleotide under investigation. Despite imposing major practical difficulties to analytical method development, such a highly variable system that responds very strongly to the nuances of the electrospray composition provides an excellent opportunity for a fundamental study of the electrospray ionization process. Our investigations using this system quantitatively revealed the major factors that influenced the ESI ionization efficiency of oligonucleotides. Parameters such as boiling point, proton affinity, partition coefficient, water solubility, and Henry's law constants for the ion-pairing reagents and the hydrophobic thymine content of the oligonucleotides were found to be the most significant contributors. Identification of these parameters also allowed for the development of a statistical predictive algorithm that can assist with the choice of an optimum IP agent for each particular oligonucleotide sequence. We believe that research in the field of oligonucleotide bioanalysis will significantly benefit from this algorithm (included in Supplementary Material) as it advocates for the use of lesser-known but more suitable ion-pair alternatives to TEA for many oligonucleotide sequences.

  11. G-quadruplexes as sensing probes.

    PubMed

    Ruttkay-Nedecky, Branislav; Kudr, Jiri; Nejdl, Lukas; Maskova, Darina; Kizek, Rene; Adam, Vojtech

    2013-11-28

    Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.

  12. Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2011-03-01

    We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.

  13. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  14. High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Van-Thai; Fulton, John L.

    2016-06-21

    In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5more » pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less

  15. Structures and physical properties of gaseous metal cationized biological ions.

    PubMed

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  16. Rogue Waves in Multi-Ion Cometary Plasmas

    NASA Astrophysics Data System (ADS)

    Sreekala, G.; Manesh, M.; Neethu, T. W.; Anu, V.; Sijo, S.; Venugopal, C.

    2018-01-01

    The effect of pair ions on the formation of rogue waves in a six-component plasma composed of two hot and one colder electron component, hot ions, and pair ions is studied. The kappa distribution, which provides an unambiguous replacement for a Maxwellian distribution in space plasmas, is connected with nonextensive statistical mechanics and provides a continuous energy spectrum. Hence, the colder and one component of the hotter electrons is modeled by kappa distributions and the other hot electron component, by a q-nonextensive distribution. It is found that the rogue wave amplitude is different for various pair-ion components. The magnitude, however, increases with increasing spectral index and nonextensive parameter q. These results may be useful in understanding the basic characteristics of rogue waves in cometary plasmas.

  17. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths

    PubMed Central

    Günay, Seçkin D.

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Chang, Tsun-Mei

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li +(aq) and the kinetics of ion pairings in lithium-ion batteries (LIB). We report one of the first computer simulations of the exchange dynamics around hydrated Li + in acetonitrile (ACN), which is common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li +-[BF 4] and Li +-[PF 6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells aroundmore » Li +(aq). We calculate exchange rates using transition state theory and weighted them with transmission coefficients determined by the reactive flux and Impey, Madden, and McDonald approaches and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li +-[BF 4] and Li +-[PF 6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.« less

  19. Spectrophotometric determination of some histamine H1-antagonists drugs in their pharmaceutical preparations.

    PubMed

    Hassan, Wafaa S; El-Henawee, Magda M; Gouda, Ayman A

    2008-01-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of three histamine H1-antagonists drugs, e.g., chlorphenoxamine hydrochloride (CPX), diphenhydramine hydrochloride (DPH) and clemastine (CMT) in bulk and in their pharmaceutical formulations. The first method depend upon the reaction of molybdenum(V) thiocyanate ions (Method A) with the cited drugs to form stable ion-pair complexes which extractable with methylene chloride, the orange red color complex was determined colorimetrically at lambda(max) 470nm. The second method is based on the formation of an ion-association complex with alizarin red S as chromogenic reagents in acidic medium (Method B), which is extracted into chloroform. The complexes have a maximum absorbance at 425 and 426nm for (DPH or CMT) and CPX, respectively. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration ranges of 5.0-40 and 5-70microgmL(-1) for molybdenum(V) thiocyanate (Method A) and alizarin red S (Method B), respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. Applications of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the procedure was confirmed by applying the standard addition technique and the results obtained in good agreement well with those obtained by the official method.

  20. Spectrophotometric determination of some histamine H1-antagonists drugs in their pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Hassan, Wafaa S.; El-Henawee, Magda M.; Gouda, Ayman A.

    2008-01-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of three histamine H1-antagonists drugs, e.g., chlorphenoxamine hydrochloride (CPX), diphenhydramine hydrochloride (DPH) and clemastine (CMT) in bulk and in their pharmaceutical formulations. The first method depend upon the reaction of molybdenum(V) thiocyanate ions (Method A) with the cited drugs to form stable ion-pair complexes which extractable with methylene chloride, the orange red color complex was determined colorimetrically at λmax 470 nm. The second method is based on the formation of an ion-association complex with alizarin red S as chromogenic reagents in acidic medium (Method B), which is extracted into chloroform. The complexes have a maximum absorbance at 425 and 426 nm for (DPH or CMT) and CPX, respectively. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration ranges of 5.0-40 and 5-70 μg mL -1 for molybdenum(V) thiocyanate (Method A) and alizarin red S (Method B), respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. Applications of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the procedure was confirmed by applying the standard addition technique and the results obtained in good agreement well with those obtained by the official method.

  1. Electrochemical reactions in fluoride-ion batteries: mechanistic insights from pair distribution function analysis

    DOE PAGES

    Grenier, Antonin; Porras-Gutierrez, Ana-Gabriela; Groult, Henri; ...

    2017-07-05

    Detailed analysis of electrochemical reactions occurring in rechargeable Fluoride-Ion Batteries (FIBs) is provided by means of synchrotron X-ray diffraction (XRD) and Pair Distribution Function (PDF) analysis.

  2. Matrix isolation technique for the study of some factors affecting the partitioning of trace elements. [using vibrational spectroscopy

    NASA Technical Reports Server (NTRS)

    Grzybowski, J. M.; Allen, R. O.

    1974-01-01

    The factors that affect the preferred positions of cations in ionic solid solutions were investigated utilizing vibrational spectroscopy. Solid solutions of the sulfate and chromate ions codoped with La(+3) and Ca(+2) in a KBr host lattice were examined as a function of the polyvalent cation concentration. The cation-anion pairing process was found to be random for Ca(+2), whereas the formation of La(+3)-SO4(-2) ion pairs with a C2 sub v bonding geometry is highly preferential to any type of La(+3)-CrO4(-2) ion pair formation. The relative populations of ion pair site configurations are discussed in terms of an energy-entropy competition model which can be applied to the partition of trace elements during magmatic processes.

  3. Transdermal penetration of vasoconstrictors--present understanding and assessment of the human epidermal flux and retention of free bases and ion-pairs.

    PubMed

    Cross, Sheree E; Thompson, Melanie J; Roberts, Michael S

    2003-02-01

    As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol:water (1:1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1:1 molar ratio ion-pairs with SA in liquid paraffin. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 microg/cm2/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 microg/cm2/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8+/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.

  4. Li+ solvation and kinetics of Li+-BF4-/PF6- ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Mei; Dang, Liem X.

    2017-10-01

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.

  5. Secondary. cap alpha. -deuterium kinetic isotope effects in solvolyses of ferrocenylmethyl acetate and benzoate in ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutic, D.; Asperger, S.; Borcic, S.

    1982-12-17

    Secondary ..cap alpha..-deuterium kinetic isotope effects (KIE) in solvolyses of ferrocenyldideuteriomethyl acetate and benzoate were determined in 96% (v/v) ethanol, at 25/sup 0/C, as k/sub H//k/sub D/ = 1.24 and 1.26, respectively. The KIEs were also determined in the presence of 0.1 mol dm/sup -3/ lithium perchlorate: the k/sub H//k/ sub D/ values were 1.23 and 1.22 for acetate and benzoate complexes, respectively. The maximum KIE for the C-O bond cleavage of a primary substrate is as large as, or larger than, that of secondary derivatives, which is estimated to be 1.23 per deuterium. The measured KIE of about 12%more » per D therefore represents a strongly reduced effect relative to its maximum. The solvolyses exhibit ''a special salt effect''. This effect indicates the presence of solvent-separated ion pairs and the return to tight pairs. As the maximum KIE is expected in solvolyses involving transformation of one type of ion pair into another, the strongly reduced ..cap alpha..-D KIE supports the structure involving direct participation of electrons that in the ground state are localized at the iron atom. The alkyl-oxygen cleavage is accompanied by 10-15% acyl-oxygen cleavage.« less

  6. Fine-tuning to minimize emittances of J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2016-02-15

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about one year. By the world’s brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. In order to minimize the transverse emittances, the rod-filter-field (RFF) was optimized by changing the triple-gap-lengths of each of pairing five piece rod-filter-magnets. The larger emittance degradation seems to be caused by impurity-gases than the RFF. The smaller beam-hole-diameter of the extraction electrode caused the more than expected improvements on not only the emittances but also the peak beam intensity.

  7. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  8. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    PubMed

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-01

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  10. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    PubMed

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  11. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  12. Ion-pairing dynamics of Li{sup +} and SCN{sup -} in dimethylformamide solution: Chemical exchange two-dimensional infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung-Koo; Park, Kwang-Hee; Kwon, Donghyun

    2011-02-14

    Ultrafast two-dimensional infrared (2DIR) spectroscopy has been proven to be an exceptionally useful method to study chemical exchange processes between different vibrational chromophores under thermal equilibria. Here, we present experimental results on the thermal equilibrium ion pairing dynamics of Li{sup +} and SCN{sup -} ions in N,N-dimethylformamide. Li{sup +} and SCN{sup -} ions can form a contact ion pair (CIP). Varying the relative concentration of Li{sup +} in solution, we could control the equilibrium CIP and free SCN{sup -} concentrations. Since the CN stretch frequency of Li-SCN CIP is blue-shifted by about 16 cm{sup -1} from that of free SCN{supmore » -} ion, the CN stretch IR spectrum is a doublet. The temperature-dependent IR absorption spectra reveal that the CIP formation is an endothermic (0.57 kJ/mol) process and the CIP state has larger entropy by 3.12 J/(K mol) than the free ion states. Since the two ionic configurations are spectrally distinguishable, this salt solution is ideally suited for nonlinear IR spectroscopic investigations to study ion pair association and dissociation dynamics. Using polarization-controlled IR pump-probe methods, we first measured the lifetimes and orientational relaxation times of these two forms of ionic configurations. The vibrational population relaxation times of both the free ion and CIP are about 32 ps. However, the orientational relaxation time of the CIP, which is {approx}47 ps, is significantly longer than that of the free SCN{sup -}, which is {approx}7.7 ps. This clearly indicates that the effective moment of inertia of the CIP is much larger than that of the free SCN{sup -}. Then, using chemical exchange 2DIR spectroscopy and analyzing the diagonal peak and cross-peak amplitude changes with increasing the waiting time, we determined the contact ion pair association and dissociation time constants that are found to be 165 and 190 ps, respectively. The results presented and discussed in this paper are believed to be important, not only because the ion-pairing dynamics is one of the most fundamental physical chemistry problems but also because such molecular ion-ion interactions are of critical importance in understanding Hofmeister effects on protein stability.« less

  13. Cleavage reaction of HDV ribozymes in the presence of Mg2+ is accompanied by a conformational change.

    PubMed

    Tanaka, Yoichiro; Tagaya, Mitsuhiro; Hori, Tamaki; Sakamoto, Taiichi; Kurihara, Yasuyuki; Katahira, Masato; Uesugi, Seiichi

    2002-06-01

    Hepatitis delta virus (HDV) ribozymes cleave RNA in the presence of divalent metal ions. We have previously elucidated the solution conformation of a minimized trans-acting HDV ribozyme and obtained evidence by NMR study that an Mg2+ ion binds to a site close to the cleavage site. We examined two ribozyme systems: a pre-cleavage complex with a non-cleavable substrate analogue (mS8) and a post-cleavage complex with a 3' cleavage product (P7). Upon titration with MgCl2, the complex with P7 showed a profound spectral change, while that with mS8 showed broadening of the signals. Analysis of the NOESY spectra of the P7 complex at high Mg2+ concentration revealed that a G:U pair is formed within the L3 loop, and the P1 and P4 stems are stabilized with respect to those of the pre-cleavage complex. The present analysis indicates that the cleavage reaction of the HDV ribozyme produces a big conformational change. Furthermore, presence of the 5'-terminal cytidine residue prevents this conformational change and its absence stabilizes the product-ribozyme complex in the presence of Mg2+. The structure of the Mg2+-bound P7 complex is similar to the crystal structure found for a product-ribozyme complex but is different from the pre-cleavage structure.

  14. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning.

    PubMed

    Scherrer, Robert A; Donovan, Stephen F

    2009-04-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.

  15. Automated Potentiometric Titrations in KCl/Water-Saturated Octanol: Method for Quantifying Factors Influencing Ion-Pair Partitioning

    PubMed Central

    2009-01-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log PI values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log PI through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log PN − I)). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pKa′′ values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log PI and log D. In contrast to the common assumption that diff (log PN − I) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log PI is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log PI. On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log DN and log DI. This work also brings attention to the fascinating world of nature’s highly stabilized ion pairs. PMID:19265385

  16. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  17. Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

    DOE PAGES

    Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; ...

    2017-09-28

    Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less

  18. Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.

    Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less

  19. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  20. Piezoelectric detection of ion pairs between sulphonate and catecholamines for flow injection analysis of pharmaceutical preparations.

    PubMed

    Mo, Z; Long, X; Zhang, M

    1999-03-01

    Fundamentals of ion-pair flow injection with piezoelectric detection were investigated experimentally and theoretically for the adsorption of dodecyl phenylsulfonate and interfacial ion-pair formation with epinephrine and l-dopa on silver electrode of quartz crystal microbalance. The influences of sulfonate concentration and operating parameters on the frequency response were demonstrated and provided the possibility for the discriminating determination of mixtures. The selected system of ion-pair flow injection with piezoelectric detection was applied to the determination of epinephrine and l-dopa. Calibration curves were linear in ranges 4.00-850 and 3.50-730 mug ml(-1), with detection limits of 1.22 and 1.05 mug ml(-1) and sampling frequencies of 120 samples h(-1), for epinephrine and l-dopa, respectively. The method has been satisfactorily applied to the determination of catecholamines in pharmaceutical preparations.

  1. Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Wen-Yan; Ran, Shi-Yong

    2018-05-01

    The interaction between silver ions and DNA plays an important role in the therapeutic use of silver ions and in related technologies such as DNA sensors. However, the underlying mechanism has not been fully understood. In this study, the dynamics of Ag+-DNA interaction at a single-molecule level was studied using magnetic tweezers. AgNO3 solutions with concentrations ranging from 1 μM to 20 μM led to a 1.4-1.8 μm decrease in length of a single λ-DNA molecule, indicating that Ag+ has a strong binding with DNA, causing the DNA conformational change. The compaction process comprises one linear declining stage and another sigmoid-shaped stage, which can be attributed to the interaction mechanism. Considering the cooperative effect, the sigmoid trend was well explained using a phenomenological model. By contrast, addition of silver nanoparticle solution induced no detectable transition of DNA. The dependence of the interaction on ionic strength and DNA concentration was examined via morphology characterization and particle size distribution measurement. The size of the Ag+-DNA complex decreased with an increase in Ag+ ionic strength ranging from 1 μM to 1 mM. Morphology characterization confirmed that silver ions induced DNA to adopt a compacted globular conformation. At a fixed [AgNO3]:[DNA base pairs] ratio, increasing DNA concentration led to increased sizes of the complexes. Intermolecular interaction is believed to affect the Ag+-DNA complex formation to a large extent.

  2. Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, R.; Mushtaq, A.

    2009-03-15

    Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n{sub e0}{approx}10{sup 4} cm{sup -3}. It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected bymore » the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.« less

  3. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    PubMed

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Chang, Tsun-Mei

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li{sup +} and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li{sup +} in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li{sup +}-[BF{sub 4}] and Li{sup +}-[PF{sub 6}] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shellsmore » around Li{sup +}. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li{sup +}-[BF{sub 4}] and Li{sup +}-[PF{sub 6}] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.« less

  5. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg 2+ -> Mg +), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg +. In contrast, BH 4 $-$ and BF 4 $-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  6. Infrared radiative decay dynamics from the γ 1u (3P2), H 1u (3P1), and 1u (1D2) ion-pair states of I2 observed by a perturbation facilitated optical-optical double resonance technique

    NASA Astrophysics Data System (ADS)

    Hoshino, Shoma; Araki, Mitsunori; Nakano, Yukio; Ishiwata, Takashi; Tsukiyama, Koichi

    2016-01-01

    We report the spectroscopic and temporal analyses on the amplified spontaneous emission (ASE) from the single rovibrational levels of the Ω = 1u ion-pair series, γ 1u (3P2), H 1u (3P1), and 1u (1D2), of I2 by using a perturbation facilitated optical-optical double resonance technique through the c 1 Π g ˜ B 3 Π ( 0u + ) hyperfine mixed valence state as the intermediate state. The ASE detected in the infrared region was assigned to the parallel transitions from the Ω = 1u ion-pair states down to the nearby Ω = 1g ion-pair states. The subsequent ultraviolet (UV) fluorescence from the Ω = 1g states was also observed and the relative vibrational populations in the Ω = 1g states were derived through the Franck-Condon simulation of the intensity pattern of the vibrational progression. In the temporal profiles of the UV fluorescence, an obvious delay in the onset of the fluorescence was recognized after the excitation laser pulse. These results revealed that ASE is a dominant energy relaxation process between the Ω = 1u and 1g ion-pair states of I2. Finally, the lifetimes of the relevant ion-pair states were evaluated by temporal analyses of the UV fluorescence. The propensity was found which was the longer lifetime in the upper level of the ASE transitions tends to give intense ASE.

  7. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  8. Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O

    NASA Astrophysics Data System (ADS)

    Sadaf, Haseeba; Isab, Anvarhusein A.; Ahmad, Saeed; Espinosa, Arturo; Mas-Montoya, Míriam; Khan, Islam Ullah; Ejaz; Rehman, Seerat-ur; Ali, Muhammad Akhtar Javed; Saleem, Muhammad; Ruiz, José; Janiak, Christoph

    2015-04-01

    A new platinum(II) complex, [Pt(Tmtu)4][Pt(CN)4]·4H2O (1) was synthesized by reaction of K2[PtCl4], KCN and tetramethylthiourea (Tmtu). Its structure was determined by X-ray crystallography. The [Pt(CN)4]2- anion shows regular square planar geometry at platinum, while in the [Pt(Tmtu)4]2+ cation the geometry at platinum is somewhat distorted. Hydrogen bonding between water molecules and the cyanide nitrogen of [Pt(CN)4]2- ions stabilizes the structure and leads to a supramolecular 2D network. DFT calculations support the experimentally found dinuclear (homocoordinated) ion-pair structure 1 as the most stable in comparison to noncovalent dimer [Pt(CN)2(Tmtu)2]222 that could, in turn, be involved in the formation sequence of 1. Antimicrobial activities of the complex were evaluated by minimum inhibitory concentration and the results showed that the complex exhibited moderate activities against gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa) and molds (Aspergillus niger,Penicilliumcitrinum).

  9. Ion Propulsion Thruster Including a Plurality of Ion Optic Electrode Pairs

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    Ion optics for use in a conventional or annular or other shaped ion thruster are disclosed including a plurality of planar, spaced apart ion optic electrode pairs sized to include a diameter smaller than the diameter of thruster exhaust and retained in, on or otherwise associated with a frame across the thruster exhaust. An electrical connection may be provided for establishing electrical connectivity among a set of first upstream electrodes and an electrical connection may be provided for establishing electrical connectivity among the second downstream electrodes.

  10. Thermodynamic studies of aqueous solutions of 2,2,2-cryptand at 298.15 K: enthalpy-entropy compensation, partial entropies, and complexation with K+ ions.

    PubMed

    Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J

    2013-12-19

    The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.

  11. Investigation of geminate recombination of radical ion pairs generated by dissociation of exciplexes in moderately polar solvents using the photoconductivity technique

    NASA Astrophysics Data System (ADS)

    Lukin, Leonid V.

    2009-06-01

    A new approach to determination of the recombination rate of radical ion pairs in moderately polar solvents is presented. It is based on an investigation of transient photocurrents caused by dissociation of exciplexes generated in photoinduced electron transfer reactions. It has been shown that the recombination rate of geminate ion pairs can be found from the photocurrent rise time. We have applied such an approach to transient photocurrents observed by Hirata et al. [Y. Hirata, Y. Kanda, N. Mataga, J. Phys. Chem. 87 (1983) 1659] for the pyrene/dicyanobenzene system in solvents of moderate polarity. The increase of the obtained recombination rate of photogenerated ions with increasing polarity of solvent testifies that ions recombine mainly by the backward electron transfer from the dicyanobenzene anions to solvent-separated cations of pyrene.

  12. Bridging the gap between ionic liquids and molten salts: group 1 metal salts of the bistriflamide anion in the gas phase.

    PubMed

    Leal, João P; da Piedade, Manuel E Minas; Canongia Lopes, José N; Tomaszowska, Alina A; Esperança, José M S S; Rebelo, Luís Paulo N; Seddon, Kenneth R

    2009-03-19

    Fourier transform ion cyclotron resonance mass spectrometry experiments showed that liquid Group 1 metal salts of the bistriflamide anion undergoing reduced-pressure distillation exhibit a remarkable behavior that is in transition between that of the vapor-liquid equilibrium characteristics of aprotic ionic liquids and that of the Group 1 metal halides: the unperturbed vapors resemble those of aprotic ionic liquids, in the sense that they are essentially composed of discrete ion pairs. However, the formation of large aggregates through a succession of ion-molecule reactions is closer to what might be expected for Group 1 metal halides. Similar experiments were also carried out with bis{(trifluoromethyl)sulfonyl}amine to investigate the effect of H(+), which despite being the smallest Group 1 cation, is generally regarded as a nonmetal species. In this case, instead of the complex ion-molecule reaction pattern found for the vapors of Group 1 metal salts, an equilibrium similar to those observed for aprotic ionic liquids was observed.

  13. Ionic force field optimization based on single-ion and ion-pair solvation properties: Going beyond standard mixing rules

    NASA Astrophysics Data System (ADS)

    Fyta, Maria; Netz, Roland R.

    2012-03-01

    Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.

  14. Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate.

    PubMed

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-08

    The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.

  15. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    PubMed Central

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson–Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo. PMID:24399194

  16. Li + solvation and kinetics of Li +–BF 4 -/PF 6 - ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Dang, Liem X.

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine in this paper the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li + and the dissociation kinetics of ion pairs Li +–[BF 4] and Li +–[PF 6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li + ions varied from 60 to 450 ps, depending on themore » correction method used. We found that the relaxation times changed significantly from Li +–[BF 4] to Li +–[PF 6] ion pairs in EC. Finally, our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.« less

  17. Li + solvation and kinetics of Li +–BF 4 -/PF 6 - ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    DOE PAGES

    Chang, Tsun-Mei; Dang, Liem X.

    2017-07-19

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine in this paper the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li + and the dissociation kinetics of ion pairs Li +–[BF 4] and Li +–[PF 6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li + ions varied from 60 to 450 ps, depending on themore » correction method used. We found that the relaxation times changed significantly from Li +–[BF 4] to Li +–[PF 6] ion pairs in EC. Finally, our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.« less

  18. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  19. Photodissociation Efficiency Spectroscopy Study of the Rydberg Excited Ion-Pair States of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; Xu, Yun-Feng; Sun, Jin-Da; Tian, Shan-Xi; Shan, Xiao-Bin; Liu, Fu-Yi; Sheng, Liu-Si

    2009-10-01

    Photodissociation efficiency spectrum of anionic oxygen atom produced via ion-pair dissociations of carbon dioxide is recorded by means of the synchrotron radiation excitation (XUV photon energy 17.40-20.00 eV). The present spectrum is assigned as the Rydberg-like excited ion-pair states, i.e., Tanaka-Ogawa and Henning series, tilde C2Σg+ (CO+2) vibrational ground-state and excitation series. Three Rydberg series, npσu, npπu, and nfu, converging to tilde C2Σg+ (0, 0, 0), show the higher cross sections.

  20. Coherent triplet excitation suppresses the heading error of the avian compass

    NASA Astrophysics Data System (ADS)

    Katsoprinakis, G. E.; Dellis, A. T.; Kominis, I. K.

    2010-08-01

    Radical-ion pair reactions are currently understood to underlie the biochemical magnetic compass of migratory birds. It was recently shown that radical-ion pair reactions form a rich playground for the application of quantum-information-science concepts and effects. We will show here that the intricate interplay between the quantum Zeno effect and the coherent excitation of radical-ion pairs leads to an exquisite angular sensitivity of the reaction yields. This results in a significant and previously unanticipated suppression of the avian compass heading error, opening the way to quantum engineering precision biological sensors.

  1. Effects of electrolytes on redox potentials through ion pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  2. [CuCl(n)](2-n) ion-pair species in 1-ethyl-3-methylimidazolium chloride ionic liquid-water mixtures: ultraviolet-visible, X-ray absorption fine structure, and density functional theory characterization.

    PubMed

    Li, Guosheng; Camaioni, Donald M; Amonette, James E; Zhang, Z Conrad; Johnson, Timothy J; Fulton, John L

    2010-10-07

    We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption fine structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu(2+) with multiple Cl(-) ligands to form various CuCl(n)((2-n)) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM(+) cation. Ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl(4)(2-) species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C(2) symmetry compared to D(2d) in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.

  3. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it; Caminiti, Ruggero

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations andmore » anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.« less

  4. Effects of electrolytes on redox potentials through ion pairing

    DOE PAGES

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...

    2017-09-21

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  5. Graphene: A Cathode Material of Choice for Aluminium-ion Battery.

    PubMed

    Das, Shyamal

    2018-03-22

    The pairing of an aluminum anode with a cathode of high energy and power densities determines the future of aluminum-ion battery technology. The arising natural question is - "Is there any suitable cathode material which is capable of storing sufficiently large amount of trivalent aluminum-ions at relatively higher operating potential?". The wonder material "graphene" emerges to be a befitting answer. Graphene footprint in research arena of aluminum-ion battery could be seen merely three years ago. However, the research progress in this front is tremendous and applauding. Outperforming all other known cathode materials, graphene made several remarkable breakthroughs in offering extraordinary energy density, power density, cycle life, thermal stability, safety and flexibility. The future of Al-graphene couple is indeed brighter, if utmost emphasis is drawn right away to surmount the inherent technological challenges. This minireview comprehensively highlights the electrochemical performances, advantages and challenges of graphene as cathode in aluminum-ion battery in conjugation with chloroaluminate based electrolytes. Additionally, the complex mechanism of charge storage in graphene is also elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modeling hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared tomore » experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.« less

  7. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential.

    PubMed

    Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik

    2018-02-19

    Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.

  8. Rayleigh-Taylor instability in an equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  9. Development of economic MeV-ion microbeam technology at Chiang Mai University

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Puttaraksa, N.; Unai, S.; Yu, L. D.; Singkarat, K.; Pussadee, N.; Whitlow, H. J.; Natyanum, S.; Tippawan, U.

    2017-08-01

    Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by computer to cut off the ion beam for controlling the beam size down to the micrometer order. The capillary technique utilizes our home-fabricated tapered glass capillaries to realize microbeams. Either system can be installed inside the endstation of the MeV ion beam line of the accelerator. Both systems have been applied to MeV-ion beam lithography or writing of micro-patterns for microfluidics applications to fabricate lab-on-chip devices. The capillary technique is being developed for MeV-ion beam mapping of biological samples. The paper reports details of the techniques and introduces some applications.

  10. Insight into Hydrazinium Nitrates, Azides, Dicyanamide, and 5-Azidotetrazolate Ionic Materials from Simulations and Experiments

    DTIC Science & Technology

    2011-04-04

    agreement between simulation and experiment is seen for UDMH , with simulations up to slightly above the boiling point of 336 K falling within a density ...conjunction wi th M05-2X density funct ional. Inclusion of a l one-pair on hydrazinium-based cations significantly improved ion electrostatic description...cation-anion complexes employing aug-cc- pvDz (cc-pvTz) basis functions at MP2 level or in conjunction with M05-2X density functional. Inclusion of

  11. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  12. Biologically-Inspired Peptide Reagents for Enhancing IMS-MS Analysis of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Bohrer, Brian C.; Clemmer, David E.

    2011-09-01

    The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein's binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide-carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.

  13. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.

    PubMed

    Picaud, Thierry; Desbois, Alain

    2006-12-26

    To determine the inhibition mechanism of yeast glutathione reductase (GR) by heavy metal, we have compared the electronic absorption and resonance Raman (RR) spectra of the enzyme in its oxidized (Eox) and two-electron reduced (EH2) forms, in the absence and the presence of Hg(II) or Cd(II). The spectral data clearly show a redox dependence of the metal binding. The metal ions do not affect the absorption and RR spectra of Eox. On the contrary, the EH2 spectra, generated by addition of NADPH, are strongly modified by the presence of heavy metal. The absorption changes of EH2 are metal-dependent. On the one hand, the main flavin band observed at 450 nm for EH2 is red-shifted at 455 nm for the EH2-Hg(II) complex and at 451 nm for the EH2-Cd(II) complex. On the other hand, the characteristic charge-transfer (CT) band at 540 nm is quenched upon metal binding to EH2. In NADPH excess, a new CT band is observed at 610 nm for the EH2-Hg(II)-NADPH complex and at 590 nm for EH2-Cd(II)-NADPH. The RR spectra of the EH2-metal complexes are not sensitive to the NADPH concentration. With reference to the RR spectra of EH2 in which the frequencies of bands II and III were observed at 1582 and 1547 cm-1, respectively, those of the EH2-metal complexes are detected at 1577 and 1542 cm-1, indicating an increased flavin bending upon metal coordination to EH2. From the frequency shifts of band III, a concomitant weakening of the H-bonding state of the N5 atom is also deduced. Taking into account the different chemical properties of Hg(II) and Cd(II), the coordination number of the bound metal ion was deduced to be different in GR. A mechanism of the GR inhibition is proposed. It proceeds primarily by a specific binding of the metal to the redox thiol/thiolate pair and the catalytic histidine of EH2. The bound metal ion then acts on the bending of the isoalloxazine ring of FAD as well as on the hydrophobicity of its microenvironment.

  14. Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Lynn Ellen

    This research study is an important component of a broader comprehensive project, “Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters,” which sought to identify and evaluate the critical molecular phenomena at metal-oxide interfaces that control many geochemical and environmental processes. The primary goal of this research study was to better understand and predict adsorption of metal ions at mineral/water surfaces. Macroscopic data in traditional batch experiments was used to develop predictive models that characterize sorption in complex systems containing a wide range of background solution compositions. Our studies focused on systems involving alkaline earth metal (Mg 2+, Ca 2+,more » Sr 2+, Ba 2+) and heavy metal (Hg 2+, Co 2+, Cd 2+, Cu 2+, Zn 2+, Pb 2+) cations. The anions we selected for study included Cl -, NO 3 -, ClO 4 -, SO 4 2-, CO 3 2- and SeO 3 2- and the background electrolyte cations we examined included (Na +, K +, Rb + and Cs +) because these represent a range of ion sizes and have varying potentials for forming ion-pairs or ternary complexes with the metal ions studied. The research led to the development of a modified titration congruency approach for estimating site densities for mineral oxides such as goethite. The CD-MUSIC version of the surface complexation modeling approach was applied to potentiometric titration data and macroscopic adsorption data for single-solute heavy metals, oxyanions, alkaline earth metals and background electrolytes over a range of pH and ionic strength. The model was capable of predicting sorption in bi-solute systems containing multiple cations, cations and oxyanions, and transition metal cations and alkaline earth metal ions. Incorporation of ternary complexes was required for modeling Pb(II)-Se(IV) and Cd(II)-Se(IV) systems. -Both crystal face contributions and capacitance values were shown to be sensitive to varying specific surface area but were successfully accounted for in the modeling strategy. The insights gained from the macroscopic, spectroscopic and CD-MUSIC modeling developed in this study can be used to guide the implementation of less complex models which may be more applicable to field conditions. The findings of this research suggest that surface complexation models can be used as a predictive tool for fate and transport modeling of metal ions and oxyanions in fresh and saline systems typical of energy production waters and wastewaters.« less

  15. Effects of Concentration on Like-Charge Pairing of Guanidinium Ions and on the Structure of Water: An All-Atom Molecular Dynamics Simulation Study.

    PubMed

    Bandyopadhyay, Dibyendu; Bhanja, K; Mohan, Sadhana; Ghosh, Swapan K; Choudhury, Niharendu

    2015-08-27

    Like-charge ion-pair formation in an aqueous solution of guanidinium chloride (GdmCl) has two important facets. On one hand, it describes the role of the arginine (ARG) side chain in aggregation and dimer formation in proteins, and on the other hand, it lends support for the direct mechanism of protein denaturation by GdmCl. We employ all-atom molecular dynamics simulations to investigate the effect of GdmCl concentration on the like-charge ion-pair formation of guanidinium ions (Gdm(+)). From analyses of the radial distribution function (RDF) between the carbon atoms of two guanidinium moieties, the existence of both contact pairs and solvent-separated pairs has been observed. Although the peak height corresponding to the contact-pair state decreases, the number of Gdm(+) ions in the contact-pair state actually increases with increasing GdmCl concentration. We have also investigated the effect of the concentration of Gdm(+) on the structure of water. The effect of GdmCl concentration on the radial and tetrahedral structures of water is found to be negligibly small; however, GdmCl concentration has a considerable effect on the hydrogen-bonding structure of water. It is demonstrated that the presence of chloride ions, not Gdm(+), in the first solvation shell of water causes the distortion in the hydrogen-bonding network of water. In order to establish that Gdm(+) not only stacks against another Gdm(+) but also directly attacks the ARG residue of a protein or peptide, simulation of an ARG-rich peptide in 6 M aqueous solution of GdmCl has been performed. The analyses of RDFs and orientation distributions reveal that the Gdm(+) moiety of the GdmCl attacks the same moiety in the ARG side chain with a parallel stacking orientation.

  16. Photoinduced Charge Shifts and Electron Transfer in Viologen-Tetraphenylborate Complexes: Push-Pull Character of the Exciplex.

    PubMed

    Santos, Willy G; Budkina, Darya S; Deflon, Victor M; Tarnovsky, Alexander N; Cardoso, Daniel R; Forbes, Malcolm D E

    2017-06-14

    Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (k obs < 10 12 s -1 ) and twisted (k obs ∼ 10 10 s -1 ) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 μs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V •+ ).

  17. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    PubMed

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  18. Perfluorinated acids as ion-pairing agents in the determination of monoamine transmitters and some prominent metabolites in rat brain by high-performance liquid chromatography with amperometric detection.

    PubMed

    Patthy, M; Gyenge, R

    1988-09-30

    The behaviour of trifluoroacetate and heptafluorobutyrate as pairing ions for the reversed-phase ion-pair separation of monoamine transmitters and related metabolites was studied. The performance of systems with the perfluorinated acids was compared with that of systems containing sodium octyl sulphonate and was found to be better in terms of peak resolution combined with total analysis time, day-to-day reproducibility and the time required for attaining initial chromatographic equilibrium. Rat brain samples were deproteinized in the acidified mobile phase, injected directly on to a high-performance liquid chromatographic column and quantitated using an amperometric detector. Sample run times were 6-8 min, at a relatively low flow-rate. The detection limits achieved are fairly uncommon with conventional bore columns. The two perfluorinated acids studied differ in the dominant mechanisms of ion-pair formation and show selectivity differences as a result.

  19. Local Aqueous Solvation Structure Around Ca2+ During Ca2+---Cl– Pair Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel D.; Mundy, Christopher J.

    2016-03-03

    The molecular details of single ion solvation around Ca2+ and ion-pairing of Ca2--Cl- are investigated using ab initio molecular dynamics. The use of empirical dispersion corrections to the BLYP functional are investigated by comparison to experimentally available extended X-ray absorption fine structure (EXAFS) measurements, which probes the first solvation shell in great detail. Besides finding differences in the free-energy for both ion-pairing and the coordination number of ion solvation between the quantum and classical descriptions of interaction, there were important differences found between dispersion corrected and uncorrected density functional theory (DFT). Specifically, we show significantly different free-energy landscapes for bothmore » coordination number of Ca2+ and its ion-pairing with Cl- depending on the DFT simulation protocol. Our findings produce a self-consistent treatment of short-range solvent response to the ion and the intermediate to long-range collective response of the electrostatics of the ion-ion interaction to produce a detailed picture of ion-pairing that is consistent with experiment. MDB is supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional computing resources were generously allocated by PNNL's Institutional Computing program. The authors thank Prof. Tom Beck for discussions regarding QCT, and Drs. Greg Schenter and Shawn Kathmann for insightful comments.« less

  20. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.

    PubMed

    Guan, Xiaoyan; Brownstein, Naomi C; Young, Nicolas L; Marshall, Alan G

    2017-01-30

    Bottom-up tandem mass spectrometry (MS/MS) is regularly used in proteomics to identify proteins from a sequence database. De novo sequencing is also available for sequencing peptides with relatively short sequence lengths. We recently showed that paired Lys-C and Lys-N proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Such parallel experiments provide complementary information, and allow for up to 100% MS/MS sequence coverage. Here, we report digestion by paired Lys-C and Lys-N proteases of a seven-protein mixture: human hemoglobin alpha, bovine carbonic anhydrase 2, horse skeletal muscle myoglobin, hen egg white lysozyme, bovine pancreatic ribonuclease, bovine rhodanese, and bovine serum albumin, followed by reversed-phase nanoflow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of product peptide ions of equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion types, residues, and peptides. Selected pairs of product ion mass spectra for de novo sequenced protein segments from each member of the mixture are presented. Pairs of the transposed product ions as well as complementary information from the parallel experiments allow for both high MS/MS coverage for long peptide sequences and high confidence in the amino acid identification. Moreover, the parallel experiments in the de novo sequencing reduce false-positive matches of product ions from the single-residue transposed peptides from the same segment, and thereby further improve the confidence in protein identification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  2. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  3. Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: Resonance enhanced multiphoton ionization of HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is

    2014-06-28

    Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

  4. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    PubMed

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    PubMed

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  6. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristin

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less

  7. Deterministic quantum teleportation with atoms.

    PubMed

    Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R

    2004-06-17

    Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.

  8. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    NASA Astrophysics Data System (ADS)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  9. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture.

    PubMed

    Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B

    2008-09-14

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  10. Solvation suppression of ion recombination in gas discharge afterglow

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Lankin, A. V.; Norman, G. E.

    2018-03-01

    An effect which suppresses recombination in ion plasmas is considered both theoretically and experimentally. Experimental results are presented for the ion recombination rate in fluorine plasma, which are obtained from data for the gas discharge afterglow. To interpret them, a suppression factor is considered: ion solvation in weakly ionized plasma. It is shown that the recombination process has a two-stage character with the formation of intermediate metastable ion pairs. The pairs consist of negative and positive ion-molecular clusters. A theoretical explanation is given for the slowing down of the ion recombination with the increase of the Coulomb coupling compared to the ion recombination rate calculated in the ideal plasma approximation. The approximate similarity of the recombination rate of the ion temperature and concentration and reasons for the slight deviation from the similarity are elucidated.

  11. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  12. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  13. Complementary b/y fragment ion pairs from post-source decay of metastable YahO for calibration of MALDI-TOF-TOF-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...

  14. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.

  15. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  16. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  17. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  18. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  19. Crystal structure of the Leishmania major peroxidase–cytochrome c complex

    PubMed Central

    Jasion, Victoria S.; Doukov, Tzanko; Pineda, Stephanie H.; Li, Huiying; Poulos, Thomas L.

    2012-01-01

    The causative agent of leishmaniasis is the protozoan parasite Leishmania major. Part of the host protective mechanism is the production of reactive oxygen species including hydrogen peroxide. In response, L. major produces a peroxidase, L. major peroxidase (LmP), that helps to protect the parasite from oxidative stress. LmP is a heme peroxidase that catalyzes the peroxidation of mitochondrial cytochrome c. We have determined the crystal structure of LmP in a complex with its substrate, L. major cytochrome c (LmCytc) to 1.84 Å, and compared the structure to its close homolog, the yeast cytochrome c peroxidase–cytochrome c complex. The binding interface between LmP and LmCytc has one strong and one weak ionic interaction that the yeast system lacks. The differences between the steady-state kinetics correlate well with the Lm redox pair being more dependent on ionic interactions, whereas the yeast redox pair depends more on nonpolar interactions. Mutagenesis studies confirm that the ion pairs at the intermolecular interface are important to both kcat and KM. Despite these differences, the electron transfer path, with respect to the distance between hemes, along the polypeptide chain is exactly the same in both redox systems. A potentially important difference, however, is the side chains involved. LmP has more polar groups (Asp and His) along the pathway compared with the nonpolar groups (Leu and Ala) in the yeast system, and as a result, the electrostatic environment along the presumed electron transfer path is substantially different. PMID:23100535

  20. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-06

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.

  1. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.

    PubMed

    Shakourian-Fard, Mehdi; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-09-19

    Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li(+) with pure carbonates and ethylene carbonate (EC)-based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06-2X/6-311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li-ion solvation in carbonates and EC-based mixtures. A strong local tetrahedral order involving four carbonates around the Li(+) was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li(+) ion with carbonates are negative and suggested the ion-carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li(+) interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO-EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li(+) ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO-EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li-ion batteries, which complies with experiments and other theoretical results. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    PubMed Central

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  3. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  4. Nanoenergetics and High Hydrogen Content Materials for Space Propulsion

    DTIC Science & Technology

    2014-01-28

    follows [141]: ( ) ( )2 2 , 2 ln 2 ln /Al Al p ox oxAl Al R r R a a r λ λ λ λ λ λ λ = ⎡ ⎤− − − +⎣ ⎦ (29) where ( ) ;Al Al b R a b R r...predictions of the transformation from acid -base pairs (e.g., nitric acid and ammonia) to ion pairs (e.g., NH4+ and NO3-), that is, proton transfer, in...calculations were performed to study the transformation from the stable acid -base pair for isolated formula units to stable ion pairs, as described in the

  5. Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.

    PubMed

    Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival

    2016-10-10

    To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bond-length distributions for ions bonded to oxygen: results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4

    PubMed Central

    Gagné, Olivier Charles

    2018-01-01

    Bond-length distributions are examined for three configurations of the H+ ion, 16 configurations of the group 14–16 non-metal ions and seven configurations of the group 17 ions bonded to oxygen, for 223 coordination polyhedra and 452 bond distances for the H+ ion, 5957 coordination polyhedra and 22 784 bond distances for the group 14–16 non-metal ions, and 248 coordination polyhedra and 1394 bond distances for the group 17 non-metal ions. H⋯O and O—H + H⋯O distances correlate with O⋯O distance (R 2 = 0.94 and 0.96): H⋯O = 1.273 × O⋯O – 1.717 Å; O—H + H⋯O = 1.068 × O⋯O – 0.170 Å. These equations may be used to locate the hydrogen atom more accurately in a structure refined by X-ray diffraction. For non-metal elements that occur with lone-pair electrons, the most observed state between the n versus n+2 oxidation state is that of highest oxidation state for period 3 cations, and lowest oxidation state for period 4 and 5 cations when bonded to O2−. Observed O—X—O bond angles indicate that the period 3 non-metal ions P3+, S4+, Cl3+ and Cl5+ are lone-pair seteroactive when bonded to O2−, even though they do not form secondary bonds. There is no strong correlation between the degree of lone-pair stereoactivity and coordination number when including secondary bonds. There is no correlation between lone-pair stereoactivity and bond-valence sum at the central cation. In synthetic compounds, PO4 polymerizes via one or two bridging oxygen atoms, but not by three. Partitioning our PO4 dataset shows that multi-modality in the distribution of bond lengths is caused by the different bond-valence constraints that arise for Obr = 0, 1 and 2. For strongly bonded cations, i.e. oxyanions, the most probable cause of mean bond length variation is the effect of structure type, i.e. stress induced by the inability of a structure to follow its a priori bond lengths. For ions with stereoactive lone-pair electrons, the most probable cause of variation is bond-length distortion.

  7. Noncontact bimolecular photoionization followed by radical-ions separation and their geminate recombination assisted by coherent HFI induced spin-conversion.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-02-07

    The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.

  8. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-11-16

    Rhodium is the most extensively used metal in catalytic applications; it occurs in mixed ores with platinum group metals (PGMs) in the earth’s crust in low concentrations (0.4 - 10 ppb). It is resistant to aerial oxidation and insoluble in all acids, including aqua regia, making classical purification methods time-consuming and inefficient. To ensure adequate purity, several precipitation and dissolution steps are necessary during separation. Low abundance, high demand, and extensive processing make rhodium the most expensive of all PGMs. From alternative sources, rhodium is also produced in sufficient quantities (0.47 kg per ton initial heavy metal (tIHM)) during themore » fission of U-235 in nuclear reactors along with other PGMs (i.e., Ag, Pd, Ru). A typical power water reactor operating with UO 2 fuel after cooling can generate PGMs in quantities greater than found in the earth’s crust (0.5-2 kg/tIHM). This currently untapped supply of PGMs has the potential to yield $5,000-30,000/tIHM. It is estimated that by the year 2030, the amount of rhodium generated in reactors could exceed natural reserves. Typical SNF processing removes the heavier lanthanides and actinides and can leave PGMs at ambient temperatures in aqueous acidic (Cl⁻ or NO 3⁻; pH < 1) solutions at various activities. While the retrieval of these precious metals from SNF would minimize waste generation and improve resource utilization, it has been difficult to achieve thus far. Two general strategies have been utilized to extract Rh(III) from chloride media: ion pairing and coordination complexation. Ion pairing mechanisms have been studied primarily with the tertiary and quaternary amines. Additionally, mixed mechanism extractions have been observed in which ion pairing is the initial mechanism, and longer extraction equilibrium time generated coordination complexes. Very few coordination complexation extraction ligands have been studied. This project approached this problem through the design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).« less

  9. Chiroptical methods in a wide wavelength range for obtaining Ln3+ complexes with circularly polarized luminescence of practical interest.

    PubMed

    Górecki, Marcin; Carpita, Luca; Arrico, Lorenzo; Zinna, Francesco; Di Bari, Lorenzo

    2018-05-29

    We studied enantiopure chiral trivalent lanthanide (Ln3+ = La3+, Sm3+, Eu3+, Gd3+, Tm3+, and Yb3+) complexes with two fluorinated achiral tris(β-diketonate) ligands (HFA = hexafluoroacetylacetonate and TTA = 2-thenoyltrifluoroacetonate), incorporating a chiral bis(oxazolinyl)pyridine (PyBox) unit as a neutral ancillary ligand, by the combined use of optical and chiroptical methods, ranging from UV to IR both in absorption and circular dichroism (CD), and including circularly polarized luminescence (CPL). Ultimately, all the spectroscopic information is integrated into a total and a chiroptical super-spectrum, which allows one to characterize a multidimensional chemical space, spanned by the different Ln3+ ions, the acidity and steric demand of the diketone and the chirality of the PyBox ligand. In all cases, the Ln3+ ions endow the systems with peculiar chiroptical properties, either allied to f-f transitions or induced by the metal onto the ligand. In more detail, we found that Sm3+ complexes display interesting CPL features, which partly superimpose and partly integrate the more common Eu3+ properties. Especially, in the context of security tags, the pair Sm/Eu may be a winning choice for chiroptical barcoding.

  10. Dressed soliton in quantum dusty pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  11. Evidence for higher order QED effects in e+ e- pair production at the BNL Relativistic Heavy Ion Collider.

    PubMed

    Baltz, A J

    2008-02-15

    A new lowest order QED calculation for BNL Relativistic Heavy-Ion Collider e+ e- pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy-ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly 2 standard deviations larger than the STAR data. A corresponding higher-order QED calculation is consistent with the data.

  12. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    NASA Astrophysics Data System (ADS)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  13. A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels*

    PubMed Central

    Puljung, Michael C.; Zagotta, William N.

    2013-01-01

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108

  14. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  15. Molecular recognition on a cavitand-functionalized silicon surface.

    PubMed

    Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico

    2009-06-03

    A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.

  16. Reply to `Comment on ``Higher order effects in lepton-pair production in relativistic heavy ion collisions'' '

    NASA Astrophysics Data System (ADS)

    Güçlü, M. C.

    2001-04-01

    In this Reply, I will show that including the Coulomb corrections to the lepton-pair production in heavy-ion collisions also violates the unitarity. Therefore, the points stressed by U. Eichmann are not complete and the multipair production problem is still an open question.

  17. Spin-1 Heisenberg ferromagnet using pair approximation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Murat; Mert, Gülistan; Kılıç, Ahmet

    2016-06-08

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  18. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdul-Malik A.; Endovitsky, Anatoly P.; Andreev, Andrey G.; Kalinichenko, Valery P.; Minkina, Tatiana M.; Dikaev, Zaurbek S.; Mandzhieva, Saglara S.; Sushkova, Svetlana N.

    2016-03-01

    The assessment of soil and vadose zone as the drains for carbon sink and proper modeling of the effects and extremes of biogeochemical cycles in the terrestrial biosphere are the key components to understanding the carbon cycle, global climate system, and aquatic and terrestrial system uncertainties. Calcium carbonate equilibrium causes saturation of solution with CaCO3, and it determines its material composition, migration and accumulation of salts. In a solution electrically neutral ion pairs are formed: CaCO30, CaSO40, MgCO30, and MgSO40, as well as charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, and MgOH+. The calcium carbonate equilibrium algorithm, mathematical model and original software to calculate the real equilibrium forms of ions and to determine the nature of calcium carbonate balance in a solution were developed. This approach conducts the quantitative assessment of real ion forms of solution in solonetz soil and vadose zone of dry steppe taking into account the ion association at high ionic strength of saline soil solution. The concentrations of free and associated ion form were calculated according to analytical ion concentration in real solution. In the iteration procedure, the equations were used to find the following: ion material balance, a linear interpolation of equilibrium constants, a method of ionic pairs, the laws of initial concentration preservation, operating masses of equilibrium system, and the concentration constants of ion pair dissociation. The coefficient of ion association γe was determined as the ratio of ions free form to analytical content of ion γe = Cass/Can. Depending on soil and vadose zone layer, concentration and composition of solution in the ionic pair's form are 11-52 % Ca2+; 22.2-54.6 % Mg2+; 1.1-10.5 % Na+; 3.7-23.8 HCO3-, 23.3-61.6 % SO42-, and up to 85.7 % CO32-. The carbonate system of soil and vadose zone water solution helps to explain the evolution of salted soils, vadose and saturation zones, and landscape. It also helps to improve the soil maintenance, plant nutrition and irrigation. The association of ions in soil solutions is one of the drivers promoting transformation of solution, excessive fluxes of carbon in the soil, and loss of carbon from soil through vadose zone.

  19. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC-MS/MS.

    PubMed

    Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas

    2018-01-01

    A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ion Association in AlCl3 Aqueous Solutions from Constrained First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauet, Emilie L.; Bogatko, Stuart A.; Bylaska, Eric J.

    2012-10-15

    Ab initio molecular dynamics was used to investigate the ion pairing behavior between Cl- and the Al3+ ion in an aqueous AlCl3 solution containing 63 water molecules. A series of constrained simulations was carried out at 300 K for up to 16 ps each, by fixing the inter-nuclear separation (rAl-Cl) between the Al3+ ion and one of the Cl- ions. The calculated potential of mean force of the Al3+-Cl- ion pair shows a pronounced minimum at rAl-Cl = 2.3 Å corresponding to a contact ion pair (CIP). Two local minima assigned to solvent separated ion pairs (SSIP) are identified atmore » rAl-Cl= 4.4 and 6.0 Å. The positions of the free energy minima coincide with the hydration shell intervals of the Al3+ cation suggesting that the Cl- ion is inclined to reside in regions of low concentration of waters, i.e. between the 1st and 2nd shells of Al3+ and between the 2nd shell and bulk. A detailed analysis of solvent structure around the Al3+ and Cl- ions as a function of rAl-Cl is presented. The results are compared to structure data from X-ray measurements and unconstrained AIMD simulations of single ions Al3+ and Cl- and AlCl3 solutions. The dipole moment of the water molecules inside the 1st and 2nd hydration shells of Al3+ and in the bulk region and those of the Clion were calculated as a function of rAl-Cl. Major changes in the electronic structure of the system result from the removal of Cl- from the 1st hydration shell of the Al3+ cation. Finally, two unconstrained AIMD simulations of aqueous AlCl3 solutions corresponding to CIP and SSIP configurations were performed (17 ps, 300 K). Only minor structural changes are observed in these systems, confirming their stability.« less

  1. Direct Production of Electron-Positron Pairs by 200-GeV/Nucleon Oxygen and Sulfur Ions in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.

    1995-01-01

    Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.

  2. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  3. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study.

    PubMed

    Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D

    2009-02-16

    The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi-stacking between quinolyl groups from adjacent TQA molecules. Formation constants determined by UV-visible spectroscopy are reported in 0.1 M NaClO(4) at 25 degrees C for TQA with Zn(II), Cd(II), and Pb(II). When compared with other similar ligands, one sees that, as the level of steric crowding increases, the stability decreases most with the small Zn(II) ion and least with the large Pb(II) ion. This is in accordance with the idea that TQA has a moderate level of steric crowding and that steric crowding increases for TQA analogs tris(2-pyridylmethyl)amine (TPyA) < TQA < tris(6-methyl-2-pyridyl)amine (TMPyA).

  4. Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.

    PubMed

    Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A

    2016-05-17

    The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  6. Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆

    PubMed Central

    Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan

    2008-01-01

    Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844

  7. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish.

    PubMed

    Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua

    2018-01-05

    Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    PubMed

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  9. Counteranion-Mediated Intrinsic Healing of Poly(ionic liquid) Copolymers.

    PubMed

    Guo, Panlong; Zhang, Houyu; Liu, Xiaokong; Sun, Junqi

    2018-01-17

    Fabrication of self-healing/healable materials using reversible interactions that are governed by their inherent chemical features is highly desirable because it avoids the introduction of extra groups that may present negative effects on their functions. The present study exploits the inherently featured electrostatic interactions of the ion pairs in polymeric ionic liquids (PILs) as the driving force to fabricate healable PIL copolymers. The healable PIL copolymers are fabricated through the copolymerization of the IL monomers with ethyl acrylate followed by the replacement of Br - counteranions with bulkier ones such as bis(trifluoromethanesulfonyl)imide (TFSI - ). Without modifying the chemical structures of the PIL moieties, the healing performance of the as-prepared PIL copolymers can be effectively mediated by their counteranions. The PIL copolymers that do not possess healability when paired with Br - counteranions become healable after exchanging the Br - counteranions with larger-sized ones (e.g., TFSI - ). The PIL copolymers paired with bulky counteranions exhibit enhanced chain mobility and highly reversible ion-pair interactions, which facilitate the healing process. The PIL copolymers paired with TFSI - anions can completely heal the damage/cut upon heating at 55 °C for 7.5 h. Meanwhile, the counteranions with larger sizes not only benefit the healing performance of the PIL copolymers but also enhance their ion conductivity. The ion conductivity of the PIL copolymers paired with TFSI - is an order of magnitude higher than that of the PIL copolymers paired with Br - . Therefore, the as-prepared healable PIL copolymers are potentially useful as solid electrolytes in PIL-based energy devices to improve their safety and reliability.

  10. Ion Transport via Structural Relaxations in Polymerized Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Ganesan, Venkat; Mogurampelly, Santosh

    We study the mechanisms underlying ion transport in poly(1-butyl-3-vinylimidazolium-hexafluorophosphate) polymer electrolytes. We consider polymer electrolytes of varying polymerized ionic liquid to ionic liquid (polyIL:IL) ratios and use atomistic molecular dynamics (MD) simulations to probe the dynamical and structural characteristics of the electrolyte. Our results reveal that anion diffusion along polymer backbone occurs primarily viathe formation and breaking of ion-pairs involving threepolymerized cationic monomers of twodifferent polymer chains. Moreover, we observe that the ionic diffusivities exhibit a direct correlation with the structural relaxation times of the ion-pairs and hydrogen bonds (H-bonds). These results provide new insights into the mechanisms underlying ion transport in polymerized ionic liquid electrolytes.

  11. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method.

  12. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method. PMID:22219661

  13. Silver(I)-Mediated Base Pairs in DNA Sequences Containing 7-Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson-Crick Base Pairs.

    PubMed

    Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A

    2018-03-26

    DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.

    PubMed

    Robinson, Aaron C; Castañeda, Carlos A; Schlessman, Jamie L; García-Moreno, E Bertrand

    2014-08-12

    An artificial charge pair buried in the hydrophobic core of staphylococcal nuclease was engineered by making the V23E and L36K substitutions. Buried individually, Glu-23 and Lys-36 both titrate with pKa values near 7. When buried together their pKa values appear to be normal. The ionizable moieties of the buried Glu-Lys pair are 2.6 Å apart. The interaction between them at pH 7 is worth 5 kcal/mol. Despite this strong interaction, the buried Glu-Lys pair destabilizes the protein significantly because the apparent Coulomb interaction is sufficient to offset the dehydration of only one of the two buried charges. Save for minor reorganization of dipoles and water penetration consistent with the relatively high dielectric constant reported by the buried ion pair, there is no evidence that the presence of two charges in the hydrophobic interior of the protein induces any significant structural reorganization. The successful engineering of an artificial ion pair in a highly hydrophobic environment suggests that buried Glu-Lys pairs in dehydrated environments can be charged and that it is possible to engineer charge clusters that loosely resemble catalytic sites in a scaffold protein with high thermodynamic stability, without the need for specialized structural adaptations.

  15. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein

    PubMed Central

    Robinson, Aaron C.; Castañeda, Carlos A.; Schlessman, Jamie L.; García-Moreno E., Bertrand

    2014-01-01

    An artificial charge pair buried in the hydrophobic core of staphylococcal nuclease was engineered by making the V23E and L36K substitutions. Buried individually, Glu-23 and Lys-36 both titrate with pKa values near 7. When buried together their pKa values appear to be normal. The ionizable moieties of the buried Glu–Lys pair are 2.6 Å apart. The interaction between them at pH 7 is worth 5 kcal/mol. Despite this strong interaction, the buried Glu–Lys pair destabilizes the protein significantly because the apparent Coulomb interaction is sufficient to offset the dehydration of only one of the two buried charges. Save for minor reorganization of dipoles and water penetration consistent with the relatively high dielectric constant reported by the buried ion pair, there is no evidence that the presence of two charges in the hydrophobic interior of the protein induces any significant structural reorganization. The successful engineering of an artificial ion pair in a highly hydrophobic environment suggests that buried Glu–Lys pairs in dehydrated environments can be charged and that it is possible to engineer charge clusters that loosely resemble catalytic sites in a scaffold protein with high thermodynamic stability, without the need for specialized structural adaptations. PMID:25074910

  16. Energetics of phosphate binding to ammonium and guanidinium containing metallo-receptors in water.

    PubMed

    Tobey, Suzanne L; Anslyn, Eric V

    2003-12-03

    The design and synthesis of receptors containing a Cu(II) binding site with appended ammonium groups (1) and guanidinium groups (2), along with thermodynamics analyses of anion binding, are reported. Both receptors 1 and 2 show high affinities (10(4) M(-1)) and selectivities for phosphate over other anions in 98:2 water:methanol at biological pH. The binding of the host-guest pairs is proposed to proceed through ion-pairing interactions between the charged functional groups on both the host and the guest. The affinities and selectivities for oxyanions were determined using UV/vis titration techniques. Additionally, thermodynamic investigations indicate that the 1:phosphate complex is primarily entropy driven, while the 2:phosphate complex displays both favorable enthalpy and entropy changes. The thermodynamic data for binding provide a picture of the roles of the host, guest, counterions, and solvent. The difference in the entropy and enthalpy driving forces for the ammonium and guanidinium containing hosts are postulated to derive primarily from differences in the solvation shell of these two groups.

  17. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  18. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, Travis; Beck, Thomas L.; Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters ofmore » size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.« less

  19. Li + solvation and kinetics of Li +–BF 4 -/PF 6 - ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Dang, Liem X.

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux; Impey, Madden, and McDonald approaches; and Grote-Hynes theory. We found the residence times of EC around Li+ ions varied from 70 to 450 ps, depending on the correction method used. We found the relaxation times changed significantlymore » from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influence the dissociation kinetics of ion pairing. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  20. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  1. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Pragya; Singh, Raj; Yadav, Namita

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less

  2. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    PubMed

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation.

    PubMed

    Zhu, Shaotong; Vik, Steven B

    2015-08-21

    Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Direct pair production in heavy-ion--atom collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.

    1983-02-01

    Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.

  5. Inflation of the screening length induced by Bjerrum pairs.

    PubMed

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  6. Energetics, Ion and Water Binding of the Unfolding of AA/UU Base Pair Stacks and UAU/UAU Base Triplet Stacks in RNA.

    PubMed

    Carr, Carolyn E; Khutsishvili, Irine; Marky, Luis A

    2018-06-22

    Triplex formation occurs via interaction of a third strand with the major groove of double stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of poly(rA)•poly(rU) (Duplex) and poly(rA)•2poly(rU) (Triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques. The folding of these two helices yielded an uptake of ions, ΔnNa+ = 0.15 mol Na+/mol base-pair (Duplex) and 0.30 mol Na+/mole base-triplet (Triplex), which are consistent with their polymer behavior and the higher charge density parameter of triple helices. The osmotic stress technique yielded a release of structural water, ΔnW = 2 mol H2O/mol base-pair (Duplex unfolding into single strands) and an uptake of structural water, ΔnW = 2 mol H2O/mole base-pair (Triplex unfolding into Duplex and a single strand). However, an overall release of electrostricted waters is obtained for the unfolding of both complexes from pressure perturbation calorimetric experiments. In total, the ΔV values obtained for the unfolding of Triplex into Duplex and a single strand correspond to an immobilization of two structural waters and a release of three electrostricted waters. The ΔV values obtained for the unfolding of Duplex into two single strands correspond to the release of two structural waters and the immobilization of four electrostricted water molecules.

  7. Two-Dimensional Porous Electrode Model for Capacitive Deionization

    DOE PAGES

    Hemmatifar, Ali; Stadermann, Michael; Santiago, Juan G.

    2015-10-28

    Here, ion transport in porous conductive materials is of great importance in a variety of electrochemical systems including batteries and supercapacitors. We here analyze the coupling of flow and charge transport and charge capacitance in capacitive deionization (CDI). In CDI, a pair of porous carbon electrodes is employed to electrostatically retain and remove ionic species from aqueous solutions. We here develop and solve a novel unsteady two-dimensional model for capturing the ion adsorption/desorption dynamics in a flow-between CDI system. We use this model to study the complex, nonlinear coupling between electromigration, diffusion, and advection of ions. We also fabricated amore » laboratory-scale CDI cell which we use to measure the near-equilibrium, cumulative adsorbed salt, and electric charge as a function of applied external voltage. We use these integral measures to validate and calibrate this model. We further present a detailed computational study of the spatiotemporal adsorption/desorption dynamics under constant voltage and constant flow conditions. We show results for low (20 mM KCl) and relatively high (200 mM KCl) inlet ion concentrations and identify effects of ion starvation on desalination. We show that in both cases electromigrative transport eventually becomes negligible and diffusive ion transport reduces the desalination rate.« less

  8. Self-consistent Simulation of Microparticle and Ion Wakefield Configuration

    NASA Astrophysics Data System (ADS)

    Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell

    2017-10-01

    In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.

  9. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourshaw, Ivan

    1998-07-09

    The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less

  10. A simple and highly selective 2,2-diferrocenylpropane-based multi-channel ion pair receptor for Pb(2+) and HSO4(-).

    PubMed

    Wan, Qian; Zhuo, Ji-Bin; Wang, Xiao-Xue; Lin, Cai-Xia; Yuan, Yao-Feng

    2015-03-28

    A structurally simple, 2,2-diferrocenylpropane-based ion pair receptor 1 was synthesized and characterized by (1)H NMR, (13)C NMR, HRMS, elemental analyses, and single-crystal X-ray diffraction. The ion pair receptor 1 showed excellent selectivity and sensitivity towards Pb(2+) with multi-channel responses: a fluorescence enhancement (more than 42-fold), a notable color change from yellow to red, redox anodic shift (ΔE1/2 = 151 mV), while HSO4(-) promoted fluorescence enhancement when Pb(2+) or Zn(2+) was bonded to the cation binding-site. (1)H NMR titration and density functional theory were performed to reveal the sensing mechanism based on photo-induced electron transfer (PET).

  11. Kinetic and equilibrium lithium acidities of arenes: theory and experiment.

    PubMed

    Streitwieser, Andrew; Shah, Kamesh; Reyes, Julius R; Zhang, Xingyue; Davis, Nicole R; Wu, Eric C

    2010-08-26

    Kinetic acidities of arenes, ArH, measured some time ago by hydrogen isotope exchange kinetics with lithium cyclohexylamide (LiCHA) in cyclohexylamine (CHA) show a wide range of reactivities that involve several electronic mechanisms. These experimental reactivities give an excellent Brønsted correlation with equilibrium lithium ion pair acidities (pK(Li)) derived as shown recently from computations of ArLi.2E (E = dimethyl ether). The various electronic mechanisms are well modeled by ab initio HF calculations with modest basis sets. Additional calculations using NH(3) as a model for CHA further characterize the TS of the exchange reactions. The slopes of Brønsted correlations of ion pair systems can vary depending on the nature of the ion pairs.

  12. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  13. Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems

    NASA Astrophysics Data System (ADS)

    Huang, Fong-yin; Chiu, Chi-cheng

    2017-01-01

    Ion pair amphiphile (IPA), a molecular complex composed of a pair of cationic and anionic surfactants, has been proposed as a novel phospholipid substitute. Controlling the physical stability of IPA vesicles is important for its application developments such as cosmetic and drug deliveries. To investigate the effects of IPA alkyl chain combinations and the cholesterol additive on the structural and mechanical properties of IPA vesicular bilayers, we conducted a series of molecular dynamics studies on the hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dodecyltrimethylammonium-hexadecylsulfate (DTMA-HS) IPA bilayers with cholesterol. We found that both IPA bilayers are in the gel phase at 298 K, consistent with experimental observations. Compared with the HTMA-DS system, the DTMA-HS bilayer has more disordered alkyl chains in the hydrophobic region. When adding cholesterol, it induces alkyl chain ordering around its rigid sterol ring. Yet, cholesterol increases the molecular areas for all species and disturbs the molecular packing near the hydrophilic region and the bilayer core. Cholesterol also promotes the alkyl chain mismatch between the IPA moieties, especially for the DTMA-HS bilayer. The combined effects lead to non-monotonically enhancement of the membrane mechanical moduli for both IPA-cholesterol systems. Furthermore, cholesterol can form H-bonds with the alkylsulfate and thus enhance the contribution of alkylsulfate to the overall mechanical moduli. Combined results provide valuable molecular insights into the roles of each IPA component and the cholesterol on modulating the IPA bilayer properties.

  14. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    PubMed

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum

    NASA Astrophysics Data System (ADS)

    Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.

    2018-04-01

    The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.

  16. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  17. Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F

    2003-03-10

    Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.

  18. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  19. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    PubMed

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  20. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids.

    PubMed

    Pappa-Louisi, A; Agrafiotou, P; Papachristos, K

    2010-07-01

    The combined effect of the ion-pairing reagent concentration, C(ipr), and organic modifier content, phi, on the retention under phi-gradient conditions at different constant C(ipr) was treated in this study by using two approaches. In the first approach, the prediction of the retention time of a sample solute is based on a direct fitting procedure of a proper retention model to 3-D phi-gradient retention data obtained under the same phi-linear variation but with different slope and time duration of the initial isocratic part and in the presence of various constant C(ipr) values in the eluent. The second approach is based on a retention model describing the combined effect of C(ipr) and phi on the retention of solutes in isocratic mode and consequently analyzes isocratic data obtained in mobile phases containing different C(ipr) values. The effectiveness of the above approaches was tested in the retention prediction of a mixture of 16 underivatized amino acids using mobile phases containing acetonitrile as organic modifier and sodium dodecyl sulfate as ion-pairing reagent. From these approaches, only the first one gives satisfactory predictions and can be successfully used in optimization of ion-pair chromatographic separations under gradient conditions. The failure of the second approach to predict the retention of solutes in the gradient elution mode in the presence of different C(ipr) values was attributed to slow changes in the distribution equilibrium of ion-pairing reagents caused by phi-variation.

  1. Spin Polarization Transfer from a Photogenerated Radical Ion Pair to a Stable Radical Controlled by Charge Recombination.

    PubMed

    Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Mauck, Catherine M; Krzyaniak, Matthew D; Wasielewski, Michael R

    2017-06-15

    Photoexcitation of electron donor-acceptor molecules frequently produces radical ion pairs with well-defined initial spin-polarized states that have attracted significant interest for spintronics. Transfer of this initial spin polarization to a stable radical is predicted to depend on the rates of the radical ion pair recombination reactions, but this prediction has not been tested experimentally. In this study, a stable radical/electron donor/chromophore/electron acceptor molecule, BDPA • -mPD-ANI-NDI, where BDPA • is α,γ-bisdiphenylene-β-phenylallyl, mPD is m-phenylenediamine, ANI is 4-aminonaphthalene-1,8-dicarboximide, and NDI is naphthalene-1,4:5,8-bis(dicarboximide), was synthesized. Photoexcitation of ANI produces the triradical BDPA • -mPD +• -ANI-NDI -• in which the mPD +• -ANI-NDI -• radical ion pair is spin coupled to the BDPA • stable radical. BDPA • -mPD +• -ANI-NDI -• and its counterpart lacking the stable radical are found to exhibit spin-selective charge recombination in which the triplet radical ion pair 3 (mPD +• -ANI-NDI -• ) is in equilibrium with the 3 *NDI charge recombination product. Time-resolved EPR measurements show that this process is associated with an inversion of the sign of the polarization transferred to BDPA • over time. The polarization transfer rates are found to be strongly solvent dependent, as shifts in this equilibrium affect the spin dynamics. These results demonstrate that even small changes in electron transfer dynamics can have a large effect on the spin dynamics of photogenerated multispin systems.

  2. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    PubMed

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  3. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    PubMed

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  4. Observations of beam losses due to bound-free pair production in a heavy-ion collider.

    PubMed

    Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R

    2007-10-05

    We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.

  5. A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(III) and gallium(III) in water and industrial samples.

    PubMed

    Hasanin, Tamer H A; Okamoto, Yasuaki; Fujiwara, Terufumi

    2016-02-01

    A rapid and sensitive flow method, based on the combination of on-line solvent extraction with reversed micellar mediated chemiluminescence (CL) detection using rhodamine B (RB), was investigated for the selective determination of Au(III) and Ga(III) in aqueous solutions. 2.0 M HCl was the optimum for extracting Au(III) while a 5.0M HCl solution containing 2.5M LiCl was selected as an optimum acidic medium for extraction of Ga(III). The Au(III) and Ga(III) chloro-complex anions were extracted from the above aqueous acidic solutions into toluene as their ion-pair complexes with the protonated RBH(+) ion followed by membrane phase separation in a flow system. In a flow cell of a detector, the extract was mixed with the reversed micellar solution of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water (1.0M HCl) containing 0.10 M cerium(IV) and 0.05 M lithium sulfate. Then uptake of the ion-pair by the CTAC reversed micelles and the subsequent CL oxidation of RB with Ce(IV) occurred easily and the CL signals produced were recorded. Using a flow injection system, a detection limit (DL) of 0.4 μM Au(III) and 0.6 μM Ga(III), and linear calibration graphs with dynamic ranges from the respective DLs to 10 μM for Au(III) and Ga(III) were obtained under the optimized experimental conditions. The relative standard deviations (n=6) obtained at 2.0 µM Au(III) and 4.0 µM Ga(III) were 3.0% and 2.4%, respectively. The presented CL methodology has been applied for the determination of Au(III) and Ga(III) in water and industrial samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ab initio molecular dynamics simulation of LiBr association in water

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Philpott, Michael R.

    2000-12-01

    A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.

  7. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface.

    PubMed

    Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor

    2010-09-02

    The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).

  8. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  9. BioWires: Conductive DNA Nanowires in a Computationally-Optimized, Synthetic Biological Platform for Nanoelectronic Fabrication

    NASA Technical Reports Server (NTRS)

    Vecchioni, Simon; Toomey, Emily; Capece, Mark C.; Rothschild, Lynn; Wind, Shalom

    2017-01-01

    DNA is an ideal template for a biological nanowire-it has a linear structure several atoms thick; it possesses addressable nucleobase geometry that can be precisely defined; and it is massively scalable into branched networks. Until now, the drawback of DNA as a conducting nanowire been, simply put, its low conductance. To address this deficiency, we extensively characterize a chemical variant of canonical DNA that exploits the affinity of natural cytosine bases for silver ions. We successfully construct chains of single silver ions inside double-stranded DNA, confirm the basic dC-Ag+-dC bond geometry and kinetics, and show length-tunability dependent on mismatch distribution, ion availability and enzyme activity. An analysis of the absorbance spectra of natural DNA and silver-binding, poly-cytosine DNA demonstrates the heightened thermostability of the ion chain and its resistance to aqueous stresses such as precipitation, dialysis and forced reduction. These chemically critical traits lend themselves to an increase in electrical conductivity of over an order of magnitude for 11-base silver-paired duplexes over natural strands when assayed by STM break junction. We further construct and implement a genetic pathway in the E. coli bacterium for the biosynthesis of highly ionizable DNA sequences. Toward future circuits, we construct a model of transcription network architectures to determine the most efficient and robust connectivity for cell-based fabrication, and we perform sequence optimization with a genetic algorithm to identify oligonucleotides robust to changes in the base-pairing energy landscape. We propose that this system will serve as a synthetic biological fabrication platform for more complex DNA nanotechnology and nanoelectronics with applications to deep space and low resource environments.

  10. Frenkel pair recombinations in UO2: Importance of explicit description of polarizability in core-shell molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Devynck, Fabien; Iannuzzi, Marcella; Krack, Matthias

    2012-05-01

    The oxygen and uranium Frenkel pair (FP) recombination mechanisms are studied in UO2 using an empirical interatomic potential accounting for the polarizability of the ions, namely a dynamical core-shell model. The results are compared to a more conventional rigid-ion model. Both model types have been implemented into the cp2k program package and thoroughly validated. The overall picture indicates that the FP recombination mechanism is a complex process involving several phenomena. The FP recombination can happen instantaneously when the distance between the interstitial and the vacancy is small or can be thermally activated at larger separation distances. However, other criteria can prevail over the interstitial-vacancy distance. The surrounding environment of the FP defect, the mechanical stiffness of the matrix, and the orientation of the migration path are shown to be major factors acting on the FP lifetime. The core-shell and rigid-ion models provide a similar qualitative description of the FP recombination mechanism. However, the FP stabilities determined by both models significantly differ in the lower temperature range considered. Indeed, the recombination time of the oxygen and uranium FPs can be up to an order of magnitude lower in the core-shell model at T=600 K and T=1800 K, respectively. These differences highlight the importance of the explicit description of polarizability on some crucial properties such as the resistance to amorphization. This refined description of the interatomic interactions would certainly affect the description of the recrystallization process following a displacement cascade. In turn, the self-healing phase would be better accounted for in the core-shell model and the misestimate inherent to the lack of polarizability in the rigid-ion model corrected.

  11. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    PubMed

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives.

    PubMed

    Dixit, Ritu B; Patel, Tarosh S; Vanparia, Satish F; Kunjadiya, Anju P; Keharia, Harish R; Dixit, Bharat C

    2011-01-01

    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

  13. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts.

    PubMed

    Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T

    2013-01-01

    The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures

  14. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.

    PubMed Central

    Barenholz, Y; Cohen, T; Korenstein, R; Ottolenghi, M

    1991-01-01

    The dynamics of fluorescence quenching and the organization of a series of pyrene derivatives anchored in various depths in bilayers of phosphatidylcholine small unilamellar vesicles was studied and compared with their behavior in homogeneous solvent systems. The studies include characterization of the environmental polarity of the pyrene fluorophore based on its vibronic peaks, as well as the interaction with three collisional quenchers: the two membrane-soluble quenchers, diethylaniline and bromobenzene, and the water soluble quencher potassium iodide. The system of diethylaniline-pyrene derivatives in the membrane of phosphatidylcholine vesicles was characterized in detail. The diethylaniline partition coefficient between the lipid bilayers and the buffer is approximately 5,800. Up to a diethylaniline/phospholipid mole ratio of 1:3 the perturbation to membrane structure is minimal so that all photophysical studies were performed below this mole ratio. The quenching reaction, in all cases, was shown to take place in the lipid bilayer interior and the relative quenching efficiencies of the various probe molecules was used to provide information on the distribution of both fluorescent probes and quencher molecules in the lipid bilayer. The quenching efficiency by diethylaniline in the lipid bilayer was found to be essentially independent on the length of the methylene chain of the pyrene moiety. These findings suggest that the quenching process, being a diffusion controlled reaction, is determined by the mobility of the diethylaniline quencher (with an effective diffusion coefficient D approximately 10(-7) cm2 s-1) which appears to be homogeneously distributed throughout the lipid bilayer. The pulsed laser photolysis products of the charge-transfer quenching reaction were examined. No exciplex (excited-complex) formation was observed and the yield of the separated radical ions was shown to be tenfold smaller than in homogenous polar solutions. The decay of the radical ions is considerably faster than the corresponding process in homogenous solutions. Relatively high intersystem crossing yields are observed. The results are explained on the basis of the intrinsic properties of a lipid bilayer, primarily, its rigid spatial organization. It is suggested that such properties favor ion-pair formation over exciplex generation. They also enhance primary geminate recombination of initially formed (solvent-shared) ion pairs. Triplet states are generated via secondary geminate recombination of ion pairs in the membrane interior. The results bear on the general mechanism of electron transfer processes in biomembranes. PMID:1883931

  15. Theoretical study on the reactivity of sulfate species with hydrocarbons

    USGS Publications Warehouse

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as SO42 -, aqueous calcium sulfate ([CaSO4](aq)), and aqueous magnesium sulfate ([MgSO4](aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions (HSO4-) and/or magnesium sulfate contact ion-pairs ([MgSO4]CIP) rather than 'free' sulfate ions (SO42 -) or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR. ?? 2008 Elsevier Ltd. All rights reserved.

  16. Theoretical study on the reactivity of sulfate species with hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ma, Qisheng; Ellis, Geoffrey S.; Amrani, Alon; Zhang, Tongwei; Tang, Yongchun

    2008-09-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42- are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42- is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions ( HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42-. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as SO42-, aqueous calcium sulfate ([CaSO 4] (aq)), and aqueous magnesium sulfate ([MgSO 4] (aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions ( HSO4-) and/or magnesium sulfate contact ion-pairs ([MgSO 4] CIP) rather than 'free' sulfate ions ( SO42-) or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR.

  17. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that themore » Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.« less

  18. Formulation of long-wavelength indocyanine green nanocarriers.

    PubMed

    Pansare, Vikram J; Faenza, William J; Lu, Hoang; Adamson, Douglas H; Prud'homme, Robert K

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Formulation of long-wavelength indocyanine green nanocarriers

    NASA Astrophysics Data System (ADS)

    Pansare, Vikram J.; Faenza, William J.; Lu, Hoang; Adamson, Douglas H.; Prud'homme, Robert K.

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.

  20. Escape of anions from geminate recombination in THF due to charge delocalization

    DOE PAGES

    Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...

    2017-11-24

    Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less

  1. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    NASA Astrophysics Data System (ADS)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  2. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  4. Dependence of the rate of LiF ion pairing on the description of molecular interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluharova, Eva; Baer, Marcel D.; Schenter, Gregory K.

    2016-03-03

    We present an analysis of the dynamics of ion-pairing of Lithium Fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a Gener- alized Langevin Equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response tomore » ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short time anharmonic response is recovered with a GLE parameterization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straight forward application of variational transition state the- ory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing. CJM and GKS are supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest Na- tional Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is grateful for the support of Laboratory Directed Research and Development funding under the auspices of PNNL’s Laboratory Initiative Materials Synthesis and Simulation across Scales (MS3). Additional computing resources were generously allocated by PNNL’s Institutional Computing program. EP acknowledges support from PNNL’s Alternate Sponsored Fellowship program and IMPRS Dres- den.Support to P.J. from the Czech Science Foundation (grant P208/12/G016) and the Academy of Sciences (Praemium Academie award) is gratefully acknowledged.« less

  5. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    PubMed

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved preclinical efficacy and tolerability data were generated for the pamoic acid lead formulation, which has been selected for evaluation in a Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT 02579226). This work clearly demonstrates the importance of assessing a wide range of drug release rates during formulation screening as a critical step for new drug product development, and how utilizing hydrophobic ion pairing enabled this promising nanoparticle formulation to proceed into clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The effect of ionic interactions on the oxidation of metals in natural waters

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1985-02-01

    The effect of ionic interactions of the major components of natural waters on the oxidation of Cu(I) and Fe(II) has been examined. The various ion pairs of these metals have been shown to have different rates of oxidation. For Fe(II), the chloride and sulfate ion pairs are not easily oxidized. The measured decrease in the rate constant at a fixed pH in chloride and sulfate solutions agrees very well with the values predicted. The effect of pH (6 to 8) on the oxidation of Fe(II) in water and seawater have been shown to follow the rate equation -d in [Fe(II)]/dt = k 1β 1α Fe/[H +] + k 2β 2α Fe/[H +] 2 where k1 and k2 are the pseudo first order rate constants, β1 and β2 are the hydrolysis constants for Fe(OH) + and Fe(OH) 0. The value of αFE is the fraction of free Fe 2+. The value of k1 (2.0 ±0.5 min-1) in water and seawater are similar within experimental error. The value of k2 (1.2 × 10 5 min -1) in seawater is 28% of its value in water in reasonable agreement with predictions using an ion pairing model. For the oxidation of Cu(I) a rate equation of the form -d ln [Cu(I)]/dt = k 0α Cu+ k 1β 1α Cu[Cl] was found where k0 (14.1 sec -1) and k1 (3.9 sec -1) are the pseudo first order rate constants for the oxidation of Cu + and CuCl 0, β1 is the formation constant for CuCl 0 and αCu is the fraction of free Cu +. Thus, unlike the results for Fe(II), Cu(I) chloride complexes have measurable rates of oxidation.

  7. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method.

    PubMed

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. The nanoparticles prepared in this study were spherical, with an average particle size of 85-424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug.

  8. Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150 °C and aqueous inorganic carbon speciation and magnesite solubility

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2014-08-01

    The formation constants of magnesium bicarbonate and carbonate ion pairs have been experimentally determined in dilute hydrothermal solutions to 150 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using two pH indicators, 2-naphthol and 4-nitrophenol, at 25 and 80-150 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for MgHCO3+(aq) (KMgHCO3+) and MgCO3(aq) (KMgCO3) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The formation constants of MgHCO3+(aq) and MgCO3(aq) ion pairs increased significantly with increasing temperature, with values of logKMgHCO3+ = 1.14 and 1.75 and of logKMgCO3 = 2.86 and 3.48 at 10 °C and 100 °C, respectively. These ion pairs are important aqueous species under neutral to alkaline conditions in moderately dilute to concentrated Mg-containing solutions, with MgCO3(aq) predominating over CO32-(aq) in solutions at pH >8. The predominance of magnesium carbonate over carbonate is dependent on the concentration of dissolved magnesium and the ratio of magnesium over carbonate. With increasing temperature and at alkaline pH, brucite solubility further reduced the magnesium concentration to levels below 1 mmol kg-1, thus limiting availability of Mg2+(aq) for magnesite precipitation.

  9. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    PubMed Central

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  10. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics

    PubMed Central

    Pasi, Marco; Maddocks, John H.; Lavery, Richard

    2015-01-01

    Microsecond molecular dynamics simulations of B-DNA oligomers carried out in an aqueous environment with a physiological salt concentration enable us to perform a detailed analysis of how potassium ions interact with the double helix. The oligomers studied contain all 136 distinct tetranucleotides and we are thus able to make a comprehensive analysis of base sequence effects. Using a recently developed curvilinear helicoidal coordinate method we are able to analyze the details of ion populations and densities within the major and minor grooves and in the space surrounding DNA. The results show higher ion populations than have typically been observed in earlier studies and sequence effects that go beyond the nature of individual base pairs or base pair steps. We also show that, in some special cases, ion distributions converge very slowly and, on a microsecond timescale, do not reflect the symmetry of the corresponding base sequence. PMID:25662221

  11. Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate.

    PubMed

    Wang, Liang-Yu; Zhang, Yun-Hong; Zhao, Li-Jun

    2005-02-03

    Raman spectroscopy was used to study structural changes, in particular, the formation of contact-ion pairs in supersaturated aqueous NaCH(3)COO and Mg(CH(3)COO)(2) droplets at ambient temperatures. The single droplets levitated in an electrodynamic balance (EDB), lost water, and became supersaturated when the relative humidity (RH) decreased. For NaCH(3)COO droplet the water-to-solute molar ratio (WSR) was 3.87 without solidification when water molecules were not enough to fill in the first hydration layer of Na(+), in favor of the formation of contact-ion pairs. However, the symmetric stretching vibration band (nu(3) mode) of free -COO(-) constantly appeared at 1416 cm(-1), and no spectroscopic information related to monodentate, bidentate, or bridge bidentate contact-ion pairs was observed due to the weak interactions between the Na(+) and acetate ion. On the other hand, the band of methyl deformation blue shifted from 1352 to 1370 cm(-1) (at RH = 34.2%, WSR = 2.43), corresponding to the solidification process of a novel metastable phase in the highly supersaturated solutions. With further decreasing RH, a small amount of supersaturated solution still existed and was proposed to be hermetically covered by the metastable phase of the particle. In contrast, the interaction between Mg(2+) and acetate ion is much stronger. When WSR decreased from 21.67 to 2.58 for the Mg(CH(3)COO)(2) droplet, the band of C-C-symmetric stretching (nu(4) mode) had a blue shift from 936 to 947 cm(-1). The intensity of the two new shoulders (approximately 1456 and approximately 1443 cm(-1)) of the nu(3) band of free -COO(-) at 1420 cm(-1) increased with the decrease of WSR. These changes were attributed to the formation of contact-ion pairs with bidentate structures. In particular, the small frequency difference between the shoulder at approximately 1443 cm(-1) and the nu(3) band of the free -COO(-) group (approximately 1420 cm(-1)) was proposed to be related to the formation of a chain structure based on the contact-ion pairs of bridge bidentate. The continuous formation of various contact-ion pairs started at higher WSR value (WSR = 15.5) greatly reduced the hygroscopic properties of Mg(CH(3)COO)(2) droplet, so that the WSR of Mg(CH(3)COO)(2) droplets was even lower than that of NaCH(3)COO in the RH range of 40-60%.

  12. Thermophysical properties of simple liquid metals: A brief review of theory

    NASA Technical Reports Server (NTRS)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the suspended microspheres behave like ions screened by the salt solution in which they are suspended). We conclude with a brief discussion of some non-equilibrium (i.e., transport) properties which can be treated by an extension of these methods. These include electrical resistivity, thermal conductivity, viscosity, atomic self-diffusion coefficients, concentration diffusion coefficients in alloys, surface tension and thermal emissivity. Finally, we briefly mention two methods by which the theory might be extended to non-simple liquid metals: these are empirical techniques (i.e., empirical two- and three-body potentials), and numerical many-body approaches. Both may be potentially applicable to extremely complex systems, such as nonstoichiometric liquid semiconductor alloys.

  13. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2018-05-01

    A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.

  14. Preparation of l-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of l-phenylalanine from human urine.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan

    2016-05-01

    A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.

    PubMed

    Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N

    2016-11-29

    A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp 3 ) 2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an S N 2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr F )(PCyp 3 ) 2 ]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy 3 ) 2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η 3 -allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy 3 ) 2 (η 3 -allyl)][OC 5 NF 4 ]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.

  16. Determination of methylglyoxal-bis(guanylhydrazone) in body fluids by ion-pair chromatography.

    PubMed

    Roboz, J; Wu, K T; Hart, R D

    1980-01-01

    Methylglyoxal-bis(guanylhydrazone), Methyl-G, is a potent antineoplastic agent currently undergoing Phase l clinical trials. Serum, ascitic and pleural fluids, and urine are deproteinized with methanol, supernatant is evaporated, residue is redissolved in the eluent, lipids are removed with carbon tetrachloride, and an aliquot of the aqueous layer injected into the chromatograph. Ethylglyoxal-bis(guanylhydrazone) (Ethyl-G) is the internal standard. The mobile phase is a mixture of an aqueous buffer (containing 0.004 M heptane and pentane sulfonic acid, 90%:10%, buffered to pH 3.5) and methanol (68%:32%). The ion-pair complex is retained on a micro Bondapak C18 column, eluted with a flow of 2.0 mL/min. Absorbance is measured at 280 nm. Detectability: 30 ng/mL (0.11 micro M) in serum, ascitic and pleural fluids, 300 ng/mL (1.1 micro M) in urine. Calibration curves (peak height ratios of Methyl-G/Ethyl-G plotted against known drug concentrations) were linear in the 0.1-30 microg/mL range. Correlation coefficinets were 0.999; coefficients of variation for reproducibility were less than 5%. Residual blood levels of Methyl-G persist for several days. Methyl-G was found to pass into ascitic fluid.

  17. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2 complexation are much smaller. Complexation with CO 2 greatly increases the electric field gradient at the bridging oxygen of H 3AlOAlH 3-2, raising it to a value similar to that found for SiOSi linkages. Comparison of these results with the experimental 13C NMR spectra support the formation of CO 2-like complexes at SiOSi bridges in albite glasses and CO 3-like complexes at SiOAl and AlOAl bridges in albite and nepheline glasses. Changes in the calculated shieldings as Na + ions are added to the complexes suggest that some of the observed complexes may be similar in their CO 2-aluminosilicate interactions, but different with respect to the positions of the charge-compensating Na + ions.

  18. Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.

    PubMed

    Townley, E R; Ross, B

    1980-11-01

    A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.

  19. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    PubMed

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  20. Structural and electronic transport properties of compound forming HgPb liquid alloy using ab-initio pseudopotential

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity of compound forming liquid alloy HgPb is studied as a function of concentration. Hard sphere diameters of Hg and Pb are obtained through the inter-ionic pair potential evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. The concentration dependence in resistivity occurs due to preferential ordering of unlike atoms as nearest neighbours with help of complex formation model. Though the compound HgiPbi as per structure peaks is found to be less stable. However it contributes significantly to resistivity as compared to bare ions.

  1. Superexchange coupling and slow magnetic relaxation in a transuranium polymetallic complex.

    PubMed

    Magnani, N; Colineau, E; Eloirdi, R; Griveau, J-C; Caciuffo, R; Cornet, S M; May, I; Sharrad, C A; Collison, D; Winpenny, R E P

    2010-05-14

    {Np(VI)O2Cl2}{Np(V)O2Cl(thf)3}2 is the first studied example of a polymetallic transuranic complex displaying both slow relaxation of the magnetization and effective superexchange interactions between 5f centers. The coupling constant for Np(V)-Np(VI) pairs is 10.8 K, more than 1 order of magnitude larger than the common values found for rare-earth ions in similar environments. The dynamic magnetic behavior displays slow relaxation of magnetization of molecular origin with an energy barrier of 140 K, which is nearly twice the size of the highest barrier found in polymetallic clusters of the d block. Our observations also suggest that future actinide-based molecular magnets will have very different behavior to lanthanide-based clusters.

  2. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    PubMed

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-07

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  3. Heavy quark complex potential in a strongly magnetized hot QGP medium

    NASA Astrophysics Data System (ADS)

    Singh, Balbeer; Thakur, Lata; Mishra, Hiranmaya

    2018-05-01

    We study the effect of a strong constant magnetic field, generated in relativistic heavy ion collisions, on the heavy quark complex potential. We work in the strong magnetic field limit with the lowest Landau level approximation. We find that the screening of the real part of the potential increases with the increase in the magnetic field. Therefore, we expect less binding of the Q Q ¯ pair in the presence of a strong magnetic field. The imaginary part of the potential increases in magnitude with the increase in magnetic field, leading to an increase of the width of the quarkonium state with the magnetic field. All of these effects result in the early dissociation of Q Q ¯ states in a magnetized hot quark-gluon plasma medium.

  4. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    PubMed

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  5. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    PubMed Central

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2015-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins. PMID:20939702

  6. Ion-pairing in aqueous CaCl 2 and RbBr solutions. Simultaneous structural refinement of XAFS and XRD data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thai V.; Fulton, John L.

    2013-01-22

    We present a new methodology involving the simultaneous refinement of both x-ray absorption and x-ray diffraction spectra (X-ray Absorption/Diffraction Structural Refinement,XADSR), to study hydration and ion pair structure of CaCl 2 and RbBr salts in concentrated aqueous solutions. The XADSR analysis includes the XAFS spectra analysis of both the cation and anion as a probe of their short-range structure with an XRD spectral analysis as a probe of the global structural. Together they deliver a comprehensive picture of the cation and anion hydration, the contact ion pair (CIP) structure and the solvent-separated ion pair (SSIP) structure. XADSR analysis of 6.0more » m aqueous CaCl 2 reveals that there are an insignificant number of Ca 2+-Cl- CIP’s, but there are approximately 3.4 SSIP’s separated by about 4.99 Å. In contrast XADSR analysis of aqueous RbBr yields about 0.7 pair CIP at a bond length 3.51 Å. The present work demonstrates a new approach for a direct co-refinement of XRD and XAFS spectra in a simple and reliable fashion, opening new opportunities for analysis in various disordered and crystalline systems. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle.« less

  7. Effects of magnesium ions on the stabilization of RNA oligomers of defined structures.

    PubMed Central

    Serra, Martin J; Baird, John D; Dale, Taraka; Fey, Bridget L; Retatagos, Kimberly; Westhof, Eric

    2002-01-01

    Optical melting was used to determine the stabilities of 11 small RNA oligomers of defined secondary structure as a function of magnesium ion concentration. The oligomers included helices composed of Watson-Crick base pairs, GA tandem base pairs, GU tandem base pairs, and loop E motifs (both eubacterial and eukaryotic). The effect of magnesium ion concentration on stability was interpreted in terms of two simple models. The first assumes an uptake of metal ion upon duplex formation. The second assumes nonspecific electrostatic attraction of metal ions to the RNA oligomer. For all oligomers, except the eubacterial loop E, the data could best be interpreted as nonspecific binding of metal ions to the RNAs. The effect of magnesium ions on the stability of the eubacterial loop E was distinct from that seen with the other oligomers in two ways. First, the extent of stabilization by magnesium ions (as measured by either change in melting temperature or free energy) was three times greater than that observed for the other helical oligomers. Second, the presence of magnesium ions produces a doubling of the enthalpy for the melting transition. These results indicate that magnesium ion stabilizes the eubacterial loop E sequence by chelating the RNA specifically. Further, these results on a rather small system shed light on the large enthalpy changes observed upon thermal unfolding of large RNAs like group I introns. It is suggested that parts of those large enthalpy changes observed in the folding of RNAs may be assigned to variations in the hydration states and types of coordinating atoms in some specifically bound magnesium ions and to an increase in the observed cooperativity of the folding transition due to the binding of those magnesium ions coupling the two stems together. Brownian dynamic simulations, carried out to visualize the metal ion binding sites, reveal rather delocalized ionic densities in all oligomers, except for the eubacterial loop E, in which precisely located ion densities were previously calculated. PMID:12003491

  8. The dynamics of energy and charge transfer in low and hyperthermal energy ion-solid interactions

    NASA Astrophysics Data System (ADS)

    Ray, Matthew Preston

    The energy and charge transfer dynamics for low and hyperthermal energy (10 eV to 2 keV) alkali and noble gas ions impacting noble metals as a function of incident energy, species and scattering geometry has been studied. The experiments were performed in an ultra-high vacuum scattering chamber attached to a low and hyperthermal energy beamline. The energy transfer was measured for K+ scattered from a Ag(001) surface along the [110] crystalline direction at a fixed laboratory angle of 90°. It was found that as the incident energy is reduced from 100 to 10 eV, the normalized scattered energy increased. Previous measurements have shown a decrease in the normalized energy as the incident ion energy is reduced due to an attractive image force. Trajectory analysis of the data using a classical scattering simulation revealed that instead of undergoing sequential binary collisions as in previous studies, the ion scatters from two surface atoms simultaneously leading to an increased normalized energy. Additionally, charge transfer measurements have been performed for Na + scattering from Ag(001) along the [110] crystalline direction at a fixed laboratory angle of 70°. It was found that over the range of energies used (10 eV to 2 keV), the neutralization probability of the scattered ions varied from ˜30% to ˜70% depending on the incident velocity, consistent with resonant charge transfer. A fully quantum mechanical model that treats electrons independently accurately reproduces the observed data. Measurements of electron-hole pair excitations were used to explore the pathways which a solid uses to dissipate the energy imparted by the incident ion beam. Ultrathin film (10 nm) metal-oxide-semiconductor (Au/SiO2/n-Si) devices were used to detect the electron-hole pairs for cases when the ion deposited all of its translational energy into the solid. The incident ions were incident at an angle normal to the surface of the device to maximize energy deposition and consequently electron-hole pair production. The rectifying metal-oxide-semiconductor device separates the electrons from the holes, allowing a current associated with electron-hole pair production to be measured. In these experiments a number of ion species (He+, Li+ , Ar+, K+) were made incident on multiple devices and the incident energy ranged from 100 eV to 2 keV. It was found that electron-hole pair production increased with incident ion velocity consistent with a kinetic electron excitation model where the electrons in the metal are partially confined to the surface.

  9. Designing heteropolymers to fold into unique structures via water-mediated interactions.

    PubMed

    Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar

    2010-10-28

    Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.

  10. Arginine "Magic": Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides.

    PubMed

    Vazdar, Mario; Heyda, Jan; Mason, Philip E; Tesei, Giulio; Allolio, Christoph; Lund, Mikael; Jungwirth, Pavel

    2018-06-19

    It is a textbook knowledge that charges of the same polarity repel each other. For two monovalent ions in the gas phase at a close contact this repulsive interaction amounts to hundreds of kilojoules per mole. In aqueous solutions, however, this Coulomb repulsion is strongly attenuated by a factor equal to the dielectric constant of the medium. The residual repulsion, which now amounts only to units of kilojoules per mole, may be in principle offset by attractive interactions. Probably the smallest cationic pair, where a combination of dispersion and cavitation forces overwhelms the Coulomb repulsion, consists of two guanidinium ions in water. Indeed, by a combination of molecular dynamics with electronic structure calculations and electrophoretic, as well as spectroscopic, experiments, we have demonstrated that aqueous guanidinium cations form (weakly) thermodynamically stable like-charge ion pairs. The importance of pairing of guanidinium cations in aqueous solutions goes beyond a mere physical curiosity, since it has significant biochemical implications. Guanidinium chloride is known to be an efficient and flexible protein denaturant. This is due to the ability of the orientationally amphiphilic guanidinium cations to disrupt various secondary structural motifs of proteins by pairing promiscuously with both hydrophobic and hydrophilic groups, including guanidinium-containing side chains of arginines. The fact that the cationic guanidinium moiety forms the dominant part of the arginine side chain implies that the like-charge ion pairing may also play a role for interactions between peptides and proteins. Indeed, arginine-arginine pairing has been frequently found in structural protein databases. In particular, when strengthened by a presence of negatively charged glutamate, aspartate, or C-terminal carboxylic groups, this binding motif helps to stabilize peptide or protein dimers and is also found in or near active sites of several enzymes. The like-charge pairing of the guanidinium side-chain groups may also hold the key to the understanding of the arginine "magic", that is, the extraordinary ability of arginine-rich polypeptides to passively penetrate across cellular membranes. Unlike polylysines, which are also highly cationic but lack the ease in crossing membranes, polyarginines do not exhibit mutual repulsion. Instead, they accumulate at the membrane, weaken it, and might eventually cross in a concerted, "train-like" manner. This behavior of arginine-rich cell penetrating peptides can be exploited when devising smart strategies how to deliver in a targeted way molecular cargos into the cell.

  11. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  12. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  13. Molecular dynamics study of thermodynamic scaling of the glass-transition dynamics in ionic liquids over wide temperature and pressure ranges.

    PubMed

    Habasaki, J; Casalini, R; Ngai, K L

    2010-03-25

    Experimentally, superpositioning of dynamic properties such as viscosity, relaxation times, or diffusion coefficients under different conditions of temperature T, pressure P, and volume V by the scaling variable TV(gamma) (where gamma is a material constant) has been reported as a general feature of many kinds of glass-forming materials. In the present work, molecular dynamics (MD) simulations have been performed to study the scaling of dynamics near the glass-transition regime of ionic liquids. Scaling in the simulated 1-ethyl-3-methylimidazolium nitrate (EMIM-NO(3)) system has been tested over wide ranges of temperatures and pressures. TV(gamma) scaling of the dynamics is well described by master curves with gamma = 4.0 +/- 0.2 and 3.8 +/- 0.2 for cation and anion, respectively. Structures and Coulombic terms of the corresponding states are found to be quite similar. The temperature and pressure dependence of the pair correlation function show similar trends and therefore can be superpositioned onto the master curve. Although the behaviors with gamma = 4 might be expected from the relation, gamma = n/3, for the dynamics with the soft-core-type potential U = epsilon(sigma/r)(n), with n = 12, pair potentials used in the MD simulation have a more complex form, and not all the repulsive terms can play their roles in the heterogeneous structures determined by ion-ion interactions. Scaling is related to the common part of effective potentials related to the pair correlation functions, including the many-body effect in real space.

  14. Validated spectrophotometric methods for determination of some oral hypoglycemic drugs.

    PubMed

    Farouk, M; Abdel-Satar, O; Abdel-Aziz, O; Shaaban, M

    2011-02-01

    Four accurate, precise, rapid, reproducible, and simple spectrophotometric methods were validated for determination of repaglinide (RPG), pioglitazone hydrochloride (PGL) and rosiglitazone maleate (RGL). The first two methods were based on the formation of a charge-transfer purple-colored complex of chloranilic acid with RPG and RGL with a molar absorptivity 1.23 × 103 and 8.67 × 102 l•mol-1•cm-1 and a Sandell's sensitivity of 0.367 and 0.412 μg•cm-2, respectively, and an ion-pair yellow-colored complex of bromophenol blue with RPG, PGL and RGL with molar absorptivity 8.86 × 103, 6.95 × 103, and 7.06 × 103 l•mol-1•cm-1, respectively, and a Sandell's sensitivity of 0.051 μg•cm-2 for all ion-pair complexes. The influence of different parameters on color formation was studied to determine optimum conditions for the visible spectrophotometric methods. The other spectrophotometric methods were adopted for demtermination of the studied drugs in the presence of their acid-, alkaline- and oxidative-degradates by computing derivative and pH-induced difference spectrophotometry, as stability-indicating techniques. All the proposed methods were validated according to the International Conference on Harmonization guidelines and successfully applied for determination of the studied drugs in pure form and in pharmaceutical preparations with good extraction recovery ranges between 98.7-101.4%, 98.2-101.3%, and 99.9-101.4% for RPG, PGL, and RGL, respectively. Results of relative standard deviations did not exceed 1.6%, indicating that the proposed methods having good repeatability and reproducibility. All the obtained results were statistically compared to the official method used for RPG analysis and the manufacturers methods used for PGL and RGL analysis, respectively, where no significant differences were found.

  15. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation.

    PubMed

    Yamaguchi, T; Matsuoka, T; Koda, S

    2007-04-14

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  16. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  17. Apparatus and method of dissociating ions in a multipole ion guide

    DOEpatents

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  18. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    PubMed

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that these metal ions are exocyclically coordinated by the ligand, which explains the high Pb(II)/Cd(II) and Pb(II)/Zn(II) selectivities. Our receptor bp18c6(2-) shows promise for application in chelation treatment of metal intoxication by Pb(II) and (90)Sr(II).

  19. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  20. Evaluation of the stability of uranyl peroxo-carbonato complex ions in carbonate media at different temperatures.

    PubMed

    Kim, Kwang-Wook; Lee, Keun-Young; Chung, Dong-Yong; Lee, Eil-Hee; Moon, Jei-Kwon; Shin, Dong-Woo

    2012-09-30

    This work studied the stability of peroxide in uranyl peroxo carbonato complex ions in a carbonate solution with hydrogen peroxide using absorption and Raman spectroscopies, and evaluated the temperature dependence of the decomposition characteristics of uranyl peroxo carbonato complex ions in the solution. The uranyl peroxo carbonato complex ions self-decomposed more rapidly into uranyl tris-carbonato complex ions in higher temperature carbonate solutions. The concentration of peroxide in the solution without free hydrogen peroxide represents the concentration of uranyl peroxo carbonato complex ions in a mixture of uranyl peroxo carbonato complex and uranyl tris-carbonato complex ions. The self-decomposition of the uranyl peroxo carbonato complex ions was a first order reaction, and its activation energy was evaluated to be 7.144×10(3) J mol(-1). The precipitation of sodium uranium oxide hydroxide occurred when the amount of uranyl tris-carbonato complex ions generated from the decomposition of the uranyl peroxo carbonato complex ions exceeded the solubility of uranyl tris-carbonato ions in the solution at the solution temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synthesis, spectroscopic, thermal and electrical conductivity studies of three charge transfer complexes formed between 1,3-di[( E)-1-(2-hydroxyphenyl)methylideneamino]-2-propanol Schiff base and different acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ibrahim, Mohamed M.; Moussa, Mohamed A. A.

    2012-01-01

    Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[( E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I{2/•-}] and [Schiff+, Br{2/•-}], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats-Redfern and Horowitz-Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.

  2. Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase.

    PubMed

    Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G

    2012-01-15

    In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    PubMed Central

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  4. DFT investigation of the vibrational properties of GC Watson-Crick and Hoogsteen base pairs in the presence of Mg²⁺, Ca²⁺, and Cu²⁺ ions.

    PubMed

    Morari, Cristian; Muntean, Cristina M; Tripon, Carmen; Buimaga-Iarinca, Luiza; Calborean, Adrian

    2014-04-01

    The binding effects of Mg²⁺, Ca²⁺, and Cu²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. Both Watson-Crick and Hoogsteen configurations of the base pairs were investigated. In Watson-Crick configuration, the metal was coordinated at N7 atom of guanine, while in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the geometric properties of the metal-GC base pairs structure, as well as the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen GC structures. For the geometric models used by us, the vibrational amplitudes of metallic atoms were stronger for wavenumbers lower than 500 cm⁻¹. This suggests that in the experimental studies on DNA the presence of the three metallic atoms (Mg, Ca, and Cu) can be explicitly detected at low frequencies.

  5. Deconstructing Free Energies in the Law of Matching Water Affinities.

    PubMed

    Shi, Yu; Beck, Thomas

    2017-03-09

    The law of matching water affinities (LMWA) is explored in classical molecular dynamics simulations of several alkali halide ion pairs, spanning the size range from small kosmotropes to large chaotropes. The ion-ion potentials of mean force (PMFs) are computed using three methods: the local molecular field theory (LMFT), the weighted histogram analysis method (WHAM), and integration of the average force. All three methods produce the same total PMF for a given ion pair. In addition, LMFT-based partitioning into van der Waals and local and far-field electrostatic free energies and assessment of the enthalpic, entropic, and ion-water components yield insights into the origins of the observed free energy profiles in water. The results highlight the importance of local electrostatic interactions in determining the shape of the PMFs, while longer-ranged interactions enhance the overall ion-ion attraction, as expected in a dielectric continuum model. The association equilibrium constants are estimated from the smooth WHAM curves and compared to available experimental conductance data. By examining the variations in the average hydration numbers of ions with ion-ion distance, a correlation of the water structure in the hydration shells with the free energy features is found.

  6. Anomalies and asymmetries in quark-gluon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O. V., E-mail: teryaev@theor.jinr.ru

    The manifestations of axial anomaly and related effects in heavy-ion collisions are considered. Special role is played by various asymmetries. The azimuthal correlational asymmetries of neutron pairs at NICA/FAIR energy range may probe the global rotation of strongly interacting matter. The conductivity is related to the angular asymmetries of dilepton pairs. The strong magnetic field generated in heavy-ion collisions leads to the excess of soft dileptons flying predominantly in the scattering plane.

  7. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

    PubMed

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M

    2016-10-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX 3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation.

    PubMed

    Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe

    2013-10-08

    We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.

  9. A novel submicron emulsion system loaded with vincristine–oleic acid ion-pair complex with improved anticancer effect: in vitro and in vivo studies

    PubMed Central

    Zhang, Ting; Zheng, Yong; Peng, Qiang; Cao, Xi; Gong, Tao; Zhang, Zhirong

    2013-01-01

    Background Vincristine (VCR), which is a widely used antineoplastic drug, was integrated with a submicron-emulsion drug-delivery system to enhance the anticancer effect. Methods After the formation of a VCR-oleic acid ion-pair complex (VCR-OA), the VCR-OA-loaded submicron emulsion (VCR-OA-SME), prepared by classical high-pressure homogenization, was characterized and its in vitro anticancer effects were evaluated. Results The submicron-emulsion formulation exhibited a homogeneous round shape. The mean particle size, zeta potential, and encapsulation efficiency were 157.6 ± 12.6 nm, −26.5 ± 5.0 mV and 78.64% ± 3.44%, respectively. An in vitro release study of the VCR-OA-SME revealed that 12.4% of the VCR was released within the first 2 hours (initial burst-release phase) and the rest of the drug was detected in the subsequent sustained-release phase. Compared with VCR solution, the pharmacokinetic study of VCR-OA-SME showed relatively longer mean residence time (mean residence time [0–∞] increased from 187.19 to 227.56 minutes), higher maximum concentration (from 252.13 ng/mL to 533.34 ng/mL), and greater area under the curve (area under the curve [0–∞] from 11,417.77 μg/L/minute to 17,164.34 μg/L/minute. Moreover, the VCR-OA-SME exhibited higher cytotoxicity (P < 0.05) on tumor cells by inducing cell arrest in the G2/M phase or even apoptosis (P < 0.05). Conclusion The VCR-OA-SME formulation in our study displayed great potential for an anticancer effect for VCR. PMID:23658485

  10. Two-photon production of dilepton pairs in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.

    2018-05-01

    The STAR collaboration has observed an excess production of e+e- pairs in relativistic heavy ion collisions, over the expectations from hadronic production models. The excess pairs have transverse momenta pT<150 MeV /c and are most prominent in peripheral gold-gold and uranium-uranium collisions. The pairs exhibit a peak at the J /ψ mass, but include a wide continuum, with pair invariant masses from 400 MeV/c 2 up to 2.6 GeV/c 2 . The ALICE Collaboration observes a similar excess in peripheral lead-lead collisions, but only at the J /ψ mass, without a corresponding continuum. This paper presents a calculation of the cross section and kinematic for two-photon production of e+e- pairs, and find general agreement with the STAR data. The calculation is based on the starlight simulation code, which is based on the Weizsäcker-Williams virtual photon approach. The STAR continuum observations are compatible with two-photon production of e+e- pairs. The ALICE analysis required individual muon pT be greater than 1 GeV/c; this eliminated almost all of the pairs from two-photon interactions, while leaving most of the J /ψ decays.

  11. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    PubMed

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  13. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  14. Nonlinear eigen-structures in star-forming gyratory nonthermal complex molecular clouds

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2018-01-01

    This paper deals with the nonlinear gravito-electrostatic fluctuations in star-forming rotating complex partially ionized dust molecular clouds, evolutionarily well-governed by a derived pair of the Korteweg-de Vries (KdV) equations of a unique analytical shape, in a bi-fluidic-model fabric. The lighter constituent species, such as electrons and ions, are considered thermo-statistically as the nonthermal ones in nature, governed by the anti-equilibrium kappa-distribution laws, due to inherent nonlocal gradient effects stemming from large-scale inhomogeneity. The heavier species, such as the constitutive identical neutral and charged dust micro-spheres, are treated as separate turbulent viscous fluids in the Larson logatropic tapestry. Application of a standard technique of multiple scale analysis over the nonlinearly perturbed cloud procedurally yields the pair KdV system. It comprises of the gravitational KdV and electrostatic KdV equations with exclusive constructs of diversified multi-parametric coefficients. A numerical constructive platform is provided to see the excitation and propagatory dynamics of gravitational rarefactive periodic soliton-trains and electrostatic rarefactive aperiodic damped soliton-trains of distinctive patterns as the pair-KdV-supported discrete coherent eigen-mode structures illustratively. The varied key stabilizing and tonality destabilizing factors behind the cloud dynamics are identified. An elaborated contrast of the eigen-mode conjugacy is reconnoitered. The main implications and applications of the semi-analytical results explored here are summarily outlined in the real astro-space-cosmic statuses.

  15. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Broadband biphoton generation and statistics of quantum light in the UV-visible range in an AlGaN microring resonator.

    PubMed

    De Leonardis, Francesco; Soref, Richard A; Soltani, Mohammad; Passaro, Vittorio M N

    2017-09-12

    We present a physical investigation on the generation of correlated photon pairs that are broadly spaced in the ultraviolet (UV) and visible spectrum on a AlGaN/AlN integrated photonic platform which is optically transparent at these wavelengths. Using spontaneous four wave mixing (SFWM) in an AlGaN microring resonator, we show design techniques to satisfy the phase matching condition between the optical pump, the signal, and idler photon pairs, a condition which is essential and is a key hurdle when operating at short wavelength due to the strong normal dispersion of the material. Such UV-visible photon pairs are quite beneficial for interaction with qubit ions that are mostly in this wavelength range, and will enable heralding the photon-ion interaction. As a target application example, we present the systematic AlGaN microresonator design for generating signal and idler photon pairs using a blue wavelength pump, while the signal appears at the transition of ytterbium ion ( 171 Yb + , 369.5 nm) and the idler appears in the far blue or green range. The photon pairs have minimal crosstalk to the pump power due to their broad spacing in spectral wavelength, thereby relaxing the design of on-chip integrated filters for separating pump, signal and idler.

  17. On the structure and dynamics of the hydrated sulfite ion in aqueous solution--an ab initio QMCF MD simulation and large angle X-ray scattering study.

    PubMed

    Eklund, Lars; Hofer, Thomas S; Pribil, Andreas B; Rode, Bernd M; Persson, Ingmar

    2012-05-07

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.

  18. High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans

    NASA Astrophysics Data System (ADS)

    Kailemia, Muchena J.; Park, Melvin; Kaplan, Desmond A.; Venot, Andre; Boons, Geert-Jan; Li, Lingyun; Linhardt, Robert J.; Amster, I. Jonathan

    2014-02-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4-10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.

  19. Dielectric response and transport properties of alkylammonium formate ionic liquids

    NASA Astrophysics Data System (ADS)

    Nazet, Andreas; Buchner, Richard

    2018-05-01

    Dielectric relaxation spectra of three members of the alkylammonium formate family of protic ionic liquids (PILs), namely, ethylammonium formate (EAF), n-butylammonium formate (BuAF), and n-pentylammonium formate (PeAF), as well as the pseudo-PIL triethylamine + formic acid (molar ratio 1:2; TEAF) have been studied over a wide frequency (50 MHz to 89 GHz) and temperature range (5-65 °C), complemented by measurements of their density, viscosity, and conductivity. It turned out that the dominating relaxation of EAF, BuAF, and PeAF arises from both cation and anion reorientations which are synchronized in their dynamics due to hydrogen bonding. Amplitudes and relaxation times of this mode reflect the—compared to nitrate—different nature of H bonding between the formate anion and ethylammonium cation, as well as increasing segregation of the PIL structure into polar and non-polar domains. The TEAF data suggest that its dominating relaxation is due to the rotation of the complex triethylamineṡ(formic acid)2 in which no significant proton transfer to an ion pair occurred. Weak dissociation of this complex into ions was postulated to account for the high conductivity of TEAF.

  20. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.

  1. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysicalmore » properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.« less

  2. Vacuum chamber for ion manipulation device

    DOEpatents

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-09

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.

  3. Microscale ion trap mass spectrometer

    DOEpatents

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  4. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. II. Ion-pair formation and resonant quenching of the Rb(nl) and Ne(nl) States by Ca, Sr, and Ba atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru

    2013-10-15

    Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less

  5. Quantitative determination of acidic hydrolysis products of Chemical Weapons Convention related chemicals from aqueous and soil samples using ion-pair solid-phase extraction and in situ butylation.

    PubMed

    Pal Anagoni, Suresh; Kauser, Asma; Maity, Gopal; Upadhyayula, Vijayasarathi V R

    2018-02-01

    Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3-quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion-pair solid-phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion-pair reagent, pH of the sample, extraction solvent, and type of ion-pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85-110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra- and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ion-pairing HPLC methods to determine EDTA and DTPA in small molecule and biological pharmaceutical formulations.

    PubMed

    Wang, George; Tomasella, Frank P

    2016-06-01

    Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify® (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and diethylenetriaminepentaacetic acid (DTPA) in Yervoy® (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu 2+ , Fe 3+ ) which generate highly stable metallocomplexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation involving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the determination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.

  7. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Insight of endo-1,4-xylanase II from Trichoderma reesei: conserved water-mediated H-bond and ion pairs interactions.

    PubMed

    Vijayakumar, Balakrishnan; Velmurugan, Devadasan

    2013-12-01

    Endo-1,4-Xylanase II is an enzyme which degrades the linear polysaccharide beta-1,4-xylan into xylose. This enzyme shows highest enzyme activity around 55 °C, even without being stabilized by the disulphide bridges. A set of nine high resolution crystal structures of Xylanase II (1.11-1.80 Å) from Trichoderma reesei were selected and analyzed in order to identify the invariant water molecules, ion pairs and water-mediated ionic interactions. The crystal structure (PDB-id: 2DFB) solved at highest resolution (1.11 Å) was chosen as the reference and the remaining structures were treated as mobile molecules. These structures were then superimposed with the reference molecule to observe the invariant water molecules using 3-dimensional structural superposition server. A total of 37 water molecules were identified to be invariant molecules in all the crystal structures, of which 26 invariant molecules have hydrogen bond interactions with the back bone of residues and 21 invariant water molecules have interactions with side chain residues. The structural and functional roles of these water molecules and ion pairs have been discussed. The results show that the invariant water molecules and ion pairs may be involved in maintaining the structural architecture, dynamics and function of the Endo-1,4-Xylanase II.

  9. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography.

    PubMed

    Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J

    2016-03-04

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    PubMed

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  11. Quantum repeaters based on trapped ions with decoherence-free subspace encoding

    NASA Astrophysics Data System (ADS)

    Zwerger, M.; Lanyon, B. P.; Northup, T. E.; Muschik, C. A.; Dür, W.; Sangouard, N.

    2017-12-01

    Quantum repeaters provide an efficient solution to distribute Bell pairs over arbitrarily long distances. While scalable architectures are demanding regarding the number of qubits that need to be controlled, here we present a quantum repeater scheme aiming to extend the range of present day quantum communications that could be implemented in the near future with trapped ions in cavities. We focus on an architecture where ion-photon entangled states are created locally and subsequently processed with linear optics to create elementary links of ion-ion entangled states. These links are then used to distribute entangled pairs over long distances using successive entanglement swapping operations performed using deterministic ion-ion gates. We show how this architecture can be implemented while encoding the qubits in a decoherence-free subspace to protect them against collective dephasing. This results in a protocol that can be used to violate a Bell inequality over distances of about 800 km assuming state-of-the-art parameters. We discuss how this could be improved to several thousand kilometres in future setups.

  12. Diffusion of a Highly-Charged Supramolecular Assembly: Direct Observation of Ion-Association in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth

    2007-10-22

    Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully usedmore » with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the indirect kinetic evidence for such ion-paired species, we sought to explore the solution behavior of 1 by studying the diffusion of 1 with varying alkali and tetraalkyl ammonium cations. For large molecules in solution, such as synthetic supramolecular assemblies, the diffusion behavior of host and guest molecules can provide valuable information on host-guest interaction. One characteristic feature of a stable host-guest complex is that the host and guest molecules diffuse at the same rate in solution; this has been observed in a number of supramolecular systems. In order to confirm that this system was suitable for study by diffusion NMR spectroscopy, a PGSE-DOSY spectrum was acquired of [NEt{sub 4} {contained_in} 1]{sup 11-} (Figure 2), which shows that the host and guest molecules diffuse at the same rate. Quantitative analysis of the data, from monitoring the integral of host and guest resonances as a function of applied gradient strength, gave identical diffusion coefficients, confirming that the host and guest molecules diffuse together.« less

  13. Computational studies of complexation of nitrous oxide by borane-phosphine frustrated Lewis pairs.

    PubMed

    Gilbert, Thomas M

    2012-08-14

    Computational studies of complexes Ar(3)B-ONN-PR(3) derived from reactions between borane-phosphine frustrated Lewis pairs and N(2)O reveal several interesting facets. Natural resonance theory calculations support a change in the preferred resonance structure as the Lewis acidity of the borane increases. Potential constitutional isomers where phosphorus binds to oxygen and boron to nitrogen are predicted to be unstable with respect to loss of phosphine oxide and free N(2). Other constitutional isomers represent stationary points on the potential energy surface; most are considerably less stable than the observed complexes, but one is predicted to be as stable. This arises because the dominant resonance form combines alternating charge with the presence of a stabilizing NO double bond. The relationship between Lewis acidity and complex formation for a variety of boranes was explored; the results are consistent with the idea that greater Lewis acidity stabilizes both classical and frustrated Lewis acid-base pairs, but to differing degrees such that both types can entrap N(2)O. Calculations addressing the mechanism of complex formation suggest that N(2)O binds first through the nitrogen to the phosphine phosphorus of the FLP, whereupon boron coordinates the oxygen atom. Studies of the mechanism of the degenerate exchange reaction between (4-F-H(4)C(6))(3)B-ONN-P(t-Bu)(3) and B(C(6)H(4)-4-F)(3), involves a "transition state", with relatively short B-O distances, and so resembles a classical I(a) process. The process involves two barriers, one associated with bringing the incoming borane into proximity with the oxygen, and the other associated with isomerising from a ladle-shaped cis-trans ct conformer to the observed trans-trans tt-type structure. The overall barrier for degenerate exchange was predicted to be between 65 and 110 kJ mol(-1), in fair agreement with experiment. Similar studies of the reaction between (4-F-H(4)C(6))(3)B-ONN-P(t-Bu)(3) and B(C(6)F(5))(3) indicate that this process more closely resembles a classical I(d) process, in that the "transition state" involves long B-O distances. Derivatization of the complexed NNO fragment appears possible; interaction between (F(5)C(6))(3)B-ONN-P(t-Bu)(3) and MeLi suggests stability for the ion pairs (F(5)C(6))(3)B-ON(Me)N-P(t-Bu)(3)(-)/Li(+) and (F(5)C(6))(3)B-ONN(Me)-P(t-Bu)(3)(-)/Li(+).

  14. DNA interactions of non-chelating tinidazole-based coordination compounds and their structural, redox and cytotoxic properties.

    PubMed

    Castro-Ramírez, Rodrigo; Ortiz-Pastrana, Naytzé; Caballero, Ana B; Zimmerman, Matthew T; Stadelman, Bradley S; Gaertner, Andrea A E; Brumaghim, Julia L; Korrodi-Gregório, Luís; Pérez-Tomás, Ricardo; Gamez, Patrick; Barba-Behrens, Norah

    2018-05-23

    Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule. Cytotoxic studies revealed an interesting activity of the dinuclear compound [Cu(tnz)2(μ-Cl)Cl]2 7, which is further more efficient towards cancer cells, compared with normal cells.

  15. First X-ray crystal structure and internal reference diffusion-ordered NMR spectroscopy study of the prototypical Posner reagent, MeCu(SPh)Li(THF)3.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Heavey, Thomas J; Jones, Daniel S; Monroe, T Blake; Murphy, Michael D; Ogle, Craig A; Whaley, Tara N

    2013-07-29

    Grow slow: The usual direct treatment of MeLi and CuSPh did not yield X-ray quality crystals of MeCu(SPh)Li. An indirect method starting from Me2CuLi⋅LiSPh and chalcone afforded the desired crystals by the slow reaction of the intermediate π-complex (see scheme). This strategy produced the first X-ray crystal structure of a Posner cuprate. A complementary NMR study showed that the contact ion pair was also the main species in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    PubMed

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also authentic reference materials.

  17. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  18. Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.

    1988-01-01

    Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.

  19. Photoreaction of thioxanthone with indolic and phenolic derivatives of biological relevance: magnetic field effect study.

    PubMed

    Das, Doyel; Nath, Deb Narayan

    2008-11-20

    The photoinduced reaction of thioxanthone (TX) with various indolic and phenolic derivatives and amino acids like tryptophan and tyrosine has been monitored in sodium dodecyl sulfate micellar medium. Laser flash photolysis and magnetic field effect (MFE) experiments have been used to study the dynamics of the radical pairs. The quenching rate constant with different quenchers in SDS micellar solution has been measured. For indoles the electron-transfer reaction has been found to be followed by proton transfer from the donor molecule, which gives rise to the TX ketyl radical. On the other hand, the electron-transfer reaction in the case of phenols is preceded with formation of a hydrogen-bonded exciplex. The extent of the MFE and magnitude of the magnetic field corresponding to one-half of the saturation value of MFE ( B 1/2) support the fact that hyperfine mechanism plays the primary role. Quenching of MFE in the presence of gadolinium ions confirms that the radical pair is located near the micellar interface. MFE study has been further extended to protein-like bovine serum albumin in micellar solution. The results indicate loss in mobililty of radical pairs in the protein surfactant complex.

  20. Anomeric 2'-Deoxycytidines and Silver Ions: Hybrid Base Pairs with Greatly Enhanced Stability and Efficient DNA Mismatch Detection with α-dC.

    PubMed

    Guo, Xiurong; Seela, Frank

    2017-09-04

    α-d-Nucleosides are rare in nature but can develop fascinating properties when incorporated into DNA. This work reports on the first silver-mediated base pair constructed from two anomeric nucleosides: α-dC and β-dC. The hybrid base pair was integrated into the DNA and DNA/RNA double helix. A 12-mer duplex with α-dC and β-dC pair exhibits a higher thermal stability (T m =43 °C) than that incorporating the β-dC-Ag + -β-dC homo pair (T m =34 °C). Furthermore, α-dC shows excellent mismatch discrimination for DNA single nucleotide polymorphism (SNP). All four SNPs were identified on the basis of large T m value differences measured in the presence of silver ions. High resolution melting was not required. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-06-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  2. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-03-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  3. Effect of O-acylmenthol and salt formation on the skin permeation of diclofenac acid.

    PubMed

    Zhao, Ligang; Li, Yan; Fang, Liang; Ren, Changshun; Xu, Yongnan; He, Zhonggui

    2009-07-01

    To enhance the transdermal delivery of diclofenac acid (DA) by using O-acylmenthol as a penetration enhancer and complexing with amines, or by a combination of the two methods. The skin permeability of diclofenac was tested in vitro across rat skin with each of the evaluated permeants in a saturated isopropyl myristate (IPM) donor solution. A 4.5-fold increase in the flux of diclofenac was observed by ion-pair formation with diethylamine; however, the cations with hydroxyl groups had negative effects on the transdermal delivery of diclofenac. 2-isopropyl-5-methylcyclohexyl 2-hydroxypanoate and 2-isopropyl-5-methylcyclohexyl heptanoate produced significant increase in the permeation of diclofenac potassium (D-K); however, both of them were ineffective for the other diclofenac salts, including diclofenac diethylamine (D-DETA), diclofenac ethanolamine (D-EA), diclofenac diethanolamine (D-DEA), diclofenac triethanolamine, and diclofenac N-(hydroxylethyl) piperidine. 2-isopropyl-5-methylcyclohexyl tetradecanoate was effective on the penetration of D-K, D-DETA, D-EA, and D-DEA. Also, it is exciting to note that the combined use of diethylamine with 2-isopropyl-5-methylcyclohexyl tetradecanoate produced a 9.74-fold increase in accumulation amount of diclofenac compared with DA in IPM. The use of ion pair in combination with O-acylmenthol is necessary to further increase the diclofenac flux to provide better compliance for the patients undergoing clinical therapy.

  4. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.

    PubMed

    Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo

    2009-09-28

    Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.

  5. Pair luminescence in Cr3+ -doped Ba2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Bondzior, Bartosz; Miniajluk, Natalia; Dereń, Przemysław J.

    2018-05-01

    Cr3+ ions were introduced to the Ba2Mg(BO3)2 host to provide information about the site occupation, crystal field strength, and the site symmetry. The samples were synthesized by solid-state reaction. Emission observed under 440 nm excitation was characteristic for Cr3+ ions in strong octahedral ligand field with Dq/B parameter ratio 2.74 and sharp R line at 698 nm. The charge mismatch between Cr3+ dopant and Mg2+ host ion is compensated by the creation of Cr3+ pair in the vicinity of Ba or Mg vacancy. The emission decay curve is bi-exponential with decay times 1.2 and 13.3 ms.

  6. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  7. Development and Validation of an Extractive Spectrophotometric Method for Miconazole Nitrate Assay in Pharmaceutical Formulations.

    PubMed

    Eticha, Tadele; Kahsay, Getu; Hailu, Teklebrhan; Gebretsadikan, Tesfamichael; Asefa, Fitsum; Gebretsadik, Hailekiros; Thangabalan, Boovizhikannan

    2018-01-01

    A simple extractive spectrophotometric technique has been developed and validated for the determination of miconazole nitrate in pure and pharmaceutical formulations. The method is based on the formation of a chloroform-soluble ion-pair complex between the drug and bromocresol green (BCG) dye in an acidic medium. The complex showed absorption maxima at 422 nm, and the system obeys Beer's law in the concentration range of 1-30  µ g/mL with molar absorptivity of 2.285 × 10 4  L/mol/cm. The composition of the complex was studied by Job's method of continuous variation, and the results revealed that the mole ratio of drug : BCG is 1 : 1. Full factorial design was used to optimize the effect of variable factors, and the method was validated based on the ICH guidelines. The method was applied for the determination of miconazole nitrate in real samples.

  8. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  9. Correspondence between ion-cluster and bulk thermodynamics: on the validity of the cluster pair approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Chialvo, Ariel; Simonson, J Michael

    2013-01-01

    Molecular models and experimental estimates based on the cluster pair approximation (CPA) provide inconsistent predictions of absolute single-ion hydration properties. To understand the origin of this discrepancy we used molecular simulations to study the transition between hydration of alkali metal and halide ions in small aqueous clusters and bulk water. The results demonstrate that the assumptions underlying the CPA are not generally valid as a result of a significant shift in the ion hydration free energies (~15 kJ/mol) and enthalpies (~47 kJ/mol) in the intermediate range of cluster sizes. When this effect is accounted for, the systematic differences between modelsmore » and experimental predictions disappear, and the value of absolute proton hydration enthalpy based on the CPA gets in closer agreement with other estimates.« less

  10. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis.

    PubMed

    Pashkova, Veronika; Sklenak, Stepan; Klein, Petr; Urbanova, Martina; Dědeček, Jiří

    2016-03-14

    (27) Al 3Q MAS NMR and UV/Vis spectroscopy with bare Co(II) ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM-5. Furthermore, the effect of Na(+) ions together with tetrapropylammonium cation (TPA(+)) in the ZSM-5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA(+) as a structure-directing agent (i.e., in the absence of Na(+) ions) led to 55-90% of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al-O-(Si-O)2 -Al sequences in one ring] in the zeolite framework. The presence of Na(+) ions in the synthesis gel did not modify the Al location at the channel intersection (55-95% of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoionization and photofragmentation of the C 60 + molecular ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.

    2016-03-01

    Cross-section measurements are reported for single and double photoionization of Cmore » $$+\\atop{60}$$ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C$$+\\atop{60}$$ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C 60 based on time-dependent density-functional theory. Lastly, this comparison and an accounting of oscillator strengths indicate that with the exception of C$$+\\atop{58}$$, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.« less

  12. Incorporating sequence information into the scoring function: a hidden Markov model for improved peptide identification.

    PubMed

    Khatun, Jainab; Hamlett, Eric; Giddings, Morgan C

    2008-03-01

    The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.

  13. Binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs in the Watson-Crick and Hoogsteen configurations.

    PubMed

    Morari, Cristian; Bogdan, Diana; Muntean, Cristina M

    2012-11-01

    The binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. The calculations were carried out on Watson-Crick and Hoogsteen configurations of the base pairs. We have found, that in Watson-Crick configuration, the metal is coordinated to N7 atom of guanine while, in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen structures. Our results show that the vibrational amplitudes of metallic atoms are strong for wavenumbers lower than 600 cm⁻¹. Also, we predict that the distinction between Watson-Crick and Hoogsteen configurations can be seen around 85, 170 and 310 cm⁻¹.

  14. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  15. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.

    PubMed

    Shyamsunder, Abhinandan; Beichel, Witali; Klose, Petra; Pang, Quan; Scherer, Harald; Hoffmann, Anke; Murphy, Graham K; Krossing, Ingo; Nazar, Linda F

    2017-05-22

    The step-change in gravimetric energy density needed for electrochemical energy storage devices to power unmanned autonomous vehicles, electric vehicles, and enable low-cost clean grid storage is unlikely to be provided by conventional lithium ion batteries. Lithium-sulfur batteries comprising lightweight elements provide a promising alternative, but the associated polysulfide shuttle in typical ether-based electrolytes generates loss in capacity and low coulombic efficiency. The first new electrolyte based on a unique combination of a relatively hydrophobic sulfonamide solvent and a low ion-pairing salt, which inhibits the polysulfide shuttle, is presented. This system behaves as a sparingly solvating electrolyte at slightly elevated temperatures, where it sustains reversible capacities as high as 1200-1500 mAh g -1 over a wide range of current density (2C-C/5, respectively) when paired with a lithium metal anode, with a coulombic efficiency of >99.7 % in the absence of LiNO 3 additive. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ionization dynamics of the water trimer: A direct ab initio MD study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Takada, Tomoya

    2013-03-01

    Ionization dynamics of the cyclic water trimer (H2O)3 have been investigated by means of direct ab initio molecular dynamics (AIMD) method. Two reaction channels, complex formation and OH dissociation, were found following the ionization of (H2O)3. In both channels, first, a proton was rapidly transferred from H2O+ to H2O (time scale is ˜15 fs after the ionization). In complex channel, an ion-radical contact pair (H3O+-OH) solvated by the third water molecule was formed as a long-lived H3O+(OH)H2O complex. In OH dissociation channel, the second proton transfer further takes place from H3O+(OH) to H2O (time scale is 50-100 fs) and the OH radical is separated from the H3O+. At the same time, the OH dissociation takes place when the excess energy is efficiently transferred into the kinetic energy of OH radical. The OH dissociation channel is significantly minor, and almost all product channels were the complex formation. The reaction mechanism was discussed on the basis of theoretical results.

  17. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.

  18. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  19. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers

    NASA Astrophysics Data System (ADS)

    Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.

    1994-07-01

    A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.

  20. Theoretical understanding on the v(1)-SO4(2-) band perturbed by the formation of magnesium sulfate ion pairs.

    PubMed

    Zhang, Hao; Zhang, Yun-Hong; Wang, Feng

    2009-02-01

    The factors determining the spectroscopic characteristics of the v(1)-SO4(2-) band of the MgSO4 ion pairs are discussed via ab initio calculation, including coupling effect, hydrogen bonding effect, and direct contact effect of Mg2+ with SO4(2-). With the calculation of the heavy water hydrated contact ion pairs (CIP), the overlap between the librations of water and the v(1)-SO4(2-) band can be separated, and thus the coupling effect is abstracted, and this coupling effect leads to a blue shift for the v(1)-SO4(2-) band of 5.6 cm(-1) in the monodentate CIP and 3.6 cm(-1) in the bidentate CIP. The hydrogen bonding between each water molecule without relation to Mg2+ and the sulfate ion makes the v(1)-SO4(2-) band blue shift of 3.7 cm(-1). When the outer-sphere water around Mg2+ are hydrogen bonded between SO4(2-) and Mg2+, it will make the largest disturbance to the v(1)-SO4(2-) band. Moreover, the inner-sphere water can affect the v(1)-SO4(2-) band conjunct with the direct contact of Mg2+ with SO4(2-), showing a blue shift of 14.4 cm(-1) in the solvent-shared ion pair, 22.6 cm(-1) in the monodentate CIP, 4.3 cm(-1) in the bidentate CIP, and 21.4 cm(-1) in the tridentate CIP. At last, the Raman spectral evolution in the efflorescence production process is tried to be rationalized. The shoulder at 995 cm(-1) is attributed to the monodentate CIP with 2-3 outer-sphere water molecules, whereas the new peak at 1021 cm(-1) at high concentration is assigned to the formation of aqueous triple ion.

  1. Solution and Gas-Phase H/D Exchange of Protein-Small-Molecule Complexes: Cex and Its Inhibitors

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Ding, Chuanfan; Douglas, D. J.

    2012-01-01

    The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase ("Cex") with three aza-sugar inhibitors, deoxynojirimycin (X2DNJ), isofagomine lactam (X2IL), and isofagomine (X2IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation "remember" their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Patel, D.J.

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H/sub 2/O and D/sub 2/O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding themore » dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution.« less

  3. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.

    PubMed Central

    Huyghues-Despointes, B. M.; Scholtz, J. M.; Baldwin, R. L.

    1993-01-01

    The helix-stabilizing effects of repeating pairs of Asp-Arg and Glu-Arg residues have been characterized using a peptide system of the same design used earlier to study Glu-Lys (Marqusee, S. & Baldwin, R.L., 1987, Proc. Natl. Acad. Sci. USA 84, 8898-8902) and Asp-Lys ion pairs (Marqusee, S. & Baldwin, R.L., 1990, In Protein Folding [Gierasch, L.M. & King, J., Eds.], pp. 85-94, AAAS, Washington, D.C.). The consequences of breaking ion pair and charge-helix dipole interactions by titration to pH 2 have been compared with the results of screening these interactions with NaCl at pH 7.0 and pH 2.5. The four peptides in each set contain three pairs of acidic (A) and basic (B) residues spaced either i, i + 4 or i, i + 3 apart. In one peptide of each kind the pairwise order of residues is AB, with the charges oriented favorably to the helix macrodipole, and in the other peptide the order is BA. The results are as follows: (1) Remarkably, both Asp-Arg and Glu-Arg peptides show the same pattern of helix stabilization at pH 7.0 found earlier for Glu-Lys and Asp-Lys peptides: i + 4 AB > i + 4 BA approximately i + 3 AB > i + 3 BA. (2) The ion pairs and charge-helix dipole interactions cannot be cleanly separated, but the results suggest that both interactions make important contributions to helix stability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8443591

  4. Simultaneous production of lepton pairs in ultraperipheral relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kurban, E.; Güçlü, M. C.

    2017-10-01

    We calculate the total cross sections and probabilities of electromagnetic productions of electron, muon, and tauon pairs simultaneously. At the CERN Large Hadron Collider (LHC), the available electromagnetic energy is sufficient to produce all kinds of leptons coherently. The masses of muons and tauons are large, so their Compton wavelengths are small enough to interact with the colliding nuclei. Therefore, the realistic nuclear form factors are included in the calculations of electromagnetic pair productions. The cross section calculations show that, at LHC energies, the probabilities of simultaneous productions of all kinds of leptons are increased significantly compared to energies available at the BNL Relativistic Heavy Ion Collider (RHIC) . Experimentally, observing this simultaneous production can give us important information about strong QED.

  5. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  6. Ionic structures and transport properties of hot dense W and U plasmas

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  7. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    PubMed Central

    Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L

    2009-01-01

    Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800

  8. Sustained release of antibiotic complexed by multivalent ion: in vitro and in vivo study for the treatment of peritonitis.

    PubMed

    Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho

    2014-12-10

    The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.

    There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  10. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    PubMed

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  12. Ultrafast Scavenging of the Precursor of H(•) Atom, (e(-), H3O(+)), in Aqueous Solutions.

    PubMed

    Balcerzyk, Anna; Schmidhammer, Uli; Wang, Furong; de la Lande, Aurélien; Mostafavi, Mehran

    2016-09-01

    Picosecond pulse radiolysis measurements have been performed in several highly concentrated HClO4 and H3PO4 aqueous solutions containing silver ions at different concentrations. Silver ion reduction is used to unravel the ultrafast reduction reactions observed at the end of a 7 ps electron pulse. Solvated electrons and silver atoms are observed by the pulse (electron beam)-probe (supercontinuum light) method. In highly acidic solutions, ultrafast reduction of silver ions is observed, a finding that is not compatible with a reaction between the H(•) atom and silver ions, which is known to be thermally activated. In addition, silver ion reduction is found to be even more efficient in phosphoric acid solution than that in neutral solution. In the acidic solutions investigated here, the species responsible for the reduction of silver atoms is considered to be the precursor of the H(•) atom. This precursor, denoted (e(-), H3O(+)), is a pair constituting an electron (not fully solvated) and H3O(+). Its structure differs from that of the pair of a solvated electron and a hydronium ion (es(-), H3O(+)), which absorbs in the visible region. The (e(-), H3O(+)) pair , called the pre-H(•) atom here, undergoes ultrafast electron transfer and can, like the presolvated electron, reduce silver ions much faster than the H(•) atom. Moreover, it is found that with the same concentration of H3O(+) the reduction reaction is favored in the phosphoric acid solution compared to that in the perchloric acid solution because of the less-efficient electron solvation process. The kinetics show that among the three reducing species, (e(-), H3O(+)), (es(-), H3O(+)), and H(•) atom, the first one is the most efficient.

  13. Structure, dynamics and bifurcations of discrete solitons in trapped ion crystals

    NASA Astrophysics Data System (ADS)

    Landa, H.; Reznik, B.; Brox, J.; Mielenz, M.; Schaetz, T.

    2013-09-01

    We study discrete solitons (kinks) accessible in the state-of-the-art trapped ion experiments, considering zigzag crystals and quasi-three-dimensional configurations, both theoretically and experimentally. We first extend the theoretical understanding of different phenomena predicted and recently experimentally observed in the structure and dynamics of these topological excitations. Employing tools from topological degree theory, we analyze bifurcations of crystal configurations in dependence on the trapping parameters, and investigate the formation of kink configurations and the transformations of kinks between different structures. This allows us to accurately define and calculate the effective potential experienced by solitons within the Wigner crystal, and study how this (so-called Peierls-Nabarro) potential gets modified to a non-periodic globally trapping potential in certain parameter regimes. The kinks' rest mass (energy) and spectrum of modes are computed and the dynamics of linear and nonlinear kink oscillations are analyzed. We also present novel, experimentally observed, configurations of kinks incorporating a large-mass defect realized by an embedded molecular ion, and of pairs of interacting kinks stable for long times, offering the perspective for exploring and exploiting complex collective nonlinear excitations, controllable on the quantum level.

  14. Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2012-01-15

    Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less

  15. Matrix-isolation and comparative far-IR investigation of free linear [Cl3]- and a series of alkali trichlorides.

    PubMed

    Redeker, F A; Beckers, H; Riedel, S

    2017-11-30

    Here we discuss the reaction products of laser ablated alkali chlorides and elemental chlorine. Salt ablation using this technique combined with matrix-isolation spectroscopy allows for the formation and characterization of novel anionic species. The laser ablation of solid MCl with M = Cs, Rb, and K in the presence of Cl 2 produced free [Cl 3 ] - ions which were isolated in solid noble-gas matrices. For M = Cs, Rb, K, and Na, the ion pairs M + [Cl 3 ] - are the main reaction products. Trends in the formation and bonding of these trichloride anions will be discussed. In contrast to the trifluoride analogues, the isolated ion pairs M + [Cl 3 ] - feature a systematic distortion due to metal coordination.

  16. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions

    NASA Astrophysics Data System (ADS)

    Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi

    2018-06-01

    We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.

  17. Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex.

    PubMed

    Nonin, S; Jiang, F; Patel, D J

    1997-05-02

    We report on the dynamics of base-pair opening in the ATP-binding asymmetric internal loop and flanking base-pairs of the AMP-RNA aptamer complex by monitoring the exchange characteristics of the extremely well resolved imino protons in the NMR spectrum of the complex. The kinetics of imino proton exchange as a function of basic pH or added ammonia catalyst are used to measure the apparent base-pair dissociation constants and lifetimes of Watson-Crick and mismatched base-pairs, as well as the solvent accessibility of the unpaired imino protons in the complex. The exchange characteristics of the imino protons identify the existence of four additional hydrogen bonds stabilizing the conformation of the asymmetric ATP-binding internal loop that were not detected by NOEs and coupling constants alone, but are readily accommodated in the previously reported solution structure of the AMP-RNA aptamer complex published from our laboratory. The hydrogen exchange kinetics of the non-Watson-Crick pairs in the asymmetric internal loop of the AMP-RNA aptamer complex have been characterized and yield apparent dissociation constants (alphaKd) that range from 10(-2) to 10(-7). Surprisingly, three of these alphaKd values are amongst the lowest measured for all base-pairs in the AMP-RNA aptamer complex. Comparative studies of hydrogen exchange of the imino protons in the free RNA aptamer and the AMP-RNA aptamer complex establish that complexation stabilizes not only the bases within the ATP-binding asymmetric internal loop, but also the flanking stem base-pairs (two pairs on either side) of the binding site. We also outline some preliminary results related to the exchange properties of a sugar 2'-hydroxyl proton of a guanosine residue involved in a novel hydrogen bond that has been shown to contribute to the immobilization of the bound AMP by the RNA aptamer, and whose resonance is narrow and downfield shifted in the spectrum.

  18. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor); Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2011-01-01

    A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.

  19. Anion Binding and Transport by Prodigiosin and Its Analogs

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery T.

    The red-colored prodiginines, exemplified by prodigiosin 1, are secondary metabolites produced by a number of microorganisms, including the bacterium Serratia marcescens. These tripyrrole natural products and their synthetic analogs have received renewed attention over the past deacade, primarily because of their promising immunosuppressive and anticancer activities. One of the hallmarks of prodiginin chemistry is the ability of the monoprotonated ligand to bind anions, including the essential chloride and bicarbonate ions. The resulting lipophilic ion pair is then able to diffuse across the hydrophobic barrier presented by phospholipid bilayers. Thus, prodiginines have been found to be potent transmembrane anion transporters and HCl cotransporters. In this chapter, the author reviews what is known about the solid-state structure of prodiginins and their anion complexes, the solution conformation of prodiginines, and the biochemcal evidence for the ability to bind anions and to transport HCl across cell membranes. Recent progress in making synthetic models of prodiginines and recent results on the ability of prodigiosin to transport HCO 3 - across lipid membranes are discussed.

  20. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    Electrophilic nitration of toluene and benzene was studied under various conditions with several nitrating systems. It was found that high orthopara regioselectivity is prevalent in all reactions and is independent of the reactivity of the nitrating agent. The methyl group of toluene is predominantly ortho-para directing under all reaction conditions. Steric factors are considered to be important but not the sole reason for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with reactive nitrating agents, substrate and positional selectivities are determined in two separate steps. The first step involves a π-aromatic-NO2+ ion complex or encounter pair, whereas the subsequent step is of arenium ion nature (separate for the ortho, meta, and para positions). The former determines substrate selectivity, whereas the latter determines regioselectivity. Thermal free radical nitration of benzene and toluene with tetranitromethane in sharp contrast gave nearly statistical product distributions. PMID:16592503

Top