In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung
2016-09-15
A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus
2012-01-01
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217
NASA Astrophysics Data System (ADS)
You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo
2017-06-01
Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.
Fluorescence-based ion-sensing with colloidal particles.
Ashraf, Sumaira; Carrillo-Carrion, Carolina; Zhang, Qian; Soliman, Mahmoud G; Hartmann, Raimo; Pelaz, Beatriz; Del Pino, Pablo; Parak, Wolfgang J
2014-10-01
Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats. Here the benefits of using particle-based fluorescence sensors, their limitations and strategies to overcome these limitations will be described and exemplified with selected examples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Guozhen; Li, Chuang; Han, Xintong; Aderinto, Stephen Opeyemi; Shen, Kesheng; Mao, Shanshan; Wu, Huilu
2018-06-01
The present study reports the development of a new 1,8-naphthalimide-based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52-9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO-HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence 'turn off' mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 10 6 M -1 and 4.67 × 10 -8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples. Copyright © 2018 John Wiley & Sons, Ltd.
Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D
2016-05-25
Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.
An aqueous fluorescent sensor for Pb2+ based on phenothiazine-polyamide.
Xie, Yadian; Li, Han; Liu, Xingliang; Wang, Zhaoqian; Lv, Haitang; Cao, Jianfang; Zhang, Chao; Jia, Qiangqiang; Han, Aixia
2018-04-30
A sensitive and selective fluorescent sensor for Pb 2+ ion based on phenothiazine-polyamide was built (named sensor PP). Due to introducing of four diethanolamine groups to polyamide, this sensor was totally water soluble. PP could detect Pb 2+ ion within 1 min in the presence of other metal ions in aqueous solution, the detect limit was 9.11 × 10 -8 M. Copyright © 2018 Elsevier B.V. All rights reserved.
Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung
2011-09-15
Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.
Fluorescence enhancement of photoswitchable metal ion sensors
NASA Astrophysics Data System (ADS)
Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.
2016-12-01
Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.
A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-02-04
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.
A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-01-01
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412
Verma, Roli; Gupta, Banshi D
2015-01-01
Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.
2016-08-01
Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.
DNA as Sensors and Imaging Agents for Metal Ions
Xiang, Yu
2014-01-01
Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450
DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells
McGhee, Claire E.; Loh, Kang Yong
2017-01-01
The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging the metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications. PMID:28458112
A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water.
Liu, Baoyu; Zeng, Fang; Liu, Yan; Wu, Shuizhu
2012-04-07
Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.
Bordbar, Mohammad Mahdi; Khajehsharifi, Habibollah; Solhjoo, Aida
2015-01-01
More detailed analytical studies of an optical sensor based on immobilization of Eriochorome Cyanine R (ECR) on a triacetylcellulose film have been described to determine Vanadium (IV) ions in some real samples. The sensor based on complex formation between Vanadium (IV) ions and ECR in acidic media caused the color of the film to change from violet to blue along with the appearance of a strong peak appears at 595 nm. At the optimal conditions, the calibration curve showed a linear range of 9.90×10(-7)-8.25×10(-5)mol L(-1). Vanadium (IV) ions can be detected with a detection limit of 1.03×10(-7)mol L(-1) within 15 min depending on its concentration. Also, the working range was improved by using PC-ANN algorithm. The sensor could regenerate with dilute acetic acid solution and could be completely reversible. The proposed sensor was successfully applied for determining V (IV) ions in environmental water and tea leaves. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saleh, Sayed M.; Ali, Reham; Ali, Ibrahim A. I.
2017-08-01
In this work, a novel optical fluoro-chemisensor was designed and synthesized for copper (II) ions detection. The sensor film is created by embedded N,N-Bis(2-hydroxo-5-bromobenzyl)ethylenediamine in poly vinyl chloride (PVC) film in presence of dioctyl phthalate (DOP) as plasticizer. The receptor Schiff base reveals "off-on" mode with high selectivity, significant sensitivity to Cu(II) ions. The selectivity of optical sensor for Cu(II) ions is the result of chelation enhanced fluorescence (CHEF). The optimal conditions of pH and response time at which higher efficiency of sensor film is performed was found to be 6.8 and 2.48 min. The possible interference of other metal ions in solution was examined in presence of different types of metal ions. This film shows high selectivity and ultra-sensitivity with low detection limit LOD (1.1 × 10- 8 M). Thus, these considerable properties make it viable to monitor copper metal ions within very low concentration range (0-15 × 10- 6 M Cu(II)) and highly selective even in the presence of different types of metal ions. The sensor reversibility was achieved by utilizing EDTA solution with concentration of 0.1 M solution.
Improved Ion-Channel Biosensors
NASA Technical Reports Server (NTRS)
Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua
2004-01-01
An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.
See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila
2015-01-01
A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.
Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih
2014-05-14
Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed formore » use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo
2015-02-01
Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.
A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.
Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng
2013-04-15
A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash
2008-01-01
Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786
Quartz crystal microbalance sensor using ionophore for ammonium ion detection.
Kosaki, Yasuhiro; Takano, Kosuke; Citterio, Daniel; Suzuki, Koji; Shiratori, Seimei
2012-01-01
Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.
ERIC Educational Resources Information Center
Prabpal, Jutamat; Vilaivan, Tirayut; Praneenararat, Thanit
2017-01-01
Tetrakis(4-sulfonatophenyl)porphyrin (TSPP) was immobilized on patterned paper and used as a sensor for heavy metal ions in an advanced organic chemistry course. The resulting sensor could detect Hg[superscript 2+] and Cd[superscript 2+] ions colorimetrically, while Cu[superscript 2+] ion resulted in fluorescence quenching, thus demonstrating a…
NASA Astrophysics Data System (ADS)
Murugesan, Kumaresan; Jeyasingh, Vanthana; Lakshminarayanan, Sudha; Govindaraj, Tamil Selvan; Paulraj, Mosae Selvakumar; Narayanan, Selvapalam; Piramuthu, Lakshminarayanan
2018-06-01
Here in, we have designed, synthesized and isolated sensor L, as an exclusive selective turn-on fluorescent chemo sensor for cyanide ion. The acetonitrile solution contains L with tetrabutyl ammonium cyanide, results sudden color change from colorless to yellowish-brown. Chemosensor L produced a strong fluorescence response with an enhancement of very high fluorescence intensity while addition of CN- ion and the strength of the chemosensor L towards cyanide binding is found to be 3.9813 × 104 M-1. In order to use this sensor in practical application, we also prepared a cassette which is fabricated with sensor L and we succeeded to sense cyanide ion.
Characterization of sensitivity and response time of plastic optical fibre sensor to cadmium ion
NASA Astrophysics Data System (ADS)
Yulianti, I.; Putra, N. M. D.; Masturi; Albadiah, I. V.; Pratiwi, D. A.; Akmalia, N.
2018-03-01
The paper presents an investigation of sensitivity and response time of a chitosan coated-plastic optical fibre (POF) sensor to cadmium ion concentration. The sensor working principles is based on the change of light intensity transmitted by the chitosan coated POF due to the change of cadmium ion concentration. Three sensor probes were fabricated with various coating thickness which are 100.24μm (sensor A), 131.97 μm(sensor B) and 376.24μm (sensor C). The characterization was done by exposing the sensor to cadmium ion solution for various concentrations. The results showed that sample C provides the lowest sensitivity while sample B showed the highest sensitivity which are 15.04mA/ppm and 65.64mA/ppm, respectively. In terms of response time, it was showed that sample A has the highest average response time which is 20.5seconds.
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime
2015-03-01
We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.
Mir, Mònica; Lugo, Roberto; Tahirbegi, Islam Bogachan; Samitier, Josep
2014-01-01
Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors. PMID:24999717
Xing, Zhitao; Wang, Hui-Chen; Cheng, Yixiang; James, Tony D; Zhu, Chengjian
2011-11-04
Two boron-contained fluorescent sensors, 1 and 2, based on coumarin have been prepared. The fluorescence response of the two systems was investigated with addition of saccharide and mercury ions. Sensor 2 behaves as a bifunctional fluorescent switch with chemical inputs of D-fructose and mercury ions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors
Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz
2017-01-01
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771
Zhu, Rilong; Zhou, Gangqiang; Tang, Fengxia; Wang, Yeyao
2017-01-01
Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water. PMID:28408929
Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.
Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph
2013-01-07
This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.
2009-08-20
at low ion energies require appropriate ion sources. For example, past work using QCM sensors employed a magnetron as an ion source 32,33 . The...and for data logging. Detailed discussion of the QCM sensor is provided in Section IID. Figure 1. Schematic diagram of the experimental set-up...mass flow rate of 0.5 sccm. The PBN was biased negatively relative to ground potential. D. QCM Sensor and Temperature Control In deposition mode
Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu
2013-08-23
Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.
Application of ion-sensitive sensors in water quality monitoring.
Winkler, S; Rieger, L; Saracevic, E; Pressl, A; Gruber, G
2004-01-01
Within the last years a trend towards in-situ monitoring can be observed, i.e. most new sensors for water quality monitoring are designed for direct installation in the medium, compact in size and use measurement principles which minimise maintenance demand. Ion-sensitive sensors (Ion-Sensitive-Electrode--ISE) are based on a well known measurement principle and recently some manufacturers have released probe types which are specially adapted for application in water quality monitoring. The function principle of ISE-sensors, their advantages, limitations and the different methods for sensor calibration are described. Experiences with ISE-sensors from applications in sewer networks, at different sampling points within wastewater treatment plants and for surface water monitoring are reported. An estimation of investment and operation costs in comparison to other sensor types is given.
Farzbod, Ali; Moon, Hyejin
2018-05-30
This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dolai, Bholanath; Bhaumik, Atanu; Pramanik, Nabakumar; Ghosh, Kalyan Sundar; Atta, Ananta Kumar
2018-07-01
Naphthaldimine-based glucose derivatives 1 and 3 have been designed, synthesized and characterized. In aqueous media, glucose derivative 1, exhibited high selectivity and sensitivity towards Cu2+ ion in comparison with various cations and anions. In presence of Cu2+, sensor 1 has provided significant naked-eye detectable color change. The formation of 1-Cu2+ complex has been analyzed by UV-vis spectroscopy, 1H NMR titration experiments, mass spectrometry and DFT (density functional theory) calculations. Limit of detection of 1 as a colorimetric sensor for Cu2+ ion is found to be 0.23 μM, much lower than recommended value of World Health Organization (WHO), which makes to Cu2+ sensor 1 more effective and useful.
Neagu, Daniela; Arduini, Fabiana; Quintana, Josefina Calvo; Di Cori, Patrizia; Forni, Cinzia; Moscone, Danila
2014-07-01
In this work a miniaturized and disposable electrochemical sensor was developed to evaluate the cadmium and lead ion phytoremediation potential by the floating aquatic macrophyte Lemna minor L. The sensor is based on a screen-printed electrode modified "in-situ" with bismuth film, which is more environmentally friendly than the mercury-based sensor usually adopted for lead and cadmium ion detection. The sensor was coupled with a portable potentiostat for the simultaneous measurement of cadmium and lead ions by stripping analysis. The optimized analytical system allows the simultaneous detection of both heavy metals at the ppb level (LOD equal to 0.3 and 2 ppb for lead and cadmium ions, respectively) with the advantage of using a miniaturized and cost-effective system. The sensor was then applied for the evaluation of Pb(2+) or/and Cd(2+) uptake by measuring the amount of the heavy metals both in growth medium and in plant tissues during 1 week experiments. In this way, the use of Lemna minor coupled with a portable electrochemical sensor allows the set up of a model system able both to remove the heavy metals and to measure "in-situ" the magnitude of heavy metal removal.
Subcellular Carrier-Based Optical Ion-Selective Nanosensors
Carregal-Romero, Susana; Montenegro, Jose-Maria; Parak, Wolfgang J.; Rivera_Gil, Pilar
2012-01-01
In this review, two carrier systems based on nanotechnology for real-time sensing of biologically relevant analytes (ions or other biological molecules) inside cells in a non-invasive way are discussed. One system is based on inorganic nanoparticles with an organic coating, whereas the second system is based on organic microcapsules. The sensor molecules presented within this work use an optical read-out. Due to the different physicochemical properties, both sensors show distinctive geometries that directly affect their internalization patterns. The nanoparticles carry the sensor molecule attached to their surfaces whereas the microcapsules encapsulate the sensor within their cavities. Their different size (nano and micro) enable each sensors to locate in different cellular regions. For example, the nanoparticles are mostly found in endolysosomal compartments but the microcapsules are rather found in phagolysosomal vesicles. Thus, allowing creating a tool of sensors that sense differently. Both sensor systems enable to measure ratiometrically however, only the microcapsules have the unique ability of multiplexing. At the end, an outlook on how more sophisticated sensors can be created by confining the nano-scaled sensors within the microcapsules will be given. PMID:22557969
Response of timepix detector with GaAs:Cr and Si sensor to heavy ions
NASA Astrophysics Data System (ADS)
Abu Al Azm, S. M.; Chelkov, G.; Kozhevnikov, D.; Guskov, A.; Lapkin, A.; Leyva Fabelo, A.; Smolyanskiy, P.; Zhemchugov, A.
2016-05-01
The response of the Timepix detector to neon ions with kinetic energy 77 and 158.4 MeV has been studied at the cyclotron U-400M of the JINR Flerov Laboratory of Nuclear Reaction. Sensors produced from gallium arsenide compensated by chromium and from silicon are used for these measurements. While in Timepix detector with Si sensor the well-known so-called "volcano effect" observed, in Timepix detector with GaAs:Cr sensor such effect was completely absent. In the work the behavior of the Timepix detector with GaAs:Cr sensor under irradiation with heavy ions is described in comparison with the detector based on Si sensor. Also the possible reason for absence of "volcano" effect in GaAs:Cr detector is proposed.
Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md
2011-01-01
A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.
Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng
2013-05-02
A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.
Biosensor and chemical sensor probes for calcium and other metal ions
Vo-Dinh, Tuan; Viallet, Pierre
1996-01-01
The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.
Sharma, Pankaj; Rana, Dilbag Singh; Umar, Ahmad; Kumar, Ramesh; Chauhan, Mohinder Singh; Chauhan, Suvarcha
2016-06-01
Herein, we report the large-scale low-temperature aqueous solution based synthesis of hexagonal-shaped cadmium oxide (CdO) nanodisks. The synthesized nanodisks were characterized in detail to investigate the morphological, structural, optical and compositional properties using various analytical tools. The detailed characterizations revealed that the synthesized CdO nanodisks are grown in high-density, possessing well-crystallinity with cubic crystal phase and exhibiting good optical properties. Further, the prepared CdO nanodisks were used as efficient scaffold for cyanide ion sensor and photocatalyst applications. A luminescent sensor for the determination of cyanide ion in aqueous solution was fabricated based on synthesized CdO nanodisks. The fabricated luminescent sensor exhibited an extremely low detection limit (~1.40μmolL(-1)) towards cyanide ion which is significantly lower than the maximum permitted value of cyanide ion by United States Environmental Protection Agency (EPA) for drinking water (7.69μmolL(-1)). The interference studies of the fabricated sensor also demonstrate excellent selectivity towards cyanide ions compared to other coexisting ions. As a photocatalyst, the synthesized CdO nanodisks exhibited high photodegradation (~99.7%) of toxic methyl orange dye just in 90min using 0.25g of CdO nanodisks. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar
2015-03-05
Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar
2015-03-01
Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-05
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-01
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.
Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.
Ibupoto, Z H; Khun, K; Willander, M
2014-09-01
Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.
NASA Astrophysics Data System (ADS)
Shrivastav, Anand Mohan; Gupta, Banshi D.
2018-01-01
We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.
A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.
Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia
2013-03-01
In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.
L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.
Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H
2014-12-01
This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae
2014-09-02
Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.
Thiopental and Phenytoin as Novel Ionophores for Potentiometric Determination of Lead (II) Ions
Rizk, Nashwa M.H.; Abbas, Samah S.; Hamza, Salem M.; Abd EL-Karem, Yasser M.
2009-01-01
Two novel polymeric membrane sensors for the analysis of Pb(II) have been developed based on two therapeutic drugs, thiopental (TP) and phenytoin (PT) as two new ionophores and potassium tetrakis(p-chlorophenyl) borate (KTpClPB) as a lipophilic additive, in plasticized PVC membranes. The sensors show a Nernstian response for Pb(II) ions over the wide concentration ranges of 1×10−2 – 7×10−6 M and 1×10−2 – 8×10−6 M for the sensors based on thiopental and phenytoin, respectively. The proposed sensors have a fast response time and can be used for more than nine weeks without any considerable divergence in potentials. The sensors exhibit comparatively good selectivity with respect to alkaline, alkaline earth and some transition and heavy metal ions. They were employed for direct determination of lead in solder alloys and in galena rocks with a good agreement with the obtained results by atomic absorption spectroscopy. PMID:22573991
Fang, Yuyu; Li, Caixia; Wu, Lei; Bai, Bing; Li, Xing; Jia, Yiming; Feng, Wen; Yuan, Lihua
2015-09-07
A novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.
Fast Plasma Instrument for MMS: Data Compression Simulation Results
NASA Technical Reports Server (NTRS)
Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.
2008-01-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality; data formatting/organization; and, implications for data/matrix pruning. To conclude a presentation of the base-lined FPI data compression approach is provided.
Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.
Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael
2017-10-11
Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.
Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir
2018-06-01
A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.
Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.
Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun
2011-05-24
We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.
Global versus local mechanisms of temperature sensing in ion channels.
Arrigoni, Cristina; Minor, Daniel L
2018-05-01
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.
Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo
2018-03-02
Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.
Novel H+-Ion Sensor Based on a Gated Lateral BJT Pair
Yuan, Heng; Zhang, Jixing; Cao, Chuangui; Zhang, Gangyuan; Zhang, Shaoda
2015-01-01
An H+-ion sensor based on a gated lateral bipolar junction transistor (BJT) pair that can operate without the classical reference electrode is proposed. The device is a special type of ion-sensitive field-effect transistor (ISFET). Classical ISFETs have the advantage of miniaturization, but they are difficult to fabricate by a single fabrication process because of the bulky and brittle reference electrode materials. Moreover, the reference electrodes need to be separated from the sensor device in some cases. The proposed device is composed of two gated lateral BJT components, one of which had a silicide layer while the other was without the layer. The two components were operated under the metal-oxide semiconductor field-effect transistor (MOSFET)-BJT hybrid mode, which can be controlled by emitter voltage and base current. Buffer solutions with different pH values were used as the sensing targets to verify the characteristics of the proposed device. Owing to their different sensitivities, both components could simultaneously detect the H+-ion concentration and function as a reference to each other. Per the experimental results, the sensitivity of the proposed device was found to be approximately 0.175 μA/pH. This experiment demonstrates enormous potential to lower the cost of the ISFET-based sensor technology. PMID:26703625
Fast Plasma Instrument for MMS: Data Compression Simulation Results
NASA Astrophysics Data System (ADS)
Barrie, A.; Adrian, M. L.; Yeh, P.; Winkert, G.; Lobell, J.; Vinas, A. F.; Simpson, D. G.
2009-12-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° x 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° x 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 6.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present updated simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data as well as the FPI-DIS ion data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements and Cluster/CIS ion measurements. Topics to be discussed include: (i) Review of compression algorithm; (ii) Data quality; (iii) Data formatting/organization; (iv) Compression optimization; (v) Investigation of pseudo-log precompression; and (vi) Analysis of compression effectiveness for burst mode as well as fast survey mode data packets for both electron and ion data We conclude with a presentation of the current base-lined FPI data compression approach.
Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong
2014-07-09
Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.
Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong
2014-01-01
Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836
A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.
Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui
2017-12-11
In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.
Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza
2011-07-20
A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.
A novel sensor for monitoring of iron(III) ions based on porphyrins.
Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte
2012-01-01
Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.
A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution
NASA Astrophysics Data System (ADS)
Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın
2015-02-01
A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.
Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber
Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.
2011-01-01
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712
Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.
Mahajan, R K; Kumar, M; Sharma, V; Kaur, I
2001-04-01
A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.
A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.
Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J
2008-12-11
A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors.
Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor.
Wu, Xin; Chen, Xuan-Xuan; Song, Bing-Nan; Huang, Yan-Jun; Ouyang, Wen-Juan; Li, Zhao; James, Tony D; Jiang, Yun-Bao
2014-11-21
Binding of the fluoride ion triggers aggregation of a pyreneboronic acid-catechol ensemble in acidic aqueous solutions, giving rise to intense excimer emission, allowing for sensitive fluoride ion sensing at ppm levels, with an apparent fluoride binding constant higher than 10(3) M(-1) which is unprecedented for boronic acid sensors in water.
Dai, Yifan; Liu, Chung Chiun
2017-01-01
This research has developed a simple to use, cost effective sensor system for the detection of lead ions in tap water. An under-potential deposited bismuth sub-layer on a thin gold film based electrochemical sensor was designed, manufactured, and evaluated. Differential pulse voltammetry (DPV) measurement technique was employed in this detection. Tap water from the Cleveland, OH, USA regional water district was the test medium. Concentrations of lead ion in the range of 8 × 10−7 M to 5 × 10−4 M were evaluated, showing a good sensitivity over this concentration range. The calibration curve for the DPV measurements of lead ions in tap water showed excellent reproducibility with R2 value of 0.970. This DPV detection system required 3–6 min to complete the detection measurement. A longer measurement time of 6 min was used for the lower lead ion concentration. The selectivity of this lead ion sensor was very good, and Fe III, Cu II, Ni II, and Mg II at a concentration level of 5 × 10−4 M did not interfere with the lead ion measurement. PMID:28441356
Koo, Jackson C.; Yu, Conrad M.
2005-08-23
An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.
Fast Plasma Instrument for MMS: Data Compression Simulation Results
NASA Astrophysics Data System (ADS)
Barrie, A. C.; Adrian, M. L.; Yeh, P.; Winkert, G. E.; Lobell, J. V.; Viňas, A. F.; Simpson, D. G.; Moore, T. E.
2008-12-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° × 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° × 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 7.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm- based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re- processed Cluster/PEACE electron measurements. Topics to be discussed include: (i) Review of compression algorithm; (ii) Data quality; (iii) Data formatting/organization; (iv) Compression optimization; and (v) Implications for data/matrix pruning. We conclude with a presentation of the base-lined FPI data compression approach.
Reversible Oxygen Gas Sensor Based On Electrochemiluminescence
Zhang, Lihua; Tsow, Francis
2013-01-01
A novel and robust oxygen gas sensor based on electrochemiluminescence of Ru(bpy)33+/+ ion annihilation in an ionic liquid is presented. Real-time detection of environmental oxygen concentration together with selective, sensitive and reversible performance is demonstrated. PMID:20386795
Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.
Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng
2014-10-07
The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.
NASA Astrophysics Data System (ADS)
List-Kratochvil, Emil J. W.
2016-09-01
Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins
Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte
2012-01-01
Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395
Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.
Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M
2008-12-01
A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.
NASA Astrophysics Data System (ADS)
Gwak, Raekeun; Kim, Hongki; Yoo, Seung Min; Lee, Sang Yup; Lee, Gyoung-Ja; Lee, Min-Ku; Rhee, Chang-Kyu; Kang, Taejoon; Kim, Bongsoo
2016-01-01
Uranium is an essential raw material in nuclear energy generation; however, its use raises concerns about the possibility of severe damage to human health and the natural environment. In this work, we report an ultrasensitive uranyl ion (UO22+) detection method in natural water that uses a plasmonic nanowire interstice (PNI) sensor combined with a DNAzyme-cleaved reaction. UO22+ induces the cleavage of DNAzymes into enzyme strands and released strands, which include Raman-active molecules. A PNI sensor can capture the released strands, providing strong surface-enhanced Raman scattering signal. The combination of a PNI sensor and a DNAzyme-cleaved reaction significantly improves the UO22+ detection performance, resulting in a detection limit of 1 pM and high selectivity. More importantly, the PNI sensor operates perfectly, even in UO22+-contaminated natural water samples. This suggests the potential usefulness of a PNI sensor in practical UO22+-sensing applications. We anticipate that diverse toxic metal ions can be detected by applying various ion-specific DNA-based ligands to PNI sensors.
Label-Free Direct Electronic Detection of Biomolecules with Amorphous Silicon Nanostructures
Lund, John; Mehta, Ranjana; Parviz, Babak A.
2007-01-01
We present the fabrication and characterization of a nano-scale sensor made of amorphous silicon for the label-free, electronic detection of three classes of biologically important molecules: ions, oligonucleotides, and proteins. The sensor structure has an active element which is a 50 nm wide amorphous silicon semicircle and has a total footprint of less than 4 μm2. We demonstrate the functionalization of the sensor with receptor molecules and the electronic detection of three targets: H+ ions, short single-stranded DNAs, and streptavidin. The sensor is able to reliably distinguish single base-pair mismatches in 12 base long strands of DNA and monitor the introduction and identification of straptavidin in real-time. The versatile sensor structure can be readily functionalized with a wide range of receptor molecules and is suitable for integration with high-speed electronic circuits as a post-process on an integrated circuit chip. PMID:17292148
Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping
2017-12-22
Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.
Shamsipur, Mojtaba; Kazemi, Sayed Yahya; Sharghi, Hashem
2007-01-01
A novel PVC membrane sensor for the Sr2+ ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione has been prepared. The sensor possesses a Nernstian slope of 30.0 ± 0.6 mV decade-1 over a wide linear concentration range of 1.6 × 10-6-3.0 ×10-3 M with a detection limit of 6.3 ×10-7 M. It has a fast response time of <15 s and can be used for at least two months without any considerable divergence in potential. The potentiometric response is independent of the pH of test solution in the pH range 4.3-9.4. The proposed electrode shows good selectivities over a variety of alkali, alkaline earth, and transition metal ions.
Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D
2012-02-07
Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.
Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics
NASA Astrophysics Data System (ADS)
Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing
2018-02-01
Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.
Shaily; Kumar, Ajay; Parveen, Iram; Ahmed, Naseem
2018-06-01
Exposure to even very low concentrations of Pb 2+ is known to cause cardiovascular, neurological, developmental, and reproductive disorders, and affects children in particular more severely. Consequently, much effort has been dedicated to the development of colorimetric and fluorescent sensors that can selectively detect Pb 2+ ions. Here, we describe the development of a triazole-based fluorescent sensor L5 for Pb 2+ ion detection. The fluorescence intensity of chemosensor L5 was selectively quenched by Pb 2+ ions and a clear color change from colorless to yellow could be observed by the naked eye. Chemosensor L5 exhibited high sensitivity and selectivity towards Pb 2+ ions in phosphate-buffered solution [20 mM, 1:9 DMSO/H 2 O (v/v), pH 8.0] with a 1:1 binding stoichiometry, a detection limit of 1.9 nM and a 6.76 × 10 6 M -1 binding constant. Additionally, low-cost and easy-to-prepare test strips impregnated with chemosensor L5 were also produced for efficient of Pb 2+ detection and proved the practical use of this test. Copyright © 2018 John Wiley & Sons, Ltd.
A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor
NASA Astrophysics Data System (ADS)
Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul
2018-05-01
We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.
Tao, Jia; Zhao, Peng; Li, Yinhui; Zhao, Wenjie; Xiao, Yue; Yang, Ronghua
2016-04-28
In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F(-)). The breakage of Si-O induced by F(-) based on the specific nucleophilic substitution reaction between F(-) and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π-π conjugating interaction. This electrode was successfully applied to monitor F(-) with a detection limit of 8.3 × 10(-8) M. Compared with the conventional F(-) ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Gupta, Vinod Kumar; Mergu, Naveen; Kumawat, Lokesh Kumar; Singh, Ashok Kumar
2015-11-01
A new rhodamine functionalized fluorogenic Schiff base CS was synthesized and its colorimetric and fluorescence responses toward various metal ions were explored. The sensor exhibited highly selective and sensitive colorimetric and "off-on" fluorescence response towards Al(3+) in the presence of other competing metal ions. These spectral changes are large enough in the visible region of the spectrum and thus enable naked-eye detection. Studies proved that the formation of CS-Al(3+) complex is fully reversible and can sense to AcO(-)/F(-) via dissociation. The results revealed that the sensor provides fluorescence "off-on-off" strategy for the sequential detection of Al(3+) and AcO(-)/F(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Ghosh, Soumen; Alam, Md Akhtarul; Ganguly, Aniruddha; Guchhait, Nikhil
2015-01-01
A series of Schiff bases synthesized by the condensation of benzohydrazide and -NO2 substituted benzaldehyde have been used as selective fluoride ion sensor. Test paper coated with these synthetic Schiff bases (test kits) can detect fluoride ion selectively with a drastic color change and detection can be achieved by just using the naked-eye without the help of any optical instrument. Interestingly, the position of -NO2 group in the amido Schiff bases has an effect on the sensitivity as well as on the change of color of species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam
1997-06-01
Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.
Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo
2018-07-01
An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast Plasma Investigation for MMS: Simulation of the Burst Triggering System
NASA Technical Reports Server (NTRS)
Barrie, A. C.; Dorelli, J. C.; Winkert, G. E.; Lobell, J. V.; Holland, M. P.; Adrian, M. L.; Pollock, C. J.
2011-01-01
The Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 degree x 180 degree fields-of-view (FOV) are set 90 degrees apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 degree x 180 degree fan about the its nominal viewing (0 deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb (raised dot) per second of electron data while the DIS generates 1.1-Mb (raised dot) per second of ion data yielding an FPI total data rate of 6.6-Mb (raised dot) per second. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. This requires a data ranking process known as the burst trigger system. The burst trigger system uses pseudo physical quantities to approximate the local plasma environments. As each pseudo quantity will have a different value, a set of two scaling factors is employed for each pseudo term. These pseudo quantities are then combined at the instrument, spacecraft, and observatory level leading to a final ranking of data based on expected scientific interest. Here, we present simulations of the fixed point burst trigger system for the FPI. A variety of data sets based on previous mission data as well as analytical formulations are tested. Comparisons of floating point calculations versus the fixed point hardware simulation are shown. Analysis of the potential sources of error from overflows, quantization, etc. are examined and mitigation methods are presented. Finally a series of calibration curves are presented, showing the expected error in pseudo quantities based solely on the scale parameters chosen and the expected data range. We conclude with a presentation of the current base-lined FPI burst trigger approach.
Bhalla, Vandana; Roopa; Kumar, Manoj
2012-06-01
A pentaquinone based compound 3a has been synthesized which exhibits pronounced fluorescence enhancement in the presence of Zn(2+) ions under a F(-) triggered synergistic effect. Derivative 3a also behaves as a molecular keypad lock with sequential chemical inputs of Zn(2+) and F(-) ions.
Integrated potentiometric detector for use in chip-based flow cells
Tantra; Manz
2000-07-01
A new kind of potentiometric chip sensor for ion-selective electrodes (ISE) based on a solvent polymeric membrane is described. The chip sensor is designed to trap the organic cocktail inside the chip and to permit sample solution to flow past the membrane. The design allows the sensor to overcome technical problems of ruggedness and would therefore be ideal for industrial processes. The sensor performance for a Ba2+-ISE membrane based on a Vogtle ionophore showed electrochemical behavior similar to that observed in conventional electrodes and microelectrode arrangements.
Colorimetric detection of copper in water using a Schiff base derivative
NASA Astrophysics Data System (ADS)
Peralta Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfán, N.
2013-09-01
Organic molecular sensors have the advantage of being used through an easy, fast, economical and reliable optical method for detecting toxic metal ions in our environment. In this work, we present a simple but highly specific organic ligand compound 5-Chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for ions in a mixture of acetonitrile/water (ratio 10:1, v:v). Binding interaction between L1 and various metal-ions has been established by ultraviolet-visible spectroscopic measurements that indicate favorable coordination of the ligand with selective metal ions, particularly, with copper. These results showed that the electronic transition band shape of L1 change after binding with copper in aqueous solution. L1 exhibited binding-induced color changes from yellow to pink one detected by the naked eye. This new sensor presented 2.5 × 10-6 M as limit detection, even under the presence of other metal ions.
Temperature sensor based on a polymer diffraction grating with silver nanoparticles
NASA Astrophysics Data System (ADS)
Nuzhdin, V. I.; Valeev, V. F.; Galyautdinov, M. F.; Osin, Yu. N.; Stepanov, A. L.
2018-01-01
The method is suggested for producing an optical temperature noncontact sensor on a polymer polymethylmethacrylate (PMMA) substrate with a diffraction optical element formed by implanting low-energy high-dose silver ions through a surface mask. Ion implantation is performed at an energy of 30 keV, a radiation dose of 5.0 × 1016 ion cm-2 and an ion beam current density of 2 μA cm-2 through a surface metal mask having the form of grid with square periodical holes (cells) of size 25 μm. In the course of implantation, silver nanoparticles are produced in periodical unmasked domains of irradiated PMMA. Operation of the temperature sensor on diffraction microstructures made of polymer with silver nanoparticles is demonstrated in the range from 20 °C to 95 °C by testing it with a probe radiation of a He - Ne laser.
Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun
2015-06-01
Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.
Fiber-optic thermometry using thermal radiation from Tm end doped SiO{sub 2} fiber sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Kentaro; Katsumata, Toru; Komuro, Shuji
2014-04-15
Fiber-optic thermometry based on temperature dependence of thermal radiation from Tm{sup 3+} ions was studied using Tm end doped SiO{sub 2} fiber sensor. Visible light radiation peaks due to f-f transition of Tm{sup 3+} ion were clearly observed at λ = 690 and 790 nm from Tm end doped SiO{sub 2} fibers sensor at the temperature above 600 °C. Thermal radiation peaks are assigned with f-f transition of Tm{sup 3+} ion, {sup 1}D{sub 2}-{sup 3}H{sub 6}, and {sup 1}G{sub 4}-{sup 3}H{sub 6}. Peak intensity of thermal radiation from Tm{sup 3+} ion increases with temperature. Intensity ratio of thermal radiation peaks atmore » λ = 690 nm against that at λ = 790 nm, I{sub 790/690}, is suitable for the temperature measurement above 750 °C. Two-dimensional temperature distribution in a flame is successfully evaluated by Tm end doped SiO{sub 2} fiber sensor.« less
Planar waveguide sensor of ammonia
NASA Astrophysics Data System (ADS)
Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika
2015-12-01
The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.
Ion beam plume and efflux characterization flight experiment study. [space shuttle payload
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.
1977-01-01
A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.
NASA Astrophysics Data System (ADS)
Jang, Jungkyu; Choi, Sungju; Kim, Jungmok; Park, Tae Jung; Park, Byung-Gook; Kim, Dong Myong; Choi, Sung-Jin; Lee, Seung Min; Kim, Dae Hwan; Mo, Hyun-Sun
2018-02-01
In this study, we investigate the effect of rising time (TR) of liquid gate bias (VLG) on transient responses in pH sensors based on Si nanowire ion-sensitive field-effect transistors (ISFETs). As TR becomes shorter and pH values decrease, the ISFET current takes a longer time to saturate to the pH-dependent steady-state value. By correlating VLG with the internal gate-to-source voltage of the ISFET, we found that this effect occurs when the drift/diffusion of mobile ions in analytes in response to VLG is delayed. This gives us useful insight on the design of ISFET-based point-of-care circuits and systems, particularly with respect to determining an appropriate rising time for the liquid gate bias.
MOS Circuitry Would Detect Low-Energy Charged Particles
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva; Wadsworth, Mark
2003-01-01
Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.
NASA Astrophysics Data System (ADS)
Tang, Xu; Han, Juan; Wang, Yun; Ni, Liang; Bao, Xu; Wang, Lei; Zhang, Wenli
2017-02-01
Chemosensors play important parts in the selective recognition of ions, which is widely applied in various fields of environment, industry and biological sciences. In this work, a chemosensor for multi-metal ions based on rhodamine B derivative was synthesized, which could selectively recognize various metal ions in different solvent system. The addition of Cu2 + caused the color change from colorless to pink in EtOH/H2O (v/v = 1:1) solvent system, which could be quickly identified by the naked eyes with a detection limit of 8.27 × 10- 8 M. In ethanol solution system, the addition of Fe3 + and Zn2 + caused different fluorescence changes with the detection limit of 2.12 × 10- 7 M and 6.64 × 10- 7 M respectively. The binding ratios are 1:1 (1-Cu2 +), 2:1 (1-Fe3 +) and 1:1 (1-Zn2 +), respectively. Meanwhile, the probe 1 was used to detect the trace metal ions in real water samples. Besides, the probe 1 showed sensitive fluorescence signals for Fe3 + in biological cells. The experimental results further verify the application value of the sensor.
Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.
Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang
2017-02-01
We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine.
Yin, Kun; Li, Bowei; Wang, Xiaochun; Zhang, Weiwei; Chen, Lingxin
2015-02-15
As an essential element, copper ion (Cu(2+)) plays important roles in human beings for its participation in diverse metabolic processes as a cofactor and/or a structural component of enzymes. However, excessive uptake of Cu(2+) ion gives rise to the risk of certain diseases. So, it is important to develop simple ways to monitor and detect Cu(2+) ion. In this study, a simple, facile colorimetric sensor for the ultrasensitive determination of Cu(2+) ion was developed based on the following principle: L-cysteine and 1-chloro-2,4-dinitrobenzene (CDNB) could be conjugated to form the yellow product 2,4-dinitrophenylcysteine (DNPC), which was measurable at 355nm; however, upon addition of Cu(2+) ion, the absorbance of DNPC would be decreased owing to the Cu(2+) ion catalytic oxidation of L-cysteine to L-cystine in the presence of O2. Thus, the colorimetric detection of Cu(2+) ion could be achieved. The optimal pH, buffer, temperature and incubation time for the colorimetric sensor were obtained of pH 6.8 in 0.1M HEPES solution, 90 °C and 50 min, respectively. A good linearity within the range of 0.8-10 nM (r = 0.996) was attained, with a high detectability up to 0.5nM. Analyses of Cu(2+) ion in drinking water, lake water, seawater and biological samples were carried out and the method performances were found to agree well with that obtained by ICP-MS. The developed simple colorimetric sensor proved applicable for Cu(2+) ion determination in real samples with high sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.
2013-03-01
In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.
Analytical strategies based on quantum dots for heavy metal ions detection.
Vázquez-González, Margarita; Carrillo-Carrion, Carolina
2014-01-01
Heavy metal contamination is one of the major concerns to human health because these substances are toxic and retained by the ecological system. Therefore, in recent years, there has been a pressing need for fast and reliable methods for the analysis of heavy metal ions in environmental and biological samples. Quantum dots (QDs) have facilitated the development of sensitive sensors over the past decade, due to their unique photophysical properties, versatile surface chemistry and ligand binding ability, and the possibility of the encapsulation in different materials or attachment to different functional materials, while retaining their native luminescence property. This paper comments on different sensing strategies with QD for the most toxic heavy metal ions (i.e., cadmium, Cd2+; mercury, Hg2+; and lead, Pb2+). Finally, the challenges and outlook for the QD-based sensors for heavy metals ions are discussed.
Shokrollahi, A; Abbaspour, A; Ghaedi, M; Haghighi, A Naghashian; Kianfar, A H; Ranjbar, M
2011-03-15
In this article a new coated platinum Cu(2+) ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L(1)) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10(-7)-1.0 × 10(-1) mol L(-1)) and a low detection limit of 9.8 × 10(-8) mol L(-1)of Cu(NO(3))(2). It has a Nernstian response with slope of 29.54 ± 1.62 mV decade(-1) and it is applicable in the pH range of 4.0-6.0 without any divergence in potential. The coated electrode has a short response time of approximately 9s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu(2+) ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu(2+) ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu(2+) ion with EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.
Architecture of optical sensor for recognition of multiple toxic metal ions from water.
Shenashen, M A; El-Safty, S A; Elshehy, E A
2013-09-15
Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McKibben, R. B.; Enman, A.
2006-12-01
The measurement and identification of high energy ions (> few MeV/n) from events originating on the Sun is of direct interest to the Living With a Star Program. These ions are a major source of Single Event Effects (SEE) in space-based electronics. Measurements of these ions also help in understanding phenomena such as Solar particle events and coronal mass ejections. These disturbances can directly affect the Earth and the near-Earth space environment, and thus human technology. The resource constraints on spacecraft generally mean that instruments that measure cosmic rays and Solar energetic particles must have low mass (a few kg) and power (a few W), be robust and reliable yet highly capable. Such instruments should identify ionic species (at least by element, preferably by isotope) from protons through the iron group. The charge and mass resolution of heavy ion instrument in space depends upon determining ions' angles of incidence. The Angle Detecting Inclined Sensor (ADIS) system is a highly innovative and uniquely simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust Si detectors inclined at an angle to the instrument axis. In August 2004 we tested ADIS prototypes with a 48Ca beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). We demonstrate that our prototype charged particle instrument design with an ADIS system has a charge resolution of better than 0.25 e. An ADIS based system is being incorporated into the Energetic Heavy Ion Sensor (EHIS), one of the instruments in the Space Environment In-Situ Suite (SEISS) on the next generation of Geostationary Operational Environmental Satellite (GOES-R) System. An ADIS based system was also selected for the High Energy Particle Sensor (HEPS), one of the instruments in the Space Environment Sensor Suite (SESS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS). SESS is presently de-scoped from NPOESS. The ADIS instrument development project was 95% funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
A fluorescence turn-on sensor for iodide based on a thymine-Hg(II)-thymine complex.
Ma, Boling; Zeng, Fang; Zheng, Fangyuan; Wu, Shuizhu
2011-12-23
Iodide plays a vital role in many biological processes, including neurological activity and thyroid function. Due to its physiological relevance, a method for the rapid, sensitive, and selective detection of iodide in food, pharmaceutical products, and biological samples such as urine is of great importance. Herein, we demonstrate a novel and facile strategy for constructing a fluorescence turn-on sensor for iodide based on a T-Hg(II)-T complex (T=thymine). A fluorescent anthracene-thymine dyad (An-T) was synthesized, the binding of which to a mercury(II) ion lead to the formation of a An-T-Hg(II)-T-An complex, thereby quenching the fluorescent emission of this dyad. In this respect, the dyad An-T constituted a fluorescence turn-off sensor for mercury(II) ions in aqueous media. More importantly, it was found that upon addition of iodide, the mercury(II) ion was extracted from the complex due to the even stronger binding between mercury(II) ions and iodide, leading to the release of the free dyad and restoration of the fluorescence. By virtue of this fluorescence quenching and recovery process, the An-T-Hg(II)-T-An complex constitutes a fluorescence turn-on sensor for iodide with a detection limit of 126 nM. Moreover, this sensor is highly selective for iodide over other common anions, and can be used in the determination of iodide in drinking water and biological samples such as urine. This strategy may provide a new approach for sensing some other anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki
2018-01-01
In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.
NASA Technical Reports Server (NTRS)
1970-01-01
The guidance and navigation requirements for unmanned missions to the outer planets, assuming constant, low thrust, ion propulsion are discussed. The navigational capability of the ground based Deep Space Network is compared to the improvements in navigational capability brought about by the addition of guidance and navigation related onboard sensors. Relevant onboard sensors include: (1) the optical onboard navigation sensor, (2) the attitude reference sensors, and (3) highly sensitive accelerometers. The totally ground based, and the combination ground based and onboard sensor systems are compared by means of the estimated errors in target planet ephemeris, and the spacecraft position with respect to the planet.
Novel styrylbenzothiazolium dye-based sensor for mercury, cyanide and hydroxide ions
NASA Astrophysics Data System (ADS)
Gwon, Seon-Young; Rao, Boddu Ananda; Kim, Hak-Soo; Son, Young-A.; Kim, Sung-Hoon
2015-06-01
We report the design and synthesis of a novel styrylbenzothiazolium (3) derivative developed as a fluorescent and colorimetric chemodosimeter with high selectivity toward Hg2+, CN- and OH- ions. An obvious loss of pink color in the presence of Hg2+ and CN- ions could make it a suitable "naked eye" indicator. We propose a sensing mechanism whereby the benzenoid form is changed to a quinoid form upon Hg2+ binding in a 1:1 stoichiometric ratio. More significantly, the styrylbenzothiazolium-Hg2+ and styrylbenzothiazolium-CN- complexes exhibited a dual-channel chromo-fluorogenic response. The sensors exhibit remarkable Hg2+-, CN--, and OH--selective red fluorescence but remain dark-green in the presence of a wide range of tested metal ions and anions.
Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő
2017-08-15
The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.
Nanoporous gold film based SPR sensors for trace chemical detection
NASA Astrophysics Data System (ADS)
Wang, Li; Gong, Xiaoqing; Wan, Xiumei; Lu, Dan-feng; Qi, Zhi-mei
2017-02-01
Thin films of nanoporous gold (NPG) have both localized and propagating surface plasmon resonance (SPR) effects. The propagating SPR effect of NPG film combined with its huge internal surface area makes it applicable as an evanescent wave sensor with high sensitivity. In this work, NPG films with controlled thicknesses were fabricated on glass substrates by sputtering deposition of AuAg films followed by dealloying in nitric acid. By using of the NPG films as the sensing layer, a broadband wavelength-interrogated SPR sensor was prepared for chemical and biological detection. The propagating SPR absorption band in the visible-near infrared region was clearly observed upon exposure of the NPG film to air, and this band was detected to move to longer wavelengths in response to adsorption of molecules within the NPG film. Simulations based on Fresnel equations combined with Bruggeman approximation were carried out for optimizing the propagating SPR property of NPG film. The sensor's performance was investigated using both bisphenol A (BPA) and lead (II) ions as analytes. According to the experimental results, the detection limits of the sensor are 5 nmol·L-1 for BPA and 1 nmol·L-1 for lead (II) ions. The work demonstrated the outstanding applicability of the NPG film based SPR sensor for sensitive environmental monitoring.
Aderinto, Stephen Opeyemi; Xu, Yuling; Peng, Hongping; Wang, Fei; Wu, Huilu; Fan, Xuyang
2017-01-01
A new fluorescent sensor, 4-allylamine-N-(N-salicylidene)-1,8-naphthalimide (1), anchoring a naphthalimide moiety as fluorophore and a Schiff base group as receptor, was synthesized and characterized. The photophysical properties of sensor 1 were conducted in organic solvents of different polarities. Our study revealed that, depending on the solvent polarity, the fluorescence quantum yields varied from 0.59 to 0.89. The fluorescent activity of the sensor was monitored and the sensor was consequently applied for the detection of Cu 2+ with high selectivity over various metal ions by fluorescence quenching in Tris-HCl (pH = 7.2) buffer/DMF (1:1, v/v) solution. From the binding stoichiometry, it was indicated that a 1:1 complex was formed between Cu 2+ and the sensor 1. The fluorescence intensity was linear with Cu 2+ in the concentration range 0.5-5 μM. Moreso, the detection limit was calculated to be 0.32 μM, which is sufficiently low for good sensitivity of Cu 2+ ion. The binding mode was due to the intramolecular charge transfer (ICT) and the coordination of Cu 2+ with C = N and hydroxyl oxygen groups of the sensor 1. The sensor proved effective for Cu 2+ monitoring in real water samples with recovery rates of 95-112.6 % obtained.
Curcumin based chemosensor for selective detection of fluoride and cyanide anions in aqueous media.
Ponnuvel, Kandasamy; Santhiya, Kuppusamy; Padmini, Vediappen
2016-11-30
The conjugate N,N-dimethyl curcumin analogue fluorophore dye 1 has been synthesized and its performance as a sensor was demonstrated. As a fluoride and cyanide sensor it enabled visual detection, and showed changes in UV-vis and fluorescence spectra in the presence of fluoride and cyanide ions in aqueous medium. The Job's plot indicated that the formation of a complex between dye-1 fluoride ions has a 1 : 1 stoichiometric ratio.
Maysinger, Dusica; Ji, Jeff; Hutter, Eliza; Cooper, Elis
2015-01-01
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim “Measure what is measurable, and make measurable what is not so” (Galileo Galilei). PMID:26733793
Graphene oxide-DNA based sensors.
Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping
2014-10-15
Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.
Copper Ion Detection in Drinking Water via a Fabric Nanocomposite Sensor
NASA Astrophysics Data System (ADS)
Yu, Guoqiang
Excessive Cu(II) ions in drinking water are always a big threat to people's health. In this work, we developed a flexible amperometric sensor by a simple dip-coating method, which was able to rapidly, sensitively, and selectively detect the Cu(II) ions in the range of 0.65 to 39 ppm in real time. The prepared Cu(II) sensor consisted of three layers that were electrospun nylon-6 nanofibers, multiwalled carbon nanotubes (MWCNTs), and 2,2':5',2''-terthiophene molecules, respectively. When a voltage was applied to the Cu(II) sensor, the current was obviously impeded in the presence of Cu(II) ions. Interfering metal ions, including Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions, had almost no influence on the responsiveness of the Cu(II) sensor.
Papalia, Teresa; Barattucci, Anna; Barreca, Davide; Bellocco, Ersilia; Bonaccorsi, Paola; Minuti, Lucio; Nicolò, Marco Sebastiano; Temperini, Andrea; Foti, Claudia
2017-02-01
A Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivative has been conceived and synthesized starting from l-aspartic acid, as a selective turn-off sensor of Cu 2+ ions. Its acid-base properties were determined to study the formation of metal/sensor complex species by titration of solutions each containing a different metal ion, such as Cu 2+ , Ca 2+ , Zn 2+ , Pb 2+ and Hg 2+ and different metal/sensor ratios. The speciation models allowed us to simulate the distribution of the metal/sensor complex species at the normal concentrations of the corresponding metals present in biological fluids. The distribution diagrams, obtained by varying the concentration of sensor 1, clearly indicate that sensor 1 responds selectively to Cu 2+ at micromolar concentrations, even in the presence of other more abundant metal cations Ca 2+ . Finally, we analyzed the cellular uptake of sensor 1 on human erythrocytes and its ability to chelate Cu 2+ in the cellular environment. Results indicate that it crosses the plasmatic membrane and colors the cells of a bright fluorescent red. Exposing the fluorescent cells to Cu 2+ results in a complete cellular photobleaching of the red fluorescence, indicating that sensor 1 is able to detect metal changes in the cytosolic environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Kun; Wang, Zhong Lin; Yang, Ya
2016-09-27
Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.
The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L.; Lu, H. B.; Li, J. C.
2007-10-22
In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.
A novel coumarin Schiff-base as a Ni(II) ion colorimetric sensor
NASA Astrophysics Data System (ADS)
Wang, Lingyun; Ye, Decheng; Cao, Derong
2012-05-01
A novel coumarin Schiff base compound (L) prepared from 7-diethylaminocoumarin-3-aldehyde and 3-amino-7-hydroxycoumarin was synthesized and evaluated as a chemoselective Ni2+ sensor. Addition of Ni2+ to CH3CN solution of L resulted in a rapid color change from yellow to red together with a large red shift from 465 to 516 nm. Moreover, other common alkali-, alkaline earth-, transition- and rare earth metal ions induced no or minimal spectral changes. Experimental results indicated that L could be used as a potential Ni2+ colorimetric and naked-eye chemosensor in CH3CN solution.
Dynamic potential and surface morphology study of sertraline membrane sensors
Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.
2014-01-01
New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944
A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand
Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin
2015-01-01
A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397
Chen, Zhi; Chen, Jiayun; Pan, Dong; Li, Hongwei; Yao, Yunhui; Lyu, Zu; Yang, Liting; Ma, Li-Jun
2017-03-01
A new rhodamine B-based "reactive" optical sensor (1) for Hg 2+ was synthesized. Sensor 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg 2+ over 14 other metal ions with a hypersensitivity (detection limits are 27.6 nM (5.5 ppb) and 6.9 nM (1.4 ppb), respectively) in neutral buffer solution. To test its applicability in the environment, sensor 1 was applied to quantify and visualize low levels of Hg 2+ in tap water and river water samples. The results indicate sensor 1 is a highly sensitive fluorescent sensor for Hg 2+ with a detection limit of 1.7 ppb in tap water and river water. Moreover, sensor 1 is a convenient visualizing sensor for low levels of Hg 2+ (0.1 ppm) in water environment (from colorless to light pink). In addition, sensor 1 shows good potential as a fluorescent visualizing sensor for Hg 2+ in fetal bovine serum and living 293T cells. The results indicate that sensor 1 shows good potential as a highly sensitive sensor for the detection of Hg 2+ in environmental and biological samples. Graphical Abstract A new rhodamine B-based "reactive" optical sensor (1) for Hg 2+ was synthesized. 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg 2+ over 14 other metal ions with a hypersensitivity in water environment. And it is a convenient visualizing probe for low levels of Hg 2+ in environment aqueous media, fetal bovine serum and living 293T cells.
Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong
2017-11-22
Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) < 1 ppb and excellent selectivity (with a sensitivity to lead ions 1 order of magnitude higher than that of interfering ions) can be achieved for Pb 2+ measurements. The overall assay time (∼10 s) for background water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.
Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor
NASA Astrophysics Data System (ADS)
Naderi, Mahboube; Hosseini, Morteza; Ganjali, Mohammad Reza
2018-04-01
In this work, we studied the feasibility of interaction among gold nanoparticles (AuNPs) and a cationic dye in an aptasensor system for the detection of potassium ions. The presence and absence of potassium in the solution was distinguishable by different colors (between orange and green) appeared after reaction. Cationic dye (Y5GL) acts as a new aggregator for AuNP-based sensors which changes the aggregated AuNP solution color from blue-purple to green. In the presence of K+ ions, the aptamer dissociated from the surface of the AuNP so that free AuNPs and cationic dye make the solution green. The aptasensor showed that the analytical linear range was from 10 nM to 50 mM and the detection limit was 4.4 nM. Also, we examined the practicality of this method on a simple paper based platform. The linear range of the colorimetric paper sensor covered of K+ concentration from 10 μM to 40 mM and the detection limit of 6.2 μM was obtained. The selectivity of AuNP aggregation-based sensor improved by the use of cationic dye. Rapidity, simplicity, high sensitivity and excellent selectivity made this assay suitable for practical determination of K+ in real urine samples.
Vanlı, Elvan; Mısır, Miraç Nedim; Alp, Hakan; Ak, Tuğba; Özbek, Nurhayat; Ocak, Ümmühan; Ocak, Miraç
2017-09-01
Four fluorescent Schiff bases carrying dipicolylamine groups were designed and synthesized to determine their ion sensor properties in partial aqueous solution. The corresponding amine compound and the aldehyde compounds such as 1-naphthaldehyde, 9-anthraldehyde, phenanthrene-9-carboxaldehyde and 1-pyrenecarboxaldehyde were used to prepare the new Schiff bases. The influence of many metal cations and anions on the spectroscopic properties of the ligands was investigated in ethanol-water (1:1) by means of emission spectrometry. From the spectrofluorimetric titrations, the complexation stoichiometry and complex stability constants of the ligands with Cd 2+ , Zn 2+ , Cu 2+ and Hg 2+ ions were determined. The ligands did not interact with the anions. However, the Schiff base derived from phenanthrene-9-carboxaldehyde showed sensitivity for Cu 2+ among the tested metal ions. The phenanthrene-based Schiff base was used as analytical ligand for the simple and fast determination of Cu 2+ ion in water samples. A modified standard addition method was used to eliminate matrix effect. The linear range was from 0.3 mg/L to 3.8 μg/L. Detection and quantification limits were 0.14 and 0.43 mg/L, respectively. Maximum contaminant level goal (MCLG) for copper in drinking water according to EPA is 1.3 mg/L. The proposed method has high sensitivity to determine copper in drinking waters.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
NASA Astrophysics Data System (ADS)
Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao
2004-07-01
The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.
NASA Astrophysics Data System (ADS)
Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker
2018-05-01
Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.
Azocalix[4]arene strapped calix[4]pyrrole: a confirmable fluoride sensor.
Thiampanya, Preecha; Muangsin, Nongnuj; Pulpoka, Buncha
2012-08-17
A new chromogenic fluoride sensor based on 1,3-di-p-nitrophenylazocalix[4]arene-calix[4]pyrrole (1) was designed and synthesized. The color of the solution of probe 1 changed upon the addition of any F(-), CH(3)CO(2)(-), PhCO(2)(-), and H(2)PO(4)(-) ions. However, from these ions the highly specific sensing of F(-) is achieved by the addition of Ca(2+) which leads to a color change from light sky blue (of 1·F(-)) back to the original light orange color of 1.
Cometary Plasma Probed by Rosetta
NASA Astrophysics Data System (ADS)
Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You
2015-04-01
In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-02-16
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-01-01
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878
Zinc metal complex as a sensor for simultaneous detection of fluoride and HSO4(-) ions.
Singh, Jasminder; Yadav, Manisha; Singh, Ajnesh; Singh, Narinder
2015-07-28
A Schiff base based tripodal receptor was synthesized and complexed with a zinc metal ion (n17) using a very easy single step process. The resulting complex was fully characterized by CHN and single crystal XRD. The real time application of the complex in aqueous media was devised by preparing its organic nanoparticles (ONPs) and their sensor activity was tested with various anions by observing changes in the fluorescence profile of n17. It was observed that ONPs of n17 responded excellently for fluoride and sulfate, producing two different signals, with detection limits of 4.84 × 10(-12) M and 5.67 × 10(-9) M respectively, without having any interference from each other. The real time application of the sensor was also tested using various samples collected from various daily utility items and found to respond exceptionally well.
A thiourea derivative as potential ionophore for copper sensing
NASA Astrophysics Data System (ADS)
Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah
2018-04-01
A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.
2010-01-01
Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. PMID:20167182
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J
2010-01-01
Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. 2010 Diabetes Technology Society.
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-01-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-10-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.
Ultrasensitive sliver nanorods array SERS sensor for mercury ions.
Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui
2017-01-15
With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg 2+ , which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.
Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo
2016-04-26
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).
Ligand exchange and MIP-based paraoxon memories onto QCM sensor
NASA Astrophysics Data System (ADS)
Birlik Özkütük, Ebru; Emir Diltemiz, Sibel; Özalp, Elif; Uzun, Lokman; Ersöz, Arzu
2015-04-01
In this study, we have aimed to prepare quartz crystal microbalance (QCM) sensor using paraoxon-imprinted particles. Firstly, methacryloyl antipyrine (MAAP)-based metal-chelate-coordinated pre-complex has been prepared and used for paraoxon templation. Then, paraoxon-imprinted nanofilms were formed on QCM sensor after modification of the gold surfaces with allyl mercaptan. By this way, specific and selective memories, which depend on metal-chelate interactions between Eu(III) ions and template, for paraoxon molecules have been obtained on the electrode surface. QCM sensor has characterized using AFM and ellipsometer. The detection limit and the affinity constant have found to be 0.09 μM and 5.71 × 103 M-1 for MAAP-Eu paraoxon-based nanofilm, respectively. The specificity of the QCM sensor has shown using parathion as a competitor molecule.
[A fluoride-sensor for kink structure in DNA condensation process].
Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin
2014-01-01
Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.
MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.
Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub
2016-04-06
Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.
Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.
Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan
2014-09-01
Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.
Ion-selective optical sensor for continuous on-line monitoring of dialysate sodium during dialysis
NASA Astrophysics Data System (ADS)
Sharma, Manoj K.; Frijns, Arjan J. H.; Mandamparambil, Rajesh; Kooman, Jeroen P.; Smeulders, David M. J.
2017-02-01
Patients with end stage renal disease are dependent on dialysis. In most outpatient centers, the dialysate is prepared with a fixed electrolyte concentration without taking into account the inter-individual differences of essential electrolytes (sodium, potassium and calcium). This one-size fits all approach can lead to acute and chronic cardiovascular complications in dialysis patients. On-line monitoring of these essential electrolytes is an important physiological step towards patient specific dialysate leading to individualized treatment. Currently, changes in electrolyte concentrations are indirectly measured by conductivity measurements, which are not ion- specific. In this paper, we present a novel optical sensor for on-line monitoring of sodium concentrations in dialysate. This sensor is ion-specific and can detect up to a single ion. The working principle is based on the selective fluorescence quenching of photo-induced electron transfer (PET) molecules. The PET molecules when complexed with sodium ions start fluorescing upon laser excitation. The emission intensity is directly correlated to the sodium concentration. To prove the working principle, a micro-optofluidic device has been fabricated in polydimethylsiloxane (PDMS) with integrated optical fibers for fluorescence light collection. The PET molecules are covalently grafted in the PDMS microchannel for continuous monitoring of the sodium dialysate concentrations. The experimental setup consists of a laser module (λ=450nm) operating at 4.5mW, a syringe pump to precisely control the sample flow and a spectrometer for fluorescence collection. The performance of the sensor has been evaluated for sodium ions ranging from 0-50mM. A clear signal and good response time was observed.
A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement
Wang, Jian-Neng
2011-01-01
Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG) capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO) water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975) was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5−2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0.8569 mW/ h to −0.5169 mW/ h. Furthermore, the bias stability was determined to be in the range of less than 6.134 × 10−8 mW/h with 600 s time cluster to less than 1.412 × 10−6 mW/h with 600 s time cluster. Thus, the proposed LPFG-based microfluidic platform has the potential for civil, chemical, biological, and biochemical sensing with aqueous solutions. The compact (3.5 × 4.2 cm), low-cost, real-time, small-volume (∼70 μL), low-noise, and high-sensitive chloride ion sensing system reported here could hopefully benefit the development and applications in the field of chemical, biotechnical, soil and geotechnical, and civil engineering. PMID:22164091
Optical CO2 sensing with ionic liquid doped electrospun nanofibers.
Aydogdu, Sibel; Ertekin, Kadriye; Suslu, Aslihan; Ozdemir, Mehtap; Celik, Erdal; Cocen, Umit
2011-03-01
The first use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based optical CO(2) sensors is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric materials. Sensing slides were fabricated by electrospinning technique. A fiber-optic bundle was used for the gas detection. CO(2) sensors based on the change in the fluorescence signal intensity of ion pair form of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The sensor slides showed high sensitivities due to the high surface area-to-volume ratio of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect CO(2) are 24 to 120 fold higher than those of the thin film based sensors. The response times of the sensing reagents were short and the signal changes were fully reversible. The stability of ion pair form of HPTS in the employed matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 7 months. Our stability tests are still in progress. © Springer Science+Business Media, LLC 2010
Study of an ionic smoke sensor
NASA Astrophysics Data System (ADS)
Mokhtari, Z.; Holé, S.; Lewiner, J.
2013-05-01
Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors.
Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor
NASA Astrophysics Data System (ADS)
Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.
2018-05-01
Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.
Solution-gated graphene transistors for chemical and biological sensors.
Yan, Feng; Zhang, Meng; Li, Jinhua
2014-03-01
Graphene has attracted much attention in biomedical applications for its fascinating properties. Because of the well-known 2D structure, every atom of graphene is exposed to the environment, so the electronic properties of graphene are very sensitive to charged analytes (ions, DNA, cells, etc.) or an electric field around it, which renders graphene an ideal material for high-performance sensors. Solution-gated graphene transistors (SGGTs) can operate in electrolytes and are thus excellent candidates for chemical and biological sensors, which have been extensively studied in the recent 5 years. Here, the device physics, the sensing mechanisms, and the performance of the recently developed SGGT-based chemical and biological sensors, including pH, ion, cell, bacterial, DNA, protein, glucose sensors, etc., are introduced. Their advantages and shortcomings, in comparison with some conventional techniques, are discussed. Conclusions and challenges for the future development of the field are addressed in the end. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supramolecular Based Membrane Sensors
Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza
2006-01-01
Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.
Ibáñez, María M.
2015-01-01
ABSTRACT MerR metalloregulators alleviate toxicity caused by an excess of metal ions, such as copper, zinc, mercury, lead, cadmium, silver, or gold, by triggering the expression of specific efflux or detoxification systems upon metal detection. The sensor protein binds the inducer metal ion by using two conserved cysteine residues at the C-terminal metal-binding loop (MBL). Divalent metal ion sensors, such as MerR and ZntR, require a third cysteine residue, located at the beginning of the dimerization (α5) helix, for metal coordination, while monovalent metal ion sensors, such as CueR and GolS, have a serine residue at this position. This serine residue was proposed to provide hydrophobic and steric restrictions to privilege the binding of monovalent metal ions. Here we show that the presence of alanine at this position does not modify the activation pattern of monovalent metal sensors. In contrast, GolS or CueR mutant sensors with a substitution of cysteine for the serine residue respond to monovalent metal ions or Hg(II) with high sensitivities. Furthermore, in a mutant deleted of the Zn(II) exporter ZntA, they also trigger the expression of their target genes in response to either Zn(II), Cd(II), Pb(II), or Co(II). IMPORTANCE Specificity in a stressor's recognition is essential for mounting an appropriate response. MerR metalloregulators trigger the expression of specific resistance systems upon detection of heavy metal ions. Two groups of these metalloregulators can be distinguished, recognizing either +1 or +2 metal ions, depending on the presence of a conserved serine in the former or a cysteine in the latter. Here we demonstrate that the serine residue in monovalent metal ion sensors excludes divalent metal ion detection, as its replacement by cysteine renders a pan-metal ion sensor. Our results indicate that the spectrum of signals detected by these sensors is determined not only by the metal-binding ligand availability but also by the metal-binding cavity flexibility. PMID:25691529
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Gas Sensors Based on Coated and Doped Carbon Nanotubes; Tactile Robotic Topographical Mapping Without Force or Contact Sensors; Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids; Progress in Development of Improved Ion-Channel Biosensors; Simulating Operation of a Complex Sensor Network; Using Transponders on the Moon to Increase Accuracy of GPS; Controller for Driving a Piezoelectric Actuator at Resonance; Coaxial Electric Heaters; Dual-Input AND Gate From Single-Channel Thin-Film FET; High-Density, High-Bandwidth, Multilevel Holographic Memory; Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters; Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass; Photochemically Synthesized Polyimides; Optimized Carbonate and Ester-Based Li-Ion Electrolytes; Compact 6-DOF Stage for Optical Adjustments; Ultrasonic/Sonic Impacting Penetrators; Miniature, Lightweight, One-Time-Opening Valve; Supplier Management System; Improved CLARAty Functional-Layer/Decision-Layer Interface; JAVA Stereo Display Toolkit; Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool; PyPele Rewritten To Use MPI; Data Assimilation Cycling for Weather Analysis; Hydrocyclone/Filter for Concentrating Biomarkers from Soil; Activating STAT3 Alpha for Promoting Healing of Neurons; and Probing a Spray Using Frequency-Analyzed Light Scattering.
Glass, Robert S.
1997-01-01
A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.
Glass, R.S.
1997-12-16
A sensor is disclosed to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects. 16 figs.
Kounaves, Samuel P; Lukow, Stefan R; Comeau, Brian P; Hecht, Michael H; Grannan-Feldman, Sabrina M; Manatt, Ken; West, Steven J; Wen, Xiaowen; Frant, Martin; Gillette, Tim
2003-07-25
The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.
NASA Technical Reports Server (NTRS)
Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim
2003-01-01
The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.
Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui
2013-09-21
A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples.
NASA Astrophysics Data System (ADS)
Thaomola, Sukhontip; Sompech, Supachai
2018-05-01
The global minimum optimized structures of the free sensor 5-methyl-4-(2-thiazolylazo) resorcinol (5-Me-TAR) and 5-Me-TAR-Cu2+ complexes in the gas phase have been investigated by using Density Functional Theory (DFT) with the def2-TZVP basis set. To compare the selectivity of 5-Me-TAR for metal ions, the binding energy of 5-Me-TAR with various metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pd2+, Cd2+ and Hg2+) were calculated at the same level as the theory. Binding energy values of most transition metal ions are lower than alkaline earth metal ions and alkali metal ions, respectively. The 5-Me-TAR sensor shows the highest selectivity with the Cu2+ ion. Moreover, Dependent Density Functional Theory (TDDFT) results confirm that the 5-Me-TAR-Cu2+ complex is stabilized by the sensor to metal charge transfer process. The computational studies suggested that the 5-Me-TAR is suitable for Cu2+ ion detection sensor development.
High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs
NASA Astrophysics Data System (ADS)
Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao
2016-11-01
The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.
Lab-on-a-Chip Sensor for Monitoring Perchlorate in Ground and Surface Water
2012-02-01
uses zwitterionic surfactants was immobilized on either a conventional or membrane-based stationary phase (electrostatic ion chromatography ) em...substantially higher than that of drinking water. A novel extraction method incorporat- ing the fundamentals of electrostatic ion chromatography (EIC) was...electrostatic ion chromatography (EIC), is presented as a way to overcome this challenge. Two extraction formats, employing either a packed bed or a monolith
A novel fiber optic sensor for the measurement of pH of blood based on colorimetry
NASA Astrophysics Data System (ADS)
Chaudhari, A. L.; Patil, D. D.; Shaligram, Arvind D.
2005-04-01
Fiber optic sensors designed to the date are largely based on monitoring the absorption change of several immobilized indicators or change in fluorescence of fluorometric indicators. The present paper reports a new type of fiber optic sensor for the measurement of blood pH based on Colorimetric principle. The sensor consists of two multimode step index fibers, mirror as reflector and blood serum with universal indicator as medium. LED is used as source and photodiode as detector. The intensity of color produced due to addition of indicator to blood serum depends upon hydrogen ion concentration. The output intensity from receiving fiber is measured as a function of pH of blood. The developed sensor is calibrated against the standard pH meter. The design, construction and calibration details are presented in paper.
NASA Astrophysics Data System (ADS)
Tan, Shin-Yinn; Lee, Sheng-Chyan; Okazaki, Takuya; Kuramitz, Hideki; Abd-Rahman, Faidz
2018-07-01
This paper presents mercury (II) ions detection based on long period fiber grating (LPFG) sensor written on a single mode optical fiber by electrical arc induced technique that is suitable to be used for long term monitoring purpose. In the work, the LPFG was coated with both polyelectrolyte (PE) layers to enhance its sensitivity as well as a layer of gold nanoparticles (AuNP) for reaction to the mercury (II) ions. Experiments were conducted using double-pass configurations with mercury (II) ions concentrations varied between 0.5 ppm to 10 ppm. The results showed that the resonance wavelength of the PE-AuNP coated LPFG notch shifted to the longer wavelength, with a total shift of 1.34 nm and transmission power increment of 1.74 dBm over a period of 5 h. The results were then compared with uncoated as well as PE-only coated LPFGs, where no significant changes in resonance wavelength and transmission power were observed for these LPFGs. A novel PE-AuNP coated LPFG sensor that is suitable to be used for in-situ, long term and remote monitoring has been successfully demonstrated and tested for the detection of mercury (II) ions in water.
A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.
Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B
2014-09-01
In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.
NASA Astrophysics Data System (ADS)
Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.
2013-08-01
The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia. Electronic supplementary information (ESI) available: The experimental procedures for synthesis of AC-LHT, mesoporous core/double shell silica, and optical core/multi-shell sensors. The adsorption capacity, optical recognition of Pb ions, colorimetric response of Pb ions in ethanol medium, Langmuir adsorption isotherm and reusability of captor are addressed. See DOI: 10.1039/c3nr02403b
Applications of SPICE for modeling miniaturized biomedical sensor systems
NASA Technical Reports Server (NTRS)
Mundt, C. W.; Nagle, H. T.
2000-01-01
This paper proposes a model for a miniaturized signal conditioning system for biopotential and ion-selective electrode arrays. The system consists of three main components: sensors, interconnections, and signal conditioning chip. The model for this system is based on SPICE. Transmission-line based equivalent circuits are used to represent the sensors, lumped resistance-capacitance circuits describe the interconnections, and a model for the signal conditioning chip is extracted from its layout. A system for measurements of biopotentials and ionic activities can be miniaturized and optimized for cardiovascular applications based on the development of an integrated SPICE system model of its electrochemical, interconnection, and electronic components.
Fiber optic sensors for corrosion detection
NASA Technical Reports Server (NTRS)
Smith, Alphonso C.
1993-01-01
The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.
Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki
2010-01-01
Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).
Sensor-actuator system for dynamic chloride ion determination.
de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert
2015-08-12
Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemical Sensors Based on Cyclodextrin Derivatives.
Ogoshi, Tomoki; Harada, Akira
2008-08-25
This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.
Cuspp: Cubesat Mission to Study Solar Particles over the Earth's Poles
NASA Astrophysics Data System (ADS)
Allegrini, F.; Desai, M. I.; Ebert, R. W.; George, D. E.; Jahn, J. M.; Livi, S. A.; Ogasawara, K.; Christian, E. R.; Kanekal, S. G.
2014-12-01
The CubeSat mission to study Solar Particles over the Earth's Poles (CuSPP) has recently been selected by NASA part of the LCAS program. It is a 4-year project to design, develop, and integrate a 3U CubeSat with a miniaturized suprathermal ion spectrograph (SIS) to measure the temporal, spectral, and angular distributions of ~3-70 keV/q suprathermal ions that constitute the source material for solar and interplanetary particle events. SIS is a novel, electrostatic analyzer-microchannel plate based sensor that is the scaled down version of a potential future larger sensor for space weather predictions and suprathermal ion science. CuSPP's technical objective is to increase the technological readiness level (TRL) of SIS so that it can be proposed and flown with significantly reduced risk and cost on future Heliophysics mission. From a ~500 km nearly circular, high inclination (>65°) LEO, CuSPP sweeps through the polar cap regions, where it will measure ion precipitation, and all magnetospheric L-shells at an orbital period of ~95 minutes. We will present the mission concept, the science objectives, the sensor, and report on the status.
The ion population between 1300 km and 230000 km in the coma of comet P/Halley
NASA Technical Reports Server (NTRS)
Altwegg, K.; Balsiger, H.; Geiss, J.; Goldstein, R.; Ip, W. -H.; Meier, A.; Neugebauer, M.; Rosenbauer, H.; Shelley, E.
1993-01-01
During the encounter of the spacecraft Giotto with Comet Halley the two sensors of the ion mass spectrometer (IMS), high energy range spectrometer (HERS) and high intensity spectrometer (HIS), measured the mass and the three-dimensional velocity distributions of cometary ions. HIS looked mainly at the cold, slow part of the distribution close to the nucleus, HERS at the more energetic pick-up ions further out. After a thorough recalibration of the HIS flight spare unit and an extensive data analysis we present here continuous ion density-, composition-, velocity-, and temperature profiles for the water group ion (mass range 16-19 amu/e) along Giotto's inbound trajectory from 230,000 to 1300 km from the comet nucleus. The two sensors are in very good agreement in the region where their measurements overlap thus giving an excellent data base for the discussion of theoretical comet models. The most prominent feature where models and observations disagree is the so called pile up region between 8000 and 15,000 km from the nucleus.
Sahani, Manoj Kumar; Singh, A K; Jain, A K
2015-05-01
The two ionophores N'(N',N‴E,N',N‴E)-N',N‴-((((oxybis(ethane-2,1-diyl))bis(oxy)) bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I1) and (N',N‴E,N',N‴E)-N',N‴-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I2) were synthesised and investigated as neutral carrier in the fabrication of Mn(2+) ion selective sensor. Several membranes were prepared by incorporating different plasticizers and anionic excluders and their effect on potentiometric response was studied. The best analytical performance was obtained with the electrode having a membrane of composition of I2: PVC: o-NPOE: NaTPB in the ratio of 6:34:58:2 (w/w, mg). Comparative studies of coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) based on I2 reveal the superiority of CPGE. The CPGE exhibits wide working concentration range of 1.23×10(-8)-1.0×10(-1) mol L(-1) and a detection limit down to 4.78×10(-9) mol L(-1) with a Nernstian slope of 29.5±0.4 mV decade(-1) of activity. The sensor performs satisfactorily over a wide pH range (3.5-9.0) and exhibited a quick response time (9s). The sensor can work satisfactorily in water-acetonitrile and water-methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor could be used for a period of four months without any significant divergence in performance. The sensor reflects its utility in the quantification of Mn(2+) ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Mn(2+) ion with ethylenediaminetetraacetic acid (EDTA). Copyright © 2015 Elsevier B.V. All rights reserved.
Room temperature CO and H2 sensing with carbon nanoparticles.
Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo
2011-12-02
We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.
Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles
NASA Astrophysics Data System (ADS)
Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.
2016-12-01
The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.
Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping
2014-01-31
Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
Faure, Élise; Starek, Greg; McGuire, Hugo; Bernèche, Simon; Blunck, Rikard
2012-11-16
Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.
Environmental monitors in the Midcourse Space Experiments (MSX)
NASA Technical Reports Server (NTRS)
Uy, O. M.
1993-01-01
The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .
Prediction of Trace Element based Energizing Sensor Control System using PWM
NASA Astrophysics Data System (ADS)
Zukri, Mohammad Nizar Bin Mohamed; Abu Bakar, Elmi Bin; Uchiyama, Naoki; Abdullah, Mohamad Nazir Bin
2018-05-01
A real-time system for field-work monitoring wastewater laden with heavy metal in industrial discharge through wireless communication network was developed. The monitoring system poses an interesting challenge in order to determine existing metal ion in the solution whereas the previous result only consider total dissolve ion. This paper aims to distinguish the metal ion based on reaction determination in solution. The control algorithm was implemented as generating voltage input for energize conductivity sensor since the voltage corresponding to oxidation and reaction based on standard reduction potential. Implementation of ATmega2560 microcontroller for control voltage fed on sensor equivalent to controlling the PWM duty cycle. PID controller was designed uses a microcontroller (Arduino) platform with manual tuning for identify reaction process and sufficient voltage input. From the experimental result, is found that the proposed PI controller has excellent tracking and measurement performance. Low-pass filter was applied in programming to make the system understand that signal has achieved stable. The development of hardware and software of the closed loop system has an enhancement of measurement performance and high feasibility for SME’s company in economic point of view. The desired objective is to achieve a system with the stable measurement and sufficient voltage supply. This system will provide an accurate and precise control efficiently without using costly component and complicated circuit.
FRET-Based Nanobiosensors for Imaging Intracellular Ca²⁺ and H⁺ Microdomains.
Zamaleeva, Alsu I; Despras, Guillaume; Luccardini, Camilla; Collot, Mayeul; de Waard, Michel; Oheim, Martin; Mallet, Jean-Maurice; Feltz, Anne
2015-09-23
Semiconductor nanocrystals (NCs) or quantum dots (QDs) are luminous point emitters increasingly being used to tag and track biomolecules in biological/biomedical imaging. However, their intracellular use as highlighters of single-molecule localization and nanobiosensors reporting ion microdomains changes has remained a major challenge. Here, we report the design, generation and validation of FRET-based nanobiosensors for detection of intracellular Ca(2+) and H⁺ transients. Our sensors combine a commercially available CANdot(®)565QD as an energy donor with, as an acceptor, our custom-synthesized red-emitting Ca(2+) or H⁺ probes. These 'Rubies' are based on an extended rhodamine as a fluorophore and a phenol or BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid) for H⁺ or Ca(2+) sensing, respectively, and additionally bear a linker arm for conjugation. QDs were stably functionalized using the same SH/maleimide crosslink chemistry for all desired reactants. Mixing ion sensor and cell-penetrating peptides (that facilitate cytoplasmic delivery) at the desired stoichiometric ratio produced controlled multi-conjugated assemblies. Multiple acceptors on the same central donor allow up-concentrating the ion sensor on the QD surface to concentrations higher than those that could be achieved in free solution, increasing FRET efficiency and improving the signal. We validate these nanosensors for the detection of intracellular Ca(2+) and pH transients using live-cell fluorescence imaging.
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
A novel Laser Ion Mobility Spectrometer
NASA Astrophysics Data System (ADS)
Göbel, J.; Kessler, M.; Langmeier, A.
2009-05-01
IMS is a well know technology within the range of security based applications. Its main advantages lie in the simplicity of measurement, along with a fast and sensitive detection method. Contemporary technology often fails due to interference substances, in conjunction with saturation effects and a low dynamic detection range. High throughput facilities, such as airports, require the analysis of many samples at low detection limits within a very short timeframe. High detection reliability is a requirement for safe and secure operation. In our present work we developed a laser based ion-mobility-sensor which shows several advantages over known IMS sensor technology. The goal of our research was to increase the sensitivity compared to the range of 63Ni based instruments. This was achieved with an optimised geometric drift tube design and a pulsed UV laser system at an efficient intensity. In this intensity range multi-photon ionisation is possible, which leads to higher selectivity in the ion-formation process itself. After high speed capturing of detection samples, a custom designed pattern recognition software toolbox provides reliable auto-detection capability with a learning algorithm and a graphical user interface.
Graphene- and aptamer-based electrochemical biosensor
NASA Astrophysics Data System (ADS)
Xu, Ke; Meshik, Xenia; Nichols, Barbara M.; Zakar, Eugene; Dutta, Mitra; Stroscio, Michael A.
2014-05-01
This study investigated the effectiveness of a graphene- and aptamer-based field-effect-transistor-like (FET-like) sensor in detecting lead and potassium ions. The sensor consists of a graphene-covered Si/SiO2 wafer with thrombin binding aptamer (TBA) attached to the graphene layer and terminated by a methylene blue (MB) molecule. K+ and Pb2+ both bind to TBA and cause a conformational change, which results in MB moving closer to the graphene surface and donating an electron. Thus, the abundance of K+ and Pb2+ can be determined by monitoring the current across the source and drain channel. Device transfer curves were obtained with ambipolar field effect observed. Current readings were taken for K+ concentrations of 100 μM to 50 mM and Pb2+ concentrations of 10 μM to 10 mM. As expected, I d decreased as ion concentration increased. In addition, there was a negative shift in V Dirac in response to increased ion concentration.
Fu, Yang; Yang, Yajie; Tuersun, Tayierjiang; Yu, Yuan; Zhi, Jinfang
2018-04-30
A novel electrochemical sensor based on sulfur (S)-doped graphene (S-Gr) and a 3,3',5,5'-tetramethylbenzidine (TMB) composite (S-Gr-TMB) modified glassy carbon (GCE) electrode for highly selective quantitative detection of silver ions (Ag+) were fabricated. The S-Gr-TMB composite was first prepared via electrostatic interaction between TMB and S-Gr and then, the composite was coated on the surface of GCE. The resultant S-Gr-TMB/GCE electrode showed a significant voltammetric response to Ag+ at 0.3 V vs. Ag/AgCl due to the synergistic effect of S-Gr and TMB. The sensor showed good linearity from 50 μM to 400 μM with a detection limit of 2.15 μM towards the determination of Ag+. In addition, after the addition of Fe3+ and other metal ions, including Al3+, Ca2+, Cd2+, Co2+, Cu2+, K+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+, in the same concentration, the current signal remained almost unchanged, revealing that the proposed electrochemical sensor exhibited a high selectivity for Ag+, which solves the nonselective problem of TMB as a spectral probe. This enhanced detection performance is attributed to two factors: (1) S-Gr has excellent electrical conductivity; (2) the coupling interactions between Ag-S are speculated to result in strengthened enrichment for Ag and good selective performance.
Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian
2005-03-01
We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.
Zinc phthalocyanine nanowires based flexible sensor for room temperature Cl2 detection
NASA Astrophysics Data System (ADS)
Devi, Pooja; Saini, Rajan; Singh, Rajinder; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Debnath, A. K.
2018-04-01
We have fabricated highly sensitive and Cl2 selective flexible sensor by depositing solution processed zinc phthalocyanine nanowires onto the flexible PET substrate and studied its Cl2 sensing characteristics in Cl2 concentration range 5-1500 ppb. The flexible sensor has a minimum detection limit as low as 5 ppb of Cl2 and response as high as 550% within 10 seconds. Interestingly, the sensor exhibited enhanced and faster response kinetics under bending conditions. The gas sensing mechanism of sensor has been discussed on the basis of XPS and Raman spectroscopic studies which revealed that zinc ions were the preferred sites for Cl2 interactions.
Wang, Jiaobing; Qian, Xuhong; Qian, Junhong; Xu, Yufang
2007-01-01
A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.
Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat
2015-02-05
A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.
Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions.
Israr-Qadir, Muhammad; Jamil-Rana, Sadaf; Nur, Omer; Willander, Magnus
2017-07-19
Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol.
Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions
Israr-Qadir, Muhammad; Jamil-Rana, Sadaf; Nur, Omer; Willander, Magnus
2017-01-01
Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol. PMID:28753916
Ionization based multi-directional flow sensor
Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV
2009-04-28
A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.
MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument
NASA Astrophysics Data System (ADS)
McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.
2015-12-01
The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.
Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.
Guan, Weihua; Reed, Mark A
2017-01-01
An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.
A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.
Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi
2014-11-01
A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.
Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping
2013-01-01
A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.
Kim, Kyukwang; Kim, Hyeong Keun; Lim, Hwijoon; Myung, Hyun
2016-01-01
In this research an open source, low power sensor node was developed to check the growth of mycobacteria in a culture bottle with a nitrate reductase assay method for a drug susceptibility test. The sensor system reports the temperature and color sensor output frequency change of the culture bottle when the device is triggered. After the culture process is finished, a nitrite ion detecting solution based on a commercial nitrite ion detection kit is injected into the culture bottle by a syringe pump to check bacterial growth by the formation of a pigment by the reaction between the solution and the color sensor. Sensor status and NRA results are broadcasted via a Bluetooth low energy beacon. An Android application was developed to collect the broadcasted data, classify the status of cultured samples from multiple devices, and visualize the data for the end users, circumventing the need to examine each culture bottle manually during a long culture period. The authors expect that usage of the developed sensor will decrease the cost and required labor for handling large amounts of patient samples in local health centers in developing countries. All 3D-printerable hardware parts, a circuit diagram, and software are available online. PMID:27338406
Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan
2012-05-21
Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.
In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors
Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi
2011-01-01
Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735
Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi
2011-01-01
Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.
2008-07-07
from normal. Comparison with past measurement results are made where possible. I. Nomenclature As = sensor area of QCM E = beam ion...use a combination of weight-loss and QCM deposition sensor and builds upon our previous work 5-7, 9- 10 . In Section III we summarize our experimental...containing the surface normal and the incident ion directions). E. QCM Sensor and Signal Analysis In deposition mode, the QCM allows
An integrated semiconductor device enabling non-optical genome sequencing.
Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James
2011-07-20
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Zhang, Zhenxiao; Dou, Qian; Gao, Hongkai; Bai, Bing; Zhang, Yongmei; Hu, Debo; Yetisen, Ali K; Butt, Haider; Yang, Xiaoxia; Li, Congju; Dai, Qing
2018-03-01
Potassium detection is critical in monitoring imbalances in electrolytes and physiological status. The development of rapid and robust potassium sensors is desirable in clinical chemistry and point-of-care applications. In this study, composite supramolecular hydrogels are investigated: polyethylene glycol methacrylate and acrylamide copolymer (P(PEGMA-co-AM)) are functionalized with 18-crown-6 ether by employing surface initiated polymerization. Real-time potassium ion monitoring is realized by combining these compounds with quartz crystal microbalance. The device demonstrates a rapid response time of ≈30 s and a concentration detection range from 0.5 to 7.0 × 10 -3 m. These hydrogels also exhibit high reusability and K + ion selectivity relative to other cations in biofluids such as Na + , NH 4 + , Mg 2+ , and Ca 2+ . These results provide a new approach for sensing alkali metal ions using P(PEGMA-co-AM) hydrogels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
Nucleic acid based fluorescent sensor for mercury detection
Lu, Yi; Liu, Juewen
2013-02-05
A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.
Nanopore DNA sensors based on dendrimer-modified nanopipettes.
Fu, Yaqin; Tokuhisa, Hideo; Baker, Lane A
2009-08-28
A dendrimer-modified nanopipette is used to detect hybridization of a specific DNA sequence through evaluation of the extent of rectification of ion currents observed in the measured current-voltage response.
Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors
Teterycz, Helena; Halek, Patryk; Wiśniewski, Kamil; Halek, Grzegorz; Koźlecki, Tomasz; Polowczyk, Izabela
2011-01-01
The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity. PMID:22163855
Electronic Tongue Containing Redox and Conductivity Sensors
NASA Technical Reports Server (NTRS)
Buehler, Martin
2007-01-01
The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.
A family for miniature, easily reconfigurable particle sensors for space plasma measurements
NASA Astrophysics Data System (ADS)
Wieser, M.; Barabash, S.
2016-12-01
Over the last 15 years the Swedish Institute of Space Physics developed a line of miniaturized ion mass analyzers for space plasma studies with masses of 400-600 g and highly compact and dense design to minimize the volume. The sensors cover an energy range from few eV up to 15 keV and reach an angular coverage up to hemispherical and mass resolution up to 7, depending on application. The experience with this line of sensors demonstrates that a sensor mass of 400-600 g is a limit in the trade-off between scientifically valuable performance and the sensor mass. The Solar Wind Monitor (SWIM), part of the Sub-keV Atom Reflecting Analyzer (SARA) on board of the Indian Chandrayaan-1 mission to the Moon, was the first sensor in the line. A number of instruments derived from SWIM were built, each using the same basic architecture but adapted for the needs of the corresponding mission: the Miniature Ion Precipitation Analyzer (MIPA) on the European Space Agency's BepiColombo mission to Mercury, the Detector for Ions at Mars (DIM) for the Russian Phobos-Grunt mission and the Yinghuo Plasma Package Ion sensor (YPPi) for the Chinese Yinghuo-1 spacecraft (both to Mars), the Prisma Ion Mass Analyzer (PRIMA) for the Swedish PRISMA spacecraft to Earth orbit, the eXtra Small Analyzer of Neutrals (XASN) for the Russian Luna-Glob lander, and the Laboratory Ion Scattering Analyzer (LISA) used for laboratory studies. We review architecture, design, performance, and fields of application of the instruments in this family and give and outlook in future developments.
Real-time plasma control in a dual-frequency, confined plasma etcher
NASA Astrophysics Data System (ADS)
Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.
2008-04-01
The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.
Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen
2015-01-01
The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223
High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor
Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.
2016-01-01
In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381
High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.
Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N
2016-06-07
In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.
Development of poly-3-hexylthiophene based ISFET sensors for biomedical applications
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.
2007-04-01
Ion-sensitive Field-Effect Transistors (ISFETs) have been applied for in vitro and online detection for clinical purposes such as concentration of urea, penicillin-G and potassium ion (K+). They have proven to be highly sensitive, shown less response time, reproducible and smaller than the piecewise assembled conventional biosensors. Materials like p3HT, Tantalum Oxide and PVA-SbQ have show their merit as components of various FETs fabricated on silicon substrate. This paper discusses the feasibility of using them together along with design enhancements such as zigzag inter-digitated electrode. The results hitherto obtained have been analyzed and conclusions are drawn to set future course of experimentation to develop the ISFET for sensor applications.
Brooker, Robert Paul; Mohajeri, Nahid
2016-01-05
A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.
Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-07-04
Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.
Barykina, Natalia V.; Subach, Oksana M.; Doronin, Danila A.; Sotskov, Vladimir P.; Roshchina, Marina A.; Kunitsyna, Tatiana A.; Malyshev, Aleksey Y.; Smirnov, Ivan V.; Azieva, Asya M.; Sokolov, Ilya S.; Piatkevich, Kiryl D.; Burtsev, Mikhail S.; Varizhuk, Anna M.; Pozmogova, Galina E.; Anokhin, Konstantin V.; Subach, Fedor V.; Enikolopov, Grigori N.
2016-01-01
Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope. PMID:27677952
Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S
2017-01-01
To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia
2018-03-01
An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent developments of genetically encoded optical sensors for cell biology.
Bolbat, Andrey; Schultz, Carsten
2017-01-01
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin
2015-01-01
A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. PMID:26008641
Xing, Ling-Bao; Yang, Bing; Wang, Xiao-Jun; Wang, Jiu-Ju; Chen, Bin; Wu, Qianhong; Peng, Hui-Xing; Zhang, Li-Ping; Tung, Chen-Ho; Wu, Li-Zhu
2013-03-05
A new type of anthracene organogelator based on uracil was obtained using organic aromatic solvents, cyclohexane, DMSO, ethanol, and ethyl acetate. It was further characterized by field-emission scanning electron microscopy and transmission electron microscopy. Specifically, the resulting organogels were demonstrated to be promising colorimetric and fluorescent sensors toward fluoride ions with high sensitivity and selectivity, accompanying the disruption of the gelators. Spectroscopic study and (1)H NMR titration experiment revealed that the deprotonation of the hydrogen atom on the N position of uracil moiety by fluoride ions is responsible for the recognition events, evidenced by immediate transformation from the sol phase to the gel state upon adding a small amount of a proton solvent, methanol. The process is reversible, with zero loss in sensing activity and sol-to-gel transformation ability even after five runs.
Development of an automated on-line electrochemical chlorite ion sensor.
Myers, John N; Steinecker, William H; Sandlin, Zechariah D; Cox, James A; Gordon, Gilbert; Pacey, Gilbert E
2012-05-30
A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. Copyright © 2012 Elsevier B.V. All rights reserved.
CMOS active pixel sensors response to low energy light ions
NASA Astrophysics Data System (ADS)
Spiriti, E.; Finck, Ch.; Baudot, J.; Divay, C.; Juliani, D.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.; Agodi, C.; Cuttone, G.; De Napoli, M.; Romano, F.
2017-12-01
Recently CMOS active pixel sensors have been used in Hadrontherapy ions fragmentation cross section measurements. Their main goal is to reconstruct tracks generated by the non interacting primary ions or by the produced fragments. In this framework the sensors, unexpectedly, demonstrated the possibility to obtain also some informations that could contribute to the ion type identification. The present analysis shows a clear dependency in charge and number of pixels per cluster (pixels with a collected amount of charge above a given threshold) with both fragment atomic number Z and energy loss in the sensor. This information, in the FIRST (F ragmentation of I ons R elevant for S pace and T herapy) experiment, has been used in the overall particle identification analysis algorithm. The aim of this paper is to present the data analysis and the obtained results. An empirical model was developed, in this paper, that reproduce the cluster size as function of the deposited energy in the sensor.
Space environment simulation and sensor calibration facility
NASA Astrophysics Data System (ADS)
Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Space environment simulation and sensor calibration facility.
Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE)
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi
Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. KAGUYA(SELENE) is a Japanese lunar orbiter that studies the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. KAGUYA was successfully launched on 14 September 2007 by HIIA launch vehicle from Tanegashima Space Center in Japan. KAGUYA was inserted into a circular lunar polar orbit of 100km altitude and started continuous observation in mid-December 2007. One of the fourteen science instruments MAP-PACE (MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment) was developed for the comprehensive three-dimensional plasma measurement around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure the distribution function of low energy electrons below 15keV. IMA and IEA measure the distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. PACE sensors have been measuring solar wind, plasmas in the wake region of the Moon and plasmas in the Earth's magnetosphere. ESA sensors have discovered electron heating over magnetic anomalies on the lunar surface. ESA sensors have also observed electrons accelerated from the lunar surface in the wake region. PACE ion sensors have discovered new features of low energy ions around the Moon. IMA has discovered the existence of alkali ions that are originated from the lunar surface or lunar atmosphere and are picked up by the solar wind. IEA and IMA sensors discovered solar wind reflection by the Moon. PACE ion sensors also discovered that ions are rarefied over the magnetic anomaly on the lunar surface while electrons are heated. MAP-PACE has been revealing unexpectedly active plasma environment around the Moon.
Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy
2015-01-01
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Defect-engineered graphene chemical sensors with ultrahigh sensitivity.
Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun
2016-05-25
We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.
Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang
2016-09-01
Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.
Quantitative imaging with fluorescent biosensors.
Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B
2012-01-01
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures.
Leung, Christopher K Y; Wan, Kai Tai; Chen, Liquan
2008-03-20
Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.
A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures
Leung, Christopher K.Y.; Wan, Kai Tai; Chen, Liquan
2008-01-01
Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments. PMID:27879805
SSM-Based Electrophysiology for Transporter Research.
Bazzone, Andre; Barthmes, Maria; Fendler, Klaus
2017-01-01
Functional characterization of transport proteins using conventional electrophysiology can be challenging, especially for low turnover transporters or transporters from bacteria and intracellular compartments. Solid-supported membrane (SSM)-based electrophysiology is a sensitive and cell-free assay technique for the characterization of electrogenic membrane proteins. Purified proteins reconstituted into proteoliposomes or membrane vesicles from cell culture or native tissues are adsorbed to the sensor holding an SSM. A substrate or a ligand is applied via rapid solution exchange. The electrogenic transporter activity charges the sensor, which is recorded as a transient current. The high stability of the SSM allows cumulative measurements on the same sensor using different experimental conditions. This allows the determination of kinetic properties including EC 50 , IC 50 , K m , K D , and rate constants of electrogenic reactions. About 100 different transporters have been measured so far using this technique, among them symporters, exchangers, uniporters, ATP-, redox-, and light-driven ion pumps, as well as receptors and ion channels. Different instruments apply this technique: the laboratory setups use a closed flow-through arrangement, while the commercially available SURFE 2 R N1 resembles a pipetting robot. For drug screening purposes high-throughput systems, such as the SURFE 2 R 96SE enable the simultaneous measurement of up to 96 sensors. © 2017 Elsevier Inc. All rights reserved.
Single Molecule Sensing by Nanopores and Nanopore Devices
Gu, Li-Qun; Shim, Ji Wook
2010-01-01
Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694
Copper ion sensing with fluorescent electrospun nanofibers.
Ongun, Merve Zeyrek; Ertekin, Kadriye; Gocmenturk, Mustafa; Ergun, Yavuz; Suslu, Aslıhan
2012-05-01
In this work, the use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based copper sensitive chemosensor is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric support materials. Sensing slides were fabricated by electrospinning technique. Copper sensors based on the change in the fluorescence signal intensity of fluoroionophore; N'-3-(4-(dimethylamino phenly)allylidene)isonicotinohydrazide. The sensor slides exhibited high sensitivities due to the high surface area of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect Cu(II) ions are 6-20-fold higher than those of the continuous thin films. By this way we obtained linear calibration plots for Cu(II) ions in the concentration range of 10(-12)-10(-5)M. The response times of the sensing slides were less than 1 min. Stability of the employed ionophore in the matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 6 months. Our stability tests are still in progress. Copyright © 2012 Elsevier B.V. All rights reserved.
Xiong, Yan; Wu, Jiayi; Wang, Qing; Xu, Jing; Fang, Shenwen; Chen, Jie; Duan, Ming
2017-11-01
In this work, a miniaturized optical sensor was developed for fluoride determination in tea samples to evaluate their specific risks of fluorosis for public health based on evanescent-wave interaction. The sensor design was integrated on the optical fiber by utilizing the evanescent wave produced on the fiber surface to react with sensing reagents. According to the absorption change at 575nm, fluoride could be determined by colorimetric method and evaluated by Beer's law. With improved performances of small detection volume (1.2μL), fast analysis (0.41min), wide linear range (0.01-1.4mgL -1 ), low detection limit (3.5μgL -1 , 3σ) and excellent repeatability (2.34%), the sensor has been applied to fluoride determination in six different tea samples. Conventional spectrophotometry and ion chromatography were employed to validate the sensor's accuracy and potential application. Furthermore, this sensor fabrication provided a miniaturized colorimetric detection platform for other hazardous species monitoring based on evanescent wave interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
UltraSensitive Mycotoxin Detection by STING Sensors
Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader
2010-01-01
Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024
Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere
NASA Astrophysics Data System (ADS)
Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.
2017-09-01
Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.
Liu, Juewen; Brown, Andrea K; Meng, Xiangli; Cropek, Donald M; Istok, Jonathan D; Watson, David B; Lu, Yi
2007-02-13
Here, we report a catalytic beacon sensor for uranyl (UO2(2+)) based on an in vitro-selected UO2(2+)-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3' quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of UO2(2+) causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of approximately 230 microM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.
Liu, Juewen; Brown, Andrea K.; Meng, Xiangli; Cropek, Donald M.; Istok, Jonathan D.; Watson, David B.; Lu, Yi
2007-01-01
Here, we report a catalytic beacon sensor for uranyl (UO22+) based on an in vitro-selected UO22+-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3′ quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5′ and 3′ ends, respectively. The presence of UO22+ causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of ≈230 μM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium. PMID:17284609
Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung
2009-05-15
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.
A zinc fluorescent sensor used to detect mercury (II) and hydrosulfide.
Jung, Jae Min; Lee, Jae Jun; Nam, Eunju; Lim, Mi Hee; Kim, Cheal; Harrison, Roger G
2017-05-05
A zinc sensor based on quinoline and morpholine has been synthesized. The sensor selectively fluoresces in the presence of Zn 2+ , while not for other metal ions. Absorbance changes in the 350nm region are observed when Zn 2+ binds, which binds in a 1:1 ratio. The sensor fluoresces due to Zn 2+ above pH values of 6.0 and in the biological important region. The Zn 2+ -sensor complex has the unique ability to detect both Hg 2+ and HS - . The fluorescence of the Zn 2+ -sensor complex is quenched when it is exposed to aqueous solutions of Hg 2+ with sub-micromolar detection levels for Hg 2+ . The fluorescence of the Zn 2+ -sensor complex is also quenched by aqueous solutions of hydrosulfide. The sensor was used to detect Zn 2+ and Hg 2+ in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Qiang; Wu, Xiaojie; Wang, Dingzhong; Tang, Wei; Li, Na; Liu, Feng
2011-06-21
A quartz crystal microbalance with dissipation monitoring (QCM-D) sensor was developed for highly sensitive and specific detection of mercury(II) ions (Hg(2+)) with a tunable dynamic range, using oligonucleotide-functionalized gold nanoparticles (GNPs) for both frequency and dissipation amplification. The fabrication of the sensor employed a 'sandwich-type' strategy, and formation of T-Hg(2+)-T structures in linker DNA reduced the hybridization of the GNPs-tagged DNA on the gold electrode, which could be used as the molecular switch for Hg(2+) sensing. This QCM-D mercury sensor showed a linear response of 10-200 nM, with detection limits of 4 nM and 7 nM for frequency and dissipation measurements, respectively. Moreover, the dynamic range of the sensor could be tuned by simply altering the concentration of linker DNA without designing new sensors in the cases where detection of Hg(2+) at different levels is required. This sensor afforded excellent selectivity toward Hg(2+) compared with other potential coexisting metal ions. The feasibility of the sensor was demonstrated by analyzing Hg(2+)-spiked tap- and lake-water samples with satisfactory recoveries. The proposed approach extended the application of the QCM-D system in metal ions sensing, and could be adopted for the detection of other analytes when complemented with the use of functional DNA structures.
Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.
Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong
2016-08-01
Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.
Entanglement-Based dc Magnetometry with Separated Ions*
NASA Astrophysics Data System (ADS)
Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.
2017-07-01
We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zongchao; Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn; Lin, Xiangyi
Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significantmore » fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.« less
NASA Astrophysics Data System (ADS)
Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.
1995-05-01
This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system
Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.
2013-01-01
Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.
Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J
2013-01-01
Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.
ISFET Based Microsensors for Environmental Monitoring
Jimenez-Jorquera, Cecilia; Orozco, Jahir; Baldi, Antoni
2010-01-01
The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented. PMID:22315527
Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor
Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.
2006-01-01
A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.
Ravikumar, Ayyanu; Panneerselvam, Perumal; Morad, Norhashimah
2018-05-24
In this paper, we propose a metal-polydopamine framework (MPDA) with specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability towards various organic fluorophore such as aminoethylcomarin acetate (AMCA), 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine (TAMRA) and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ion. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM labelled ssDNA was adsorbed onto MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor highly sensitive and selective determination of Hg2+and Ag+ ions is achieved through Exonuclease III signal amplification activity. The detection limits of Hg2+and Ag+ achieved to be 1.2 pM and 34 pM respectively, were compared to co-existing metal ions and GO based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.
Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir
2014-01-01
Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263
Reversible cobalt ion binding to imidazole-modified nanopipettes
Sa, Niya; Fu, Yaqin; Baker, Lane A.
2010-01-01
In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co2+) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification response. By cycling nanopipettes between solutions of different pH, adsorbed Co2+ can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses to be attained. PMID:21090777
Reversible cobalt ion binding to imidazole-modified nanopipettes.
Sa, Niya; Fu, Yaqin; Baker, Lane A
2010-12-15
In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co(2+)) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification ratio. When nanopipettes are cycled between solutions of different pH, adsorbed Co(2+) can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses can be attained.
Status of the project TRAPSENSOR: Performance of the laser-desorption ion source
NASA Astrophysics Data System (ADS)
Cornejo, J. M.; Lorenzo, A.; Renisch, D.; Block, M.; Düllmann, Ch. E.; Rodríguez, D.
2013-12-01
Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10-7 to below 10-11 is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δm/m≈10-11 in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform mass measurements using fluorescence photons instead of electronic detection. The device is currently under development at the University of Granada (Spain) within the project TRAPSENSOR. We describe the physics which motivates the construction of this device, the expected performance of the Quantum Sensor compared to that from existing techniques, and briefly present the main components of the project. As a specific aspect of the project, the performance of the laser-desorption ion source utilized to produce calcium, rhenium and osmium ions at different kinetic energies is presented.
Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min
2016-07-15
The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
New Catalytic DNA Biosensors for Radionuclides and Metal ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Lu
2008-03-01
We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specificmore » for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.« less
Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun
2017-05-15
In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Won-Ju; Lim, Cheol-Min
2018-02-01
In this study, we developed a cost-effective ion-sensing field-effect transistor (FET) with an extended gate (EG) fabricated on a separative paper substrate. The pH sensing characteristics of the paper EG was compared with those of other EGs fabricated on silicon, glass, or polyimide substrates. The fabricated paper-based EGFET exhibited excellent sensitivity close to the Nernst response limit as well as to that of the other substrate-based EGFETs. In addition, we found that all EGFETs, regardless of the substrate, have similar non-ideal behavior, i.e., drift phenomenon and hysteresis width. To investigate the degradation and durability of the paper EG after prolonged use, aging-effect tests were carried out in terms of the hysteresis width and sensitivity over a course of 30 days. As a result, the paper EG maintained stable pH sensing characteristics after 30 days. Therefore, we expect that paper EGFETs can provide a cost-effective sensor platform.
Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin
2018-05-29
Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10 M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7 M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10 M.
The analysis of ion-selective field-effect transistor operation in chemical sensors
NASA Astrophysics Data System (ADS)
Hotra, Zenon; Holyaka, Roman; Hladun, Michael; Humenuk, Iryna
2003-09-01
In this paper we present the research results of influence of substrate potential in ion-selective field-effect transistors (ISFET) on output signal of chemical sensors, e.g. PH-meters. It is shown that the instability of substrate-source p-n junction bias in well-known chemical sensors, which use grounded reference electrode - ISFET gate, affect on sensor characteristics in negative way. The analytical description and research results of 'substrate effect' on ISFET characteristics are considered.
A carbohydrate modified fluoride ion sensor and its applications.
Wei, Guohua; Yin, Junxia; Ma, Xing; Yu, Shouyi; Wei, Dongbin; Du, Yuguo
2011-10-10
A new fluorescent probe for the detection of F(-) (TBA(+) and Na(+) salts) has been developed, which is based on a desilylation triggered chromogenic reaction in water. This probe exhibits excellent F(-) ion selectivity as well as significant color changes visible to the naked eye at the concentration of 1.5 mg L(-1), the WHO recommended level of F(-) ions in drinking water. This new carbohydrate modified probe can be used directly in aqueous medium without using organic co-solvents. Furthermore, the probe presents high sensitivity and selectivity for the imaging of F(-) ions in HepG2 cells. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.
2017-12-01
A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.
Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui
2014-03-10
A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions.
Evaluation of the ion-density measurements by the Indian satellite SROSS-C2
NASA Astrophysics Data System (ADS)
Subrahmanyam, P.; Jain, A. R.; Maini, H. K.; Bahl, M.; Das, Rupesh M.; Garg, S. C.; Niranjan, K.
2010-12-01
The ion and electron F region plasma measurements made by the ion and electron Retarding Potential Analyzers (RPAs) onboard the Indian satellite SROSS-C2, have yielded excellent data set over the Indian region for more than half a solar cycle, after the SROSS-C2 launch in May 1994. The absolute ion density, ion temperature, and ion composition parameters are derived from these in situ measurements and used by many workers. In this paper the absolute values of ion density derived from the ion RPA measurements are compared and evaluated with the measurements made by ground-based ionosondes located in the Indian region and close to the SROSS-C2 orbital path. It is shown that a slight adjustment in efficiency factor of the ion RPA sensor brings the in situ measurements much closer to those obtained from the ground-based ionosonde measurements taking into account the model calculations. It may be mentioned that this is a correction to the ion density measurement by SROSS-C2 by a fixed proportion (14-11.4%). The effect of change in efficiency factor on the ion current, which is used to deduce the ion number density, is demonstrated and discussed.
Chemical multisensors with selective encapsulation of ion-selective membranes
NASA Astrophysics Data System (ADS)
Schwager, Felix J.; Bousse, Luc J.; Bowman, Lyn; Meindl, J. D.
Chemical sensors fabricated with simultaneous wafer scale encapsulation of ion selective electrode mambranes are described. The sensors are miniature ion selective electrodes in chambers located on a silicon substrate. These chambers are made by anodically bonding to the silicon a no. 7740 pyrex glass wafer in which cavities were drilled. Pores with dimensions selectable from 50 microns upwards are opened in the roofs of the chambers by drilling with a CO2 laser. Each sensor die contains four cavities which are filled under reduced pressure with liquid membrane material which is subsequently polymerized. The transducers on the cavity floor are Ag/AgCl electrodes. Interconnects between the sensor chambers on each die and bonding pads are made in the silicon substrate.
Understanding the conductive channel evolution in Na:WO3-x-based planar devices
NASA Astrophysics Data System (ADS)
Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias
2015-03-01
An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07545e
Green Silver Nanoparticles Based Dual Sensor for Toxic Hg (II) Ions.
Sebastian, Maria; Aravind, Archana; Mathew, Beena
2018-06-11
The present study focuses on the utilization of green silver nanoparticles as they are more preferred for sensing applications due to their environment friendly nature. We have examined the optical and electrochemical sensing behavior of silver nanoparticles from Agaricus Bispores (AgNP-AB) towards Hg(II) ions. AgNP-AB was prepared by microwave reactor. The synthesized AgNPs have been used for the sensing of Hg(II) ions without the use of modifiers or further sophisticated instrumentation. The synthesized nanoparticles were successfully characterized by different techniques. AgNP-AB leads to aggregation with addition of Hg(II) ions in aqueous medium and developed a color change from brown to black which leads to the formation of AgNP-AB-Hg(II) complex. Moreover, the metal sensing ability of AgNPs has been explored using electrochemical studies. AgNP-AB modified platinum electrode (AgNP-AB/PE) was developed for the fast sensing of toxic Hg(II) ions. The sensor exhibits good limit of detection at 2.1x10-6M. The sensitivity of AgNP-AB/PE towards Hg(II) ion was analyzed with various metal ions. The sensing skill of developed system was successfully checked with real water sample from Vembanade Lake, Kumarakom, Kerala. The silver nanoparticles from Agaricus Bispoes are highly versatile and promising for different environmental applications. © 2018 IOP Publishing Ltd.
The salen based chemosensors for highly selective recognition of Zn2+ ion.
Zhu, Wenkai; Du, LongChao; Li, Wensheng; Zuo, Jinyan; Shan, Jingrui
2018-06-03
Two novel salen based chemosensors have been successfully synthesized. UV-vis absorption, fluorescence emission spectroscopy and cyclic voltammetry (CV) were exploited to investigate their recognition toward various metal ions, including Na + , K + , Mg 2+ , Al 3+ , Zn 2+ , Ag + , Pb 2+ , Co 2+ , Li + , Ba 2+ , Ca 2+ , Cd 2+ , La 3+ , Cu 2+ and Mn 2+ ions. The results indicated that the sensor L1 and L2 exhibited highly selective and sensitive recognition for Zn 2+ ions. The binding stoichiometry ratio of L1-Zn 2+ /L2-Zn 2+ were recognized as 4:1 by the method of Job's plot. Meanwhile, this investigation is confirmed by 1 H NMR. These results indicated that L1 and L2 can be applied as chemosensor for the detection of Zn 2+ ion. Copyright © 2018 Elsevier B.V. All rights reserved.
The development of sensors and techniques for in situ water quality monitoring
NASA Technical Reports Server (NTRS)
Liu, C. C.
1976-01-01
Enzyme electrodes and chloride ion electrodes were investigated for in situ monitoring of water quality. Preliminary results show that miniature chloride ion electrodes and a phenol sensor are most promising in determining trace contaminants in water.
Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P
2013-01-21
Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors.
Microtubular conductometric biosensor for ethanol detection.
Ajay, A K; Srivastava, Divesh N
2007-09-30
A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.
Rhodamine spirolactam sensors operated by sulfur-cooperated metal complexation
NASA Astrophysics Data System (ADS)
Heo, Gisuk; Lee, Dahye; Kim, Chi Gwan; Do, Jung Yun
2018-01-01
New rhodamine Schiff base sensors were developed to improve selective sensing by introducing sulfide, ester, and dithiocarbonate groups, as well as using ketones coupled to rhodamine-hydrazine. Metal sensing proceeded through the 1:1 complexation of the metal ion for most sensors in the presence of Cu2 + and Hg2 +. A sensor carrying a dithiocarbonate group responded selectively to Hg2 + showing a strong colorimetric change and intense fluorescence. The association constants of the sensors were determined from a linear plot performed at micro-molar concentrations to afford values in the range of 104. Sensing was interrupted at the initial time of Hg2 + exposure due to the isomerization of imine and preferential metal bonding of two dithiocarbonate groups regardless of the main structure of rhodamine. The sensors exhibited the reversible and reproducible performance for Hg2 + sensing.
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-02-01
The CBM RICH detector is an integral component of the future CBM experiment at FAIR, providing efficient electron identification and pion suppression necessary for the measurement of rare dileptonic probes in heavy ion collisions. The RICH design is based on CO2 gas as radiator, a segmented spherical glass focussing mirror with Al+MgF2 reflective coating, and Multianode Photomultipliers for efficient Cherenkov photon detection. Hamamatsu H12700 MAPMTs have recently been selected as photon sensors, following an extensive sensor evaluation, including irradiation tests to ensure sufficient radiation hardness of the MAPMTs. A brief overview of the detector design and concept is given, results on the radiation hardness of the photon sensors are shown, and the development of a FPGA-TDC based readout chain is discussed.
ISFET pH Sensitivity: Counter-Ions Play a Key Role.
Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip
2017-02-02
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.
ISFET pH Sensitivity: Counter-Ions Play a Key Role
Parizi, Kokab B.; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H. S. Philip
2017-01-01
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor. PMID:28150700
Mizani, F; Salmanzadeh Ardabili, S; Ganjaliab, M R; Faridbod, F; Payehghadr, M; Azmoodeh, M
2015-04-01
(Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine (L) was used as an active component of PVC membrane electrode (PME), coated graphite electrode (CGE) and coated silver wire electrode (CWE) for sensing Al(3+) ion. The electrodes exhibited linear Nernstian responses to Al(3+) ion in the concentration range of 1.0×10(-6) to 1.0×10(-1)M (for PME, LOD=8.8×10(-7)M), 5.5×10(-7) to 2.0×10(-1)M (for CWE, LOD=3.3×10(-7)M) and 1.5×10(-7) to 1.0×10(-1)M (for CGE, LOD=9.2×10(-8)M). The best performances were observed with the membranes having the composition of L:PVC:NPOE:NaTPB in the ratio of 5:35:57:3 (w/w; mg). The electrodes have a response time of 6s and an applicable pH range of 3.5-9.1. The sensors have a lifetime of about 15weeks and exhibited excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. Analytical utility of the proposed sensor has been further tested by using it as an indicator electrode in the potentiometric titration of Al(3+) with EDTA. The electrode was also successfully applied for the determination of Al(3+) ion in real and pharmaceutical samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.
1992-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A total of 35 impacts on leading edge sensors and 22 impacts on trailing edge sensors were analyzed.
Advanced Sensor Technologies for Next-Generation Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, S H; Chien, H T; Gopalsami, N
2002-01-30
This report summarizes the development of automobile emissions sensors at Argonne National Laboratory. Three types of sensor technologies, i.e., ultrasound, microwave, and ion-mobility spectrometry (IMS), were evaluated for engine-out emissions monitoring. Two acoustic sensor technologies, i.e., surface acoustic wave and flexural plate wave, were evaluated for detection of hydrocarbons. The microwave technique involves a cavity design and measures the shifts in resonance frequency that are a result of the presence of trace organic compounds. The IMS technique was chosen for further development into a practical emissions sensor. An IMS sensor with a radioactive {sup 63}Ni ion source was initially developedmore » and applied to measurement of hydrocarbons and NO{sub x} emissions. For practical applications, corona and spark discharge ion sources were later developed and applied to NO{sub x} emission measurement. The concentrations of NO{sub 2} in dry nitrogen and in a typical exhaust gas mixture are presented. The sensor response to moisture was evaluated, and a cooling method to control the moisture content in the gas stream was examined. Results show that the moisture effect can be reduced by using a thermoelectric cold plate. The design and performance of a laboratory prototype sensor are described.« less
Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring
Zhao, Jing; Lei, Yan-Mei; Chai, Ya-Qin; Yuan, Ruo; Zhuo, Ying
2016-12-15
In this paper, a novel covalently crosslinked perylene derivative (PTC-PEI) composed of polyethylenimine (PEI) and perylenetetracarboxylic acid (PTCA) has been first investigated for cathodic electrochemiluminescence (ECL) in an aqueous system with dissolved O2 as coreactant. The promising novel ECL materials of PTC-PEI exhibited admirable physical and chemical stability and high ECL intensity, which held an alternative way to construct ECL sensor with improved sensitivity. Thus, it was applied to construct a dual amplified "signal-on" mercury ion (Hg(2+)) sensor by the employment of nicking endonuclease (NEase)-assisted target recycling and rolling circle amplification (RCA) for signal amplification. Herein, a long G-rich sequence was generated by RCA process to capture abundant hemin on the electrode surface, and then a significantly amplified ECL signal of PTC-PEI was obtained. Based on dual signal amplification strategy, the devised sensor showed a linear range from 0.1pM to 0.1μΜ with a detection limit down to 33fM (S/N=3), and was successfully used in the direct detection of real water sample with high sensitivity and selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2015-04-01
Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.
Lin, Tsao-Jen; Chung, Mon-Fu
2008-01-01
A novel reflection-based localized surface plasmon resonance (LSPR) fiberoptic probe has been developed to determine the heavy metal lead ion concentration. Monoclonal antibody as the detecting probe containing massive amino groups to capture Pb(II)-chelate complexes was immobilized onto gold nanoparticle-modified optical fiber (NMAuOF). The optimal immobilizing conditions of monoclonal antibody on to the NMAuOF are 189 μg/mL in pH7.4 PBS for 2 h at 25°C. The absorbability of the functionalized NMAuOF sensor increases to 12.2 % upon changing the Pb(II)-EDTA level from 10 to 100 ppb with a detection limit of 0.27 ppb. The sensor retains 92.7 % of its original activity and gives reproducible results after storage in 5% D-(+)-Trehalose dehydrate solution at 4°C for 35 days. In conclusion, the monoclonal antibody-functionalized NMAuOF sensor shows a promising result for determining the concentration of Pb(II) with high sensitivity. PMID:27879723
Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita
2014-01-01
In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034
NASA Technical Reports Server (NTRS)
Greene, Jonathan A.; Miller, Mark S.; Starr, Suzanne E.; Fogg, Brian R.; Murphy, Kent A.; Claus, Richard O.; Vengsarkar, Ashish M.
1991-01-01
Results of experiments performed using germanium-doped, elliptical core, two-mode optical fibers whose sensitivity to strain was spatially varied through the use of chirped, refractive-index gratings permanently induced into the core using Argon-ion laser light are presented. This type of distributed sensor falls into the class of eighted-fiber sensors which, through a variety of means, weight the strain sensitivity of a fiber according to a specified spatial profile. We describe results of a weighted-fiber vibration mode filter which successfully enhances the particular vibration mode whose spatial profile corresponds to the profile of the grating chirp. We report on the high temperature survivability of such grating-based sensors and discuss the possibility of multiplexing more than one sensor within a single fiber.
3D capacitive tactile sensor using DRIE micromachining
NASA Astrophysics Data System (ADS)
Chuang, Chiehtang; Chen, Rongshun
2005-07-01
This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.
Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor
NASA Astrophysics Data System (ADS)
Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra
2017-08-01
Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.
NASA Astrophysics Data System (ADS)
Presnov, Denis E.; Bozhev, Ivan V.; Miakonkikh, Andrew V.; Simakin, Sergey G.; Trifonov, Artem S.; Krupenin, Vladimir A.
2018-02-01
We present the original method for fabricating a sensitive field/charge sensor based on field effect transistor (FET) with a nanowire channel that uses CMOS-compatible processes only. A FET with a kink-like silicon nanowire channel was fabricated from the inhomogeneously doped silicon on insulator wafer very close (˜100 nm) to the extremely sharp corner of a silicon chip forming local probe. The single e-beam lithographic process with a shadow deposition technique, followed by separate two reactive ion etching processes, was used to define the narrow semiconductor nanowire channel. The sensors charge sensitivity was evaluated to be in the range of 0.1-0.2 e /√{Hz } from the analysis of their transport and noise characteristics. The proposed method provides a good opportunity for the relatively simple manufacture of a local field sensor for measuring the electrical field distribution, potential profiles, and charge dynamics for a wide range of mesoscopic objects. Diagnostic systems and devices based on such sensors can be used in various fields of physics, chemistry, material science, biology, electronics, medicine, etc.
Development of sensitive holographic devices for physiological metal ion detection
NASA Astrophysics Data System (ADS)
Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela
2017-08-01
The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1985-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Lignin Sensor Based On Flash-Pyrolysis Mass Spectrometry
NASA Technical Reports Server (NTRS)
Kwack, Eug Y.; Lawson, Daniel D.; Shakkottai, Parthasarathy
1990-01-01
New lignin sensor takes only few minutes to measure lignin content of specimen of wood, pulp, paper, or similar material. Includes flash pyrolizer and ion-trap detector that acts as mass spectrometer. Apparatus measures amount of molecular fragments of lignin in pyrolysis products of samples. Helpful in controlling digestors in paper mills to maintain required lignin content, and also in bleaching plants, where good control of bleaching becomes possible if quick determination of lignin content made.
Integrated Arrays of Ion-Sensitive Electrodes
NASA Technical Reports Server (NTRS)
Buehler, Martin; Kuhlman, Kimberly
2003-01-01
The figure depicts an example of proposed compact water-quality sensors that would contain integrated arrays of ion-sensitive electrodes (ISEs). These sensors would serve as electronic "tongues": they would be placed in contact with water and used to "taste" selected dissolved ions (that is, they would be used to measure the concentrations of the ions). The selected ions could be any or all of a variety of organic and inorganic cations and anions that could be regarded as contaminants or analytes, depending on the specific application. In addition, some of the ISEs could be made sensitive to some neutral analytes
NASA Tech Briefs, October 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Laser Truss Sensor for Segmented Telescope Phasing; Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions; Optical Sensors for Monitoring Gamma and Neutron Radiation; Compliant Tactile Sensors; Cytometer on a Chip; Measuring Input Thresholds on an Existing Board; Scanning and Defocusing Properties of Microstrip Reflectarray Antennas; Cable Tester Box; Programmable Oscillator; Fault-Tolerant, Radiation-Hard DSP; Sub-Shot Noise Power Source for Microelectronics; Asynchronous Message Service Reference Implementation; Zero-Copy Objects System; Delay and Disruption Tolerant Networking MACHETE Model; Contact Graph Routing; Parallel Eclipse Project Checkout; Technique for Configuring an Actively Cooled Thermal Shield in a Flight System; Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes; Li-Ion Cells Employing Electrolytes with Methyl Propionate and Ethyl Butyrate Co-Solvents; Improved Devices for Collecting Sweat for Chemical Analysis; Tissue Photolithography; Method for Impeding Degradation of Porous Silicon Structures; External Cooling Coupled to Reduced Extremity Pressure Device; A Zero-Gravity Cup for Drinking Beverages in Microgravity; Co-Flow Hollow Cathode Technology; Programmable Aperture with MEMS Microshutter Arrays; Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas; Adaptive System Modeling for Spacecraft Simulation; Lidar-Based Navigation Algorithm for Safe Lunar Landing; Tracking Object Existence From an Autonomous Patrol Vehicle; Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications; and Architecture for a 1-GHz Digital RADAR.
Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank
2016-07-29
Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.
Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank
2016-01-01
Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277
New high-resolution electrostatic ion mass analyzer using time of flight
NASA Technical Reports Server (NTRS)
Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.
1990-01-01
The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-01-01
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-10-20
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.
NASA Astrophysics Data System (ADS)
Sun, Tao; Li, Yang; Niu, Qingfen; Li, Tianduo; Liu, Yan
2018-04-01
A new simple and efficient fluorescent sensor L based on 1,8-diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-08-01
In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.
Xu, Chao; Wygladacz, Katarzyna; Retter, Robert; Bell, Michael; Bakker, Eric
2007-12-15
Polymeric bulk optode microsphere ion sensors in combination with suspension array technologies such as analytical flow cytometry may become a power tool for measuring electrolytes in physiological samples. In this work, the methodology for the direct measurement of common blood electrolytes in physiological samples using bulk optode microsphere sensors was explored. The simultaneous determination of Na(+), K(+), and Ca(2+) in diluted sheep blood plasma was demonstrated for the first time, using a random suspension array containing three types of mixed microsphere bulk optodes of similar size, fabricated from the same chromoionophore without additional labeling. Sodium ionophore X, potassium ionophore III, and grafted AU-1 in poly(butyl acrylate) were the ionophores used in the bulk optode microsphere ion sensors for Na(+), K(+), and Ca(2+), respectively, in combination with the cation-exchanger NaTFPB (sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl]borate) and the same concentration of the chromoionophore ETH 5294 (9-(di-ethylamino)-5-octadecanoylimino-5H-benzo[a]phen-oxazine) in plasticized poly(vinyl chloride). Excellent reproducibility was achieved for the sensing of potassium ions. The effect of sample pH was relatively small at near-physiological pH and followed theoretical predictions, yet the sample temperature was found to influence the sensor response to a larger extent. Multiplexed ion sensing was achieved by taking advantage of the chemical tunability of the sensor response, adjusting the sensor compositions so that the three types of ion sensors responded with distinct levels of protonation of the chromoionophore. Consequently, three well-resolved peaks were simultaneously observed in the single-channel histogram during the multiplexed calibration as well as in the subsequent measurement of the three cations in 10-fold-diluted sheep plasma. The assigned peak positions corresponded very well to the physiological range of the measured ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.
1995-05-01
This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation,more » sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.« less
“Development of an Automated On-line Electrochemical Chlorite Ion Sensor”
Myers, John N.; Steinecker, William H.; Sandlin, Zechariah D.; Cox, James A.; Gordon, Gilbert; Pacey, Gilbert E.
2012-01-01
A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. PMID:22608440
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Mokrushin, A. D.; Denisov, N. N.; Dobrovolsky, Yu. A.
2018-07-01
The proton conductivity of graphene oxide (GO) and Nafion films was studied depending on the humidity and voltage on electrodes. The electric properties of the films were similar, but the mobility of positive charges in Nafion was approximately two orders of magnitude higher than in GO. In GO films, the negative ion current with a positive voltage bias was up to 10% of the proton current, while in Nafion films it was almost absent (<1%). The sensors based on GO and Nafion films were most effective at humidity (RH) in the range 20-80%.
Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie
2015-11-21
In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT).
A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer.
Jia, Chuandong; Wu, Biao; Liang, Jianjun; Huang, Xiaojuan; Yang, Xiao-Juan
2010-01-01
N-Phenyl-N'-(3-quinolinyl)urea (1) has been developed as a highly selective colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on a proton transfer mechanism. Evidences for the mechanism were provided by UV-vis and fluorescence titration and especially (1)H and (19)F NMR experiments. The sensor gave the largest ratiometric fluorescent response reported so far (R(max)/R(min) = 2620) to fluoride. Taking H(+) as the "recovering reagent", the sensor can be reversibly "used" and "recovered" for several cycles with only a slight decay of the response ability.
Samarium (III) Selective Membrane Sensor Based on Tin (IV) Boratophosphate
Mittal, Susheel K.; Sharma, Harish Kumar; Kumar, Ashok S. K.
2004-01-01
A number of Sm (III) selective membranes of varying compositions using tin (IV) boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1×10-5M to 1×10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III) ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.
1988-07-15
solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a
NASA Astrophysics Data System (ADS)
Pei, Peng-Xiang; Hu, Jing-Han; Long, Chen; Ni, Peng-Wei
2018-06-01
A novel chemosensor 2-((Z)-(((E)-quinolin-2-ylmethylene)hydrazono)methyl)phenol PX has been successfully designed and synthesized, which showed both colorimetric and "turn-on" fluorescence responses for CN- in DMSO/H2O (3:2, v/v; pH = 7.20) solution. The sensor could respond effectively to the stimulation of CN- ions via deprotonation and sensing mechanism of intramolecular charge transfer (ICT). Moreover, the sensor PX was successfully utilized to detect CN- in bitter almond, and the detection limit on fluorescence response of PX towards CN- was down to 4.5 × 10-7 M. Test strips containing PX were also prepared, which could act as a practical colorimetric tool to detect CN- in aqueous media.
Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel
2015-11-01
A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R; Meldrum, Deirdre R
2012-10-01
We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O(2)) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes.
Rahman, Mohammed M.; Hussein, Mahmoud A.; Aly, Kamal I.; Asiri, Abdullah M.
2018-01-01
ABSTRACT A new category of thermally stable hybrid polyarylidene(azomethine-ether)s and copolyarylidene(azomethine-ether)s (PAAP) based on diarylidenecycloalkanones has been synthesized using solution polycondensation method. For potential cationic sensor development, a thin layer of PAAP onto a flat glassy carbon electrode (GCE, surface area: 0.0316 cm2) was prepared with conducting nafion (5%) coating agent to fabricate a sensitive and selective arsenic (III) [As3+] ion in short response time in neutral buffer system. The fabricated cationic sensor was measured the analytical performances such as higher sensitivity, linear dynamic range, detection limit, reproducibility, and long-term stability towards As3+ ions. The sensitivity and detection limit were calculated as 2.714 μAμM−1cm−2 and 6.8 ± 0.1 nM (SNR of 3; 3N/S) respectively from the calibration curve. This novel approach can be initiated a well-organized route of an efficient development of heavy selective arsenic sensor for hazardous pollutants in biological, environmental, and health care fields. Real sample analysis for various environmental sample was performed with PAAP-modified-GCE. PMID:29844770
Jenkins, A L; Uy, O M; Murray, G M
1999-01-15
The techniques of molecular imprinting and sensitized lanthanide luminescence have been combined to create the basis for a sensor that can selectively measure the hydrolysis product of the nerve agent Soman in water. The sensor functions by selectively and reversibly binding the phosphonate hydrolysis product of this agent to a functionality-imprinted copolymer possessing a coordinatively bound luminescent lanthanide ion, Eu3+. Instrumental support for this device is designed to monitor the appearance of a narrow luminescence band in the 610-nm region of the Eu3+ spectrum that results when the analyte is coordinated to the copolymer. The ligand field shifted luminescence was excited using 1 mW of the 465.8-nm line of an argon ion laser and monitored via an optical fiber using a miniature spectrometer. For this configuration, the limit of detection for the hydrolysis product is 7 parts per trillion (ppt) in solution with a linear range from 10 ppt to 10 ppm. Chemical and spectroscopic selectivities have been combined to reduce the likelihood of false positive analyses. Chemically analogous organophosphorus pesticides tested against the sensor have been shown to not interfere with determination.
Li, Yongbo; Zhang, Zhujun
2013-01-01
We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)3(2+) immobilized with a Nepem-211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)3(2+). The flow sensor has been used as a post-column detector in high-performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03-26 ng/μL and 0.01-1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post-column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.
Matsuura, Koji; Asano, Yuka; Yamada, Akira; Naruse, Keiji
2013-02-18
Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium.
Dimov, Stefan M; Georgiev, Nikolai I; Asiri, Abdullah M; Bojinov, Vladimir B
2014-11-01
A novel blue-emitting 1,8-naphthalimide fluorophore designed as a molecular PET-based probe for determination of pH and detection of transition metal ions in the environment was successfully synthesized. Novel compound was configured on the "fluorophore-spacer-receptor" format. Due to the tertiary amine receptor the novel system showed "off-on" switching properties under the transition from alkaline to acid media (FE = 3.2) and in the presence of Zn(2+) ions (FE = 2.5). The results obtained illustrate the high potential of the synthesized blue-emitting 1,8-naphthalimide fluorophore as an efficient pH chemosensing material and a selective probe for Zn(2+) ions.
A novel fluoride ion colorimetric chemosensor based on coumarin.
Zhuang, Xiaoqing; Liu, Weimin; Wu, Jiasheng; Zhang, Hongyan; Wang, Pengfei
2011-09-01
A novel visible colorimetric sensor (L1) with high selectivity for fluoride ion based on coumarin has been synthesized by a simple modification of our earlier report. The chemosensor L1 shows an obvious color change from yellow to blue upon addition of fluoride ion with a large red shift of 145 nm in acetonitrile, and without interference of other anions such as Cl-, Br-, I-, NO3-, H2PO4-, HSO4-, and AcO-. The investigation of 1H NMR spectrum titration indicates the proposed mechanism is that F- first establishes a hydrogen bonding interaction with L1, and then the formation of [F-H-F]- induces deprotonation. Copyright © 2011 Elsevier B.V. All rights reserved.
Singh, A K; Jain, A K; Mehtab, Sameena
2007-08-06
Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.
Zhang, Rong; Gu, Yajun; Wang, Zhongrong; Li, Yueguo; Fan, Qingjie; Jia, Yunfang
2018-06-15
Enlightened by the emerging cell-ion detection based on ion-selective-electrode (ISE), an aptamer capturing and ISE transducing (AC&IT) strategy is proposed on the porous graphene oxide (PGO) decorated ISE (PGO-ISE), its performances in both cell and ion detections are examined by use of AS1411 targeted A549 cell detection and iodide-ISE as proof-of-concept. Firstly, GO flakes, exfoliated from graphite by modified Hummers method, are cross-linked by thiourea mediated hydrothermal process, to 3-dimension networked PGO which is identified by scanning-electron-microscope, UV-visible absorbance and X-ray photoelectron spectroscopy; its enhancing effect for cell capturing is evaluated by microscopy. Then, PGO-ISE is constructed by drop-coating PGO film on the surface of ISE and followed by covalently anchoring AS1411. Electrochemistry measurements for different state ISE (blank, PGO coated, AS1411 anchored and A549 captured) are performed by our home-made ISE-measuring system. It is demonstrated that the best cell-sensitivity in buffer is - 25.21 mV/log 10 C A549 (R 2 = 0.91), resolution in blood is 10 cells/ml. Interestingly, due to PGO's scaffold protection to the ionophore, I - -sensitivity is preserved as - 42.98 mV/pI (R 2 = 0.95, pI = -log 10 (C I )). Theoretical explanations are provided for the double-sensing phenomenon according to basic ISE principle. It is believed the PGO-ISE based aptamer cell sensor will be a promising experimental means for biomedical researches. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana
2018-01-01
This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.
A new selective fluorescent sensor for Fe3+ based on a pyrazoline derivative.
Hu, Shengli; Zhang, Shushu; Gao, Chan; Xu, Caihua; Gao, Qing
2013-09-01
A new pyrazoline derivative was designed and synthesized. The structure of the pyrazoline was confirmed by single crystal X-ray diffraction and its photophysical properties were studied by absorption and fluorescence spectra. This compound can be used to determine Fe(3+) ion with high selectivity among a series of cations in tetrahydrofuran and even in aqueous tetrahydrofuran. This sensor forms a 1:1 complex with Fe(3+) and displays fluorescent quenching. Copyright © 2013 Elsevier B.V. All rights reserved.
Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing
Zhao, Shu-Na; Wang, Guangbo
2018-01-01
In recent years, lanthanide metal–organic frameworks (LnMOFs) have developed to be an interesting subclass of MOFs. The combination of the characteristic luminescent properties of Ln ions with the intriguing topological structures of MOFs opens up promising possibilities for the design of LnMOF-based chemical sensors. In this review, we present the most recent developments of LnMOFs as chemical sensors by briefly introducing the general luminescence features of LnMOFs, followed by a comprehensive investigation of the applications of LnMOF sensors for cations, anions, small molecules, nitroaromatic explosives, gases, vapors, pH, and temperature, as well as biomolecules. PMID:29642458
Scaffold metamaterial and its application as strain sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Ren, Mengxin, E-mail: ren-mengxin@nankai.edu.cn; Pi, Biao
2015-08-31
In this paper, strain sensors based on planar scaffold metamaterial design are demonstrated. The optical properties of such metamaterials are studied, which are proved to be highly dependent on the deformation of the structure. Fabricating such metamaterial on compliant polymeric substrate, the geometric parameters could be tuned with external strain and hence are found to control the reflection resonance condition of the metamaterial. Such mechanical tunability provides the opportunity to realize efficient strain sensors and about 27 nm resonance wavelength shift is observed by applying as much as 37% tensile strain. Furthermore, distinct from most of the previous works, our structuresmore » are based on “intaglio” design, which could be manufactured directly by one step fabrication using focused ion beam cutting, hence makes the fabrication process much simpler.« less
Kai, Yumei; Hu, Yonghong; Wang, Kai; Zhi, Wenbiao; Liang, Mengmeng; Yang, Wenge
2014-01-24
A high selective colorimetric and ratiometric fluorescent probe based on 4-hydroxy-1, 8-naphthalimide was designed and synthesized to detect fluoride ions (F(-)). The sensing behavior of this probe was studied by UV-visible and fluorescence spectroscopy. The probe displays an 110 nm red-shift of fluorescence emission and the color changes from colorless to yellow by virtue of the strong affinity of F(-) toward silicon which can act as a new visual sensor for F(-). Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular beacon anchored onto a graphene oxide substrate
NASA Astrophysics Data System (ADS)
Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A.; Dutta, Mitra
2017-09-01
In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a ‘turn-off’ fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.
Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A
2008-08-15
A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.
Design and development of novel sensors for the determination of fluoride in water.
Pillai, Aji Balan; Varghese, Benjamin; Madhusoodanan, Kottarathil Naduvil
2012-01-03
The presence of high fluoride content in drinking water is a serious health hazard as it may lead to fluorosis, a serious bone disease. Taking into account of the importance of fluoride an attempt has been made to design and develop simple, low cost, and easy to use sensors for the in situ determination of fluoride in water. Two novel absorption sensors have been fabricated and their characterization done. The first one is a light emitting diode based sensor and the other one is an evanescent wave fiber optic sensor. Reagents prepared using standard methods are mixed with water sample containing fluoride ion, and the peak absorption wavelength is found out. Suitable light sources and photo detectors have been selected, and the sensors are designed to give accurate results over a wide range. A microcontroller based setup has been fabricated for recording the concentration of the measured sample in parts per billion. Both sensors have been used to analyze water samples collected from various sources and regions. The results obtained have been compared with those obtained by using a spectrophotometer used for fluoride measurement and found to have one to one correspondence.
Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra
2018-04-14
This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.
2009-08-20
Nomenclature As = QCM sensor area E = ion energy E* = characteristic energy describing the differential sputter yield profile shape Eth...We report differential and total sputter yields for several grades of BN at ion energies down to 60 eV, obtained with a QCM deposition sensor 3-7,9...personal computer with LabView is used for data logging. Detailed discussion of the QCM sensor is provided in subsection IIF. B. Definition of Angles
Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.
Gurlo, Alexander
2006-10-13
Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.
New Gas Polarographic Hydrogen Sensor
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Barile, Ron
2004-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Developing a polymeric sensor to monitor intracellular conditions
NASA Astrophysics Data System (ADS)
Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.
2004-07-01
Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.
Bhosale, Jitendra; Fegade, Umesh; Bondhopadhyay, Banashree; Kaur, Simanpreet; Singh, Narinder; Basu, Anupam; Dabur, Rajesh; Bendre, Ratnamala; Kuwar, Anil
2015-06-01
Cation sensing behaviour of a pyrrole-based derivative (2-hydroxyl 3 methyl 6 isopropyl benzaldehyde}-3,4-dimethyl-1H-pyrrole-2-carbohydrazide (receptor 3) has been explored and is found to be selective towards Zn(2+) over a variety of tested cations. The receptor 3 has shown high selectivity and sensitivity towards Zn(2+) over the other alkali, alkaline earth and transition metal ions. In the presence of Zn(2+), absorption band of receptor 3 has shown the red shift. The sensing behaviour has been suggested to continue via enhancement process which has further been supported by UV-vis absorption and theoretical density functional theory (DFT) calculations indicating the formation of a 1:1 complex between the pyrrole based receptor 3 and Zn(2+). The present work is presenting a highly selective dual channel colorimetric sensor for zinc with great sensitivity. The developed sensor was successfully applied to image intracellular Zn(2+) in living cells. Copyright © 2015 John Wiley & Sons, Ltd.
Dutta, Kaku; Deka, Ramesh C; Das, Diganta Kumar
2014-04-24
Single molecule acting as both fluorescent and electrochemical sensor for Zn(2+) ion is rare. The product (L) obtained on condensation between benzil and L-tryptophan has been characterized by H NMR, ESI-MS and FT-IR spectroscopy. L in 1:1 (v/v) CH3OH:H2O solution shows fluorescence emission in the range 300 nm to 600 nm with λmax at 350 nm when is excited with 295 nm photon. Zn(2+) ion could induce a 10-fold enhancement in fluorescent intensity of L. Fluorescence and UV/Visible spectral data analysis shows that the binding ratio between Zn(2+) ion and L is 1:1 with log β=4.55. Binding of Zn(2+) ion disrupts the photoinduced electron transfer (PET) process in L and causes the fluorescence intensity enhancement. When cyclic voltammogram is recorded for L in 1:1 (v/v) CH3OH:H2O using glassy carbon (GC) electrode, two quasi reversible redox couples at redox potential values -0.630±0.005 V and -1.007±0.005 V are obtained (Ag-AgCl as reference, scan rate 0.1 V s(-1)). Interaction with Zn(2+) ion makes the first redox couple irreversible while the second couple undergoes a 0.089 V positive shift in redox potential. Metal ions - Cd(2+), Cu(2+), Co(2+), Hg(2+), Ag(+), Ni(2+), Fe(2+), Mn(2+), Mg(2+), Ca(2+)and Pb(2+), individually or all together, has no effect on the fluorescent as well as electrochemical property of L. DFT calculations showed that Zn(2+) ion binds to L to form a stable complex. The detection limit for both fluorescence as well as electrochemical detection was 10(-6) M. Copyright © 2013 Elsevier B.V. All rights reserved.
Parsaee, Zohreh; Haratipour, Pouya; Lariche, Milad Janghorban; Vojood, Arash
2018-03-01
A novel high selective colorimetric chemosensor was introduced based on a nano diphenyl-based Schiff base (H 2 L), 2,2'-((1E,1'E)-(((hexylazanediyl)bis(4,1-phenylene))bis(methanylylidene))bis(azanylylidene))bis(4-methylphenol) that synthesized using sonochemical method. H 2 L was characterized by FT-IR, MS, TGA, 1 H NMR, 13 C NMR, SEM and elemental analysis techniques, then fabricated as the portable strips for sensing copper (II) ions in aqueous media. The binding interaction between H 2 L and various metal ions was investigated by UV-Vis spectroscopic that showed favorable coordination toward Cu 2+ ion. H 2 L exhibited binding-induced color changes from yellow to pink and practically no interference in the presence of other metal ions, i.e., Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Mg 2+ and Ca 2+ . The chemsensor showd the color change from yellow to pink in presence of copper (II) ion in aqueous media due to binging of H 2 L and Cu (II). This sensor can determine the copper (II) at in the rang of 7.5 × 10 -8 -1.8 × 10 -5 mol L -1 with a correlation equation: Absorbance = 0.0450[Cu 2+ ] × 10 -6 + 0.71 and R 2 = 0.975 and low detection limit of 1.89 × 10 -8 mol L -1 . Density functional theory (DFT) calculations were carried out at the B3LYP levels of theory with B3LYP/6-311+G(d,p) and LANL2DZ/6-311+G(d,p) basis sets for chemosensor and its copper complex respectively. The optimized geometry, harmonic vibrational frequencies, 1 H NMR and 13 C NMR chemical, Molecular orbital (M.O.), Mulliken population analysis (MPA), contour of Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP) map of H 2 L were calculated which show good agreement with behavior of sensor for detection of Cu 2+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.
Golcs, Ádám; Horváth, Viola; Huszthy, Péter; Tóth, Tünde
2018-05-03
Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10 −4 to 10 −2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.
NASA Astrophysics Data System (ADS)
Wang, Fei; Gao, Lei; Zhao, Qing; Zhang, Yang; Dong, Wen-Kui; Ding, Yu-Jie
2018-02-01
The optical properties of a novel chemosensor for cyanide anions based on a symmetric bis(salamo)-type ligand (H3L) were investigated by UV-Vis and fluorescence spectroscopy in MeOH/H2O (1:1 v/v) solution. Sensor H3L can selectively sense CN- based on prominent color changes among other anions. The chemosensor exhibits an apparent fluorescence enhancement at 482 nm to CN- which because cyanide ions interact with Cdbnd N bonds. Combining the corrected Benesi-Hildebrand formula, the binding constant of the formed host-guest complex was calculated as 2.42 × 105 M- 1. Meanwhile, the detection limit of the sensor toward CN- was 8.91 × 10- 7 M. It is worth noting that the designed sensor can be used for rapid detection of cyanide anions in basic pH range, and has great practical value.
Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano
2012-07-01
A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses onmore » developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.« less
Dennison, Genevieve H; Johnston, Martin R
2015-04-20
Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-01
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3.
Li, Ming; Pietrowski, Martha J; De Souza, Roger A; Zhang, Huairuo; Reaney, Ian M; Cook, Stuart N; Kilner, John A; Sinclair, Derek C
2014-01-01
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm(-1) at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides.
Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E
2018-05-23
Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.
A colorimetric sensor for the selective detection of fluoride ions.
Wan, Chin-Feng; Chir, Jiun-Ly; Wu, An-Tai
2017-05-01
A colorimetric receptor L was prepared. Receptor L can selectively sense F - based on distinct color changes among a series of ions. It can selectively sense F - through an intramolecular hydrogen bond interaction. A Job plot indicated a 1:1 complexation stoichiometry between receptor L and F - . The association constant for L-F - in CH 3 CN was determined as 9.70 × 10 4 M -1 using a Stern-Volmer plot. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zareh Jonaghani, Mohammad; Zali-Boeini, Hassan
2017-05-01
A highly efficient and selective fluorescent and colorimetric chemosensor based on naphthothiazole skeleton was synthesized and its colorimetric and fluorescent properties were investigated. The sensor displays a rapid and highly selective colorimetric and fluorescence response toward Hg2 + without interference with other metal ions in CH3CN/H2O mixture (50/50, v/v). The detection limit for the fluorescent chemosensor S1 toward Hg2 + was 3.42 × 10- 8 M.
NASA Astrophysics Data System (ADS)
Mishra, Jayanti; Kaur, Harpreet; Ganguli, Ashok K.; Kaur, Navneet
2018-06-01
Mercury is a well-known heavy metal ion which is extremely poisonous to health but is still employed in the form of mercury salts and organomercury compounds in various industrial, anthropological and agricultural activities. Henceforth, its sensing in aqueous medium is an area of great interest in order to avoid its hazardous effect. In the present manuscript, urea/thiourea linkage bearing four organic ligands (1a, 1b, 2a and 2b) are synthesized by a three-step synthetic approach. The organic ligands were then employed to develop organic nanoparticles by re-precipitation method which was further probed for their selective recognition behavior in an aqueous medium using fluorescence spectroscopy. The fluorescence emission profile of the ONPs is used as a tool for the tracking of sensing behavior. The ONPs of 1b has shown selective recognition towards Hg(II) in aqueous medium evidenced by enhancement of fluorescence emission intensity after complexation of 1b ONP with Hg(II), among several alkali, alkaline earth and transition metal ions with a detection limit of the order of 0.84 μM. The ability of the proposed sensor to sense Hg(II) ions with high selectivity and sensitivity could be accounted to photo-induced electron transfer (PET) "OFF" mechanism at λem = 390 nm. This study reveals the application of the proposed thiourea-based sensor for the selective recognition of the Hg(II) ions in an aqueous medium.
Górski, Łukasz; Matusevich, Alexey; Pietrzak, Mariusz; Wang, Lin; Meyerhoff, Mark E.; Malinowska, Elżbieta
2010-01-01
The performance of solid-contact/coated wire type electrodes with plasticized PVC membranes containing metalloporphyrins as anion selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electrochemical properties of the ion-sensors, such as EMF stability and life-time. Only highly lipophilic electrode substrates, namely graphite paste with mineral oil, were shown to prevent the formation of aqueous layer underneath the ion-sensing membrane. The possibility of employing Co(III)-tetraphenylporphyrin both as NO2− selective ionophore and as electron/ion conducting species to ensure ion-to-electron translation was also discussed based on the results of preliminary experiments. PMID:20357903
Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M
2016-06-01
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Fabrication and characterization of zinc oxide and gallium nitride based sensors
NASA Astrophysics Data System (ADS)
Wang, Hung-Ta
Pt-coated ZnO nanorods show a decrease of 8% resistance upon exposure to 500 ppm hydrogen in room temperature. This is a factor of two larger than that obtained with Pd; approximately 95% of the initial ZnO conductance was recovered within 20 s by exposing the nanorods to O2. This rapid and easy recoverability makes the ZnO nanorods suitable for ppm-level sensing at room temperature with low power consumption. Pt-gated AlGaN/GaN based high electron mobility transistors (HEMTs) showed that Schottky diode operation provides large relative sensitivity over a narrow range around turn-on voltage; the differential designed Schottky diodes with AlGaN/GaN hetero-structure was shown to provide robust detection of 1% H 2 in air at 25°C, which remove false alarms from ambient temperature variations; moreover, the use of TiB2-based Ohmic contacts on Pt-Schottky contacted AlGaN/GaN based hydrogen sensing diodes was shown to provide more stable operation. Thioglycolic acid functionalized Au-gated AlGaN/GaN based HEMTs were used to detect mercury (II) ions. A fast detection (>5 seconds) was achieved. This is the shortest response ever reported. The sensors were able to detect mercury (II) ion concentration as low as 10-7 M. The sensors showed an excellent sensing selectivity of more than 100 of detecting mercury ions over sodium, magnesium, and lead ions, but not copper. AlGaN/GaN based HEMTs were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The HEMT gate region was coated with KIM-1 antibodies and the HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline (PBS) solution. The limit of detection (LOD) was 1ng/ml using a 20 mum x50 mum gate sensing area. This approach shows a potential for both preclinical and clinical disease diagnosis with accurate, rapid, noninvasive, and high throughput capabilities. The rest of this dissertation includes ZnO band edge electroluminescence from N+-implanted ZnO bulk, and the investigation of cryogenic gold Schottky contact on GaAs for enhancing device thermal stability.
Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu
2010-04-28
A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.
Zheng, Fangyuan; Zeng, Fang; Yu, Changmin; Hou, Xianfeng; Wu, Shuizhu
2013-01-14
Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn-on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert-Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride-mediated cleavage of the Si-O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993-5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices.
Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias
2015-04-14
An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na(+) mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Silverman, William R; Bannister, John P A; Papazian, Diane M
2004-11-01
In ether-a-go-go K+ channels, voltage-dependent activation is modulated by ion binding to a site located in an extracellular-facing crevice between transmembrane segments S2 and S3 in the voltage sensor. We find that acidic residues D278 in S2 and D327 in S3 are able to coordinate a variety of divalent cations, including Mg2+, Mn2+, and Ni2+, which have qualitatively similar functional effects, but different half-maximal effective concentrations. Our data indicate that ions binding to individual voltage sensors in the tetrameric channel act without cooperativity to modulate activation gating. We have taken advantage of the unique phenotype of Ni2+ in the D274A channel, which contains a mutation of a nonbinding site residue, to demonstrate that ions can access the binding site from the extracellular solution when the voltage sensor is in the resting conformation. Our results are difficult to reconcile with the x-ray structure of the KvAP K+ channel, in which the binding site residues are widely separated, and with the hydrophobic paddle model for voltage-dependent activation, in which the voltage sensor domain, including the S3-S4 loop, is near the cytoplasmic side of the membrane in the closed channel.
NASA Astrophysics Data System (ADS)
Liu, Sha; Zhang, Hongyan; Liu, Weimin; Wang, Pengfei
2015-10-01
Hg2+ ions are one of the most toxic heavy metal ion pollutants, and are caustic and carcinogenic materials with high cellular toxicity. The Hg2+ ions can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. According to the US Environment Protection Agency (EPA) guidelines, Hg2+ ions must be at concentrations below 1 ng/ml (10 nM) in drinking water. If the Hg2+ ions are higher than 2.5 ng/ml in serum, that will bring mercury poisoning. The traditional testing for Hg2+ ions includes atomic absorption, atomic fluorescence, and inductively coupled plasma mass spectrometry. These methods are usually coupled with gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. However, these instrument-based techniques are rather complicated, time-consuming, costly, and unsuitable for online and portable use. An ultrasensitive and selective detection of mercury (II) in serum was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01 ng/ml for Hg2+ ions in fetal calf serum and that is lower than that was required Hg2+ ions must be at concentrations below 1 ng/ml by the US Environment Protection Agency (EPA) guidelines. This sensor was designed on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg2+-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg2+ ion concentration, which is unaffected by the presence of other metal ions. A good liner relation was got with the coefficients of 0.9116 in 30% fetal calf serums with the linear part over a range of 0.01 ng/ml to10 ng/ml.
Oxygen ion conducting materials
Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David
2003-01-01
An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.
Oxygen ion conducting materials
Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael
2004-11-23
An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.
Oxygen ion conducting materials
Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David
2005-07-12
An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.
Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel
2015-08-28
Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Lin; Meyerhoff, Mark E.
2008-01-01
The synthesis and characterization of a novel polymethacylate polymer with covalently linked Al(III)-tetraphenylporphyrin (Al(III)-TPP) groups is reported. The new polymer is examined as a potential macromolecular ionophore for the preparation of polymeric membrane-based potentiometric and optical fluoride selective sensors. To prepare the polymer, an Al(III) porphyrin monomer modified with a methacrylate functionality is synthesized, allowing insertion into a polymethacrylate block copolymer (methyl methacrylate and decyl methacrylate) backbone. The resulting polymer can then be incorporated, along with appropriate additives, into conventional plasticized poly(vinyl chloride) films for testing electrochemical and optical fluoride response properties. The covalent attachment of the Al(III)-TPP ionophore to the copolymer matrix provides potentiometric sensors that exhibit significant selectivity for fluoride ion with extended lifetimes (compared to ion-selective membrane electrodes formulated with conventional free Al(III)-TPP structure). However, quite surprisingly, the attachment of the ionophore to the polymer does not eliminate the interaction of Al(III)-TPP structures to form dimeric species within the membrane phase in the presence of fluoride ion. Such interactions are confirmed by UV/visible spectroscopy of the blended polymeric films. Use of the new polymer-Al(III)-TPP conjugates to prepare optical fluoride sensors by co-incorporating a lipophilic pH indicator (4’,5’-dibromofluorescein octadecyl ester; ETH7075) is also examined and the resulting optical sensing films are shown to exhibit excellent selectivity for fluoride, with the potential for prolonged operational lifetime. PMID:18298973
NASA Astrophysics Data System (ADS)
Su, Jun-Xia; Wang, Xiao-Ting; Chang, Jing; Wu, Gui-Yuan; Wang, Hai-Ming; Yao, Hong; Lin, Qi; Zhang, You-Ming; Wei, Tai-Bao
2017-07-01
In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2 + and H2PO4- in DMSO/H2O (v/v = 9:1, pH = 7.2) buffer solution with high selectivity and sensitivity. When added Cu2 + ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2 +, Ag+, Ca2 +, Co2 +, Ni2 +, Cd2 +, Pb2 +, Zn2 +, Cr3 +, and Mg2 + ions. More interestingly, the Cu2 + ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2 + and T-Cu2 + to H2PO4- were evaluated to be 1.609 × 10- 8 M and 0.994 × 10- 7 M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2 + and H2PO4- test kits.
Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)
NASA Astrophysics Data System (ADS)
Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou
2017-11-01
Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles can be utilized as a possible sensor for mercury (II) ions in solution.
Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R.; Meldrum, Deirdre R.
2012-01-01
We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O2) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes. PMID:23175599
An optical chemical sensor for thorium (IV) determination based on thorin.
Rastegarzadeh, S; Pourreza, N; Saeedi, I
2010-01-15
A selective method for the determination of thorium (IV) using an optical sensor is described. The sensing membrane is prepared by immobilization of thorin-methyltrioctylammonium ion pair on triacetylcellulose polymer. The sensor produced a linear response for thorium (IV) concentration in the range of 6.46 x 10(-6) to 9.91 x 10(-5)mol L(-1) with detection limit of 1.85 x 10(-6)mol L(-1). The regeneration of optode was accomplished completely at a short time (less than 20s) with 0.1 mol L(-1) of oxalate ion solution. The relative standard deviation for ten replicate measurements of 2.15 x 10(-5) and 8.62 x 10(-5)mol L(-1) of thorium was 2.71 and 1.65%, respectively. The optode membrane exhibits good selectivity for thorium (IV) over several other ionic species and are comparable to those obtained in case of spectrophotometric determination of thorium using thorin in solution. A good agreement with the ICP-MS and spiked method was achieved when the proposed optode was applied to the determination of thorium (IV) in dust and water samples.
Sensor apparatus using an electrochemical cell
Thakur, Mrinal
2002-01-01
A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.
Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring
A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...
NASA Technical Reports Server (NTRS)
Dominquez, Jesus; Barile, Ron
2006-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Ruan, Yudi; Wu, Lie; Jiang, Xiue
2016-05-23
Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.
NASA Technical Reports Server (NTRS)
Buoncristiani, A. Martin
1992-01-01
Recently, there has been interest in developing a distributed temperature sensor integrated into an optical fiber. Such a system would allow embedding of the optical fiber within or on a structural material to provide for continuous monitoring of the material's temperature. Work has already begun on the development of a temperature sensor using the temperature dependent emission spectra from the lanthanide rare earths doped into crystalline hosts. The lifetime, the linewidth and the integrated intensity of this emission are each sensitive to changes in the temperature and can provide a basis for thermometry. One concept for incorporating this phenomena into an optical fiber based sensor involves bonding the optically active material to the cladding of an optical fiber and allowing the luminescent light to couple into the the fiber by the evanescent wave. Experimental work developing this concept has already been reported. Measurements of the linewidth of Eu3+:Y2O3, diffused into a fiber, made by Albin clearly show a strong and regular dependence on temperature over the range of 300 to 1000 K. We report here on a study of the temperature dependence of the lineshape of the emission at 611 nm using the data in references. We focus attention on understanding the general behavior of the Eu3+:Y2O3 system. Building upon understanding of this system we will be able to establish the physical criterial for a good optical fiber based temperature sensor and then to examine available data on other lanthanide rare earths and transition metal ions to determine the best luminescent system for temperature sensing in an optical fiber.
Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili
2016-03-15
A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Shao, Chen; Zhou, Shuang; Yin, Xuebo; Gu, Yajun; Jia, Yunfang
2016-01-01
The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS. PMID:27187412
NASA Astrophysics Data System (ADS)
Liu, Ning; Gan, Lu; Liu, Yu; Gui, Weijun; Li, Wei; Zhang, Xiaohang
2017-10-01
Electrical manipulation of charged ions in electrolyte-gated transistors is crucial for enhancing the electric-double-layer (EDL) gating effect, thereby improving their sensing abilities. Here, indium-zinc-oxide (IZO) based thin-film-transistors (TFTs) are fabricated on flexible plastic substrate. Acid doped chitosan-based biopolymer electrolyte is used as the gate dielectric, exhibiting an extremely high EDL capacitance. By regulating the dynamic EDL charging process with special gate potential profiles, the EDL gating effect of the chitosan-gated TFT is enhanced, and then resulting in higher pH sensitivities. An extremely high sensitivity of ∼57.8 mV/pH close to Nernst limit is achieved when the gate bias of the TFT sensor sweeps at a rate of 10 mV/s. Additionally, an enhanced sensitivity of 2630% in terms of current variation with pH range from 11 to 3 is realized when the device is operated in the ion depletion mode with a negative gate bias of -0.7 V. Robust ionic modulation is demonstrated in such chitosan-gated sensors. Efficiently driving the charged ions in the chitosan-gated IZO-TFT provides a new route for ultrasensitive, low voltage, and low-cost biochemical sensing technologies.
NASA Astrophysics Data System (ADS)
Kim, Daesan; Jin, Hye; Lee, San; Kim, Tae; Park, Juhun; Song, Hyun; Park, Tai; Hong, Seunghun
2013-03-01
We have developed a nanovesicle-based bioelectronic nose (NBN) that could mimic the receptor-mediated signal transmission of human olfactory systems and recognize a specific odorant. The NBN was comprised of a single-walled carbon nanotube (CNT)-based field effect transistor and cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification. It enabled ~100 times higher sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and CNT transistors. The NBN sensors exhibited a high sensitivity of 1 fM detection limit and a human-like selectivity with single-carbon-atomic resolution. Furthermore, these sensors could mimic a receptor-mediated cellular signal transmission in live cells. This versatile sensor platform should be useful for the study of molecular recognition and biological processes on cell membranes and also for various practical applications such as food conditioning and medical diagnostics.
Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction.
Jin, Hye Jun; Lee, Sang Hun; Kim, Tae Hyun; Park, Juhun; Song, Hyun Seok; Park, Tai Hyun; Hong, Seunghun
2012-05-15
We developed a nanovesicle-based bioelectronic nose (NBN) that could recognize a specific odorant and mimic the receptor-mediated signal transmission of human olfactory systems. To build an NBN, we combined a single-walled carbon nanotube-based field effect transistor with cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification, enabling ≈ 100 times better sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and carbon nanotube transistors. The NBN sensors exhibited a human-like selectivity with single-carbon-atomic resolution and a high sensitivity of 1 fM detection limit. Moreover, this sensor platform could mimic a receptor-meditated cellular signal transmission in live cells. This sensor platform can be utilized for the study of molecular recognition and biological processes occurring at cell membranes and also for various practical applications such as food screening and medical diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, A. V.; Hemond, H.
2009-12-01
The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing only a single anion (Cl-) in addition to hydroxide, thus allowing charge neutrality to be easily and explicitly invoked. Calibration of every probe relative to each of the five cations present is undertaken, and resulting curves are used to create a representative environmental data set based on USGS data for New England waters. Signal processing methodologies, specifically artificial neural networks (ANNs), are extended to use a feedback architecture based on conductivity measurements and charge neutrality calculations. The algorithms are then tuned to optimize performance of the algorithm at predicting actual concentrations from these simulated signals. Results are compared to use of component probes as stand-alone sensors. Future extension of this instrument for multiple anions (including carbonate and bicarbonate, nitrate, and sulfate) will ultimately provide rapid, accurate field measurements of the entire charge balance of natural waters at high resolution, improving sampling abilities while reducing costs and errors related to transport and analysis of grab samples.
Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances
Suzuki, Yoshio; Yokoyama, Kenji
2015-01-01
This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660
Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors
NASA Astrophysics Data System (ADS)
Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik
2017-05-01
For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.
Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission
NASA Astrophysics Data System (ADS)
Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter
2015-06-01
The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.
Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.
Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto
2009-03-15
A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.
Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S
2017-10-15
Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zargoosh, Kiomars; Babadi, Fatemeh Farhadian
2015-02-01
A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz H., G.; Garcia-Arrelano, H.; Alfonta, L.; Vacik, J.; Kiv, A.; Hnatowicz, V.
2017-02-01
In previous papers it was shown that the coupling of the two chemical reactions: {NaOH etchant - PET polymer} and {NaOH etchant - AgNO3 solution} within the dynamic confinement of etched swift heavy ion tracks eventually leads to the formation of tiny Ag2O membranes within these nanopores, thus separating the latter ones into two adjacent segments. It is shown here that the deposition of enzymes in these two segments transforms these structures into biosensors. In our earlier developed sensors with transparent etched ion tracks, we frequently used glucose oxidase as enzyme and glucose as analyte. In these cases, the enzymatic reaction within the tracks leads to a change in the pH value of the confined solution and hence also in the track conductivity, so these structures can be used for biosensing. When applying, for easy comparison, the same enzyme/analyte combination to the segmented sensor arrangement presented here, we find a striking improvement in detection sensitivity which points at a different biosensing mechanism due to intrinsic polarisation effects across the newly inserted membranes.
NASA Technical Reports Server (NTRS)
Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.
2012-01-01
The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit
Development of zirconia based phosphors for application in lighting and as luminescent bioprobes =
NASA Astrophysics Data System (ADS)
Soares, Maria Rosa Nunes
The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure sensors are explored taking into account their studied characteristics.
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-14
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.
An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.
Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S
2016-06-01
We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.
Azkar Ul Hasan, Syed; Jung, Youngdo; Kim, Seonggi; Jung, Cho-Long; Oh, Sunjong; Kim, Junhee; Lim, Hyuneui
2016-01-12
High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar⁺ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar⁺ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar⁺ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.
Gumpu, Manju Bhargavi; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru
2017-07-01
Intake of water contaminated with lead (Pb 2+ ) and mercury (Hg 2+ ) ions leads to various toxic effects and health issues. In this context, an amperometric urease inhibition-based biosensor was developed to detect Pb 2+ and Hg 2+ ions in water matrix. The modified Pt/CeO 2 /urease electrode was fabricated by immobilizing CeO 2 nanoparticles and urease using a semi-permeable adsorption layer of nafion. With urea as a substrate, urease catalytic activity was examined through cyclic voltammetry. Further, maximum amperometric inhibitive response of the modified Pt/CeO 2 /urease electrode was observed in the presence of Pb 2+ and Hg 2+ ions due to the urease inhibition at specific potentials of -0.03 and 0 V, respectively. The developed sensor exhibited a detection limit of 0.019 ± 0.001 μM with a sensitivity of 89.2 × 10 -3 μA μM -1 for Pb 2+ ions. A detection limit of 0.018 ± 0.003 with a sensitivity of 94.1 × 10 -3 μA μM -1 was achieved in detecting Hg 2+ ions. The developed biosensor showed a fast response time (<1 s) with a linear range of 0.5-2.2 and 0.02-0.8 μM for Pb 2+ and Hg 2+ ions, respectively. The modified electrode offered a good stability for 20 days with a good repeatability and reproducibility. The developed sensor was used to detect Pb 2+ and Hg 2+ ions contaminating Cauvery river water and the observed results were in good co-ordination with atomic absorption spectroscopic data.
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-15
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu 2+ ions in the presence of other competitive ions through "naked eye" in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10mM, pH=7.4)). The presence of Cu 2+ induce color change from light yellow green to yellow with the appearance of a new band at 450nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10μM) was quenched completely in the presence of 2.7 equiv. of Cu 2+ ions. Sub-micromolar limit of detection (LOD=3.4×10 -7 M), efficient Stern-Volmer quenching constant (K SV =1.8×10 5 Lmol -1 ) and strong binding constant (log K b =5.92) has been determined with the help of fluorescence titration profile. Further, 1-Cu 2+ complex was employed for the detection of phosphate ions (PO 4 3- , HPO 4 2- and H 2 PO 4 - ) at micromolar concentrations in EtOH-buffer of pH7.4 based on fluorescence recovery due to the binding of Cu 2+ with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406nm) and emission wavelength (537nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping
2016-12-01
Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Xing, Panfei; Xu, Yongqian; Li, Hongjuan; Liu, Shuhui; Lu, Aiping; Sun, Shiguo
2015-01-01
A near-infrared sensor for cyanide ion (CN−) was developed via internal charge transfer (ICT). This sensor can selectively detect CN− either through dual-ratiometric fluorescence (logarithm of I414/I564 and I803/I564) or under various absorption (356 and 440 nm) and emission (414, 564 and 803 nm) channels. Especially, the proposed method can be employed to measure β-glucosidase by detecting CN− traces in commercial amygdalin samples. PMID:26549546
Flexible Graphene-Based Wearable Gas and Chemical Sensors.
Singh, Eric; Meyyappan, M; Nalwa, Hari Singh
2017-10-11
Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO 2 ), ammonia (NH 3 ), hydrogen (H 2 ), hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.
Chemical sensors for space applications
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1992-01-01
The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.
"Naked-eye" colorimetric and "turn-on" fluorometric chemosensors for reversible Hg2+ detection.
Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat
2014-01-24
Two new Hg(2+)-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg(2+), the sensors exhibited highly sensitive "turn-on" fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu(2+), Ag(+), Pb(2+), Ca(2+), Cd(2+), Co(2+), Fe(2+), Mn(2+), Na(+), Ni(2+), K(+), Ba(2+), Li(+) and Zn(2+), with a low detection limit of 1.7 ppb toward Hg(2+). Copyright © 2013 Elsevier B.V. All rights reserved.
“Naked-eye” colorimetric and “turn-on” fluorometric chemosensors for reversible Hg2+ detection
NASA Astrophysics Data System (ADS)
Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat
2014-01-01
Two new Hg2+-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg2+, the sensors exhibited highly sensitive “turn-on” fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu2+, Ag+, Pb2+, Ca2+, Cd2+, Co2+, Fe2+, Mn2+, Na+, Ni2+, K+, Ba2+, Li+ and Zn2+, with a low detection limit of 1.7 ppb toward Hg2+.
Badr, Ibrahim H A; Meyerhoff, Mark E
2005-04-20
A highly selective, sensitive, and reversible fluoride optical sensing film based on aluminum(III)octaethylporphyrin as a fluoride ionophore and a lipophilic pH indicator as the optical transducer is described. The fluoride optical sensing films exhibit a submicromolar detection limit and high discrimination for fluoride over several lipophilic anions such as nitrate, perchlorate, and thiocyanate.
Vriens, Joris; Voets, Thomas
2018-05-01
Heat sensation, the ability to detect warm and noxious temperatures, is an ancient and indispensable sensory process. Noxious temperatures can have detrimental effects on the physiology and integrity of cells, and therefore, the detection of environmental hot temperatures is absolutely crucial for survival. Temperature-sensitive ion channels, which conduct ions in a highly temperature-dependent manner, have been put forward as molecular thermometers expressed at the endings of sensory neurons. In particular, several temperature-sensitive members of the transient receptor potential (TRP) superfamily of ion channels have been identified, and a multitude of in vivo studies have shown that the capsaicin-sensitive TRPV1 channel plays a key role as a noxious heat sensor. However, Trpv1-deficient mice display a residual heat sensitivity suggesting the existence of additional heat sensor(s). In this chapter, we provide evidence for the role of the non-selective calcium-permeable TRPM3 ion channel as an additional heat sensor that acts independently of TRPV1, and give an update of the modulation of this channel by various molecular mechanisms. Finally, we compare antagonists of TRPM3 to specific blockers of TRPV1 as potential analgesic drugs to treat pathological pain.
Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Montazerozohori, Morteza
2018-04-01
A new selective and sensitive optical sensor based on the incorporation of new synthesized N'-(2-hydroxy-5-iodobenzylidene) isonicotinohydrazide (HIBIN) as an effective reagent into the nanoporous of a transparent glass like material through the sol-gel process was developed which was suitable for the determination of copper (II) ions in aqueous solutions. The thin film sensors were constructed by spin-coating of prepared sol onto glass plate and their surface morphology were studied by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM) technique. Influence of sonication time on immobilization of HIBIN into silica matrix was investigated through calculation of leaching percentage. The Results shown that sonication time of 35 min is suitable to give more stable thin films without fluctuation in sensitivity and response time of presented sensor for a long period of time. The proposed optical sensor can be used for determination of copper (II) ions in the range of 9.1 × 10 -8 -1.12 × 10 -5 mol L -1 with a detection limit of 1.8 × 10 -8 mol L -1 . It also showed relative standard deviation 3.4 and 0.72% for reproducibility and repeatability respectively, along with a fast response time about of 2 min. The constructed optode is stable in wet conditions and could be stored for at least 6 weeks without observing any change in its sensitivity. The developed sensor was successfully applied to the determination of copper (II) in fruit juice and water samples which results were confirmed by atomic absorption spectrometry method. Copyright © 2017 Elsevier B.V. All rights reserved.
Alpha-Particle Gas-Pressure Sensor
NASA Technical Reports Server (NTRS)
Buehler, M. C.; Bell, L. D.; Hecht, M. H.
1996-01-01
An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.
Bakker, Eric; Pretsch, Ernö
2008-01-01
Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-12-04
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.
Highly sensitive and selective liquid crystal optical sensor for detection of ammonia.
Niu, Xiaofang; Zhong, Yuanbo; Chen, Rui; Wang, Fei; Luo, Dan
2017-06-12
Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH 3 ) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu 2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-01-01
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155
A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging
NASA Astrophysics Data System (ADS)
Manjunath, Rangasamy; Hrishikesan, Elango; Kannan, Palaninathan
2015-04-01
A new rhodamine-based fluorescent turn-on chemosensor (L) for selective detection of Al3+ ion has been developed and characterized. The fluorescent chemosensor L was synthesized by the reaction of intermediate (4) with 2,5-bis (4-phenylacyl chloride)-1,3,4-oxadiazole (3). The chemosensor L displays an excellent selective and sensitive response to Al3+ ion over other metal ions, in which the spirocyclic (non-fluorescent) to ring opened amide (fluorescent) process was utilized and a 1:2 stoichiometry for L-Al3+ complex was formed with an association constant of 2.03 × 103 M-1. Furthermore, chemosensor L can be applied as a fluorescent probe for monitoring Al3+ in living cells by performing cell imaging studies.
Dynamic curvature sensing employing ionic-polymer-metal composite sensors
NASA Astrophysics Data System (ADS)
Bahramzadeh, Yousef; Shahinpoor, Mohsen
2011-09-01
A dynamic curvature sensor is presented based on ionic-polymer-metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson-Nernst-Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations.
Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo
2015-11-21
We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg(2+) binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel "turn-on and -off" fluorescent sensor for Hg(2+) and biothiol detection with high selectivity and sensitivity.
Kotova, Oxana; Comby, Steve; Gunnlaugsson, Thorfinnur
2011-06-28
1·Eu·BPS was developed as a luminescent lanthanide sensor for use in displacement assays for detection of d-metal ions by monitoring the changes in the europium emission, which was quenched for iron(II), with a detection limit of ∼10 pM (0.002 μg L(-1)) for Fe(II) in buffered pH 7.4 solution. This journal is © The Royal Society of Chemistry 2011
Cheng, Fei; Bonder, Edward M; Jäkle, Frieder
2013-11-20
Luminescent triarylborane homo and block copolymers with well-defined chain architectures were synthesized via reversible addition-fragmentation chain transfer polymerization of a vinyl-functionalized borane monomer. The Lewis acid properties of the polymers were exploited in the luminescent detection of fluoride ions. A dual-responsive fluoride sensor was developed by taking advantage of the reversible self-assembly of a PNIPAM-based amphiphilic block copolymer. Anion detection in aqueous solution was realized by introducing positively charged pyridinium moieties along the polymer chain.
Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests
NASA Astrophysics Data System (ADS)
Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.
2014-02-01
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.
Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.
Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L
2014-02-01
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.
Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.
2014-02-15
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiquan Tao
2006-12-31
The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less
Li, Jiling; Xu, Xiaoyong; Shao, Xusheng; Li, Zhong
2015-12-01
A novel semi-rigid latent chromophore E1, containing an amide subunit activated by an adjacent semi-rigid intramolecular hydrogen-bonding (IHB) unit, was designed for the detection of fluoride ion by the 'naked-eye' in CH3CN. Comparative studies on structural analogs (E2, E3, and E4) provided significant insight into the structural and functional role of the amide N-H and IHB segment in the selective recognition of fluoride ions. The deprotonation of the amide N-H followed by the enhancement of intramolecular charge transfer (ICT) induced the colorimetric detection of E1 for fluoride ion. Copyright © 2015 John Wiley & Sons, Ltd.
TimepixCam: a fast optical imager with time-stamping
NASA Astrophysics Data System (ADS)
Fisher-Levine, M.; Nomerotski, A.
2016-03-01
We describe a novel fast optical imager, TimepixCam, based on an optimized silicon pixel sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes in excess of 1,000 photons with high quantum efficiency in the 400-1000nm wavelength range with 20ns timing resolution, corresponding to an effective rate of 50 Megaframes per second. The camera was used for imaging ions impinging on a microchannel plate followed by a phosphor screen. Possible applications include spatial and velocity map imaging of ions in time-of-flight mass spectroscopy; coincidence imaging of ions and electrons, and other time-resolved types of imaging spectroscopy.
NASA Astrophysics Data System (ADS)
Lv, Rui; Chen, Zhihengyu; Fu, Xin; Yang, Boyi; Li, Hui; Su, Jian; Gu, Wen; Liu, Xin
2018-03-01
A new luminescent Cd(II)-based metal-organic framework, [Cd(PAM)(4-bpdb)1.5]·DMF (Cd-MOF, PAM = 4,4‧-methylenebis(3-hydroxy-2-naphthalene-carboxylic acid) and 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) was successfully synthesized by solvothermal synthesis method. The Cd-MOF reveals excellent luminescence property which can selectively detect Al3+ and Fe3+ ions among other interfering metal ions. The detection limit is 0.56 μM for Al3+ ion in aqueous solutions, and it is obvious lower than the maximum standard of Al3+ ion in drinking water of 7.41 μM which is defined by the WHO. More importantly, the Cd-MOF shows an obvious luminescent color change from yellow to blue under the UV lamp irradiation at 365 nm with the dropping of Al3+ ion, which can make it apply to the visual detection. And, the detection based on the test paper was explored for the first time. In addition, the Cd-MOF can also be used for quantitative detecting Fe3+ ion, and the LOD for Fe3+ ion can be as low as 0.3 μM which is lower than most reported MOFs. It is worth noting that Fe3+ and Al3+ ions can not interfere with each other. These properties make it become an excellent luminescence sensor for the detection of Al3+ and Fe3+ ions.
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging
NASA Astrophysics Data System (ADS)
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-01
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging.
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-15
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu 2+ and Mn 2+ ions, respectively. The BPN coordinated with Cu 2+ forming [BPNCu] 2+ complex with quenched emission, while Mn 2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu 2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu 2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu 2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua
2017-01-01
In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-01-01
A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.
Jia, Shuo; Bian, Chao; Sun, Jizhou; Tong, Jianhua; Xia, Shanhong
2018-05-08
The study presented herein investigated an easy preparation, high performance, wavelength-modulated LSPR optical fiber chemosensor coated by gold nanospheres(AuNS) for Hg 2+ detection based on thymine-Hg 2+ -thymine base pair mismatches and the coupled plasmonic resonance effect.Utilizing electrostatic self-assembly method, the high density and dispersivity monolayer AuNS coated LSPR fiber sensor had the near field refractive index sensitivity up to 2016 nm/RIU. The single-strand probe DNA served as a binding element for free AuNS labelled-target DNA conjugates was attached to the monolayer AuNS by Au-S bond. In the present of Hg 2+ , the coupled plasmonic resonance band between monolayer AuNS and free AuNS was produced by thymine-Hg 2+ -thymine structure and leaded to red-shift of LSPR peak. Under the optimal conditions, the enlarged red-shift in peak of LSPR spectroscopy was linearly with the concentration of Hg 2+ in the range from 1.0 × 10 -9 to 5.0 × 10 -8 M with the coefficient of 0.976. The limit of detection was 0.7 nM(S/N = 3). The specificity of the sensor was proved high by evaluating the response to other heavy metal ions. The proposed fiber sensor provided a label-free, miniature, low-cost approach for the Hg 2+ detection and had potential in real environmental evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.
Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.
2006-01-01
A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.
NASA Astrophysics Data System (ADS)
Chen, Xia; Sun, Wei; Bai, Yinjuan; Zhang, Feifei; Zhao, Junxia; Ding, Xiaohu
2018-02-01
Three rhodamine schiff-base type fluorescent sensors R1-R3 for detecting iron ion (Fe3 +), 2-furanacrolein rhodamine hydrazone (R1), furfural rhodamine hydrazone (R2) and 2-furanacrolein rhodamine ethylenediamine (R3) have been synthesized by using rhodamine B derivatives and furan derivatives as staring materials. And their recognition abilities for Fe3 + were studied by fluorescence spectroscopy. The result showed that R1 is a best selective probe for Fe3 + over other metal ions in EtOH/H2O (1:1, v/v) due to having 2-furanacrolein for unique space coordination structural. The recognition of Fe3 + and mechanism of the sensor were characterized and determined by fluorescence spectra and Fukui function. And the fluorescence intensity of the probe R1 for Fe3 + was proportional to its concentration with the linear correlation coefficient of 0.9965 and the binding constant of 7.66 × 104 M- 1. And the cell imaging experiment indicated a successful application of the probe R1 for Fe3 + in living cell.
Pazos, Elena; Vázquez, M Eugenio
2014-02-01
Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modern Directions for Potentiometric Sensors
Bakker, Eric; Chumbimuni-Torres, Karin
2009-01-01
This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473
NASA Technical Reports Server (NTRS)
Medved, D. B.
1971-01-01
The results of the reduction and analysis of data obtained from the S026 experiment from Gemini 10 and 11 flights are presented. The electron and ion sensors were continuously operative throughout both missions from shroud removal (about 6 minutes after Agena liftoff to power-down conditions one week later). Data on ion and electron currents, electron temperature, and vehicle potential were obtained at a sample rate of 32 times per second on positive ions for each of two ion sensors and once every 1.067 seconds for the electron sensor. Only the data reduction of the Gemini plasma wake measurements comprising roughly twenty minutes of data for six maneuvers programed for wake measurements are considered. The intermediate depletion zone, between 1 and 10 vehicle radii downstream from the object, is emphasized. The smallest characteristic radius of interest is 1.34 feet and the largest is 5 feet. This implies a separation span extending from approximately 1.5 feet at the closest approach to at least 50 feet into the far field.
Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia
2013-01-01
Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925
Huang, Yan Li; Gao, Zhong Feng; Jia, Jing; Luo, Hong Qun; Li, Nian Bing
2016-05-05
A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.
A Rationally Designed Reversible ‘Turn-Off’ Sensor for Glutathione
Pei, Jinxin; Abell, Andrew D.
2017-01-01
γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence (‘turn-on’) once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based ‘turn-off’ probe (1) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence (‘turn-off’). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis. PMID:28878194
Billing, Beant Kaur; Mayank; Agnihotri, Prabhat K; Singh, Narinder
2018-06-08
Non-covalent bonding via π-π stacking is in demand these days because it does not affect the structure of the carbon nanotube (CNT). Herein, a hybrid material was fabricated via π-π stacking between the aromatic rings of carbon nanotubes and a dihydropyrimidone-based pyrene derivative. The developed CNT@pyrene hybrid material was fully characterized using SEM, EDX, TEM, XRD, and FTIR techniques. The hybrid was developed to improve the heat transport in the hybrid solution by anion addition. The emission profile of the developed hybrid was screened against TBA salts of different anions in EtOH-H2O (10-90% v/v) solvent system to identify the anion that can interact with the hybrid. The hybrid exhibited high sensitivity and selectivity towards NO3- ions with 1.5-fold enhancement in fluorescence intensity, while other anions neither showed significant responses nor interfered in the sensor's response. The limit of NO3- ions detection was found to be 8.1 nM, calculated using the 3-sigma method. It was observed that the proposed hybrid sensor showed stable response at different pH and diverse salt concentrations. The binding mechanism was elucidated by DFT-based theoretical calculations. Real sample analysis was performed for the detection of NO3- concentrations in local water bodies with accuracy as high as 95%. Viscosity and thermal conductivity experiments were performed to measure the effect of concentration, temperature, and pH on the NO3- response.
CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)
NASA Astrophysics Data System (ADS)
Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.
2016-11-01
A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.
Engineering an FMN-based iLOV protein for the detection of arsenic ions.
Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Lee, Chong-Soon; Yun, Hyungdon
2017-05-15
Over the past few decades, genetically encoded fluorescent proteins have been widely used as efficient probes to explore and investigate the roles of metal ions in biological processes. The discovery of small FMN-based fluorescent proteins, such as iLOV and FbFP, has enabled researchers to exploit these fluorescent reporter proteins for metal-sensing applications. In this study, we report the inherent binding properties of iLOV towards arsenic ions. The fluorescence quenching of iLOV was linearly related to the concentration of arsenic ions, and engineered proteins showed better sensitivity than the wild-type protein. Engineering key residues around the chromophore converted the iLOV protein into a highly sensitive sensor for As 3+ ions. iLOV N468S exhibited an improved binding affinity with a dissociation constant of 1.5 μM. Furthermore, the circular dichroism spectra indicated that the fluorescence quenching mechanism might be related to arsenic-protein complex formation. Thus, the reagentless sensing of arsenic can potentially be exploited to determine intracellular or environmental arsenic using a genetically encoded biosensing approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo
2010-05-01
It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ΔE/q (ΔE : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Reversible thrombin detection by aptamer functionalized STING sensors
Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R. Adam; Jejelowo, Olufisayo; Pourmand, Nader
2011-01-01
Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. PMID:21636261
Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B
2009-02-18
There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.
Graphene Electronic Device Based Biosensors and Chemical Sensors
NASA Astrophysics Data System (ADS)
Jiang, Shan
Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems. In the last part of my thesis, I demonstrate the construction of few-layer molybdenum disulfide (MoS2) based field-effect transistor (FET) device for highly sensitive detection of Hg2+ ion in aquatic solutions. The detection of mercury in aquatic environment is of great importance because mercury is an environment pollutant with severe toxicity. High binding affinity between mercury and sulfur makes MoS2 a promising candidate for mercury sensing. Our studies demonstrate that MoS2 sensors can selectively respond to Hg2+ ion with a detection limit of 30 pM. This MoS2 FET based mercury sensor promises great potential for highly sensitive, label-free, low-cost, fast and non-aggressive detection of mercury in aquatic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.P.
Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less
Progress in Development of Improved Ion-Channel Biosensors
NASA Technical Reports Server (NTRS)
Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.
2008-01-01
Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a relatively thick dielectric layer between the top of the well and the top electrode. This layer greatly reduces the capacitance of an aperture across which the ion channels are formed, thereby increasing the signal-to-noise ratio. The use of a relatively large aperture with agarose support makes it possible to form many ion channels instead of only one, thereby further increasing the signal-to-noise ratio and effectively increasing the size of the available ionic reservoir. The relatively large reservoir makes it possible to measure AC rather than DC. This concludes the recapitulation from the cited previous article.
Overview of ion source characterization diagnostics in INTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.
2016-02-15
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less
Overview of ion source characterization diagnostics in INTF
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.
2016-02-01
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.
Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn
2011-10-01
A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.
Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha
2015-02-20
Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.
Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.
Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J
2013-09-21
A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
The Energetic Particle Detector Suite for Solar Orbiter
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; Rodriguez-Pacheco, J.; Lin, R. P.; Mason, G. M.; Heber, B.; Valtonen, E.; Sanchez, S.; Blanco, J.; Prieto, M.; Martin, C.; Ho, G.; Andrews, B.; Burmeister, S.; Boettcher, S.; Kulkarni, S. R.; Seimetz, L.; Schuster, B.
Multiple processes in the solar atmosphere or near the Sun are capable of energizing electrons and ions which are remotely observed as Solar Energetic Particle (SEP) events. SEP events are of great interest not only because they can cause large radiation increases in the interplanetary space and over the Earth's polar regions, but also because they are part of a broad range of astrophysical sources of energetic particles. Since astrophysical particle accelerators cannot be studied directly, SEPs provide the best opportunity to study all aspects of the problem, namely the acceleration process itself and the ways in which the particles escape the source and travel to remote sites. The Energetic Particle Detector (EPD) addresses two primary science goals of Solar Orbiter: 1) What are the sources of energetic particles and how are they accelerated to high energy? 2) How are solar energetic particles released from their sources and distributed in time? To address these questions, the Energetic Particle Detector (EPD) suite consists of five sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV up to 200 MeV/n. The five EPD sensors are the SupraThermal Elec-trons, Ions, Neutrals (STEIN) sensor, the Suprathermal Ion Spectrograph (SIS), the Electron Proton Telescope (EPT), the Low Energy Telescope (LET), and the High Energy Telescope (HET). All sensors share a Common Data Processing Unit (CDPU), and EPT and HET share a common E-Box. EPT/HET and LET consist of two separate sensors with multiple viewing directions. The overall energy coverage achieved with the EPD sensors is 0.002 MeV to 20 MeV for electrons, 0.003 MeV to 100 MeV for protons, 0.008 MeV/n to 200 MeV/n for heavy ions (species-dependent), and 3 keV 30 keV for neutral atoms.
Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M
2014-11-01
Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Jun; Watson, David B.; Whitten, William B.
2013-01-22
An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.
Virtual IED sensor at an rf-biased electrode in low-pressure plasma
NASA Astrophysics Data System (ADS)
Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander
2016-09-01
The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.
Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors
Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João
2016-01-01
The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749
Silicon chip integrated photonic sensors for biological and chemical sensing
NASA Astrophysics Data System (ADS)
Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.
2016-03-01
We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.
Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin
2010-01-01
The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904
NASA Astrophysics Data System (ADS)
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-04-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-01-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.
Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady
2018-01-01
Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects. PMID:29740577
NASA Astrophysics Data System (ADS)
Kraiskii, A. V.; Postnikov, V. A.; Suitanov, T. T.; Khamidulin, A. V.
2010-02-01
The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L-1). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking.
NASA Astrophysics Data System (ADS)
Thimaradka, Vikram; Pangannaya, Srikala; Mohan, Makesh; Trivedi, Darshak R.
2018-03-01
A series of new receptors PDZ1-3 based on 2-(arylidenehydrazinyl)pyridines have been designed and synthesized for the detection of biologically and environmentally important ions. The colorimetric detection of CO32 - using neutral organic receptor PDZ-1 has been achieved with characteristic visual colour change from yellow to green accompanied by a large redshift of 215 nm in absorption maxima. UV-Vis spectroscopic and cyclic voltammetric studies reveal the stoichiometry of binding and electrochemistry of host-guest complex formation. The binding constant was found to be 0.77 × 104 M- 2. In addition, electrochemical studies provide an insight into the stability of the complex. DFT studies performed on the PDZ-1 and PDZ-1 - CO32 - complex reveal the binding mechanism involved in the anion detection process. PDZ-1 is highly selective for carbonate and does not show any colorimetric response towards any other anions or cations, while PDZ-2 and PDZ-3 remain inactive in the ion detection process. The limit of detection (LOD) and limit of quantification (LOQ) of PDZ-1 for carbonate was found to be 0.11 mM and 0.36 mM respectively. Considerable binding constant and limit of detection make PDZ-1 to be used as a real time sensor for the detection of carbonate in environmental and biological samples.
Design and test of a biosensor-based multisensorial system: a proof of concept study.
Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano
2013-12-04
Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1-7 ppm) and as a liquid sensor array (concentration range 73-98 μM).
Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A
2016-01-01
A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635
Detection of γ-radiation and heavy metals using electrochemical bacterial-based sensor
NASA Astrophysics Data System (ADS)
Al-Shanawa, M.; Nabok, A.; Hashim, A.; Smith, T.; Forder, S.
2013-06-01
The main aim of this work is to develop a simple electrochemical sensor for detection of γ-radiation and heavy metals using bacteria. A series of DC and AC electrical measurements were carried out on samples of two types of bacteria, namely Escherichia coli and Deinococcus radiodurans. As a first step, a correlation between DC and AC electrical conductivity and bacteria concentration in solution was established. The study of the effect of γ-radiation and heavy metal ions (Cd2+) on DC and AC electrical characteristics of bacteria revealed a possibility of pattern recognition of the above inhibition factors.
Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol
NASA Astrophysics Data System (ADS)
Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita
2017-02-01
Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.
Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji
2015-01-01
The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300
ERIC Educational Resources Information Center
Arnold, Mark A.; Meyerhoff, Mark E.
1984-01-01
Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…
Alaei, Parvaneh; Rouhani, Shohre; Gharanjig, Kamaladin; Ghasemi, Jahanbakhsh
2012-05-01
A novel N-allyl-4-amino-substituted 1,8-naphthalimide dye, containing thiourea functional group with intense yellow-green fluorescence was successfully synthesized. Copolymerization was done with styrene. The photophysical characteristics of dye and its copolymer in solution and solid film were investigated in the presence of halide ions. The results reveal that the fluorescence emissions of the monomer dye and also its polymer were 'switched off' in the presence of fluoride ions. The dye showed spectral shifts and intensity changes in the presence of more fluoride ions which lead to detect certain fluoride concentrations of 10-150 mM at visible wavelengths. By adding the fluoride ions, green-yellow to purple color changes occurs and the green fluorescence emission quenches, all of which easily observed by naked eyes. These phenomena are essential for producing a dual responsive chemosensor for fluoride ions. The polymeric sensor, in the film state exhibited a fast response to the fluoride ions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)
1994-01-01
A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.
NASA Astrophysics Data System (ADS)
Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari
2018-06-01
We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.
Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C
2014-07-01
For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.
Hunter, Steven L.
2002-01-01
A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.
Zayed, S I M; Issa, Y M
2010-01-01
The construction and electrochemical response characteristics of two new polyvinyl chloride (PVC) membrane sensors for the determination of sibutramine hydrochloride were described. The sensors are based on the ion association complexes of sibutramine with sodium tetraphenylborate (NaTPB) or phosphotungstic acid (PTA) using dibutyl phthalate as plasticizing solvent. The sensors display a fast, stable response over the concentration range 3.84 x 10(-5)-1.00 x 10(-2) M sibutramine hydrochloride monohydrate (SibuCl), with cationic slopes of 57.7 +/- 0.57 and 59.7 +/- 1.79 mV concentration decade(-1) and detection limits of 8.91 x 10(-6) and 1.47 x 10(-5) M in case of sibutramine-tetraphenylborate (Sibu-TPB) and sibutramine-phosphotungstate ((Sibu)(3)-PT), respectively. The proposed sensors have been successfully applied for the determination of sibutramine hydrochloride in Regitrim capsules in batch and flow injection (FI) conditions.
Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode
NASA Astrophysics Data System (ADS)
Cai, Shengbing; Zhang, Yong; Duan, Zhemin
2012-12-01
We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <˜0.5 ppm for SO2. More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.
A low-noise CMOS pixel direct charge sensor, Topmetal-II-
An, Mangmang; Chen, Chufeng; Gao, Chaosong; ...
2015-12-12
In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less
Potyrailo, Radislav A
2016-10-12
Modern gas monitoring scenarios for medical diagnostics, environmental surveillance, industrial safety, and other applications demand new sensing capabilities. This Review provides analysis of development of new generation of gas sensors based on the multivariable response principles. Design criteria of these individual sensors involve a sensing material with multiresponse mechanisms to different gases and a multivariable transducer with independent outputs to recognize these different gas responses. These new sensors quantify individual components in mixtures, reject interferences, and offer more stable response over sensor arrays. Such performance is attractive when selectivity advantages of classic gas chromatography, ion mobility, and mass spectrometry instruments are canceled by requirements for no consumables, low power, low cost, and unobtrusive form factors for Internet of Things, Industrial Internet, and other applications. This Review is concluded with a perspective for future needs in fundamental and applied aspects of gas sensing and with the 2025 roadmap for ubiquitous gas monitoring.
A low-noise CMOS pixel direct charge sensor, Topmetal-II-
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Mangmang; Chen, Chufeng; Gao, Chaosong
In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less
Taner, Bilge; Kursunlu, Ahmed Nuri; Güler, Ersin
2014-01-24
A novel chemosensor based on calix[4]pyrrole derivative modified by Bodipy unit has been synthesized, and its complexes with various anions were investigated. The results show that the receptors can selectively recognize biologically important fluoride ions. The binding affinity for fluoride ions was investigated by naked-eye color change, absorption, emission, proton nuclear magnetic resonance spectroscopy. The addition of fluoride ions to an acetonitrile solution of chemosensor can result in an obvious color change (brownish yellow color to straw yellow). The stoichiometries between the receptor and fluoride were determined from the molar ratio plots using the UV-visible spectra, which showed evident 1:1. The proton nuclear magnetic resonance spectral data supported the fluoride anion recognition with the disappearance of the amino proton peaks. Published by Elsevier B.V.
Radiation sensors based on the generation of mobile protons in organic dielectrics.
Kapetanakis, Eleftherios; Douvas, Antonios M; Argitis, Panagiotis; Normand, Pascal
2013-06-26
A sensing scheme based on mobile protons generated by radiation, including ionizing radiation (IonR), in organic gate dielectrics is investigated for the development of metal-insulator-semiconductor (MIS)-type dosimeters. Application of an electric field to the gate dielectric moves the protons and thereby alters the flat band voltage (VFB) of the MIS device. The shift in the VFB is proportional to the IonR-generated protons and, therefore, to the IonR total dose. Triphenylsulfonium nonaflate (TPSNF) photoacid generator (PAG)-containing poly(methyl methacrylate) (PMMA) polymeric films was selected as radiation-sensitive gate dielectrics. The effects of UV (249 nm) and gamma (Co-60) irradiations on the high-frequency capacitance versus the gate voltage (C-VG) curves of the MIS devices were investigated for different total dose values. Systematic improvements in sensitivity can be accomplished by increasing the concentration of the TPSNF molecules embedded in the polymeric matrix.
A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.
Jiao, Yang; Zhang, Lei; Zhou, Peng
2016-04-01
This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sianglam, Pradthana; Kulchat, Sirinan; Tuntulani, Thawatchai; Ngeontae, Wittaya
2017-08-01
We demonstrate an advance in the fabrication of circular dichroism (CD) sensors for detection of Cd2 + and S2 - based on chiral CdS quantum dots (QDs) generated by a facile in-situ reaction. The chiral quantum dots are generated in solutions composed of Cd2 +, S2 -, cysteamine (CA) and L-penicillamine (L-PA), with the number of the generated particles limited by either the Cd2 + or S2 - concentration. We show that the magnitude of the CD signal produced by the QDs is linearly related to the initial concentration of Cd2 + and S2 -, with excellent selectivity over other ions. Our sensor functions over concentration ranges of 65-200 μM and 7-125 μM with detection limits of 59.7 and 1.6 μM for Cd2 + and S2 -, respectively. The sensor is applied in real water samples with results comparing favorably with those obtained from ICP-OES (for Cd2 +) and HPLC (for S2 -).
Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng
2016-07-01
An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.
Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo
It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At 50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At 10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ∆E/q (∆E : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin
2017-01-01
This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.
Chemical & Biological Point Detection Decontamination
2002-04-01
high priority in biological defense. Research on multivalent assays is also ongoing. Biased libraries, generated from immunized animals, or unbiased ...2003 TBD decontamination and modeling and simulation I I The Chem-Bio Point Detection Roadmap The summary level updated and expanded Bio Point... Molecular Imprinted Polymer Sensor, Dendrimer-based Antibody Assays, Pyrolysis-GC-ion mobility spectrometry, and surface enhanced Raman spectroscopy. Data
Kanagaraj, Kuppusamy; Pitchumani, Kasi
2014-01-01
A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one. This system allows selective "turn-on" fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited-state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD-DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.