Science.gov

Sample records for ion size studied

  1. Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size.

    PubMed

    Mohan, C Raja; Sathya, R; Nithiananthi, P; Jayakumar, K

    2017-02-24

    In the present investigation, the effect of ion size on the thermodynamical properties such as ultrasonic velocity (U), adiabatic compressibility (β), acoustic impedance (Z), adiabatic bulk modulus (Ks), relaxation strength (rs) have been obtained for the different salts of chitosan viz., formate (3.5Å), acetate (4.5Å), Succinate (5Å) and Adipate (6Å). To find the effect of ion size, the effect due to water has been removed by calculating the change in ultrasonic velocity (dU), change in adiabatic compressibility (dβ), in acoustic impedance (dZ), in adiabatic bulk modulus (dKs), and in relaxation strength (drs). Space filling factor and polarizability has been obtained from the refractive index data through Lorentz-Lorentz relation. FTIR studies confirm the formation of different quaternary salts of chitosan and their size (mass) effects which has been verified with Hooke's law. All the said properties vary both with ion size and concentration of different salts of chitosan. This investigation may throw some light on better usage of chitosan in biomedical applications. The detailed results are presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    SciTech Connect

    Kangasluoma, J.; Junninen, H.; Sipilae, M.; Kulmala, M.; Petaejae, T.; Lehtipalo, K.; Mikkilae, J.; Vanhanen, J.; Attoui, M.; Worsnop, D.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of the PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.

  3. Systematic study of the interaction of cobalt ions with different-sized CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhong, Wenying; Liang, Jiaran; Yu, Junsheng

    2009-10-01

    Five sizes of water-dispersed CdTe quantum dots (QDs) stabilized by thioglycolic acid (TGA) with a high photoluminescence (PL) quantum yield were synthesized and a size dependent quenching of the fluorescence by cobalt ions was also observed. No matter for smaller or larger particles, obvious quenching effect was observed, and the fluorescence quenching of CdTe nanoparticles depended on the concentration of cobalt ions solution. However, CdTe QDs with different size showed dramatically different quenching efficiency, sensitivity, linear range and selectivity. With the increase of size, the quenching efficiency reduced correspondingly. The smallest particle was the most sensitive with the limit of detection for cobalt ions is 7.3 × 10 -9 mol L -1 Co 2+. For larger particles, the sensitivity was much lower, but the linear range was relatively wide, under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of cobalt ions ranging from 3.32 × 10 -8 to 3.62 × 10 -6 mol L -1. Besides, the influence on the fluorescence signal of foreign cations, including Ca 2+, Mg 2+, Ni 2+, Ba 2+, Zn 2+, Cu 2+, Fe 3+ and Ag + were also studied, results showed a high selectivity of the smaller QDs towards cobalt ions. According to Stern-Volmer-type equation, quenching of quantum dot luminescence was most effective for the smallest particles with the highest Ksv.

  4. Study of the Influence Between Barium Ions and Calcium Ions on Morphology and Size of Coprecipitation in Microemulsion

    NASA Astrophysics Data System (ADS)

    Wang, Nong; Meng, Qing Luo

    2015-03-01

    In this paper, we systematically drew a series of inverse-microemulsion quasi-ternary system phase diagrams of OP-10+C8H17OH+C6H12+brine (CaCl2/BaCl2) by adjusting the ratio of CaCl2 and BaCl2. On this basis, microemulsions have been prepared with seven different molar ratios of Ca2+/Ba2+, and calcium carbonate and barium carbonate coprecipitation products were obtained by reaction with an equimolar amount of sodium carbonate. The influence of barium ion to morphology and composition of nanometer calcium carbonate were studied. These samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SEM photographs indicated that when the content of Ca2+ was higher, some incomplete large cube of coprecipitation particles were formed in solution, but with the content of Ba2+ increased gradually, they formed a large number of small spherical particles, with the further increase of Ba2+ concentration, the particles mainly had structures of irregular polyhedron eventually. The measurement results of FTIR and XRD indicated that CaCO3 coprecipitation products gradually changed from calcite to the vaterite, eventually turned into being aragonite with the further increase of Ba2+ concentration.

  5. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  6. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges.

    PubMed

    Hammad Fawey, Mohammed; Chakravadhanula, Venkata Sai Kiran; Reddy, Munnangi Anji; Rongeat, Carine; Scherer, Torsten; Hahn, Horst; Fichtner, Maximilian; Kübel, Christian

    2016-07-01

    Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. A molecular simulation study on the role of ion sizes and dielectric images in near-surface ion distribution far from the strong coupling limit

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-yong; Ma, Yu-qiang

    2012-06-01

    A series of Monte Carlo simulations of the planar electric double layers are carried out in the primitive model for two electrolyte mixtures next to a smooth and uniformly charged hard wall representing an ideal biological interface with low and moderate surface charge densities. The structural information of the double layers is applied to reveal charge inversion and overcharging through the addition of multivalent electrolyte at a certain physiological concentration. Various values for the radius of the ions are taken into account to capture the impact of short-range correlations. Meanwhile, the influence of image charges on ion distribution is analyzed, which stems from dielectric discontinuity between the interior and exterior of the membrane matrix. It is clearly shown that depending on the amount of foreign salt, the large size of charged species regardless of its polarity plays a positive role in promoting charge inversion. Moreover, our findings indicate that charge inversion do not signify the reversal of the electrophoretic mobility, in consistent with the recent theoretical predictions by Horno and co-workers [J. Colloid Interface Sci. 356, 325 (2011)], 10.1016/j.jcis.2010.12.063. In addition, the depletion effect triggered by repulsive image forces which are intertwined with the excluded volume correlations gives rise to an anomalous overcharging for low surface charged surface in the high concentrations of trivalent salt. Overall, the ion distribution in a double layer is exclusively governed by entropic and electrostatic contributions but with preferentially leading status for different magnitudes of surface charge.

  8. Preferential interaction between DNA and small ions in mixed-size counterion systems: Monte Carlo simulation and density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua; Luo, Guang-Sheng

    2007-04-01

    Competitive binding between counterions around DNA molecule is characterized using the preferential interaction coefficient of individual ion in single and mixed electrolyte solutions. The canonical Monte Carlo (MC) simulation, nonlinear Poisson-Boltzmann (PB) equation, and density functional theory (DFT) proposed in our previous work [Wang, Yu, Gao, and Luo, J. Chem. Phys. 123, 234904 (2005)] are utilized to calculate the preferential interaction coefficients. The MC simulations and theoretical results show that for single electrolyte around DNA, the preferential interaction coefficient of electrolyte decreases as the cation size is increased, indicating that the larger cation has less accumulation ability in the vicinity of DNA. For the mixed electrolyte solution, it is found that cation diameter has a significant effect on the competitive ability while anion diameter has a negligible effect. It proves that the preferential interaction coefficients of all ions decrease as the total ionic concentration is increased. The DFT generally has better performance than the PB equation does when compared to the MC simulation data. The DFT behaves quite well for the real ionic solutions such as the KCl -NaCl-H2O, NaCl -CaCl2-H2O, and CaCl2-MgCl2-H2O systems.

  9. Size distribution of ions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  10. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  11. Atmospheric Ion Clusters: Properties and Size Distributions

    NASA Astrophysics Data System (ADS)

    D'Auria, R.; Turco, R. P.

    2002-12-01

    Ions are continuously generated in the atmosphere by the action of galactic cosmic radiation. Measured charge concentrations are of the order of 103 ~ {cm-3} throughout the troposphere, increasing to about 5 x 103 ~ {cm-3} in the lower stratosphere [Cole and Pierce, 1965; Paltridge, 1965, 1966]. The lifetimes of these ions are sufficient to allow substantial clustering with common trace constituents in air, including water, nitric and sulfuric acids, ammonia, and a variety of organic compounds [e.g., D'Auria and Turco, 2001 and references cited therein]. The populations of the resulting charged molecular clusters represent a pre-nucleation phase of particle formation, and in this regard comprise a key segment of the over-all nucleation size spectrum [e.g., Castleman and Tang, 1972]. It has been suggested that these clusters may catalyze certain heterogeneous reactions, and given their characteristic crystal-like structures may act as freezing nuclei for supercooled droplets. To investigate these possibilities, basic information on cluster thermodynamic properties and chemical kinetics is needed. Here, we present new results for several relevant atmospheric ion cluster families. In particular, predictions based on quantum mechanical simulations of cluster structure, and related thermodynamic parameters, are compared against laboratory data. We also describe a hybrid approach for modeling cluster sequences that combines laboratory measurements and quantum predictions with the classical liquid droplet (Thomson) model to treat a wider range of cluster sizes. Calculations of cluster mass distributions based on this hybrid model are illustrated, and the advantages and limitations of such an analysis are summarized. References: Castelman, A. W., Jr., and I. N. Tang, Role of small clusters in nucleation about ions, J. Chem. Phys., 57, 3629-3638, 1972. Cole, R. K., and E. T. Pierce, Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers, J

  12. The significance of the alkene size and the nature of the metal ion in metal-alkene complexes: a theoretical study.

    PubMed

    Premkumar, J Richard; Vijay, Dolly; Sastry, G Narahari

    2012-04-28

    Cation interactions with π-systems are a problem of outstanding contemporary interest and the nature of these interactions seems to be quite different for transition and main group metal ions. In this paper, we have systematically analyzed the contrast in the bonding of Cu(+) and main group metal ions. The molecular structures and energetics of the complexes formed by various alkenes (A = C(n)H(2n), n = 2-6; C(n)H(2n- 2), n = 3-8 and C(n)H(2n + 2), n = 5-10) and metal ions (M = Li(+), Na(+), K(+), Ca(2+), Mg(2+), Cu(+) and Zn(2+)) are investigated by employing ab initio post Hartree-Fock (MP2/6-311++G**) calculations and are reported in the current study. The study, which also aims to evaluate the effect of the size of the alkyl portion attached to the π-system on the complexation energy, indicates a linear relationship between the two. The decreasing order of complexation energy with various metal ion-alkene complexes follows the order Zn(2+)-A > Mg(2+)-A > Ca(2+)-A > Cu(+)-A > Li(+)-A > Na(+)-A > K(+)-A. The increased charge transfer and the electron density at (3,-1) intermolecular bond critical point corroborates well with the size of the π-system and the complexation energy. The observed deviation from the linear dependency of the Cu(+)-A complexes is attributed to the dπ→π* back bonding interaction. An energy decomposition analysis via the reduced variational space (RVS) procedure was also carried out to analyze which component among polarization, charge transfer, coulomb and exchange repulsion contributes to the increase in the complexation energy. The RVS results suggest that the polarization component significantly contributes to the increase in the complexation energy when the alkene size increases. This journal is © The Royal Society of Chemistry 2012

  13. Dust negative ion acoustic shock waves considering dust size distribution effect

    SciTech Connect

    Ma Yirong; Wang Canglong; Zhang Jianrong; Sun Jianan; Duan Wenshan; Yang Lei

    2012-11-15

    A multi-ion dusty plasma containing hot isothermal electrons, ions (light positive ions and heavy negative ions), and extremely and negatively charged dust grains is studied in the present paper. The dust negative ion acoustic shock waves have been investigated by employing the reductive perturbation method. How the dust size distribution affects the height and the thickness of the nonlinear shock wave is studied. It is noted that the different dust size distribution has different shock wave form and different moving speed.

  14. Ion-size effect at the surface of silica hydrosol

    NASA Astrophysics Data System (ADS)

    Tikhonov, Aleksey

    2007-03-01

    The forces of electrical imaging strongly polarize the surface of colloidal silica. I used X-ray scattering to study the ion-size effect in the adsorbed 2-nm-thick compact layer of alkali ions at the surface of concentrated solutions of 5-nm, 7-nm, and 22-nm particles, stabilized either by NaOH or a mixture of NaOH and CsOH, with the total bulk concentration of alkali ions ranging from 0.1- to 0.7-mol/L. The observed structure of the compact layer is almost independent of the size of the particles and concentration of alkali base in the sol; it can be described by a two-layer model, i.e., a ˜ 6 - 8-Angstrom-thick layer of directly adsorbed hydrated alkali ions with a surface concentration ˜3x10^18 m-2, and a ˜ 13-Angstrom-thick layer with a surface concentration of sodium ions ˜8x10^18 m-2. In cesium-enriched sols, Cs^+ ions preferentially adsorb in the first layer replacing Na^+; their density in the second layer does not depend on the presence of cesium in the sol. The difference in the adsorption of Cs^+ and Na^+ ions can be explained by the ion-size-dependent term in the electrostatic Gibbs energy equation derived earlier by others. Brookhaven National Laboratory is supported by U.S.D.O.E., Contract No. DEAC0298CH10886. X19C is partially supported through funding from the ChemMatCARS National Synchrotron Resource and the University of Chicago.

  15. Energy loss straggling in collisions of fast finite-size ions with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2013-03-01

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron "coat" of an ion noticeably improves the agreement with experimental data.

  16. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  17. Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea.

    PubMed

    Park, S H; Song, C B; Kim, M C; Kwon, S B; Lee, K W

    2004-01-01

    Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to

  18. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  19. Influence of ion size and charge on osmosis.

    PubMed

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.

  20. The behavior of ions near a charged wall - dependence on ion size, concentration and surface charge

    PubMed Central

    Howard, Jesse J.; Perkyns, John S.

    2010-01-01

    A renormalization of the 3D-RISM-HNC integral equation is used to study the solvent and ion distributions at neutral and negatively charged planar atomistic surfaces. The charge density of the surfaces ranged from 0.0 to 0.4116 C/m2 and the modeled electrolyte solutions consist of the salts NaCl, KCl, and CsCl at concentrations of 0.1M, 0.25M and 1.0M in SPC/E water. The results are qualitatively compared to the results from other integral equation methods and simulations for similar models. We find that the 3D-IEs predict an electric multilayer screening behavior in the solvent and ion distributions in contrast to the double layer anticipated from Poisson-Boltzmann theory. It is observed that the cation size has a significant effect on the distributions near the surface up to 3 solvation layers beyond which the behavior is the same among the different cations. The response of the distributions to the charged surface is described as an increase in ion and solvent density near the wall. The higher concentration solutions screen the electrostatic source more strongly at the wall as expected. The importance of ion-solvent and ion-ion correlations near the surface are shown through 3-body correlation functions which are obtainable from the 3D-IEs in this study. PMID:20405885

  1. Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior

    NASA Astrophysics Data System (ADS)

    Rajamani, Sowmianarayanan; Ghosh, Tuhin; Garde, Shekhar

    2004-03-01

    The packing and orientation of water molecules in the vicinity of solutes strongly influence the solute hydration thermodynamics in aqueous solutions. Here we study the charge density dependent hydration of a broad range of spherical monovalent ionic solutes (with solute diameters from ˜0.4 nm to 1.7 nm) through molecular dynamics simulations in the simple point charge model of water. Consistent with previous experimental and theoretical studies, we observe a distinct asymmetry in the structure and thermodynamics of hydration of ions. In particular, the free energy of hydration of negative ions is more favorable than that of positive ions of the same size. This asymmetry persists over the entire range of solute sizes and cannot be captured by a continuum description of the solvent. The favorable hydration of negative ions arises primarily from the asymmetric charge distribution in the water molecule itself, and is reflected in (i) a small positive electrostatic potential at the center of a neutral solute, and (ii) clear structural (packing and orientation) differences in the hydration shell of positive and negative ions. While the asymmetry arising from the positive potential can be quantified in a straightforward manner, that arising from the structural differences in the fully charged states is difficult to quantify. The structural differences are highest for the small ions and diminish with increasing ion size, converging to hydrophobiclike hydration structure for the largest ions studied here. We discuss semiempirical measures following Latimer, Pitzer, and Slansky [J. Chem. Phys. 7, 108 (1939)] that account for these structural differences through a shift in the ion radius. We find that these two contributions account completely for the asymmetry of hydration of positive and negative ions over the entire range of ion sizes studied here. We also present preliminary calculations of the dependence of ion hydration asymmetry on the choice of water model that

  2. Ion-size effect at the surface of a silica hydrosol.

    PubMed

    Tikhonov, Aleksey M

    2009-01-14

    Using synchrotron x-ray reflectivity, I studied the ion-size effect for alkali ions (Na(+), K(+), Rb(+), and Cs(+)), with densities as high as 4x10(18)-7x10(18) m(-2), suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. I found that large alkali ions preferentially accumulate and replace smaller ones at the surface of the hydrosol, a result qualitatively agreeing with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.

  3. Ion-Size Effect at the Surface of a Silica Hydrosol

    SciTech Connect

    Tikhonov, A.

    2009-01-01

    Using synchrotron x-ray reflectivity, I studied the ion-size effect for alkali ions (Na+, K+, Rb+, and Cs+), with densities as high as 4x1018-7x1018 m-2, suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. I found that large alkali ions preferentially accumulate and replace smaller ones at the surface of the hydrosol, a result qualitatively agreeing with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.

  4. Ion-size effect at the surface of a silica hydrosol

    NASA Astrophysics Data System (ADS)

    Tikhonov, Aleksey M.

    2009-01-01

    Using synchrotron x-ray reflectivity, I studied the ion-size effect for alkali ions (Na+, K+, Rb+, and Cs+), with densities as high as 4×1018-7×1018 m-2, suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. I found that large alkali ions preferentially accumulate and replace smaller ones at the surface of the hydrosol, a result qualitatively agreeing with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.

  5. Relation between the ion size and pore size for an electric double-layer capacitor.

    PubMed

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-05

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  6. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  7. Size evolution of ion beam synthesized Pb nanoparticles in Al

    PubMed Central

    2014-01-01

    The size evolution of Pb nanoparticles (NPs) synthesized by ion implantation in an epitaxial Al film has been experimentally investigated. The average radius R of Pb NPs was determined as a function of implantation fluence f. The R(f) data were analyzed using various growth models. Our observations suggest that the size evolution of Pb NPs is controlled by the diffusion-limited growth kinetics (R2∝f). With increasing implantation current density, the diffusion coefficient of Pb atoms in Al is evident to be enhanced. By a comparative analysis of the R(f) data, values of the diffusion coefficient of Pb in Al were obtained. PMID:25114640

  8. Size scaling of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U. Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-08

    The RF-driven negative hydrogen ion source (H{sup −}, D{sup −}) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  9. Development of compact size penning ion source for compact neutron generator

    SciTech Connect

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-15

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  10. Development of compact size penning ion source for compact neutron generator.

    PubMed

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-01

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  11. Magnetospheric ion sputtering and water ice grain size at Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  12. Size-dependent structures of NanI+n-1 cluster ions with a methanol adsorbate: a combined study by photodissociation spectroscopy and density-functional theory calculation.

    PubMed

    Misaizu, Fuminori; Tsuruta, Mamoru; Tsunoyama, Hironori; Furuya, Ari; Ohno, Koichi; Lintuluoto, Masami

    2005-10-22

    Methanol adsorption sites on NanI+n-1 ions were investigated. Photoexcitation to charge-transfer states of NanI+n-1 (methanol) predominantly produces two fragment ions: Nan-1I+n-2 (methanol) (neutral NaI loss) and Nan-1I+n-2(neutral NaI and methanol loss), without forming NanI+n-1 (methanol loss). The relative intensities of these fragments are correlated with the geometries and binding energies.

  13. Size, weight and position: ion mobility spectrometry and imaging MS combined.

    PubMed

    Kiss, András; Heeren, Ron M A

    2011-03-01

    Size, weight and position are three of the most important parameters that describe a molecule in a biological system. Ion mobility spectrometry is capable of separating molecules on the basis of their size or shape, whereas imaging mass spectrometry is an effective tool to measure the molecular weight and spatial distribution of molecules. Recent developments in both fields enabled the combination of the two technologies. As a result, ion-mobility-based imaging mass spectrometry is gaining more and more popularity as a (bio-)analytical tool enabling the determination of the size, weight and position of several molecules simultaneously on biological surfaces. This paper reviews the evolution of ion-mobility-based imaging mass spectrometry and provides examples of its application in analytical studies of biological surfaces.

  14. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  15. Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -

    PubMed Central

    Kawata, Shigeo; Izumiyama, Takeshi; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Min

    2013-01-01

    Background: Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. Subjects and methods: An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. Results: When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near-critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. Conclusions: The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. PMID:24155555

  16. Using ions to probe the transverse size of a bunch

    SciTech Connect

    Rees, J.

    1984-05-01

    The electric field carried along by a SLC bunch is very intense at the surface of the bunch because of the bunch's tiny transverse dimensions and its high charge density. For a given bunch population, the maximum electric field - which occurs at the surface - is inversely proportional to the bunch radius for a round bunch. The smaller the radius, the higher the peak field. A charged particle such as an ion or an electron which is placed at rest in the path of the oncoming bunch will be accelerated by the field as the bunch has passed having sampled the field of the bunch. Thus by placing a swarm of stationary charged particles in the path of the bunch and measuring their momentum distribution when they emerge, we can hope to infer the bunch's transverse size. We are using the terms size and surface in a qualitative way, of course, expecting that their meaning will be reasonably clear to the reader. In our calculations we use a cylindrical model for the bunch in which their meanings are precise.

  17. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    PubMed Central

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-01-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas. PMID:28393841

  18. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    SciTech Connect

    Popova, Natalya; Yurev, Ivan; Kalashnikov, Mark

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  19. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    NASA Astrophysics Data System (ADS)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  20. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Nikonenko, Elena; Yurev, Ivan; Kalashnikov, Mark; Kurzina, Irina

    2016-01-01

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  1. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  2. Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds.

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Faunes, Macarena; Marín, Gonzalo J; Wylie, Douglas R

    2012-01-01

    In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.

  3. Functional Implications of Species Differences in the Size and Morphology of the Isthmo Optic Nucleus (ION) in Birds

    PubMed Central

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N.; Lisney, Thomas J.; Faunes, Macarena; Marín, Gonzalo J.; Wylie, Douglas R.

    2012-01-01

    In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina. PMID:22666395

  4. Heavy Ion Fusion Systems Assessment study

    SciTech Connect

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe.

  5. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  6. Pulsed reflex ion source studies

    SciTech Connect

    Bickes, Jr., R. W.; O'Hagan, J. B.

    1980-11-01

    Parametric studies of demountable versions of the pulsed ion source used in Controlatron and Zetatron neutron tubes were carried out. The goal of these experiments, a continuation of earlier work by Bacon and O'Hagan, was to investigate the deuteron beam intensity as a function of source geometry, electrode materials, operating conditions and pulse length. Geometric variations produced only modest changes in the ion beam intensity; the most sensitive parameter was the length of the secondary cathode. There is some evidence that the addition of oxygen either in the gas feed or using alumina on the cathode surfaces can increase the atomic ion fraction. The lowest reliable operating source pressure was approximately 1.33 Pa. The longest pulse length was about 1.2 ms. Difficulties in measuring the ion currents are discussed and suggestions for future experiments are briefly outlined.

  7. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  8. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles.

  9. Effect of ion size of various salts of Chitosan on the electrical properties

    NASA Astrophysics Data System (ADS)

    Mohan, C. Raja; Murugan, S.; Nithiananthi, P.; Jayakumar, K.

    2013-06-01

    The present investigation reports, the influence of ion sizes of various salts of Chitosan on the electrical properties, by dissolving Chitosan in various acids like acetic, adipic, formic and succinic acids and for various concentration. An unusual behavior of ac impedance has been observed which may be due to the increase in amorphousity when the size of the salts of Chitosan ion increases.

  10. Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries.

    PubMed

    Ramireddy, Thrinathreddy; Sharma, Neeraj; Xing, Tan; Chen, Ying; Leforestier, Jeremie; Glushenkov, Alexey M

    2016-11-09

    Sodium-ion batteries are in the spotlight as viable alternatives to lithium-ion batteries in stationary storage and power grid applications. Among possible anode materials, Sb is one of the interesting candidates due to a combination of battery-type potential plateaus in the charge-discharge profiles, high capacity (theoretical capacity of 660 mAh g(-1)), and demonstrated good cyclic stability. The influence of Sb particle size (particularly at the nanoscale range) and the composition of Sb-carbon composites on the electrode performance, stability, and charge storage mechanism is systematically evaluated here for the first time. A range of Sb-carbon nanocomposites with varied Sb particle size (between 50 and ∼1 nm) are studied. The control of the particle size is achieved via varying the carbon and Sb weight ratio in the precursors. The shape of charge-discharge profiles, hysteresis, and the difference in cyclic stabilities and rate performance are analyzed. The nanocomposite with the smallest particle size (∼1 nm) and the largest carbon content provides the most stable cyclic behavior and a better rate capability but suffers from an increased hysteresis between charge and discharge curves. In situ synchrotron X-ray diffraction experiments indicate that the storage mechanism in the Sb-carbon nanocomposites containing Sb nanoparticles is different from the electrodes with bulkier, micron-sized Sb particles, and the electrochemical reaction proceeds through a number of crystalline intermediates.

  11. Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias.

    PubMed

    Zimmermann, U; Schulz, J; Pilwat, G

    1973-10-01

    Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity.

  12. Transcellular Ion Flow in Escherichia coli B and Electrical Sizing of Bacterias

    PubMed Central

    Zimmermann, U.; Schulz, J.; Pilwat, G.

    1973-01-01

    Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity. PMID:4583964

  13. The dominance of small ions in the electric double layer of size- and charge-asymmetric electrolytes: a mean-field study on the charge reversal and surface charge amplification

    NASA Astrophysics Data System (ADS)

    Angélica Barrios-Contreras, Evelyn; González-Tovar, Enrique; Iván Guerrero-García, Guillermo

    2015-05-01

    The dominance of counterions in the electric double layer of size-asymmetric semi-punctual ions was proposed more than 30 years ago by Valleau and Torrie. According to their theoretical prescription, at large colloidal surface charges, the double layer properties of a fully asymmetric binary electrolyte become similar to those of a completely symmetric electrolyte if the properties of counterions are the same in both instances. In the same theoretical framework, we propose here that, for a fixed concentration of the smallest ionic species and weakly/moderate colloidal surface charges, the valence of small ions rules or mainly determines the structural and thermodynamic properties of the electric double layer regardless of the colloidal polarity. In other words, we show that the characteristics of the small ions dominate the double layer structure of non-highly charged colloids, independently if the small ions are coions or counterions. This is illustrated by a comprehensive analysis of the ionic and integrated charge profiles around a spherical macroion immersed in a fully size- and charge-asymmetric semi-punctual electrolyte. Charge reversal and surface charge amplification are observed in the regime of low/medium colloidal surface charge densities. The origin of these counterintuitive phenomena, and their corresponding localisation properties in the Helmholtz zone, are explained in terms of the electric double layer structure.

  14. Hardening by ion implantation of VT1-0 alloy having different grain size

    SciTech Connect

    Nikonenko, Alisa Kurzina, Irina; Popova, Natalya; Kalashnikov, Mark

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case.

  15. Sizing Large Proteins and Protein Complexes by Electrospray Ionization Mass Spectrometry and Ion Mobility

    PubMed Central

    Kaddis, Catherine S.; Lomeli, Shirley H.; Yin, Sheng; Berhane, Beniam; Apostol, Marcin I.; Kickhoefer, Valerie A.; Rome, Leonard H.; Loo, Joseph A.

    2009-01-01

    Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method termed GEMMA (Gas-Phase Electrophoretic Mobility Molecular Analysis), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared to other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and x-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm3. Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water. PMID:17434746

  16. Accounting for Finite Size of Ions in Nanofluidic Channels Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    McCallum, Christopher; Gillespie, Dirk; Pennathur, Sumita

    2016-11-01

    The physics of nanofluidic devices are dominated by ion-wall interactions within the electric double layer (EDL). A full understanding of the EDL allows for better exploitation of micro and nanofluidic devices for applications such as biologic separations, desalination, and energy conversion, Although continuum theory is generally used to study the fluidics within these channels, in very confined geometries, high surface charge channels, or significant solute concentration systems, continuum theories such as Poisson-Boltzmann cease to be valid because the finite size of ions is not considered. Density functional theory (DFT) provides an accurate and efficient method for predicting the concentration of ions and the electrostatic potential near a charged wall because it accounts for more complex electrostatic and hard-sphere correlations. This subsequently allows for a better model for ion flux, fluid flow, and current in electrokinetic systems at high surface charge, confined geometries, and concentrated systems. In this work, we present a theoretical approach utilizing DFT to predict unique flow phenomena in nanofluidic, electrokinetic systems. CBET-1402736 from the National Science Foundation.

  17. Magnetic force microscopy of nano-size magnetic domain ordering in heavy ion irradiated fullerene films.

    PubMed

    Kumar, Amit; Avasthi, D K; Pivin, J C; Papaléo, R M; Tripathi, A; Singh, F; Sulania, I

    2007-06-01

    In the present work, magnetic force microscopy is employed to investigate the magnetic ordering in ion irradiated fullerene films. It is observed that magnetic domain size is approximately 100-200 nm and magnetic signal is stronger at the domain boundaries. Magnetic signal arise in irradiated films is confirmed by magnetic measurements using a superconducting quantum interference device which increases with the ion fluence. The induced magnetism is possibly due to structural defects in the amorphous carbon phase formed by ion irradiation.

  18. Effect Of Grain Size-Distribution And Nonthermal Ion Distribution On Dust Acoustic Solitons

    SciTech Connect

    Annou, K.; Annou, R.

    2005-10-31

    The investigation of the formation of non-linear coherent structures in dusty plasmas taking into account the dust size and non-thermal ion distributions is conducted. Conditions of the existence of solitons in terms of the Mach number, concentration of non-thermal ions, dust charge and the permeability of the grains are evaluated.

  19. Studies of Ion Acoustic Decay

    SciTech Connect

    Drake, R.P.; Bauer, B.S.; Baker, K.L. |

    1994-03-07

    In this project, we advanced knowledge of Ion Acoustic Decay on several fronts. In this project, we have developed and demonstrated the capability to perform experimental and theoretical studies of the Ion Acoustic Decay Instability. We have at the same time demonstrated an improved capability to do multichannel spectroscopy and Thomson scattering. We made the first observations of the time-resolved second harmonic emission at several angles simultaneously, and the first observations of the emission both parallel and perpendicular to the electric field of the laser light. We used Thomson scattering to make the first observations of the plasma waves driven by acoustic decay in a warm plasma with long density scale lengths. We also advanced both the linear and the nonlinear theory of this instability. We are thus prepared to perform experiments to address this mechanism as needed for applications.

  20. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  1. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed Central

    2016-01-01

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na+ would outcompete Cs+ by 1.8–2.1-fold; i.e., with Cs+ in 2-fold excess of Na+ the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res.2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na+ over Cs+. There is an ∼25% preferential occupancy of Li+ over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4–P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation–anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of

  2. Quantum size effect in the electron exchange between a H- ion and a thin metal disk

    NASA Astrophysics Data System (ADS)

    Gainullin, I. K.; Urazgildin, I. F.

    2006-11-01

    The resonant charge transfer (RCT) between a hydrogen anion and a thin aluminum disk is investigated by means of the wave-packet propagation method that does not exploit the perturbation theory. The RCT on a thin metal disk is found to exhibit quantum size effects due to the finite size of the disk. Survival amplitude of ion state has been calculated as a function of the distance to the ion-surface in a normal collision. It is shown that depending on the projectile velocity, the ion can interact with disk as if with bulk metal, thin film or nano-structure with the energy quantized by polar and normal coordinates.

  3. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  4. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  5. Virtual strain gage size study

    SciTech Connect

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strains are being found.

  6. Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect

    NASA Astrophysics Data System (ADS)

    Hazi, Y.; Heikkinen, M. S. A.; Cohen, B. S.

    Human exposure studies strongly suggested that the fine fraction of ambient particulate matter (PM) and its associated acidic sulfates are closely correlated with observed adverse health effects. Acidic sulfates are the products of atmospheric sulfur dioxide oxidation and neutralization processes. Few data are available on the amount and size distribution of acidic sulfates within the fine fraction of ambient PM. Knowledge of this distribution will help to understand their toxic mechanisms in the human respiratory tract. The goals of this research were: (1) to measure the size distribution of hydrogen ion, sulfate, and ammonium within the fine fraction of the ambient aerosol in air masses originating from different source regions; and (2) to examine the effect of the source region and the seasons on the sampled PM composition. Six size fractions within the fine ambient PM were collected using a micro-orifice impactor. Results from 30 sampling sessions demonstrated that higher total concentrations of these three ions were observed during the warm months than during the cold months of the year. Size distribution results show that the midpoint diameter of the fraction of particles with the largest fraction of hydrogen, sulfate and ammonium ions was 0.38 μm. Although most of the mass containing hydrogen and sulfate ions was measured in the fraction of particles with 0.38 μm midpoint diameter, the ultrafine fraction (<0.1 μm) was found to be more acidic. Ambient ion concentrations varied between sampling sessions and seasons, but the overall size distribution profiles are similar. Air mass back trajectories were used to identify the source region of the sampled aerosols. No apparent source region effect was observed in terms of the distribution profile of the ions. However, samples collected from air masses that originated from, or passed over, high sulfur dioxide emission areas demonstrated higher concentrations of the different ions.

  7. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon.

    PubMed

    Dialameh, M; Lupi, F Ferrarese; Imbraguglio, D; Zanenga, F; Lamperti, A; Martella, D; Seguini, G; Perego, M; Rossi, A M; De Leo, N; Boarino, L

    2017-10-06

    A successful realisation of sub-20 nm features on silicon (Si) is becoming the focus of many technological studies, strongly influencing the future performance of modern integrated circuits. Although reactive ion etching (RIE), at both micrometric and nanometric scale has already been the target of many studies, a better understanding of the different mechanisms involved at sub-20 nm size etching is still required. In this work, we investigated the influence of the feature size on the etch rate of Si, performed by a cryogenic RIE process through cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer (DBC) masks with diameter ranging between 19-13 nm. A sensible decrease of the etch depth and etch rate was observed in the mask with the smallest feature size. For all the DBCs under investigation, we determined the process window useful for the correct transfer of the nanometric cylindrical pattern into a Si substrate. A structural and physicochemical investigation of the resulting nanostructured Si is reported in order to delineate the influence of various RIE pattern effects. Feature-size-dependent etch, or RIE-lag, is proved to significantly affect the obtained results.

  8. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon

    NASA Astrophysics Data System (ADS)

    Dialameh, M.; Ferrarese Lupi, F.; Imbraguglio, D.; Zanenga, F.; Lamperti, A.; Martella, D.; Seguini, G.; Perego, M.; Rossi, A. M.; De Leo, N.; Boarino, L.

    2017-10-01

    A successful realisation of sub-20 nm features on silicon (Si) is becoming the focus of many technological studies, strongly influencing the future performance of modern integrated circuits. Although reactive ion etching (RIE), at both micrometric and nanometric scale has already been the target of many studies, a better understanding of the different mechanisms involved at sub-20 nm size etching is still required. In this work, we investigated the influence of the feature size on the etch rate of Si, performed by a cryogenic RIE process through cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer (DBC) masks with diameter ranging between 19–13 nm. A sensible decrease of the etch depth and etch rate was observed in the mask with the smallest feature size. For all the DBCs under investigation, we determined the process window useful for the correct transfer of the nanometric cylindrical pattern into a Si substrate. A structural and physicochemical investigation of the resulting nanostructured Si is reported in order to delineate the influence of various RIE pattern effects. Feature-size-dependent etch, or RIE-lag, is proved to significantly affect the obtained results.

  9. Virtual strain gage size study

    DOE PAGES

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strainsmore » are being found.« less

  10. Solitary dust sound waves in a plasma with two-temperature ions and distributed grain size

    SciTech Connect

    Prudskikh, V. V.

    2009-01-15

    The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.

  11. Sulfide ions as modulators of metal-thiolate cluster size in a plant metallothionein.

    PubMed

    Huber, Tamara; Freisinger, Eva

    2013-06-28

    Metallothioneins are small cysteine-rich proteins coordinating various transition metal ions preferably with the electron configuration d(10). They are ubiquitously present in all phyla, and next to phytochelatins they represent a successful molecular concept for high-capacity metal ion binding. Recent studies showed the incorporation of sulfide ions into the metal-thiolate cluster of metallothionein 2 from the plant Cicer arietinum (cicMT2) increasing the cadmium binding capacity and stability of the cluster. In the present work, the sulfide-induced structural changes accompanying the cluster formation and the sulfide-modulated increase in cluster size are analyzed in detail with a variety of analytical and spectroscopic techniques. Evaluation of the mechanism of sulfide containing Cd(II)-thiolate cluster formation in cicMT2 reveals a strong dependence on the sequence of metal and sulfide additions for successful sulfide incorporation. To probe the general ability of metallothioneins to form sulfide containing larger metal-thiolate clusters, analogous experiments were performed with a mammalian metallothionein. The observation that the cadmium binding ability of rabbit liver MT2A was only slightly increased led to the development of a hypothesis in which the long cysteine-free linker regions present in certain plant metallothioneins may contribute to the accommodation of the respective larger cluster assemblies.

  12. Influence of ion size asymmetry on the properties of ionic liquid vapour interfaces

    NASA Astrophysics Data System (ADS)

    Bresme, Fernando; González-Melchor, Minerva; Alejandre, José

    2005-11-01

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces.

  13. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    NASA Astrophysics Data System (ADS)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  14. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    PubMed Central

    Chang, Pei-Yi; Bindumadhavan, Kartick; Doong, Ruey-An

    2015-01-01

    The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  15. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery.

    PubMed

    Chang, Pei-Yi; Bindumadhavan, Kartick; Doong, Ruey-An

    2015-12-18

    The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46-130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N₂ adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g(-1) at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g(-1) at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  16. Radiation Studies with Argentine Ion Exchange Material

    SciTech Connect

    Crawford, C.L.

    2002-06-28

    A recent technology exchange between Argentina Nuclear Energy Commission (CNEA) and the US Department of Energy involved vitrification studies of ion exchange resins. Details of the spent ion exchange resins currently stored at two Argentine nuclear power plants, Atucha I and Embalse, have been presented in earlier reports. The present study examines irradiation of simulant samples of ion exchange resins.

  17. Controlling the rheological behavior of ceramic slurries and consolidated bodies: Interpenetrating networks and ion size effects

    NASA Astrophysics Data System (ADS)

    Fisher, Matthew Lyle

    counterion size on short range repulsive forces at high salt concentrations was investigated with alumina and silica slurries coagulated with the chlorides of Li+, Na+, K+, Cs+ and TMA+ (tetramethylammonium+). The results clearly show that the range of the repulsive forces correlated with the size of the unhydrated ion, namely stronger particle networks are achieved with smaller counterions. The findings are contradictory to the widely accepted hydration force model. Silica and alumina slurries were also studied at and below the iep where the indifferent electrolyte cations would not be expected to adsorb. It appears that a lyotropic sequence for excluded ions exists and is correlated to the hydration of ions and surfaces.

  18. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations

    NASA Astrophysics Data System (ADS)

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-01

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results

  19. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    PubMed

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-07

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results

  20. Structural and dynamical properties of ionic liquids: the influence of ion size disparity.

    PubMed

    Spohr, H V; Patey, G N

    2008-08-14

    The influence of ion size disparity on structural and dynamical properties of ionic liquids is systematically investigated employing molecular dynamics simulations. Ion size ratios are varied over a realistic range (from 1:1 to 5:1) while holding other important molecular and system parameters fixed. In this way we isolate and identify effects that stem from size disparity alone. In strongly size disparate systems the larger species (cations in our model) tend to dominate the structure; the anion-anion distribution is largely determined by anion-cation correlations. The diffusion coefficients of both species increase, and the shear viscosity decreases with increasing size disparity. The influence of size disparity is strongest up to a size ratio of 3:1, then decreases, and by 5:1 both the diffusion coefficients and viscosity appear to be approaching limiting values. The conventional Stokes-Einstein expression for diffusion coefficients holds reasonably well for the cations but fails for the smaller anions as size disparity increases likely due to the neglect of strong anion-cation correlations. The electrical conductivity is not a simple monotonic function of size disparity; it first increases up to size ratios of 2:1, remains nearly constant until 3:1, then decreases such that the conductivities of the 1:1 and 5:1 systems are similar. This behavior is traced to the competing influences of ion diffusion (enhancing) and ion densities (reducing) on conductivities at constant packing fraction. The temperature dependence of the transport properties is examined for the 1:1 and 3:1 systems. In accord with experiment, the temperature dependence of all transport properties is well represented by the Vogel-Fulcher-Tammann equation. The dependence of the diffusion coefficients on the temperature/viscosity ratio is well described by the fractional Stokes-Einstein relation D proportional to (T/eta)(beta) with beta approximately = 0.8, consistent with the exponent observed for

  1. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores.

    PubMed

    Kang, Yu; Zhang, Zhisen; Shi, Hui; Zhang, Junqiao; Liang, Lijun; Wang, Qi; Ågren, Hans; Tu, Yaoquan

    2014-09-21

    Because biological ionic channels play a key role in cellular transport phenomena, they have attracted extensive research interest for the design of biomimetic nanopores with high permeability and selectivity in a variety of technical applications. Inspired by the structure of K(+) channel proteins, we designed a series of oxygen doped graphene nanopores of different sizes by molecular dynamics simulations to discriminate between K(+) and Na(+) channel transport. The results from free energy calculations indicate that the ion selectivity of such biomimetic graphene nanopores can be simply controlled by the size of the nanopore; compared to K(+), the smaller radius of Na(+) leads to a significantly higher free energy barrier in the nanopore of a certain size. Our results suggest that graphene nanopores with a distance of about 3.9 Å between two neighboring oxygen atoms could constitute a promising candidate to obtain excellent ion selectivity for Na(+) and K(+) ions.

  2. Size Exclusion Chromatography-Ion Mobility-Mass Spectrometry Coupling: a Step Toward Structural Biology.

    PubMed

    Van der Rest, Guillaume; Halgand, Frédéric

    2017-09-20

    Noncovalent interactions are essential for the structural organization of biomacromolecules in cells. For this reason, the study of the biophysical, dynamic, and architectural interactions among biomacromolecules is essential. Since mass spectrometry requires compatible solutions while preserving the noncovalent bonding network, we envisioned that size exclusion chromatography coupled with ion mobility and mass spectrometry would be a valuable technique to desalt the initial sample and provide solution and gas-phase structural information in a single stage experiment. Such coupling allowed obtaining information on solution protein complex composition with SEC separation and on authenticity and purity with IMS-MS. Our study demonstrated that such coupling is compatible, useful, as well as suitable for a routine analysis, in pharmaceutical industry, for example. Mobility data were reliable and injected standards allowed calibrating the collision cross-section scale. Graphical Abstract ᅟ.

  3. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  4. Heavy Ion Radiation Effects Studies With Ion Photon Emission Microscopy

    SciTech Connect

    Branson, J. V.; Hattar, K.; Vizkelethy, G.; Powell, C. J.; Doyle, B. L.; Rossi, P.

    2011-06-01

    The development of a new radiation effects microscopy (REM) technique is crucial as emerging semiconductor technologies demonstrate smaller feature sizes and thicker back end of line (BEOL) layers. To penetrate these materials and still deposit sufficient energy into the device to induce single event effects, high energy heavy ions are required. Ion photon emission microscopy (IPEM) is a technique that utilizes coincident photons, which are emitted from the location of each ion impact to map out regions of radiation sensitivity in integrated circuits and devices, circumventing the obstacle of focusing high-energy heavy ions. Several versions of the IPEM have been developed and implemented at Sandia National Laboratories (SNL). One such instrument has been utilized on the microbeam line of the 6 MV tandem accelerator at SNL. Another IPEM was designed for ex-vacu use at the 88'' cyclotron at Lawrence Berkeley National Laboratory (LBNL). Extensive engineering is involved in the development of these IPEM systems, including resolving issues with electronics, event timing, optics, phosphor selection, and mechanics. The various versions of the IPEM and the obstacles, as well as benefits associated with each will be presented. In addition, the current stage of IPEM development as a user instrument will be discussed in the context of recent results.

  5. Heavy ion radiation effects studies with ion photon emission microscopy.

    SciTech Connect

    Doyle, Barney Lee; Rossi, Paolo; Powell, Cody Joseph; Hattar, Khalid Mikhiel; Vizkelethy, Gyorgy; Branson, Janelle Villone

    2010-08-01

    The development of a new radiation effects microscopy (REM) technique is crucial as emerging semiconductor technologies demonstrate smaller feature sizes and thicker back end of line (BEOL) layers. To penetrate these materials and still deposit sufficient energy into the device to induce single event effects, high energy heavy ions are required. Ion photon emission microscopy (IPEM) is a technique that utilizes coincident photons, which are emitted from the location of each ion impact to map out regions of radiation sensitivity in integrated circuits and devices, circumventing the obstacle of focusing high-energy heavy ions. Several versions of the IPEM have been developed and implemented at Sandia National Laboratories (SNL). One such instrument has been utilized on the microbeam line of the 6 MV tandem accelerator at SNL. Another IPEM was designed for ex-vacu use at the 88 cyclotron at Lawrence Berkeley National Laboratory (LBNL). Extensive engineering is involved in the development of these IPEM systems, including resolving issues with electronics, event timing, optics, phosphor selection, and mechanics. The various versions of the IPEM and the obstacles, as well as benefits associated with each will be presented. In addition, the current stage of IPEM development as a user instrument will be discussed in the context of recent results.

  6. PLEPS study of ions implanted RAFM steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  7. Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries.

    PubMed

    Wang, Liangbiao; Bao, Keyan; Lou, Zhengsong; Liang, Guobing; Zhou, Quanfa

    2016-02-21

    A simple Mg-thermal reduction reaction is reported to synthesize germanium (Ge) nanoparticles with a uniform size at a low temperature of 400 °C in an autoclave. The as-prepared Ge nanoparticles exhibit promising anode applications in lithium ion batteries with high capacity and excellent cycling stability.

  8. Laser photodetachment diagnostics of a 1/3-size negative hydrogen ion source for NBI

    SciTech Connect

    Geng, S.; Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Takeiri, Y.; Osakabe, M.; Nagaoka, K.; Kaneko, O.

    2015-04-08

    To investigate the flows of charged particles in front of the plasma grid (PG) in a negative hydrogen ion source, the information of the local densities of electrons and negative hydrogen ions (H-) are necessary. For this purpose, the laser photodetachment is applied for pure hydrogen plasmas and Cs-seeded plasma in a 1/3-size negative hydrogen ion source in NIFS-NBI test stand. The H- density obtained by photodetachment is calibrated by the results from cavity ring-down (CRD). The pressure dependence and PG bias dependence of the local H- density are presented and discussed. The results show that H- density increases significantly by seeding Cs into the plasma. In Cs-seeded plasma, relativity exists between the H- ion density and plasma potential.

  9. Laser photodetachment diagnostics of a 1/3-size negative hydrogen ion source for NBI

    NASA Astrophysics Data System (ADS)

    Geng, S.; Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Takeiri, Y.; Osakabe, M.; Nagaoka, K.; Kaneko, O.

    2015-04-01

    To investigate the flows of charged particles in front of the plasma grid (PG) in a negative hydrogen ion source, the information of the local densities of electrons and negative hydrogen ions (H-) are necessary. For this purpose, the laser photodetachment is applied for pure hydrogen plasmas and Cs-seeded plasma in a 1/3-size negative hydrogen ion source in NIFS-NBI test stand. The H- density obtained by photodetachment is calibrated by the results from cavity ring-down (CRD). The pressure dependence and PG bias dependence of the local H- density are presented and discussed. The results show that H- density increases significantly by seeding Cs into the plasma. In Cs-seeded plasma, relativity exists between the H- ion density and plasma potential.

  10. Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion.

    PubMed

    Lee, Yuno; Thirumalai, D; Hyeon, Changbong

    2017-09-13

    Metal ions play a vital role in many biological processes. An important factor in these processes is the dynamics of exchange between ion bound-water molecules and the bulk. Although structural and dynamical properties of labile waters bound to metal ions, such as Na(+) and Ca(2+), can be elucidated using molecular dynamics simulations, direct evaluation of rates of exchange of waters rigidly bound to high charge density Mg(2+), has been elusive. Here, we report a universal relationship, allowing us to determine the water exchange time on metal ions as a function of valence and hydration radius. The proposed relationship, which covers times spanning 14 orders of magnitude, highlights the ultrasensitivity of water lifetime to the ion size, as exemplified by divalent ions, Ca(2+) (∼100 ps) and Mg(2+) (∼1.5 μs). We show that even when structures, characterized by radial distributions are similar, a small difference in hydration radius leads to a qualitatively different (associative or dissociative) mechanism of water exchange. Our work provides a theoretical basis for determination of hydration radius, which is critical for accurately modeling the water dynamics around multivalent ions, and hence in describing all electrostatically driven events such as ribozyme folding and catalysis.

  11. Interfacial Studies of Sized Carbon Fiber

    SciTech Connect

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-03-11

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  12. Interfacial Studies of Sized Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-03-01

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam® 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure® 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure® 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure® 3370/acetone sized carbon fiber. The Epicure® 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam® 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure® 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  13. Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes.

    PubMed

    Lu, Hui-Li; Lin, Dong-Qiang; Zhu, Mi-Mi; Yao, Shan-Jing

    2012-11-01

    Ion exchange chromatography (IEC) is a common and powerful technique for the purification of proteins. The ligand density and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In the present work, the adsorption isotherms of bovine serum albumin (BSA) and human serum albumin (HSA) were investigated systematically with series of diethylaminoethyl (DEAE) ion-exchange resins, which have different ligand densities and pore sizes. The Langmuir equation was used to fit the experimental data and the influences of ligand density and pore size on the saturated adsorption capacity and the dissociation constant were discussed. The zeta potentials and hydrodynamic diameters of proteins at different pHs were also measured, and the surface charge characteristics of proteins and the adsorption mechanism were discussed. The results demonstrated that the ligand density, pore size, and protein properties affect the protein adsorption capacities in an integrative way. An integrative parameter was introduced to describe the complicated effects of ligand density and pore size on the protein adsorption. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.

  14. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip

    NASA Astrophysics Data System (ADS)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman

    2017-07-01

    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  15. Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence

    SciTech Connect

    Dawi, E. A.; Mink, M. P.; Vredenberg, A. M.; Habraken, F. H. P. M.; Rizza, G.

    2009-04-01

    Irradiation with swift heavy ions of spherical Au nanoparticles confined within a silica matrix shapes them into prolate nanorods and nanowires whose principal axes are aligned along the beam direction. In the present paper, we investigate the role that is played by the initial nanoparticle size and concentration in this so-called ion-shaping mechanism. We have produced silica films wherein Au nanoparticles with average diameters of 15, 30, and 45 nm were embedded within a single plane and have irradiated these films at 300 K at normal incidence with 18, 25, and 54 MeV Ag ions. We demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned. The values of these critical fluences depend both on the ion energy and the initial nanoparticle size. Moreover, we show that 45 nm Au particles are not deformed when irradiated with 18 MeV Ag ions, such that this value corresponds to an energy threshold for the deformation process. As far as the influence of the nanoparticle concentration on the shaping characteristics is concerned, we have found that above the critical irradiation fluence, the deformation effect becomes very sensitive to the initial concentration of the nanoparticles.

  16. Basic Studies of Ion Mixing

    DTIC Science & Technology

    1988-11-16

    on the basis of other known correlations, this means that for refractory transition-metal disilicides , the dominant atomic transport processes in ion...610-612 (1985). 2. "When is Thermodynamics Relevant to Ion-Induced Atomic Rearrangements in Metals" W.L. Johnson, Y.T. Cheng, M. Van Rossum, M-A...Johnson, M-A. Nicolet, Mat. Res. Soc. Symp. Proc. vol. 37, 565-570 (1985). 4. "Experimental Investigations on the Oxidation of Cobalt Disilicide (CoSi)" S-J

  17. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    SciTech Connect

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  18. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  19. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    SciTech Connect

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-08-15

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form.

  20. Fabrication of submicron size electrode via nonetching method for metal ion detection

    NASA Astrophysics Data System (ADS)

    Kim, Younghun; Choi, Inhee; Kang, Sung Koo; Lee, Jeongjin; Yi, Jongheop

    2005-02-01

    A metal ion detector with a submicron size electrode was fabricated by atomic force microscopy lithography using a pre-programmed voltage and a nonetching method. The square frame of the mesa pattern was functionalized by (aminopropyl)triethoxysilane for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of (3-mercaptopropyl)trimethoxysialne for Au metal deposition. In this module, no metal lining or lead line was required, because the conductive tip (mobile electrode) was in direct contact with the gold-deposited mesa portion (fixed electrode). The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes.

  1. Ion beam irradiation of embedded nanoparticles: Toward an in situ control of size and spatial distribution

    SciTech Connect

    Rizza, G.; Cheverry, H.; Gacoin, T.; Lamasson, A.; Henry, S.

    2007-01-01

    Irradiation of chemically synthesized Au nanoparticles embedded in a dielectric matrix promotes the formation of a halo of satellites around the original cluster. We show that the complete dissolution of the nanoparticles (NC) results in the formation of a narrow size distribution of small precipitates with a mean size of 2 nm and a standard deviation of 0.4 nm. By combining the chemical synthesis of the nanoparticles and the irradiation to induce their dissolution and precipitation, we give a guideline method for overcoming the difficulty of controlling the size and spatial distribution of the embedded NC associated with ion implantation technique. In particular, we showed that the irradiation can be used to tailor the size of the already formed NC. Moreover, we establish that the satellites cluster evolution under irradiation can be described by a two step process. These two steps are discussed in terms of classical and inverse Ostwald ripening mechanisms.

  2. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  3. Beam tests of full-size prototypes of silicon detectors for TOF heavy-ions diagnostics in Super-FRS

    NASA Astrophysics Data System (ADS)

    Eremin, V.; Bezbakh, A.; Eremin, I.; Egorov, N.; Fomichev, A.; Golovkov, M.; Gorshkov, A.; Galkin, A.; Kiselev, O.; Knyazev, A.; Kostyleva, D.; Krupko, S.; Mitina, D.; Slepnev, R.; Sharov, P.; Verbitskaya, E.

    2017-03-01

    The full-size prototypes of large-area silicon detectors for the Time-Of-Flight (TOF) diagnostics of heavy ions were tested with 132Xe (600 MeV/u) beam. The obtained time resolution of the prototypes was about 13 ps, which satisfied the requirements of diagnostics for the Super Fragment Separator (Super-FRS) that is under development at GSI, Darmstadt, Germany. The irradiation effect on the timing properties of silicon detectors was studied with super-fast silicon pad detectors with a rise time of 190 ps. It was shown that the changes in the rise time of the leading edge of the detector current response to 40Ar ions (40.5 MeV/u) were negligible up to the fluence of 2 × 1011 ion/cm2 expected after one year of Super-FRS operation. This result confirms the model of the leading edge current pulse formation via a flow of the polarization current in dense tracks of heavy ions and shows the perspectives for application of silicon detectors for the TOF diagnostics of intensive heavy-ion beams.

  4. A Study of Single Pass Ion Effects at the ALS

    SciTech Connect

    Byrd, J.M.; Thomson, J.; Chao, A.W.; Heifets, S.; Minty, M.G.; Seeman, J.T.; Stupakov, G.V.; Zimmermann, F.; Raubenheimer, T.O.; /CERN

    2011-09-13

    We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased along the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be

  5. Sample size calculation in metabolic phenotyping studies.

    PubMed

    Billoir, Elise; Navratil, Vincent; Blaise, Benjamin J

    2015-09-01

    The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Colloidal electrolyte friction: the effect of finite-sized electrolyte ions

    NASA Astrophysics Data System (ADS)

    McPhie, Mathieu G.; Nägele, Gerhard

    2004-09-01

    The electro-hydrodynamic coupling of electrolyte ions and surface-dissociated counterions, i.e., microions, to the motion of a suspended colloidal macroion leads to an additional contribution to the colloidal friction coefficient. On the basis of the primitive model and the generalized Smoluchowski diffusion equation, a simplified mode-mode coupling scheme (MCS) is developed for quantifying the effect of electrolyte friction on the tracer diffusion of a macroion. In this scheme, far-field hydrodynamic interactions between all ionic species are considered. The influence of the finite size of the microions is accounted for by using mean spherical approximation expressions of static pair correlation functions for unequal sizes. The present paper extends earlier work of one of the authors to include the effects of finite-sized and hydrodynamically interacting microions. Our theoretical results are used to test the relevance of finite size effects in suspensions of nano-sized particles such as charged globular micelles. Significant finite size effects are only observed for macroion-microion size ratios typically smaller than 10.

  7. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size.

    PubMed

    Wu, Na; Wei, Huanhuan; Zhang, Lizhi

    2012-01-03

    We demonstrated that mesoporous titania beads of uniform size (about 450 μm) and high surface area could be synthesized via an alginate biopolymer template method. These mesoporous titania beads could efficiently remove Cr(VI), Cd(II), Cr(III), Cu(II), and Co(II) ions from simulated wastewater with a facile subsequent solid-liquid separation because of their large sizes. We chose Cr(VI) removal as the case study and found that each gram of these titania beads could remove 6.7 mg of Cr(VI) from simulated wastewater containing 8.0 mg·L(-1) of Cr(VI) at pH = 2.0. The Cr(VI) removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The Cr(VI) removal mechanism of titania beads might be attributed to the electrostatic adsorption of Cr(VI) ions in the form of negatively charged HCrO(4)(-) by positively charged TiO(2) beads, accompanying partial reduction of Cr(VI) to Cr(III) by the reductive surface hydroxyl groups on the titania beads. The used titania beads could be recovered with 0.1 mol·L(-1) of NaOH solution. This study provides a promising micro/nanostructured adsorbent with easy solid-liquid separation property for heavy metal ions removal.

  8. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli.

    PubMed Central

    Cruickshank, C C; Minchin, R F; Le Dain, A C; Martinac, B

    1997-01-01

    The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219) that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 A was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 A or larger significantly reduced channel conductance, whereas spermine (approximately 15 A), PLL19 (approximately 25 A) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-b ipyridinium (approximately 30 A) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is approximately 40 A, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL. PMID:9336188

  9. Ion-track membranes of fluoropolymers: Toward controlling the pore size and shape

    NASA Astrophysics Data System (ADS)

    Yamaki, T.; Nuryanthi, N.; Koshikawa, H.; Asano, M.; Sawada, S.; Hakoda, T.; Maekawa, Y.; Voss, K.-O.; Severin, D.; Seidl, T.; Trautmann, C.; Neumann, R.

    2013-11-01

    The possibility of varying the beam parameters and applying the effect of a pre-etching treatment for poly(vinylidene fluoride) (PVDF) ion-track membranes was investigated with the goal of achieving enhanced track etching for effective control of the pore size and shape. Commercially available 25 μm-thick PVDF films were irradiated at room temperature with swift heavy ions from the JAEA's TIARA cyclotron and GSI's UNILAC linear accelerator. Irradiation with a higher linear energy transfer (LET) beam gave faster track etching and larger pores, suggesting that the LET could be the most crucial factor determining the pore size. In-situ infra-red absorption and residual gas analyses shed light on the detailed chemistry of not only the ion-induced degradation, but also post-irradiation reactions. The pre-etching treatment effect involved oxidation of the unsaturated bonds within the latent track, which accelerated the chemical dissolution for efficient pore evolution. In other words, exposure to a gaseous oxidant, i.e., ozone, shortened the breakthrough time.

  10. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations.

    PubMed Central

    Dani, J A

    1986-01-01

    Many ion channels have wide entrances that serve as transition zones to the more selective narrow region of the pore. Here some physical features of these vestibules are explored. They are considered to have a defined size, funnel shape, and net-negative charge. Ion size, ionic screening of the negatively charged residues, cation binding, and blockage of current are analyzed to determine how the vestibules influence transport. These properties are coupled to an Eyring rate theory model for the narrow length of the pore. The results include the following: Wide vestibules allow the pore to have a short narrow region. Therefore, ions encounter a shorter length of restricted diffusion, and the channel conductance can be greater. The potential produced by the net-negative charge in the vestibules attracts cations into the pore. Since this potential varies with electrolyte concentration, the conductance measured at low electrolyte concentrations is larger than expected from measurements at high concentrations. Net charge inside the vestibules creates a local potential that confers some cation vs. anion, and divalent vs. monovalent selectivity. Large cations are less effective at screening (diminishing) the net-charge potential because they cannot enter the pore as well as small cations. Therefore, at an equivalent bulk concentration the attractive negative potential is larger, which causes large cations to saturate sites in the pore at lower concentrations. Small amounts of large or divalent cations can lead to misinterpretation of the permeation properties of a small monovalent cation. PMID:2421791

  11. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    SciTech Connect

    Ma, Zengsheng Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-14

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  12. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-01

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  13. Size dependence effect of carbon-based anode material on intercalation characteristics of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah

    2017-01-01

    This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial

  14. Size characterization of silver nanoparticles after separation from silver ions in environmental water using magnetic reduced graphene oxide.

    PubMed

    Luo, Li; Yang, Yuan; Li, Haipu; Ding, Ru; Wang, Qiang; Yang, Zhaoguang

    2017-09-07

    This study involved the synthesis of magnetic reduced graphene oxide (M-rGO) using a co-precipitation method and examined its resultant adsorption properties for mixtures containing silver ions and silver nanoparticles (AgNPs). The results indicate that M-rGO preferentially adsorbs silver ions in mixtures containing AgNPs, enabling the size characterization of smaller AgNPs (<60nm) at ultra-trace concentration levels to be more attainable. The sorbents after adsorption could be easily recovered through an external magnet. The AgNPs retained in solution were characterized using single-particle ICPMS (SP-ICPMS). The adsorption behavior of silver ions on M-rGO was well fitted with the pseudo-second-order kinetic model and the Freundlich adsorption isotherm model, with the conclusion that the adsorption of silver ions occurred primarily through the chemical bond effect and the heterogeneous surface of the sorbent. Finally, the application of M-rGO with the approach developed herein to actual environmental water samples was successful. Copyright © 2017. Published by Elsevier B.V.

  15. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  16. Morphological study of borosilicate glass surface irradiated by heavy ions

    SciTech Connect

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  17. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification.

    PubMed

    Zinnel, Nathanael F; Russell, David H

    2014-05-20

    Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.

  18. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    SciTech Connect

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-07-31

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases.

  19. Er, Yb doped yttrium based nanosized phosphors: particle size, "host lattice" and doping ion concentration effects on upconversion efficiency.

    PubMed

    Pires, Ana Maria; Heer, Stephan; Güdel, Hans Ulrich; Serra, Osvaldo Antonio

    2006-05-01

    The upconverter phosphors studied herein have different percentages of Er3+ and Yb3+ as doping ions in different Y3+ matrixes (Y2O3, Y2O2S), and were prepared from different precursors (polymeric resin, oxalate, basic carbonate) and method (combustion). Upconversion emission spectra were recorded at 298 K for all the doped samples in the visible region, for efficiency and Green/Red emission relative intensity comparisons. Therefore, an investigation of the influence of the doping ion concentration, particle size and host lattice on the upconversion process is provided in view of the UPT (Upconverting phosphor technology application). On the basis of the results, it was possible to evaluate the best combination for a specific assay, considering whether it is advantageous to have the greatest contribution from the green or red emissions, or from both in comparable intensities.

  20. Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects.

    PubMed

    Gavryushov, Sergei

    2008-07-31

    The epsilon-modified Poisson-Boltzmann (-MPB) equations ( J. Phys. Chem. B, 2007, 111, 5264) have been solved on a three-dimensional grid for an all-atom geometry model of B-DNA. The approach is based on the implicit solvent model including finite sizes of hydrated ions and a dielectric approximation of the ion hydration shell. Results were obtained for the detailed geometry model of B-DNA in dilute and moderately concentrated solutions of NaCl and CaCl(2). All -MPB parameters of ions and dielectric medium were extracted from published results of all-atom molecular dynamics simulations. The study allows evaluations of the ion size, interionic correlation, and the solvent dielectric saturation effects on the ion distributions around DNA. It unambiguously suggests that the difference between the -MPB and Poisson-Boltzmann distributions of ions is low for Na(+) counterions. Such a difference in the case of divalent counterions Ca(2+) is dramatic: the dielectric saturation of the ion hydration shell leads to point-like adsorption of Ca(2+) on the phosphate groups of DNA. The -MPB equations were also applied to calculate the energy of interaction between two B-DNA molecules. Results agree with previously published simulations and experimental data. Some aspects of ion specificity of polyelectrolyte properties are discussed.

  1. Online Size-exclusion and Ion-exchange Chromatography on a SAXS Beamline.

    PubMed

    Brennich, Martha E; Round, Adam R; Hutin, Stephanie

    2017-01-05

    Biological small angle X-ray scattering (BioSAXS) is a powerful technique in molecular and structural biology used to determine solution structure, particle size and shape, and surface-to-volume ratio of macromolecules. The technique is applicable to a very wide variety of solution conditions spanning a broad range of concentrations, pH values, ionic strengths, temperatures, additives, etc., but the sample is required to be monodisperse. This caveat led to the implementation of liquid chromatography systems on SAXS beamlines. Here, we describe the upstream integration of size-exclusion (SEC) and ion-exchange chromatography (IEC) on a beamline, different methods for optimal background subtraction, and data reduction. As an example, we describe how we use SEC- and IEC-SAXS on a fragment of the essential vaccinia virus protein D5, consisting of a D5N helicase domain. We determine its overall shape and molecular weight, showing the hexameric structure of the protein.

  2. Online Size-exclusion and Ion-exchange Chromatography on a SAXS Beamline

    PubMed Central

    Brennich, Martha E.; Round, Adam R.; Hutin, Stephanie

    2017-01-01

    Biological small angle X-ray scattering (BioSAXS) is a powerful technique in molecular and structural biology used to determine solution structure, particle size and shape, and surface-to-volume ratio of macromolecules. The technique is applicable to a very wide variety of solution conditions spanning a broad range of concentrations, pH values, ionic strengths, temperatures, additives, etc., but the sample is required to be monodisperse. This caveat led to the implementation of liquid chromatography systems on SAXS beamlines. Here, we describe the upstream integration of size-exclusion (SEC) and ion-exchange chromatography (IEC) on a beamline, different methods for optimal background subtraction, and data reduction. As an example, we describe how we use SEC- and IEC-SAXS on a fragment of the essential vaccinia virus protein D5, consisting of a D5N helicase domain. We determine its overall shape and molecular weight, showing the hexameric structure of the protein. PMID:28117806

  3. Enhanced sputter yields of ion irradiated Au nano particles: energy and size dependence.

    PubMed

    Holland-Moritz, Henry; Scheeler, Sebastian; Stanglmair, Christoph; Pacholski, Claudia; Ronning, Carsten

    2015-08-14

    Hexagonally arranged Au nanoparticles exhibiting a broad Gaussian-shaped size distribution ranging from 30 nm to 80 nm were deposited on Si substrates and irradiated with Ar(+) and Ga(+) ions with various energies from 20 to 350 keV and 1 to 30 keV, respectively. The size and energy dependence of the sputter yield were measured using high-resolution scanning electron microscopy image analysis. These results were compared to simulation results obtained by iradina, a Monte Carlo code, which takes the specifics of the nano geometry into account. The experimental sputter yields are significantly higher than simulated sputter yields for both bulk and the nano geometry. The difference can be clearly attributed to thermally driven effects, which significantly increase the measured sputter yields.

  4. Regulating the Size and Stabilization of Lipid Raft-Like Domains and Using Calcium Ions as Their Probe

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Szekely, Or

    2012-02-01

    In this paper, we apply means to probe, stabilize and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10 - 30 nm. In vitro, mixing saturated and unsaturated lipids results in micro-domains, which are unstable and coalesce. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active co-surfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line-tension between them.

  5. Depth resolution at organic interfaces sputtered by argon gas cluster ions: the effect of energy, angle and cluster size.

    PubMed

    Seah, M P; Spencer, S J; Havelund, R; Gilmore, I S; Shard, A G

    2015-10-07

    An analysis is presented of the effect of experimental parameters such as energy, angle and cluster size on the depth resolution in depth profiling organic materials using Ar gas cluster ions. The first results are presented of the incident ion angle dependence of the depth resolution, obtained at the Irganox 1010 to silicon interface, from profiles by X-ray photoelectron spectrometry (XPS). By analysis of all relevant published depth profile data, it is shown that such data, from delta layers in secondary ion mass spectrometry (SIMS), correlate with the XPS data from interfaces if it is assumed that the monolayers of the Irganox 1010 adjacent to the wafer substrate surface have an enhanced sputtering rate. SIMS data confirm this enhancement. These results show that the traditional relation for the depth resolution, FWHM = 2.1Y(1/3) or slightly better, FWHM = P(X)Y(1/3)/n(0.2), where n is the argon gas cluster size, and P(X) is a parameter for each material are valid both at the 45° incidence angle of the argon gas cluster sputtering ions used in most studies and at all angles from 0° to 80°. This implies that, for optimal depth profile resolution, 0° or >75° incidence may be significantly better than the 45° traditionally used, especially for the low energy per atom settings required for the best resolved profiles in organic materials. A detailed analysis, however, shows that the FWHM requires a constant contribution added in quadrature to the above such that there are minimal improvements at 0° or greater than 75°. A critical test at 75° confirms the presence of this constant contribution.

  6. Size-restricted proton transfer within toluene-methanol cluster ions.

    PubMed

    Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Garvey, James F

    2008-11-20

    To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.

  7. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.

    PubMed

    Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng

    2014-10-07

    The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.

  8. Particle model of full-size ITER-relevant negative ion source

    SciTech Connect

    Taccogna, F. Minelli, P.; Ippolito, N.

    2016-02-15

    This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j{sub H{sup −}} = 660 A/m{sup 2} from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.

  9. Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy.

    PubMed

    Tognoni, Elisabetta; Baschieri, Paolo; Ascoli, Cesare; Pellegrini, Monica; Pellegrino, Mario

    2016-04-01

    Scanning ion-conductance microscopy (SICM) belongs to the family of scanning-probe microscopies. The spatial resolution of these techniques is limited by the size of the probe. In SICM the probe is a pipette, obtained by heating and pulling a glass capillary tubing. The size of the pipette tip is therefore an important parameter in SICM experiments. However, the characterization of the tip is not a consolidated routine in SICM experimental practice. In addition, potential and limitations of the different methods available for this characterization may not be known to all users. We present an overview of different methods for characterizing size and geometry of the pipette tip, with the aim of collecting and facilitating the use of several pieces of information appeared in the literature in a wide interval of time under different disciplines. In fact, several methods that have been developed for pipettes used in cell physiology can be also fruitfully employed in the characterization of the SICM probes. The overview includes imaging techniques, such as scanning electron microscopy and atomic Force microscopy, and indirect methods, which measure some physical parameter related to the size of the pipette. Examples of these parameters are the electrical resistance of the pipette filled with a saline solution and the surface tension at the pipette tip. We discuss advantages and drawbacks of the methods, which may be helpful in answering a wide range of experimental questions.

  10. AFE ion mass spectrometer design study

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1989-01-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  11. AFE ion mass spectrometer design study

    NASA Astrophysics Data System (ADS)

    Wright, Willie

    1989-03-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  12. Ion chemistry for atmospheric size-segregated aerosol and depositions at an offshore site of Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Wen, Bin; Chen, Kui; Yin, Yan; Li, Li; Li, Qi; Yuan, Liang; Li, Xuxu; Sun, Xia

    2014-10-01

    An intensive sampling campaign was conducted in the autumn of 2012 to study the size distribution of inorganic ions and ion deposition at an offshore site of Yangtze River Delta region (YRD), China. Particles in < 0.43, 0.43-0.65, 0.65-1.1, 1.1-2.1, 2.1-3.3, 3.3-4.7, 4.7-5.8, 5.8-9.0 and 9.0-10.0 μm were collected and analyzed by ion chromatography for NH4+, Na+, Mg2 +, K+, Ca2 +, F-, Cl-, NO3- and SO42 -. The average mass concentrations in the nine particle sizes ranged from 13.1 to 38.7 μg m- 3, accounting for 5.5%-16.8% of the total mass. Concentrations exhibit bi-modal distribution, peaking at 0.65-1.1 μm and 3.3-4.7 μm. PM1.1, PM2.1 and PM2.1-10 account for 41%, 56% and 44% of PM10 implying the dominance of finer particles. Different ions hold different size distribution patterns. The concentrations of NO3-, SO42 -, NH4+, K+ and Ca2 + exhibit the highest values when compared to literature values indicating the serious air pollution situation in YRD. A haze-precipitation-fog transition course is captured. The precipitation can decrease all the particles in the nine sizes by 20%-62% and the fog formation process can promote the particles' accumulation, with their mass concentrations increasing by 26%-232% except for those in 5.8-9.0 μm and 9.0-10 μm. Mass percentages of SO42 -, NO3- and NH4+ exhibit decreases during precipitation and increases during fog formation course. The anion to cation ratios are lower than 1.0 indicating the anion deficiency and they exhibit significant negative relationship with the particle diameter. The Cl-dep (%) is higher for particles larger than 0.65 μm, increasing from 1.3% to 61% with size added. Sea salt only accounts for 0.12%-2.1% of PM10. The ratios of nss-SO42 -/NO3- decrease with increasing particle size, from 1.68 to 0.69, and are well fit as linear form (r = - 0.74, p = 0.02). It indicates that stationary sources make more contributions to smaller particles and vehicle emission is more important for larger

  13. Studies in ion source development for application in heavy ion fusion

    SciTech Connect

    Kapica, Jonathan G.

    2004-05-01

    The overall purpose of these experiments is to contribute to the development of ion injector technology in order to produce a driver for use in a heavy-ion-fusion (HIF) power generating facility. The overall beam requirements for HIF are quite demanding; a short list of the constraints is the following: (1) Low cost (a large portion of overall cost will come from the beam system); (2) Bright, low emittance beam; (3) Total beam energy 5MJ; (4) Spot size 3mm (radius); (5) Pulse Duration 10ns; (6) Current on target 40kA; (7) Repetition Rate 5Hz; (8) Standoff from target 5m; and (9) Transverse Temp < 1 keV. The reasons for employing ion beams in inertial fusion systems become obvious when the repetition rate required is considered. While laser drivers are useful in producing a proof-of-concept, they will be incapable of application in power generation. Consequently attempts in the U.S. to achieve a power generating system make use of linear ion accelerators. It is apparent that the accelerator system requires the highest quality input as obtainable. Therefore injector design is an essential portion of the entire inertial fusion system. At Lawrence Berkeley and Lawrence Livermore National Laboratories experiments are being conducted using two injector formats. For this project I have conducted a series of studies using both. The next two sections provide a brief description of the sources used for my experiments.

  14. Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions

    NASA Astrophysics Data System (ADS)

    Osipov, V. Yu.; Aleksenskiy, A. E.; Takai, K.; Vul', A. Ya.

    2015-11-01

    The diamond nanoparticle surface is modified with Gd(III) ions by ion exchange with carboxyl group protons during the reaction of nanodiamond hydrosol with an aqueous solution of gadolinium nitrate. The results of the study by electron paramagnetic resonance and static magnetization measurements at low temperatures confirm the attachment of gadolinium ions to the surface of the diamond particle ˜5 nm in size. A spatial model of the arrangement of ions, in which the ion is located away from the surface by no more than 0.4 nm, is proposed.

  15. Plasma Studies in Ion Diodes.

    DTIC Science & Technology

    1984-09-01

    high power pulse, with a typical rise time of 10 ns, to a pulsed high current vacuum diode (also variously referred to as an explosive emission , field...instantaneous event. One motivation for such studies was the developement of high voltage devices, such as x - ray tubes. for which vacuum breakdown was...Sources of high current , high voltage particle beams rely on the intermedi- ate phase of vacuum breakdown, between initial plasma formation and gap clo

  16. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  17. Data size reduction strategy for the classification of breath and air samples using multicapillary column-ion mobility spectrometry.

    PubMed

    Szymańska, Ewa; Brodrick, Emma; Williams, Mark; Davies, Antony N; van Manen, Henk-Jan; Buydens, Lutgarde M C

    2015-01-20

    Ion mobility spectrometry combined with multicapillary column separation (MCC-IMS) is a well-known technology for detecting volatile organic compounds (VOCs) in gaseous samples. Due to their large data size, processing of MCC-IMS spectra is still the main bottleneck of data analysis, and there is an increasing need for data analysis strategies in which the size of MCC-IMS data is reduced to enable further analysis. In our study, the first untargeted chemometric strategy is developed and employed in the analysis of MCC-IMS spectra from 264 breath and ambient air samples. This strategy does not comprise identification of compounds as a primary step but includes several preprocessing steps and a discriminant analysis. Data size is significantly reduced in three steps. Wavelet transform, mask construction, and sparse-partial least squares-discriminant analysis (s-PLS-DA) allow data size reduction with down to 50 variables relevant to the goal of analysis. The influence and compatibility of the data reduction tools are studied by applying different settings of the developed strategy. Loss of information after preprocessing is evaluated, e.g., by comparing the performance of classification models for different classes of samples. Finally, the interpretability of the classification models is evaluated, and regions of spectra that are related to the identification of potential analytical biomarkers are successfully determined. This work will greatly enable the standardization of analytical procedures across different instrumentation types promoting the adoption of MCC-IMS technology in a wide range of diverse application fields.

  18. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Zhang, Fuwang; Xu, Ya; Chen, Jinsheng

    2011-03-01

    The samples of water-soluble inorganic ions (WSIs), including anions (F-, Cl-, SO42-, NO3-) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56-51.27%, 40.04-60.81%, 42.02-60.81%, and 40.46-57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m- 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42- and NO3- were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl-, SO42- and NO3- were bimodal, peaking at 0.43-0.65 μm and 3.3-5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1-3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43-0.65 μm and a minor one at 3.3-4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.

  19. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    PubMed

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate.

  20. Size and Charge Dependence of Ion Transport in Human Nail Plate

    PubMed Central

    Baswan, Sudhir M.; Li, S. Kevin; LaCount, Terri D.; Kasting, Gerald B.

    2016-01-01

    The electrical properties of human nail plate are poorly characterized, yet are a key determinate of the potential to treat nail diseases such as onychomycosis using iontophoresis. In order to address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of −1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were three-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upwards of 5 Å (approximately MW ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342

  1. Studies of Negative Ion Reactions: Solvated Ions and Strong Acids,

    DTIC Science & Technology

    1986-03-07

    Lewis model to gas phase ion chemistry has been little explored, but the Bronsted / Lowry model has been tested extensively. The gas phase acidity of a...electron Is acting as a Bronsted base . It is of Interest that dissociative attachment In the strong Bronsted acids has recently been discovered to be a...of strong Bronsted acids and their anions. 2. Exnerimental The AFGL SIFT [3,4,5] Is similar to that described by Adams and Smith [6]. The Ion source

  2. Mechanical properties and plasticity size effect of Fe-6%Cr irradiated by Fe ions and by neutrons

    NASA Astrophysics Data System (ADS)

    Hardie, C. D.; Odette, G. R.; Wu, Y.; Akhmadaliev, S.; Roberts, S. G.

    2016-12-01

    The mechanical behaviour of Fe6%Cr in the un-irradiated, self-ion irradiated and neutron irradiated conditions was measured and compared. Irradiations were performed to the same dose and at the same temperature but to very different damage rates for both methods. The materials were tested using nanoindentation and micromechanical testing, and compared with microstructural observations from Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT) reported elsewhere. Irradiated and un-irradiated micro-cantilevers with a wide range of dimensions were used to study the interrelationships between irradiation hardening and size effects in small-scale plasticity. TEM and APT results identified that the dislocation loop densities were ∼2.9 × 1022m-3 for the neutron irradiated material and only 1.4 × 1022m-3 for the ion irradiated material. Cr segregation to loops was only found for the neutron-irradiated material. The nanoindentation hardness increase due to neutron irradiation was 3 GPa and that due to ion irradiation 1 GPa. The differences between the effects of the two irradiation types are discussed, taking into account inconsistencies in damage calculations, and the differences in PKA spectra, dose rate and transmutation products for the two irradiation types.

  3. Size-Resolved Chemical Characterization of Tropical Marine Aerosol During RICO: Water- Soluble Ions and the Carbonaceous Fraction

    NASA Astrophysics Data System (ADS)

    Morales-García, F.; Mayol-Bracero, O. L.; Repollet-Pedrosa, M. H.; Kasper-Giebl, A.; Puxbaum, H.; Ramírez-Santa Cruz, C.; Metzger, S. M.

    2006-12-01

    CSJ, they were lower than those reported in other studies in Puerto Rico and in the North Atlantic Ocean. Particulate organic matter represented between 10- 20% of the estimated aerosol mass for particles with Dp < 1.7 μm. A bimodal size distribution with a small peak at 0.27 μm and a larger peak at 1.6 μm was observed for the DLPI samples. The relative importance of the different species (water-soluble ions and carbonaceous) with respect to the size distributions, the concentrations of the water-soluble organic fraction, and the contribution of the different species, including water, to the total aerosol mass will also be presented.

  4. A database of frequency distributions of energy depositions in small-size targets by electrons and ions.

    PubMed

    Nikjoo, H; Uehara, S; Emfietzoglou, D; Pinsky, L

    2011-02-01

    Linear energy transfer (LET) is an average quantity, which cannot display the stochastics of the interactions of radiation tracks in the target volume. For this reason, microdosimetry distributions have been defined to overcome the LET shortcomings. In this paper, model calculations of frequency distributions for energy depositions in nanometre size targets, diameters 1-100 nm, and for a 1 μm diameter wall-less TEPC, for electrons, protons, alpha particles and carbon ions are reported. Frequency distributions for energy depositions in small-size targets with dimensions similar to those of biological molecules are useful for modelling and calculations of DNA damage. Monte Carlo track structure codes KURBUC and PITS99 were used to generate tracks of primary electrons 10 eV to 1 MeV, and ions 1 keV µm(-1) to 300 MeV µm(-1) energies. Distribution of absolute frequencies of energy depositions in volumes with diameters of 1-100 nm randomly positioned in unit density water irradiated with 1 Gy of the given radiation was obtained. Data are presented for frequency of energy depositions and microdosimetry quantities including mean lineal energy, dose mean lineal energy, frequency mean specific energy and dose mean specific energy. The modelling and calculations presented in this work are useful for characterisation of the quality of radiation beam in biophysical studies and in radiation therapy.

  5. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge.

    PubMed

    Lindenberg, E K; Patey, G N

    2015-07-14

    The melting point trends of model salts composed of coarse grain ions are examined using NPT molecular dynamics simulations. The model salts incorporate ion size asymmetry and distributed cation charge, which are two common features in ionic liquids. A series of single-phase and two-phase simulations are done at set temperatures with 50 K intervals for each salt, and the normal melting point is estimated within 50 K. The melting point trends are then established relative to a charge-centered, size symmetric salt with a normal melting point between 1250 K and 1300 K. We consider two sets of size asymmetric salts with size ratios up to 3:1; the melting point trends are different in each set. The lowest melting point we find is between 450 K and 500 K, which is a reduction of over 60% from the charge-centered, size symmetric case. In both sets, we find diversity in the solid phase structures. For all size ratios with small cation charge displacements, the salts crystallize with orientationally disordered cations. When the partial cation charge is far enough off-center in salts with ion size ratios near 1:1, the salts can become trapped in glassy states and have underlying crystal structures that are orientationally ordered. At ion size ratios near 3:1, the salts with large cation charge displacements show premelting transitions at temperatures as low as 300 K. After the premelting transition, these salts exist either as fast ion conductors, where the smaller anions move through a face centered cubic (fcc) cation lattice, or as plastic crystals, where ion pairs rotate on a fcc lattice.

  6. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  7. A Priori Intrinsic PTM Size Parameters for Predicting the Ion Mobilities of Modified Peptides

    NASA Astrophysics Data System (ADS)

    Kaszycki, Julia L.; Shvartsburg, Alexandre A.

    2017-02-01

    The rising profile of ion mobility spectrometry (IMS) in proteomics has driven the efforts to predict peptide cross-sections. In the simplest approach, these are derived by adding the contributions of all amino acid residues and post-translational modifications (PTMs) defined by their intrinsic size parameters (ISPs). We show that the ISPs for PTMs can be calculated from properties of constituent atoms, and introduce the "impact scores" that govern the shift of cross-sections from the central mass-dependent trend for unmodified peptides. The ISPs and scores tabulated for 100 more common PTMs enable predicting the domains for modified peptides in the IMS/MS space that would guide subproteome investigations.

  8. A large size ion beam figuring system for 1.2m astronomical telescopes fabrication

    NASA Astrophysics Data System (ADS)

    Xie, Xuhui; Yang, Bing; Zhou, Lin; Song, Ci; Hu, Hao

    2016-07-01

    An ion beam figuring system (KDIBF2000) for final figuring of large size optics has been designed and built by National University of Defense Technology in China. It can figure optics up to the maximum dimensions of 2.0m×2.0m×0.4m with five axes of servo-motion used to control ion source movement. For operational facility, there are two vacuum chambers with main work chamber and a small supplementary chamber isolated by a flapper valve. The main chamber has two work zones, which can meantime hold a large optics with Φ1.5m and a small optics with 0.4m. The small optics can be transferred through supplementary chamber with a moving vehicle. By this way, it is very convenient and economical to gain the material removal function and check the system's process performance. Now, this system has been gone into running to figure large SiC off-axis aspheric optics. Next step, a 1.2m SiC aspheric primary mirror will be figure by this system.

  9. Innovative heating of large-size automotive Li-ion cells

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Liu, Teng; Wang, Chao-Yang

    2017-02-01

    Automotive Li-ion cells are becoming much larger and thicker in order to reduce the cell count and increase battery reliability, posing a new challenge to battery heating from the cold ambient due to poor through-plane heat transfer across a cell's multiple layers of electrodes and separators. In this work, widely used heating methods, including internal heating using the cell's resistance and external heating by resistive heaters, are compared with the recently developed self-heating Li-ion battery (SHLB) with special attention to the heating speed and maximum local temperature critical to battery safety. Both conventional methods are found to be slow due to low heating power required to maintain battery safety. The heating power in the external heating method is limited by the risk of local over-heating, in particular for thick cells. As a result, the external heating method is restricted to ∼20 min slow heating for a 30 °C temperature rise. In contrast, the SHLB is demonstrated to reach a heating speed of 1-2 °C/sec, ∼40 times faster for large-size thick cells, with nearly 100% heating efficiency and spatially uniform heating free from safety concerns.

  10. Particle size distribution of inorganic and organic ions in coastal and inland Antarctic aerosol.

    PubMed

    Barbaro, Elena; Padoan, Sara; Kirchgeorg, Torben; Zangrando, Roberta; Toscano, Giuseppa; Barbante, Carlo; Gambaro, Andrea

    2017-01-01

    The concentration and particle-size distribution of ionic species in Antarctic aerosol samples were determined to investigate their potential sources, chemical evolution, and transport. We analyzed aerosol samples collected at two different Antarctic sites: a coastal site near Victoria Land close to the Italian Research Base "Mario Zucchelli", and another site located on the Antarctic plateau, close to Italian-French Concordia Research Station. We investigated anionic compounds using ion-chromatography coupled to mass spectrometry, and cationic species through capillary ion chromatography with conductometry. Aerosol collected close to the coast was mainly characterized by sea salt species such as Na(+), Mg(2+), and SO4(2-). These species represented a percentage of 88% of the total sum of all detected ionic species in the aerosol samples from the coastal site. These species were mainly distributed in the coarse fraction, confirming the presence of primary aerosol near the ocean source. Aerosol collected over the Antarctic plateau was characterized by high acidity, with nss-SO4(2-), NO3(-), and methanesulfonic acid as the most abundant species. These species were mainly distributed in the <0.49 μm fraction, and they had a behavior of a typical secondary aerosol, where several chemical and physical processes occurred.

  11. Plasma size and collisionality scaling of ion-temperature-gradient-driven turbulence

    NASA Astrophysics Data System (ADS)

    Nakata, Motoki; Idomura, Yasuhiro

    2013-11-01

    Fixed-flux (FF), fixed-gradient (FG) and local fluxtube (FT) gyrokinetic simulations are systematically compared for ion-temperature-gradient (ITG)-driven turbulence. The collisionality (ν*) dependence of ion heat diffusivity is verified through the inter-model comparisons. When the temperature gradient is far from the nonlinear critical value, the FF and FT models give a weak ν*-dependence, while the FG model shows a strong ν*-dependence. The entropy transfer analysis on the zonal-flow saturation mechanisms in the quasi-steady state of the FT simulation provides clear insights on the different ν*-dependence of the turbulent transport and zonal-flow shearing rate in the far-above- and near-critical cases. It has also been revealed that the FG model provides the strong ν*-dependence through the change of ITG-mode stability due to ν*-dependent heating/sink by the adaptive heat source, where the velocity distribution function is deformed. The plasma size (ρ*) scan in the FF simulations show a Bohm-like transport scaling even in a local limit regime, ρ*-1 ⩾ 300, where profile-shear effects are weak. It has been clarified that the transient variations of local power balance are essential mechanisms leading to the Bohm-like heat transport even at similar mean temperature gradients, where the burst amplitude and its frequency increase with the plasma size and the heating power. The mechanism is unique to the FF model. Comparisons of statistical characteristics in the local limit regime show differences in frequency spectra and probability density functions of the heat flux, while zonal-flow structures and avalanche propagations properties are similar among these models.

  12. Bust size and hitchhiking: a field study.

    PubMed

    Guéguen, Nicolas

    2007-12-01

    To test the effect of a woman's bust size on the rate of help offered, 1200 male and female French motorists were tested in a hitchhiking situation. A 20-yr.-old female confederate wore a bra which permitted variation in the size of cup to vary her breast size. She stood by the side of a road frequented by hitchhikers and held out her thumb to catch a ride. Increasing the bra-size of the female-hitchhiker was significantly associated with an increase in number of male drivers, but not female drivers, who stopped to offer a ride.

  13. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size.

    PubMed

    Bucciolini, M; Buonamici, F Banci; Mazzocchi, S; De Angelis, C; Onori, S; Cirrone, G A P

    2003-08-01

    The aim of this work was to test the suitability of a PTW diamond detector for nonreference condition dosimetry in photon beams of different energy (6 and 25 MV) and field size (from 2.6 cm x 2.6 cm to 10 cm x 10 cm). Diamond behavior was compared to that of a Scanditronix p-type silicon diode and a Scanditronix RK ionization chamber. Measurements included output factors (OF). percentage depth doses (PDD) and dose profiles. OFs measured with diamond detector agreed within 1% with those measured with diode and RK chamber. Only at 25 MV, for the smallest field size, RK chamber underestimated OFs due to averaging effects in a pointed shaped beam profile. Agreement was found between PDDs measured with diamond detector and RK chamber for both 6 MV and 25 MV photons and down to 5 cm x 5 cm field size. For the 2.6 cm x 2.6 cm field size, at 25 MV, RK chamber underestimated doses at shallow depth and the difference progressively went to zero in the distal region. PDD curves measured with silicon diode and diamond detector agreed well for the 25 MV beam at all the field sizes. Conversely, the nontissue equivalence of silicon led, for the 6 MV beam, to a slight overestimation of the diode doses in the distal region, at all the field sizes. Penumbra and field width measurements gave values in agreement for all the detectors but with a systematic overestimate by RK measurements. The results obtained confirm that ion chamber is not a suitable detector when high spatial resolution is required. On the other hand, the small differences in the studied parameters, between diamond and silicon systems, do not lead to a significant advantage in the use of diamond detector for routine clinical dosimetry.

  14. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2014-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  15. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2013-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  16. Size and shape dependence of the electrochemical properties of hematite nanoparticles and their applications in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Wang, Gaojun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-04-01

    Hematite nanoparticles are a type of promising electrode active materials for lithium ion batteries due to their low cost and high specific capacity. However, the cycling performances of hematite nanoparticles are not as good as those of the conventional electrode active materials for lithium ion batteries. This paper reports the study on the relationship between the electrochemical properties and the particle sizes and shapes, aiming to optimize the electrochemical properties of hematite nanoparticles for their applications in lithium ion batteries. Three types of hematite nanoparticles were compared, including hematite nanospheres with an average diameter of 200 nm, hematite nanoflakes with an average maximum dimension of 200 nm, and hematite nanospheres with an average diameter of 30 nm. Their crystalline structures were characterized by X-ray diffraction (XRD) and their particle morphologies were analyzed by scanning electron microscopy (SEM). Composite electrode materials were made from hematite nanoparticles with carbon black as the conducting material and PVDF as the binding material (hematite : carbon black : PVDF = 70 : 15 : 15). Prototype lithium ion batteries (CR2032 button cells) were assembled with the composite electrodes as cathodes, metal lithium as anodes, and Celgard 2400 porous membrane as separators. It was found that in the first few cycles, the specific discharge capacity of hematite nanospheres with an average diameter of 30 nm is higher than those of the other two, while after first seven cycles, the specific discharge capacity of hematite nanospheres with an average diameter of 30 nm is lower than those of the other two. Possible approaches for improving the cycling performance and rate capacity of hematite nanoparticles are discussed at the end of this paper.

  17. Comparison between Free and Immobilized Ion Effects on Hydrophobic Interactions: A Molecular Dynamics Study.

    PubMed

    Huang, Kai; Gast, Sebastian; Ma, C Derek; Abbott, Nicholas L; Szlufarska, Izabela

    2015-10-15

    Fundamental studies of the effect of specific ions on hydrophobic interactions are driven by the need to understand phenomena such as hydrophobically driven self-assembly or protein folding. Using β-peptide-inspired nanorods, we investigate the effects of both free ions (dissolved salts) and proximally immobilized ions on hydrophobic interactions. We find that the free ion effect is correlated with the water density fluctuation near a nonpolar molecular surface, showing that such fluctuation can be an indicator of hydrophobic interactions in the case of solution additives. In the case of immobilized ion, our results demonstrate that hydrophobic interactions can be switched on and off by choosing different spatial arrangements of proximal ions on a nanorod. For globally amphiphilic nanorods, we find that the magnitude of the interaction can be further tuned using proximal ions with varying ionic sizes. In general, univalent proximal anions are found to weaken hydrophobic interactions. This is in contrast to the effect of free ions, which according to our simulations strengthen hydrophobic interactions. In addition, immobilized anions of increasing ionic size do not follow the same ordering (Hofmeister-like ranking) as free ions when it comes to their impact on hydrophobic interactions. The immobilized ion effect is not simply correlated with the water density fluctuation near the nonpolar side of the amphiphilic nanorod. We propose a molecular picture that explains the contrasting effects of immobilized versus free ions.

  18. Compact non-rock-salt structures in sodium fluoride cluster ions at specific sizes revealed by ion mobility mass spectrometry.

    PubMed

    Ohshimo, Keijiro; Takahashi, Tohru; Moriyama, Ryoichi; Misaizu, Fuminori

    2014-10-30

    Structures of small sodium fluoride cluster cations, Na(n)F(n-1)(+), have been determined for n = 5-23 by ion mobility mass spectrometry. In the mass spectrum of Na(n)F(n-1)(+) cluster ions measured after collisions in the ion-drift cell, cuboid ions with near-regular hexahedron such as n = 14 (3 × 3 × 3), 23 (3 × 3 × 5), 38 (3 × 5 × 5), 63 (5 × 5 × 5), and 88 (5 × 5 × 7) were predominantly observed as magic numbers. By comparison of the collision cross sections obtained from the ion mobility measurements with theoretical ones, we have experimentally shown that the ions of n = 7 and 10 have stable non-rock-salt type structures in which one sodium atom is encapsulated into the sodium fluoride cuboid lattice. The collision cross sections of n = 12 and 13 are almost equal to that of the n = 14 cuboid. A similar feature was also observed in collision cross sections of n = 21 and 22, which are equal to that of the n = 23 cuboid. These features indicate that the cluster ions of n = 12, 13, 21, and 22 have near-cuboid structures with some surface defects.

  19. Planetary size comparisons: A photographic study

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1983-01-01

    Over the past two decades NASA spacecraft missions obtained photographs permitting accurate size measurements of the planets and moons, and their surface features. Planetary global views are displayed at the same scale, in each picture to allow visual size comparisons. Additionally, special geographical features on some of the planets are compared with selected Earth areas, again at the same scale. Artist renderings and estimated sizes are used for worlds not yet reached by spacecraft. Included with each picture is number designation for use in ordering copies of the photos.

  20. Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence sensor probe for Ag+ ions.

    PubMed

    Mandal, Abhijit; Dandapat, Anirban; De, Goutam

    2012-02-07

    A green and simple chemical synthesis of magic sized water soluble blue-emitting ZnS quantum dots (QDs) has been accomplished by reacting anhydrous Zn acetate, sodium sulfide and thiolactic acid (TLA) at room temperature in aqueous solution. Refluxing of this mixture in open air yielded ZnS clusters of about 3.5 nm in diameter showing very strong and narrow photoluminescence properties with long stability. Refluxing did not cause any noticeable size increment of the clusters. As a result, the QDs obtained after different refluxing conditions showed similar absorption and photoluminescence (PL) features. Use of TLA as a capping agent effectively yielded such stable and magic sized QDs. The as-synthesized and 0.5 h refluxed ZnS QDs were used as a fluorescence sensor for Ag(+) ions. It has been observed that after addition of Ag(+) ions of concentration 0.5-1 μM the strong fluorescence of ZnS QDs was almost quenched. The quenched fluorescence can be recovered by adding ethylenediamine to form a complex with Ag(+) ions. The other metal ions (K(+), Ca(2+), Au(3+), Cu(2+), Fe(3+), Mn(2+), Mg(2+), Co(2+)) showed little or no effect on the fluorescence of ZnS QDs when tested individually or as a mixture. In the presence of all these ions, Ag(+) responded well and therefore ZnS QDs reported in this work can be used as a Ag(+) ion fluorescence sensor.

  1. Stability of Phosphine-Ligated Gold Cluster Ions toward Dissociation: Effect of Ligand and Cluster Size

    NASA Astrophysics Data System (ADS)

    Laskin, Julia

    2015-03-01

    Precise control of the composition of phosphine-ligated gold clusters is of interest to their applications in catalysis, sensing, and drug delivery. Reduction synthesis in solution typically generates a distribution of ligated clusters containing different number of gold atoms and capping ligands. Ligand binding energy is an important factor determining the kinetics of cluster nucleation and growth in solution and hence the resulting cluster distribution. Phosphines are popular capping ligands with tunable electronic and steric properties that affect their binding to the gold core. We examined the effect of the number of gold atoms in the cluster and the properties of the phosphine ligand on the ligand binding energy to the gold core using surface-induced dissociation (SID) of mass selected cluster cations produced through electrospray ionization. SID of vibrationally excited ions is ideally suited for studying gas-phase fragmentation of complex ions such as ligated gold clusters. The energetics, dynamics, and mechanisms of cluster ion fragmentation in the absence of solvent are determined through RRKM modeling of time and kinetic energy dependent SID spectra. This approach provides quantitative information on the ligand binding energies in phosphine-ligated gold clusters important for understanding their formation in solution. Furthermore, ligand binding energies derived from SID data provide the first benchmark values for comparison with electronic structure calculations. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  2. Pore size dependent behavior of hydrated Ag+ ions confined in mesoporous MCM-41 materials under synchrotron X-ray irradiation.

    PubMed

    Ito, Kanae; Yoshida, Koji; Kittaka, Shigeharu; Yamaguchi, Toshio

    2012-01-01

    The behavior of hydrated Ag+ ions in a 1.5 mol dm(-3) AgNO3 aqueous solution confined in mesoporous silica MCM-41 with different pore sizes was characterized by synchrotron X-ray absorption spectroscopy. The hydrated Ag+ ions are stabilized in 4-fold coordination down to 195 K in the pores (21 Å in diameter), whereas in the larger pores (28 Å) the hydrated Ag+ ions are reduced to Ag0 to form nano clusters with the Ag-Ag interactions of 2.80 Å.

  3. Ion correlations in nanofluidic channels: Effects of ion size, valence, and concentration on voltage- and pressure-driven currents

    PubMed Central

    Hoffmann, Jordan

    2013-01-01

    The effects of ion-ion and ion-wall correlations in nanochannels are explored, specifically how they influence voltage- and pressure-driven currents and pressure-to-voltage energy conversion. Cations of different diameters (0.15, 0.3, and 0.9 nm) and different valences (+1, +2, and +3) at concentrations ranging from 10–6 M to 1 M are considered in 50 nm- and 100 nm-wide nanoslits with wall surface charges ranging from 0 C/m2 to –0.3 C/m2. These parameters are typical of nanofluidic devices. Ion correlations have significant effects on device properties over large parts of this parameter space. These effects are the result of ion layering (oscillatory concentration profiles) for large monovalent cations and charge inversion (more cations in the first layer near the wall than necessary to neutralize the surface charge) for the multivalent cations. The ions were modeled as charged, hard spheres using density functional theory of fluids and current was computed with the Navier-Stokes equations with two different no-slip conditions. PMID:23286510

  4. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  6. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  7. Change of electrostatic potential of mean force between two curved surfaces due to different salt composition, ion valence and size under certain ionic strength

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2016-02-01

    Change of an electrostatic potential of mean force (EPMF) between two cylindrical rod surfaces with salt composition, ion valence, and ion size at a constant ionic strength of 0.3 M is studied by a classical density functional theory (CDFT) in a primitive model electrolyte solution. Several novel observations are made: (i) strength of a so-called like charge attraction (LCA) reduces in an invariable manner with the salt solution changing from single 2:1 electrolyte to mixture of 2:1 and 1:1 type electrolytes of varying concentration ratios; the change is even over entire range of the composition variation under low surface charge strength, and tends to be insensitive to the composition variation in the presence of the divalent counter-ion, and more and more drastic at a critical point the divalent counter-ion disappears, respectively, as the surface charge strength becomes big enough. (ii) Both monovalent counter-ion and co-ion diameters have only a marginal effect on both the LCA strength and equilibrium distance, and the former "abnormally" affects less than the latter. (iii) Depending on the surface charge strength considered, the divalent counter-ion diameter influences the LCA strength in solution comprised of 2:1 type and 1:1 type electrolytes, monotonously or non-monotonously. All of these findings provide forceful support for a recently proposed hydrogen-bonding style mechanism explaining the LCA.

  8. Experimental Studies of Ion Charge Ion Flux in Streaming Plasmas.

    DTIC Science & Technology

    1980-12-01

    THIS PAGE (When Data Entered) L T R C I N CEflBIDOCUETATIONPDAGE BFRECMLTIGFR GOVTACCSOON O.3RECIPIENT’S C( 744,,OG NUMBER q v ]WERMENAL TUDIES OF ION...Controlling Office) IS. SECURITY CLASS. (of t )*r~g unclassified £ - 15.OECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) qp...radiation, such as in our experiment, will decrease as the inverse square of the radius; blast wave theory then predicts(13) R~ t / t ccnh where n is

  9. Theoretical Study of Dual-Direction Dipolar Excitation of Ions in Linear Ion Traps

    NASA Astrophysics Data System (ADS)

    Dang, Qiankun; Xu, Fuxing; Wang, Liang; Huang, Xiaohua; Dai, Xinhua; Fang, Xiang; Wang, Rizhi; Ding, Chuan-Fan

    2016-04-01

    The ion enhanced activation and collision-induced dissociation (CID) by simultaneous dipolar excitation of ions in the two radial directions of linear ion trap (LIT) have been recently developed and tested by experiment. In this work, its detailed properties were further studied by theoretical simulation. The effects of some experimental parameters such as the buffer gas pressure, the dipolar excitation signal phases, power amplitudes, and frequencies on the ion trajectory and energy were carefully investigated. The results show that the ion activation energy can be significantly increased by dual-direction excitation using two identical dipolar excitation signals because of the addition of an excitation dimension and the fact that the ion motion radius related to ion kinetic energy can be greater than the field radius. The effects of higher-order field components, such as dodecapole field on the performance of this method are also revealed. They mainly cause ion motion frequency shift as ion motion amplitude increases. Because of the frequency shift, there are different optimized excitation frequencies in different LITs. At the optimized frequency, ion average energy is improved significantly with relatively few ions lost. The results show that this method can be used in different kinds of LITs such as LIT with 4-fold symmetric stretch, linear quadrupole ion trap, and standard hyperbolic LIT, which can significantly increase the ion activation energy and CID efficiency, compared with the conventional method.

  10. Theoretical Study of Dual-Direction Dipolar Excitation of Ions in Linear Ion Traps.

    PubMed

    Dang, Qiankun; Xu, Fuxing; Wang, Liang; Huang, Xiaohua; Dai, Xinhua; Fang, Xiang; Wang, Rizhi; Ding, Chuan-Fan

    2016-04-01

    The ion enhanced activation and collision-induced dissociation (CID) by simultaneous dipolar excitation of ions in the two radial directions of linear ion trap (LIT) have been recently developed and tested by experiment. In this work, its detailed properties were further studied by theoretical simulation. The effects of some experimental parameters such as the buffer gas pressure, the dipolar excitation signal phases, power amplitudes, and frequencies on the ion trajectory and energy were carefully investigated. The results show that the ion activation energy can be significantly increased by dual-direction excitation using two identical dipolar excitation signals because of the addition of an excitation dimension and the fact that the ion motion radius related to ion kinetic energy can be greater than the field radius. The effects of higher-order field components, such as dodecapole field on the performance of this method are also revealed. They mainly cause ion motion frequency shift as ion motion amplitude increases. Because of the frequency shift, there are different optimized excitation frequencies in different LITs. At the optimized frequency, ion average energy is improved significantly with relatively few ions lost. The results show that this method can be used in different kinds of LITs such as LIT with 4-fold symmetric stretch, linear quadrupole ion trap, and standard hyperbolic LIT, which can significantly increase the ion activation energy and CID efficiency, compared with the conventional method.

  11. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-03-15

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  12. Synthesis and structure of some nano-sized rare-earth metal ions doped potassium hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael; Nketsa, Pusetso F.; Manatha, Toka J.; Madhavi Thakurdesai, And

    2015-05-01

    Rare-earth ions doped potassium hexacyanoferrates (KR-HCF); with the general formula KRFe(CN)6 · 3H2 O [with, R≡Y, Gd and Yb] nanoparticles were synthesized through precipitation. Characterization was done through particle-size analyzer, scanning electron microscopy (SEM), Fourier Transform infra-red (FTIR) and Raman spectroscopy, and powder X-ray diffraction (XRD). The XRD data was analyzed on FullProf Software Suite program and the unit-cell structure and lattice parameters of KR-HCF samples were determined from scratch and refined further. All the three KR-HCF nanoparticles seem to crystallize in the orthorhombic primitive PMMM space-group. Reasonably good agreement was found with the previously reported lattice constants of KGd-HCF and KYb-HCF orthorhombic single-crystals, except that they assume different space-groups. The observed dissimilarity of space-groups may be attributed to the different time scales involved in the synthesis process. Moreover, the crystal structure of KYFe(CN)6 · 3H2 O nanoparticles is being reported for the very first time.

  13. Ion-pair dissociation of highly excited carbon clusters: Size and charge effects

    NASA Astrophysics Data System (ADS)

    Launoy, Thibaut; Béroff, Karine; Chabot, Marin; Martinet, Guillaume; Le Padellec, Arnaud; Pino, Thomas; Bouneau, Sandra; Vaeck, Nathalie; Liévin, Jacques; Féraud, Géraldine; Loreau, Jérôme; Mahajan, Thejus

    2017-02-01

    We present measurements of ion-pair dissociation (IPD) of highly excited neutral and ionized carbon clusters Cn=2 -5 (q =0 -3 )+. The tool for producing these species was a high-velocity collision between Cn+ projectiles (v =2.25 a.u.) and helium atoms. The setup allowed us to detect in coincidence anionic and cationic fragments, event by event, leading to a direct and unambiguous identification of the IPD process. Compared with dissociation without anion emission, we found typical 10-4 IPD rates, not depending much on the size and charge of the (n ,q ) species. Exceptions were observed for C2+ and, to a lesser extent, C43 + whose IPDs were notably lower. We tentatively interpret IPDs of C2+ and C3+ by using a statistical approach based on the counting of final states allowed by energetic criteria. The model is able to furnish the right order of magnitude for the experimental IPD rates and to provide a qualitative explanation of the lower IPD rate observed in C2+.

  14. Measuring LLAGN Sizes Using Intraday Variability Studies

    NASA Astrophysics Data System (ADS)

    Anderson, J. M.; Ulvestad, J. S.

    2003-12-01

    Although low-luminosity active galactic nuclei (LLAGNs) optically appear to be scaled down versions of more luminous AGNs, their properties at other wavelengths suggest that different physical processes dominate their behavior. They show unusual radio properties, the weakest having radio to optical ratios R = 102--106, and almost half of low-luminosity Seyferts have spectral indices α > 0. Understanding the accretion and emission processes in these objects depends on measurements of the sizes of the emitting regions. Accretion disk models, such as advection dominated accretion flows (ADAFs), predict radio sizes of a few tens of microarcseconds, while jet models suggest emission regions of several hundred microarcseconds in size. Intraday variability at radio wavelengths is caused by scintillation in the Galactic interstellar medium (ISM); this scintillation enables measurement of angular sizes in the range of a few to a few tens of microarcseconds, or about 100 to 1000 AU at a typical distance of 20 Mpc. Using the Very Large Array at 8.4 GHz, we have made measurements spread over ˜ 14 days in both 2003 May and September searching for variability in a sample of 18 LLAGNs from the Palomar Bright Galaxy Sample. We use compact symmetric objects as calibrators to reduce systematic errors to ˜ 1%. Assuming ADAF models and random lines of sight through the ISM, roughly 4 of the sources should show variability above the 5% level; detection of such variability would effectively rule out jets as the origin of the radio emission. This sample is also large enough to statistically eliminate current accretion-based models if no variability is found. Preliminary results suggest that variability above 5% on a few days timescale is present in a few objects. JMA is supported by the NRAO Pre-Doctoral Research Program.

  15. Technical note: removal of metal ion inhibition encountered during DNA extraction and amplification of copper-preserved archaeological bone using size exclusion chromatography.

    PubMed

    Matheson, Carney D; Marion, Travis E; Hayter, Shana; Esau, Neal; Fratpietro, Renee; Vernon, Kim K

    2009-10-01

    A novel technique for the removal of metal ions inhibiting DNA extraction and PCR of archaeological bone extracts is presented using size exclusion chromatography. Two case studies, involving copper inhibition, demonstrate the effective removal of metal ion inhibition. Light microscopy, SEM, elemental analysis, and genetic analysis were used to demonstrate the effective removal of metal ions from samples that previously exhibited molecular inhibition. This research identifies that copper can cause inhibition of DNA polymerase during DNA amplification. The use of size exclusion chromatography as an additional purification step before DNA amplification from degraded bone samples successfully removes metal ions and other inhibitors, for the analysis of archaeological bone. The biochemistry of inhibition is explored through chemical and enzymatic extraction methodology on archaeological material. We demonstrate a simple purification technique that provides a high yield of purified DNA (>95%) that can be used to address most types of inhibition commonly associated with the analysis of degraded archaeological and forensic samples. We present a new opportunity for the molecular analysis of archaeological samples preserved in the presence of metal ions, such as copper, which have previously yielded no DNA results.

  16. The effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1973-01-01

    The analysis of ion data from retarding potential analyzers (RPA's) is generally done under the planar approximation, which assumes that the grid transparency is constant with angle of incidence and that all ions reaching the plane of the collectors are collected. These approximations are not valid for situations in which the ion thermal velocity is comparable to the vehicle velocity, causing ions to enter the RPA with high average transverse velocity. To investigate these effects, the current-voltage curves for H+ at 4000 K were calculated, taking into account the finite collector size and the variation of grid transparency with angle. These curves are then analyzed under the planar approximation. The results show that only small errors in temperature and density are introduced for an RPA with typical dimensions; and that even when the density error is substantial for non-typical dimensions, the temperature error remains minimal.

  17. Charged dendrimers under the action of AC electric fields: Breathing characteristics of molecular size, polarizations, and ion distributions

    NASA Astrophysics Data System (ADS)

    Das, Ashok K.; Hsiao, Pai-Yi

    2015-02-01

    Langevin dynamics simulations are performed to study the response of charged dendrimers in alternating current electric fields in 3:1 salt solutions. Time evolutions of molecular size show breathing characteristics which take saw-tooth-like patterns in square-wave electric fields and undulated sine-function ones in sine-wave fields. Detailed study reveals how the dendrimer and condensed ions oscillate in the electric fields, which result in polarization of the molecule. To effect a significant deformation of the dendrimer, the applied field amplitude must be larger than some critical strength Ecrit and the field frequency smaller than a threshold fcrit. The response behavior is characterized by two relaxation times in square-wave fields, both of which decrease linearly with the strong field strength larger than Ecrit. In sine-wave fields, the molecular size exhibits interesting hysteretic behavior in plotting the curves with the field variation. A Maxwell-Wagner type polarization theory is derived and proved by simulations, which connects fcrit with the strength of the applied electric field.

  18. Experimental and theoretical investigation of the effects of sample size on copper plasma immersion ion implantation into polyethylene

    SciTech Connect

    Zhang Wei; Wu Zhengwei; Liu Chenglong; Pu Shihao; Zhang Wenjun; Chu, Paul K.

    2007-06-01

    Polymers are frequently surface modified to achieve special surface characteristics such as antibacterial properties, wear resistance, antioxidation, and good appearance. The application of metal plasma immersion ion implantation (PIII) to polymers is of practical interest as PIII offers advantages such as low costs, small instrument footprint, large area, and conformal processing capability. However, the insulating nature of most polymers usually leads to nonuniform plasma implantation and the surface properties can be adversely impacted. Copper is an antibacterial element and our previous experiments have shown that proper introduction of Cu by plasma implantation can significantly enhance the long-term antibacterial properties of polymers. However, lateral variations in the implant fluence and implantation depth across the insulating substrate can lead to inconsistent and irreproducible antibacterial effects. In this work, the influence of the sample size on the chemical and physical properties of copper plasma-implanted polyethylene is studied experimentally and theoretically using Poisson's equation and plasma sheath theory. Our results indicate that the sample size affects the implant depth profiles. For a large sample, more deposition occurs in the center region, whereas the implantation to deposition ratio shows less variation across the smaller sample. However, the Cu elemental chemical state is not affected by this variation. Our theoretical study discloses that nonuniform metal implantation mainly results from the laterally different surface potential on the insulating materials due to surface charge buildup and more effective charge transfer near the edge of the sample.

  19. Modelling ion binding to AA platform motifs in RNA: a continuum solvent study including conformational adaptation

    PubMed Central

    Burkhardt, Carmen; Zacharias, Martin

    2001-01-01

    Binding of monovalent and divalent cations to two adenine–adenine platform structures from the Tetrahymena group I intron ribozyme has been studied using continuum solvent models based on the generalised Born and the finite-difference Poisson–Boltzmann approaches. The adenine–adenine platform RNA motif forms an experimentally characterised monovalent ion binding site important for ribozyme folding and function. Qualitative agreement between calculated and experimental ion placements and binding selectivity was obtained. The inclusion of solvation effects turned out to be important to obtain low energy structures and ion binding placements in agreement with the experiment. The calculations indicate that differences in solvation of the isolated ions contribute to the calculated ion binding preference. However, Coulomb attraction and van der Waals interactions due to ion size differences and RNA conformational adaptation also influence the calculated ion binding affinity. The calculated alkali ion binding selectivity for both platforms followed the order K+ > Na+ > Rb+ > Cs+ > Li+ (Eisenman series VI) in the case of allowing RNA conformational relaxation during docking. With rigid RNA an Eisenman series V was obtained (K+ > Rb+ > Na+ > Cs+ > Li+). Systematic energy minimisation docking simulations starting from several hundred initial placements of potassium ions on the surface of platform containing RNA fragments identified a coordination geometry in agreement with the experiment as the lowest energy binding site. The approach could be helpful to identify putative ion binding sites in nucleic acid structures determined at low resolution or with experimental methods that do not allow identification of ion binding sites. PMID:11574672

  20. Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops.

    PubMed

    Hogan, Christopher J; Fernández de la Mora, Juan

    2009-09-28

    Ion evaporation is an essential step in the formation of charged ions from electrosprays, yet many aspects of the process are poorly understood. The ion evaporation kinetics of the 1-ethyl-3-methyl-imidazolium+ (EMI+) based ionic liquids (ILs) EMI-BF4, EMI-bis(perfluoroethylsulfonyl)imide, EMI-bis(trifluoromethylsulfonyl)imide and EMI-tris(trifluoromethylsulfonyl)methide (EMI-Methide) are studied by tandem ion mobility-mass spectrometry (IMS-MS) of IL nanodrop residues from positive and negative electrosprays of IL-acetonitrile solutions. Two-dimensional (2D) IMS-MS spectra are obtained using a differential mobility analyzer (DMA) coupled to a commercial quadrupole-time-of-flight mass spectrometer. Nanodrops of different charge states (z=1,2,...,10,...) are separated into distinct bands in 2D DMA-MS spectra, allowing for determination of both nanodrop size (radius) and charge. With the exception of negatively charged EMI-BF4, all clusters observed are charged below the Rayleigh limit of both the ILs and acetonitrile, showing that the charge loss mechanism is ion evaporation. Solvation energies, DeltaG, of evaporating ions from acetonitrile are inferred from radius and charge state data. With the exclusion of EMI-BF4 in negative mode (DeltaG>1.84 eV), all are in the 1.54-1.65 eV range, considerably lower than previously reported for tetra-alkyl ammonium salts in formamide. Measured size distributions of EMI-Methide nanodrops agree with those predicted by ion evaporation theory, though with narrower widths observed for doubly and singly charged nanodrops.

  1. Optical properties and size distribution of the nanocolloids made of rare-earth ion-doped NaYF4

    NASA Astrophysics Data System (ADS)

    Patel, Darayas N.; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wessley, Dennis; Sarkisov, Sergey; Darwish, Abdalla M.

    2015-03-01

    In this paper we investigate optical properties and size distribution of the nano-colloids made of trivalent rare-earth ion doped fluorides: holmium and ytterbium, thulium and ytterbium, and erbium and ytterbium co-doped NaYF4. These materials were synthesized by using simple co-precipitation synthetic method. The initially prepared micro-crystals had very weak or no visible upconversion fluorescence signals when being pumped with a 980-nm laser. The fluorescence intensity significantly increased after the crystals were annealed at a temperature of 400°C - 600°C undergoing the transition from cubic alpha to hexagonal beta phase of the fluoride host. Nano-colloids of the crystals were made in polar solvents using the laser ablation and ball milling methods. Size analyses of the prepared nano-colloids were conducted using a dynamic light scatterometer and atomic force microscope. The nano-colloids were filled in holey PCFs and their fluorescent properties were studied and the feasibility of new a type of fiber amplifier/laser was evaluated.

  2. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOEpatents

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  3. Cesiated surface H- ion source: optimization studies

    NASA Astrophysics Data System (ADS)

    Ueno, Akira

    2017-01-01

    The H- ion beam intensity required for high-energy and high-intensity proton accelerators is continuously increasing. The required 95%-beam transverse normalized root mean square emittance (ɛ 95%rnmsx/y ) of the beam is around 0.25 πmm mrad for all accelerators. The Japan Proton Accelerator Complex (J-PARC) 400 MeV linear accelerator (LINAC) succeeded in accelerating the world’s highest-class H- ion beam of 50 mA with a cesiated RF-driven H- ion source. This was achieved by increasing the beam brightness through the following measures: (1) 45°-tapered plasma electrode (PE) with a 16 mm thickness to increase beam intensity by 56%, (2) continuous-wave igniter plasma driven by 50 W 30 MHz RF to reduce hydrogen pressure in the plasma chamber (PCH) by 50% and beam loss in low-energy beam transport by 12%, compared with that by the commonly used 300 W 13.56 MHz RF, (3) axial magnetic-field correction around the PE beam aperture to increase beam intensity by a maximum of 15%, (4) operation at a low PE temperature (T PE) of about 70 °C to reduce ɛ 95%nrmsx/y by 27%, (5) suitable beam apertures of the plasma and the extraction electrodes to increase beam intensity by a maximum of 7% and to reduce ɛ 95%nrmsx/y by more than 4%, (6) argon/nitrogen elimination and 39% filter-field reduction to reduce ɛ 95%nrmsx/y by 9% and the required 2 MHz RF power by around 30%, (7) eight-hours conditioning with a 50 kW 2 MHz RF and a 5% (1 ms × 50 Hz) duty factor to reduce ɛ 95%nrmsx/y by 15%, and (8) slight water molecules (H2Os) feeding in hydrogen to avoid ɛ 95%nrmsx/y increase by 72% and divergence angle expansion by 50%. In the studies, we investigated principally the 66 mA H- ion beams extracted from the source in order to achieve a 50 mA beam at the J-PARC LINAC exit regardless of the beam’s brightness. Consequently, the source can produce the required beam for a 60 mA J-PARC LINAC operation, since the world’s brightest-class beam with the ɛ 95%nrmsx/y of 0.23

  4. Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China

    NASA Astrophysics Data System (ADS)

    Li, Li; Yin, Yan; Kong, Shaofei; Wen, Bin; Chen, Kui; Yuan, Liang; Li, Qi

    2014-12-01

    To investigate the vertical variation of water soluble inorganic ions (WSI) in aerosols at a regional background mountainous site, nine size fractions of particles (10.0-9.0, 9.0-5.8, 5.8-4.7, 4.7-3.3, 3.3-2.1, 2.1-1.1, 1.1-0.65, 0.65-0.43 and <0.43 μm) were collected at two different altitudes simultaneously at Huangshan in southeast China, from 14 September to 26 October of 2012. The mass concentrations of PM1.1, PM2.1 and PM10 were 17.07, 21.28 and 39.25 μg/m3 at the summit (SM, 1840 m), respectively and were 24.79, 29.02 and 42.39 μg/m3 at a lower height site (LL, 869 m). The average mass concentrations of total WSI for PM1.1, PM2.1 and PM10 were 9.59, 11.73 and 17.16 μg/m3 at SM, and were 16.88, 19.38 and 27.61 μg/m3 at LL. The concentrations of particulates and WSI both decreased with altitude increasing from 869 m to 1840 m. SO42- and NH4+ exhibited peak values 0.43-0.65 μm at SM, whereas maintained peak values 0.65-1.1 μm at LL. NO3- were mostly concentrated in fine mode for SM but in coarse mode for LL. Further analyses showed that at LL, the heterogeneous reaction on coarse particles containing more calcium and magnesium may explain the higher concentrations of NO3- in coarse mode and also the higher temperature may reduce the concentrations of NO3- in fine mode. Na+, Cl- and K+ exhibited bimodal size distributions; Ca2+ and Mg2+ showed maximum values in coarse mode. Aerosol acidity analysis showed a higher acidity of aerosol particles at LL when compared with those at SM. The average concentration of [H+] was relatively low when compared with those observed at two other mountains in China. This corresponds with the relatively low concentrations of SO42- and HSO4- and lower water content at Huangshan.

  5. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  6. Testing Multivariate Effect Sizes in Multiple-Endpoint Studies.

    ERIC Educational Resources Information Center

    Timm, Neil H.

    1999-01-01

    Investigates the equality of "p" correlated effect sizes for "k" independent studies in which treatment and control groups are compared using Hotelling's "T" statistic. Illustrates the procedure and discusses the importance of sample size. (SLD)

  7. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  8. Ion size effects on the electric double layer of a spherical particle in a realistic salt-free concentrated suspension.

    PubMed

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2011-05-28

    A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems. This journal is © the Owner Societies 2011

  9. Effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1975-01-01

    The effects of the grid transparency and finite collector size on the values of thermal ion density and temperature determined by the standard RPA (retarding potential analyzer) analysis method are investigated. The current-voltage curves calculated for varying RPA parameters and a given ion mass, temperature, and density are analyzed by the standard RPA method. It is found that only small errors in temperature and density are introduced for an RPA with typical dimensions, and that even when the density error is substantial for nontypical dimensions, the temperature error remains minimum.

  10. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  11. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.

    PubMed

    Aburto, Claudio Contreras; Nägele, Gerhard

    2013-10-07

    On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar.

  12. An ion cyclotron resonance study of reactions of some atomic and simple polyatomic ions with water

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Anicich, V. G.; Huntress, W. T., Jr.

    1978-01-01

    Reactions of various positive ions with water vapor were studied by ion cyclotron resonance mass spectrometric techniques. Rate constants and product distributions were determined for reactions of the ions: Ar(+), Co(+), N2(+), and CO2(+), CH2(+), and CH4(+), CH2Cl(+), HCO(+), H2CO(+), H2COH(+), H2S(+) and HS(+). The results obtained in this work are compared with earlier reported data where available.

  13. Study of local in-homogeneity in ion beam mixing using SIMS ion imaging techniques

    SciTech Connect

    Singh, Ch. Kishan; Ilango, S.; Dash, S.; Tyagi, A. K.

    2012-06-05

    The local in-homogeneity in ion beam mixing of Mo/Si system subjected to 110keV Ar{sup +} ion implantation is studied using secondary ion imaging. Sequences of images are recorded across the interface and depth profiles are constructed from different regions of the image planes. Our results show a significant variation in decay length indicative of in-homogeneity in mixing.

  14. Negative ion studies on the RF plasma device MAGPIE

    NASA Astrophysics Data System (ADS)

    Willett, Hannah; Santoso, Jesse; Corr, Cormac; Gibson, Kieran

    2016-10-01

    Neutral beam injection (NBI) systems provide both heating and current drive in tokamak fusion reactors. High energy (> 1 MeV) neutral beams are produced by neutralising accelerated ions, for which negative ions are used; the neutralisation cross section for positive ions becomes negligible at these energies. This requires very high throughput negative ion sources. Currently this is achieved using inductively coupled plasma sources, which incorporate caesium to improve the production rate. It has been proposed that helicon plasma sources could provide a more efficient, higher throughput method of producing negative ions for NBI, possibly even removing the need for caesium. We report on studies of the negative hydrogen ion population in the MAGPIE helicon device (Australian National University) under a variety of operating conditions. The probe-based laser photodetachment method and Langmuir probes are employed to estimate the negative hydrogen ion density throughout the device. Initial results support the viability of helicon-based negative ion sources.

  15. Studying mechanosensitive ion channels using liposomes.

    PubMed

    Martinac, Boris; Rohde, Paul R; Battle, Andrew R; Petrov, Evgeny; Pal, Prithwish; Foo, Alexander Fook; Vásquez, Valeria; Huynh, Thuan; Kloda, Anna

    2010-01-01

    Mechanosensitive (MS) ion channels are the primary molecular transducers of mechanical force into electrical and/or chemical intracellular signals in living cells. They have been implicated in innumerable mechanosensory physiological processes including touch and pain sensation, hearing, blood pressure control, micturition, cell volume regulation, tissue growth, or cellular turgor control. Much of what we know about the basic physical principles underlying the conversion of mechanical force acting upon membranes of living cells into conformational changes of MS channels comes from studies of MS channels reconstituted into artificial liposomes. Using bacterial MS channels as a model, we have shown by reconstituting these channels into liposomes that there is a close relationship between the physico-chemical properties of the lipid bilayer and structural dynamics bringing about the function of these channels.

  16. Filamented ion tail structures at Titan: A hybrid simulation study

    NASA Astrophysics Data System (ADS)

    Feyerabend, Moritz; Simon, Sven; Motschmann, Uwe; Liuzzo, Lucas

    2015-11-01

    This study investigates the processes that lead to the detection of split signatures in ion density during several crossings of the Cassini spacecraft through Titan's mid-range plasma tail (T9, T63, and T75). During each of these flybys, the Cassini Plasma Spectrometer detected Titan's ionospheric ion population twice; i.e., the spacecraft passed through two spatially separated regions where cold ions were detected, with the regions also being dominated by ions of different masses in the case of T9. Whether this filamented tail structure is an omnipresent feature of Titan's plasma interaction or a result of non-stationary upstream conditions during specific flybys is still unclear. To explain these features, we apply the hybrid simulation code AIKEF (kinetic ions and fluid electrons). Our model includes chemical reactions as well as a realistic photoionization model for a sophisticated description of the ionospheric composition of Titan. Our simulations show that the filamentation of Titan's tail is indeed a common feature of the moon's plasma interaction. Light ionospheric species escape along draped magnetic field lines to form a parabolically shaped filament structure, which is mainly seen in planes that contain the upstream magnetospheric magnetic field and the upstream flow direction. In addition, transport of ions of all species from the ramside towards downstream produces a cone structure behind Titan, with a region of decreased density inside and filaments of 1-2 RT (RT=2575 km) thickness and enhanced density at the surface of the cone. Spacecraft trajectories that penetrate these structures allow for the detection of split signatures in the tail. The orientation of the upstream magnetic field and plasma flow as well as local time effects (i.e., Titan's orbital position) influence the location of the filaments in the tail and can also cause asymmetries in their sizes and densities. The detection of the split signatures along a spacecraft trajectory may

  17. Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions

    NASA Astrophysics Data System (ADS)

    Xiao, Changwei; Liu, Xijian; Mao, Shimin; Zhang, Lijuan; Lu, Jie

    2017-02-01

    A sub-micron-sized polyethylenimine(PEI)-modified polystyrene/Fe3O4/chitosan magnetic composite (PS/Fe3O4/CS-PEI) was developed as a novel adsorbent for the removal of Cu(II) ions from aqueous solutions. The PS/Fe3O4/CS-PEI microspheres with a diameter of ∼300 nm can be highly monodisperse and conveniently separated from suspensions by a magnet due to their excellent magnetism. When the PS/Fe3O4/CS-PEI microspheres were used as an absorbent for the absorption of Cu(II) ions, the adsorption isotherms and adsorption kinetics well fitted the Langmuir model and the pseudo-second-order model, respectively. The maximum adsorption capacity was about 204.6 mg g-1, which was higher than those of other chitosan adsorbents reported recently. The adsorption was considerably fast, reaching the equilibrium within 15 min. In addition, the adsorbed Cu(II) ions could be effectively desorbed using 0.1 mol L-1 NaOH solution, and the regeneration study proved that the composite microspheres could be repeatedly utilized without significant capacity loss after six cycles. All the results demonstrated that the synthesized sub-micron-sized magnetic PS/Fe3O4/CS-PEI composites can be used as an ideal adsorbent of Cu(II) ions for environmental cleanup applications.

  18. Ion source studies for particle beam accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Olsen, J.N.; Dorrell, L.R.

    1985-05-01

    High power particle beam accelerators are being developed for use in inertial confinement fusion applications. These pulsed power accelerators require sources of low atomic number ions (e.g., protons, deuterons, carbon, or lithium). The sources must be of high purity for efficient accelerator operation and proper target coupling, must have a rapid ''turn-on,'' and must be compatible with ion diode configurations under development. A particular type of source presently being investigated is the flashover ion source which generates ions by means of the vacuum flashover of an insulating anode material when the high voltage pulse arrives at the diode. We have developed an applied-magnetic-field, extraction ion diode for the 0.03 TW Nereus accelerator specifically to investigate these sources. Extracted ion species are measured by means of a Thomson-parabola ion analyzer, dB/dt current monitors, and Faraday cups. Experiments have been performed to investigate the surface flashover mechanism and the effects of various dielectric source materials, anode preparation methods (including rf glow discharge cleaning), and vacuum conditions on ion species and diode operation.

  19. Silicon on sapphire for ion implantation studies

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.

    1974-01-01

    Van der Pauw or bridge samples are ultrasonically cut from silicon on sapphire wafers. Contact pad regions are implanted with moderately heavy dose of ions. Ion of interest is implanted into sample; and, before being annealed in vacuum, sample is sealed with sputtered layer of silicon dioxide. Nickel or aluminum is sputtered onto contact pad areas and is sintered in nitrogen atmosphere.

  20. OGO 6 ion concentration irregularity studies

    NASA Technical Reports Server (NTRS)

    Mcclure, J. P.

    1973-01-01

    Research is reported concerning the ionospheric F-region irregularities. The results are based on in-situ OGO-6 measurements of the total ion concentration N sub i. A proposed mechanism for the generation of equatorial F-region irregularities and the morphological results, and the occurrence of Fe(+) ions in the equatorial F-region are discussed. Related research papers are included.

  1. Can serving-size labels reduce the portion-size effect? A pilot study.

    PubMed

    Spanos, Samantha; Kenda, Andree S; Vartanian, Lenny R

    2015-01-01

    Research has shown that the bigger the portion that people are served, the more food they eat; this phenomenon is referred to as the portion-size effect. Providing objective serving-size information on food products has been shown to reduce the influence of external food cues on people's eating behavior. The current study examined whether providing objective serving-size information would also reduce the portion-size effect. 100 female participants were served either a small or large portion of pizza in the context of a taste test. The large portion was either unlabeled, labeled as "Contains 2 servings," or labeled as "Contains 4 servings." Food intake was lower when the large portion was labeled "Contains 4 servings" compared to when it was labeled "Contains 2 servings." Moreover, participants' intake in the large portion/4 servings condition was statistically similar to the intake of participants in the small portion condition. Thus, the standard portion-size effect was observed when the large portion was unlabeled or was labeled as "Contains 2 servings," but not when the large portion was labeled as "Contains 4 servings". These findings suggest that providing serving-size information can reduce the portion-size effect, but that the specific content (and not just the presence) of serving-size information is important in determining food intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ion-implantation studies on perpendicular media.

    PubMed

    Gaur, Nikita; Maurer, Siegfried L; Nunes, Ronald W; Piramanayagam, S N; Bhatia, C S

    2011-03-01

    Magnetic and structural properties of ion implanted perpendicular recording media have been investigated. Effects of 12C+ ion implantation with the doses of 2 x 10(11), 10(13), 10(14) and 10(16) ions/cm2 in the magnetic recording layer of conventional granular and continuous perpendicular media are reported in this paper. Implantation with the highest fluence of 10(16) ions/cm2 resulted in change of the magnetization reversal mechanism, thereby reducing coercivity. In continuous media the implanted ions cause increase in pinning defects, leading to an increase in coercivity. In contrast, high dose was found to cause similar change in the crystallographic properties of both the granular and continuous media.

  3. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam

    SciTech Connect

    Wang, Yue-cun; Xie, De-gang; Ning, Xiao-hui; Shan, Zhi-wei

    2015-02-23

    Si pillars fabricated by focused ion beam (FIB) had been reported to have a critical size of 310–400 nm, below which their deformation behavior would experience a brittle-to-ductile transition at room temperature. Here, we demonstrated that the size-dependent transition was actually stemmed from the amorphous Si (a-Si) shell introduced during the FIB fabrication process. Once the a-Si shell was crystallized, Si pillars would behave brittle again with their modulus comparable to their bulk counterpart. The analytical model we developed has been proved to be valid in deriving the moduli of crystalline Si core and a-Si shell.

  4. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  5. Quadrupole ion trap studies of the structure and reactivity of transition metal ion pair complexes

    PubMed

    Vachet; Callahan

    2000-03-01

    Ion pairs are common species observed in the electrospray mass spectra of transition metal coordination complexes. To understand the nature of these ion pairs, a systematic study of the gas-phase chemistry of these species using ion-molecule reactions and collision-induced dissociation (CID) was carried out. Ion pair complexes of the type MLnX+ (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II), L is 1,10-phenanthroline, 2,2'-bipyridine, ethylenediamine, diethylenetriamine or 1,4,8,11-tetraazacyclotetradecane and X is Cl-, NO3-, acetylacetonate, ClO4-, acetate or SCN-) were studied. Ion-molecule reactions can distinguish whether the counterion in an ion pair is an inner- or outer-sphere ligand and can determine the coordination mode of the counterion. In addition, CID and ion-molecule reactions reveal some interesting chemistry of these complexes and unique coordination modes for some of the anions studied here were inferred from the ion-molecule reactions. For example, the thiocyanate ion is found to coordinate in a bidentate fashion in Zn(II) and Ni(II) complexes, contrasting behavior typically observed in solution. Also, certain Co(II) and Fe(II) ion pair complexes undergo oxidation reactions in which species such as dioxygen and nitric oxide from the counterions ClO4- and NO3- are transferred to the Co(II) and Fe(II) complexes, showing the inherent affinity of these metals for these molecules. These complexes were also studied by ion-molecule reactions and CID. Dioxygen in complexes formed by CID is demonstrated to be bidentate, suggesting the formation of a peroxo ligand with concurrent oxidation of the metal.

  6. Diagnostics for studies of novel laser ion acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Senje, Lovisa; Yeung, Mark; Aurand, Bastian; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Li, Kun; Dromey, Brendan; Bagnoud, Vincent; Neumayer, Paul; Roth, Markus; Wahlström, Claes-Göran; Zepf, Matthew; Kuehl, Thomas; Jung, Daniel

    2014-11-01

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  7. Studies of Electron-Ion Interactions using the CRYRING Heavy-Ion Storage Ring Facility

    DTIC Science & Technology

    2007-09-21

    polyatomic molecular ions. It is proposed to study not only the rates of dissociative recombination of ions important for plasma -enhanced combustion...The fourth delivery is a publication concerning two of the molecules listed in the application from 2006: Ehlerding, A., Viggiano , A.A

  8. System size effects and momentum correlations in heavy-ion collisions

    SciTech Connect

    Dhawan, Jatinder K.; Puri, Rajeev K.

    2007-05-15

    We aim to carry out the detailed study of system-size effects and momentum correlations by simulating the reactions of {sup 12}C+{sup 12}C, {sup 20}Ne+{sup 20}Ne, {sup 40}Ca+{sup 40}Ca, {sup 58}Ni+{sup 58}Ni,{sup 93}Nb+{sup 93}Nb, {sup 129}Xe+{sup 118}Sn, {sup 139}La+{sup 139}La, and {sup 197}Au+{sup 197}Au at an incident energy of 400 MeV/nucleon and over entire colliding geometry from a central to an extreme peripheral one. A mass-independent role of the momentum correlations is reported for the entire periodic table. When averaged over all fragments, the effect of momentum correlations for central collisions is about 39%. All mass yields can be parametrized by a power law with 2{<=}{tau}{<=}3 which is in agreement with other theoretical and experimental studies.

  9. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  10. A Study on Removal of Iodine, Iodide Ion, and Iodate Ion from Radioactive Wastewater

    SciTech Connect

    Yim, S.P.; Kim, K.R.; Lee, M.S.; Chung, H.; Shim, M.H.; Lee, C.K.

    2006-07-01

    For the two methods to remove iodine, the iodide ion and the iodate ion from radioactive waste water, we proposed previously, the main reactions were experimentally investigated to examine the feasibility of them. One is the reaction of the iodide ion and the iodate ion. In this reaction, it was confirmed that the reaction rate is faster with a pH of less than 2 and, to undergo the reaction faster under the condition of pH 2, an addition of excess iodide ions and iodate ions is necessary. Another is the reduction of the iodate ion and the iodine by pyrite. In the experiment, it was found that when the iodate ion in the solution is in contact with pyrite, it is reduced to iodine on the surface of the pyrite and the produced iodine is consecutively reduced to the iodide ion. The reaction occurred at room temperature under a wide range of pHs. Based on the results of this preliminary study, it is expected that a more substantial method could be prepared for the effective removal of an iodine mixture from radioactive wastewater. (authors)

  11. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  12. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  13. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  14. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  15. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  16. Negative and positive cesium ion studies

    NASA Technical Reports Server (NTRS)

    Kuehn, D. G.; Sutliff, D. E.; Chanin, L. M.

    1978-01-01

    Mass spectrometric analyses have been performed on the positive and negative species from discharges in Cs, He-Cs, and He-H2-Cs mixtures. Sampling was conducted through the electrodes of normal glow discharges and from close-spaced heated-cathode conditions, which approximate a cesium thermionic converter. No negative Cs ions were observed for Cs pressures less than .01 torr. Identified species included Cs(+), Cs2(+), Cs(-), and what appeared to be multiply charged ions. Low-mass negative and positive ions attributed to H2 were observed when an He-H2 mixture was also present in the discharge region.

  17. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.

    2010-01-01

    The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266

  18. Amphiphilic organic ion pairs in solution: a theoretical study.

    PubMed

    Pradines, Vincent; Poteau, Romuald; Pimienta, Veronique

    2007-07-16

    The macroscopic manifestation of hydrophobic interactions for amphiphilic organic ion pairs (tetraalkylammonium-anion) has been shown experimentally by measuring their association constants and their affinity with the organic phase. Beyond a certain size, there is a direct relation between association constants and chain lengths in tetraalkylammonium ions. We propose to cast a bridge between these results and geometrical properties considered at the level of a single ion pair by means of quantum chemistry calculations performed on model systems: trimethylalkylammonium-pentyl sulfate instead of tetraalkylammonium-dodecyl sulfate. Two limiting cases are considered: head-to-head configurations, which yield an optimal electrostatic interaction between polar heads, and parallel configurations with a balance between electrostatic and hydrophobic interactions. All properties (geometries, complexation energies, and atomic charges) were obtained at the MP2 level of calculation, with water described by a continuum model (CPCM). Dispersion forces link hydrocarbon chains of tetraalkylammonium ions and pentyl sulfate, thus yielding (for the largest ion pairs) parallel configurations favored with respect to head-to-head geometries by solute-solvent electrostatic interactions. Given the small experimental association energies, we probe the accuracy limit of the MP2 and CPCM methods. However, clear trends are obtained as a function of chain length, which agree with the experimental observations. The calculated monotonic stabilization of ion pairs when the hydrocarbon chain increases in length is discussed in terms of electrostatic interactions (between ions and between ion pairs and water), dispersion forces, and cavitation energies.

  19. Dilepton Production In Ion-Ion Collisions Studied Using HADES

    SciTech Connect

    Kugler, A.; Krizek, F.; Pleskac, R.; Pospisil, V.; Taranenko, A.; Tlusty, P.; Wagner, V.; Agakichiev, H.; Froehlich, I.; Gilardi, C.; Kuehn, W.; Lehnert, J.; Lins, E.; Metag, V.; Novotny, R.; Perez, T.; Ritman, J.; Spruck, B.; Toia, A.; Traxler, M.

    2007-10-26

    The High-Acceptance Di-Electron Spectrometer installed at GSI Darmstadt is a second generation experiment to study production of dielectron pairs from proton, pion and nucleus induced reactions at the SIS/BEVALAC energy regime. During period 2002-4 medium-resolution data have been taken with HADES on the light C+C system at 1 and 2 AGeV. The data analysis confirms former finding of the DLS collaboration. First physics run on slightly heavier system Ar+KCl was carried out will almost full HADES setup at 2005.

  20. Ion-optical studies for improved ion transmission in multistage isotope-ratio mass spectrometers

    SciTech Connect

    Stoffels, J.J. ); Laue, H.J. )

    1991-10-01

    Theoretical and experimental ion-optical studies of multistage isotope-ratio mass spectrometers were conducted to determine what improvement in ion transmission efficiency might be attainable through design changes. The computer program GIOS (General Ion Optical Systems) was used to perform theoretical calculations of focusing properties and ion transmission efficiency. Actual transmission through multiple-sector instruments was determined from measurements of the ion beam vertical profile at the focus of each stage. For existing mass spectrometers with tandem magnets of normal geometry, our studies determined a feasible design change that significantly increases ion transmission through the analyzer. The use of a cylindrical einzel lens or an electrostatic quadrupole lens near the focal point between the magnets provides vertical focusing of the ion beam to achieve the improved transmission. We also established a new mass spectrometer design that give 100% transmission through tandem magnetic analyzers and through a third-stage electrostatic analyzer without the use of an intermediate focusing lens. Non-normal magnetic field boundaries provide ion beam focusing in the vertical plant to achieve this complete transmission. 19 refs., 27 figs., 3 tabs.

  1. Rational design of a minimal size sensor array for metal ion detection.

    PubMed

    Palacios, Manuel A; Wang, Zhuo; Montes, Victor A; Zyryanov, Grigory V; Anzenbacher, Pavel

    2008-08-06

    The focus of this study was to demonstrate that, in the luminescent sensors, the signal transduction may possibly be the most important part in the sensing process. Rational design of fluorescent sensor arrays for cations utilizing extended conjugated chromophores attached to 8-hydroxyquinoline is reported. All of the optical sensors utilized in the arrays comprise the same 8-hydroxyquinoline (8-HQ) receptor and various conjugated chromophores to yield a different response to various metal cations. This is because the conjugated chromophores attached to the receptor are partially quenched in their resting state, and upon the cation coordination by the 8-HQ, the resulting metalloquinolinolate complex displays a change in fluorescence. A delicate balance of conjugation, fluorescence enhancement, energy transfer, and a heavy metal quenching effect results in a fingerprint-like pattern of responses for each sensor-cation complex. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used to demonstrate the contribution of individual sensors within the array, information that may be used to design sensor arrays with the smallest number of sensor elements. This approach allows discriminating between 10 cations by as few as two or even one sensor element. Examples of arrays comprising various numbers of sensor elements and their utility in qualitative identification of Ca(2+), Mg(2+), Cd(2+), Hg(2+), Co(2+), Zn(2+), Cu(2+), Ni(2+), Al(3+), and Ga(3+) ions are presented. A two-member array was found to identify 11 analytes with 100% accuracy. Also the best two of the sensors were tested alone and both were found to be able to discriminate among the samples with 99% and 96% accuracy, respectively. To illustrate the utility of this approach to a real-world application, identification of enhanced soft drinks based on their Ca(2+), Mg(2+), and Zn(2+) cation content was performed. The same approach to reducing array elements was used to construct three

  2. Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide

    NASA Technical Reports Server (NTRS)

    Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.

    1976-01-01

    The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.

  3. The study of zinc ions binding to casein.

    PubMed

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein.

  4. Simulation of MEIS spectra for quantitative understanding of average size, composition, and size distribution of Pt-Rh alloy nanoparticles[Medium-Energy Ion Scattering

    SciTech Connect

    Konomi, I.; Hyodo, S.; Motohiro, T.

    2000-05-15

    In automobile emissions control, it has been of great importance to develop catalysts which have good thermal stability and high NO{sub x} conversion. To achieve this goal, it is crucially important to understand the behavior of metal particles and supports in engine exhaust gas. The authors have newly developed a medium-energy ion scattering (MEIS) simulation program for the analysis of alloy nanoparticles. The program was applied to the composition and average particle size analysis of Pt-Rh/{alpha}-Al{sub 2}O{sub 3} treated in oxidative and reductive atmospheres. It was found that the Pt concentration near the surface decreased after oxidative treatment at 800 C and returned to its original value after reductive treatment at the same temperature. It was shown that Pt particle average sizes less than 10 nm can be evaluated quantitatively. Also, this technique gives some insight into particle size distribution in the initial stage of particle sintering, which has been quite out of the reach of conventional analytical tools.

  5. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  6. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    PubMed

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  7. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos.

    PubMed

    Hua, Jing; Vijver, Martina G; Ahmad, Farooq; Richardson, Michael K; Peijnenburg, Willie J G M

    2014-08-01

    Three sizes of copper nanoparticles (Cu NPs; 25 nm, 50 nm, and 100 nm), 1 submicron-sized particle, and Cu(NO3 )2 were added to the culture buffer of zebrafish embryos from 24 h postfertilization to 120 h postfertilization. In suspensions of Cu NPs and the Cu submicron-sized particle, the main contribution to the toxicity to zebrafish embryos was from the particle form of Cu particles (Cu NPparticle , >71%) rather than from dissolved Cu from the Cu particles (Cu NPion ). All particles tested as well as copper nitrate inhibited hatching, altered behavioral responses, and increased the incidence of malformations. Different kinds of abnormalities were observed in the morphology and behavior of the zebrafish embryos, depending on the particle size of the Cu suspensions tested. The median lethal concentrations of Cu NPparticle (25 nm, 50 nm, and 100 nm), the submicron-sized particle, and copper nitrate were 0.58 mg/L, 1.65 mg/L, 1.90 mg/L, 0.35 mg/L, and 0.70 mg/L, respectively. Submicron-sized particles and copper nitrate were more toxic than Cu NPs, and smaller Cu NPs were more toxic than larger Cu NPs. Dissolution of Cu NPs and the subsequent ion toxicity was not the primary mechanism of Cu NP toxicity in zebrafish embryos.

  8. Plasma opening switch studies of an applied Bz ion diode

    NASA Astrophysics Data System (ADS)

    Struckman, C. K.; Kusse, B. R.; Meyerhofer, D. D.; Rondeau, G.

    1989-05-01

    The light ion accelerator (1.5 MV, 4 ohms) at Cornell University is being used to study the characteristics of an applied Bz, or 'barrel', diode. The results of a series of experiments utilizing a plasma opening switch are reported. With a magnetically insulated ion diode load, the peak diode voltage increase from 1.5 to 1.8 MV and the ion power increased from 50 to 80 GW when a plasma opening switch was used.

  9. Electrostatic ion beam trap for electron collision studies

    SciTech Connect

    Heber, O.; Witte, P.D.; Diner, A.; Bhushan, K.G.; Strasser, D.; Toker, Y.; Rappaport, M.L.; Ben-Itzhak, I.; Altstein, N.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2005-01-01

    We describe a system combining an ion beam trap and a low energy electron target in which the interaction between electrons and vibrationally cold molecular ions and clusters can be studied. The entire system uses only electrostatic fields for both trapping and focusing, thus being able to store particles without a mass limit. Preliminary results for the electron impact neutralization of C{sub 2}{sup -} ions and aluminum clusters are presented.

  10. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  11. Study on space charge compensation in negative hydrogen ion beam

    SciTech Connect

    Zhang, A. L.; Chen, J. E.; Peng, S. X. Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  12. Effective population size and inbreeding depression on litter size in rabbits. A case study.

    PubMed

    Ragab, M; Sánchez, J P; Baselga, M

    2015-02-01

    The purpose of this study is to use demographic and litter size data on four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, in order to: (i) estimate the effective population size of the lines, as a measure of the rate of increase of inbreeding, and (ii) study whether the inbreeding effect on litter size traits depends on the pattern of its accumulation over time. The lines are being selected for litter size at weaning and are kept closed at the same selection nucleus under the same selection and management programme. The study considered 47,794 l and a pedigree of 14,622 animals. Some practices in mating and selection management allow an increase of the inbreeding coefficient lower than 0.01 per generation in these lines of around 25 males and 125 females. Their effective population size (Ne) was around 57.3, showing that the effect of selection, increasing the inbreeding, was counterbalanced by the management practices, intended to reduce the rate of inbreeding increase. The inbreeding of each individual was broken down into three components: old, intermediate and new inbreeding. The coefficients of regression of the old, intermediate and new inbreeding on total born (TB), number born alive (NBA) and number weaned (NW) per litter showed a decreasing trend from positive to negative values. Regression coefficients significantly different from zero were those for the old inbreeding on TB (6.79 ± 2.37) and NBA (5.92 ± 2.37). The contrast between the coefficients of regression between the old and new inbreeding were significant for the three litter size traits: 7.57 ± 1.72 for TB; 6.66 ± 1.73 for NBA and 5.13 ± 1.67 for NW. These results have been interpreted as the combined action of purging unfavourable genes and artificial selection favoured by the inbreeding throughout the generations of selection.

  13. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut

    2016-03-01

    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42-,NO3-, NH4+, Cl-, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L-1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L-1 for minor ions, 5.4 µmol L-1 for H2O2 (aq), 1.9 µmol L-1 for S(IV), and 3.9 mgC L-1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20-40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60-66 % for solute concentrations and 52-80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic

  14. Fraxinus paxiana bark mediated photosynthesis of silver nanoparticles and their size modulation using swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Hemant; Vendamani, V. S.; Pathak, Anand P.; Tiwari, Archana

    2015-12-01

    Photosynthesis of silver nanoparticles is presented using bark extracts of Fraxinus paxiana var. sikkimensis. The synthesized nanoparticles are characterised by UV-Vis absorption, photoluminescence, powder X-ray diffraction and scanning and transmission electron microscopy. In addition, the bark samples are irradiated with 100 MeV silver ions and the subsequent structural modifications are analyzed. The swift heavy ion irradiated Fraxinus paxiana var. sikkimensis bark is also used for the synthesis of silver nanoparticles. It is illustrated that the irradiated bark assists in synthesizing smaller nanoparticles of homogenous size distribution as compared to when the pristine bark is used. The newly synthesized silver nanoparticles are also used to demonstrate the antimicrobial activities on Escherichia coli bacteria.

  15. Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling.

    PubMed

    De Winter, Julien; Lemaur, Vincent; Ballivian, Renaud; Chirot, Fabien; Coulembier, Olivier; Antoine, Rodolphe; Lemoine, Jérôme; Cornil, Jérôme; Dubois, Philippe; Dugourd, Philippe; Gerbaux, Pascal

    2011-08-22

    Ion mobility spectrometry coupled with mass spectrometry was used to experimentally determine the three-dimensional structure of multiply charged sodium cationized polylactides (PLA). In particular, the experiments were conducted to evaluate the influence of the charge state and the size on the gas-phase conformation of cationized PLA. The measured collision cross sections were then compared to calculated values obtained by computational chemistry methods. The most striking feature was the experimental and theoretical observation of a breaking point in the quasilinear relationship between the average collision cross sections and the number of monomer units for the triply charged cations. This breaking point was theoretically demonstrated, for the doubly and triply charged cations, to be associated with a significant folding of the polymer chains around the cationizing agents. The occurrence of such breaking points could be exploited to correlate the charge state of the most intense ion series observed upon electrospray ionization with the number-average molecular mass of a polymer.

  16. Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Mišković, Z. L.

    2014-09-01

    We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

  17. A new method for measuring ion clusters produced by charged particles in nanometre track sections of DNA size

    NASA Astrophysics Data System (ADS)

    Pszona, S.; Kula, J.; Marjanska, S.

    2000-06-01

    A new method is presented for measuring the frequency distribution of ion clusters, formed in nanometre sections of track, by charged particles. The simulated nanometer-size sites are produced in a device, called the Jet Counter. It consists of a pulse-operated valve which injects an expanding jet of nitrogen gas into an interaction chamber. The resulting distributions of ion clusters produced by alpha particle tracks (from 241Am) in sections ranging from 2 to around 10 nm at unit density in nitrogen gas have been measured. Analysis of the experimental results confirm that the primary ionisation distributions produced in the nanometer sections comply with the Poisson distribution. The ionisation cluster distributions produced in the 2-10 nm track-segments are the first ever to be determined experimentally.

  18. A Study of School Size among Alabama's Public High Schools

    ERIC Educational Resources Information Center

    Lindahl, Ronald A.; Cain, Patrick M., Sr.

    2012-01-01

    The purpose of this study was to examine the relationship between the size of Alabama's public high schools, selected school quality and financial indicators, and their students' performance on standardized exams. When the socioeconomic level of the student bodies is held constant, the size of high schools in Alabama has relatively little…

  19. Studying the Body Sizes of Echinoidea during the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Tenorio, E.; Gupta, A.; Panneerselvam, S.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size is an important trait that is affected by many factors such as temperature and space, more specifically the distance from the equator. We are studying whether Bergmann's rule or Cope's rule is dominant in the class Echinoidea during the Mesozoic Era. Bergmann's rule states that temperature and body size have an inverse correlation: as temperature decreases, body size increases. Bergmann's rule also states that as the distance from the equator increases, body size increases. The other principle we are studying, Cope's rule, dictates that the overall body size of an organism increases over time. Because CO2 is a greenhouse gas, we used rCO2 as a proxy for paleotemperature. The result from plotting body size against time was that as time progressed, body size tended to increase, supporting Cope's rule. By conducting correlation tests, we found that rCO2 and maximum area had a small, but significant, negative correlation, proving Bergmann's rule, but showing that there are other significant factors affecting the body sizes of Echinoids during this time period. After plotting the sizes against space, we found that these two factors had an inverse correlation during the Jurassic and Cretaceous periods, indicating that as distance from equator increases, size decreases. Cope's rule was supported since the overall trend is an increase in Echinoidea body size; in terms of space, however, Bergmann's rule did not apply to the class Echinoidea because the overall body size of the echinoderm decreased as the distance from equator increased. With this unexpected result, we concluded that there must have been another driving force other than temperature that influenced echinoids during the Mesozoic Era.

  20. Size matters: How population size influences genotype–phenotype association studies in anonymized data

    PubMed Central

    Denny, Joshua C.; Haines, Jonathan L.; Roden, Dan M.; Malin, Bradley A.

    2014-01-01

    Objective Electronic medical records (EMRs) data is increasingly incorporated into genome-phenome association studies. Investigators hope to share data, but there are concerns it may be “re-identified” through the exploitation of various features, such as combinations of standardized clinical codes. Formal anonymization algorithms (e.g., k-anonymization) can prevent such violations, but prior studies suggest that the size of the population available for anonymization may influence the utility of the resulting data. We systematically investigate this issue using a large-scale biorepository and EMR system through which we evaluate the ability of researchers to learn from anonymized data for genome- phenome association studies under various conditions. Methods We use a k-anonymization strategy to simulate a data protection process (on data sets containing clinical codes) for resources of similar size to those found at nine academic medical institutions within the United States. Following the protection process, we replicate an existing genome-phenome association study and compare the discoveries using the protected data and the original data through the correlation (r2) of the p-values of association significance. Results Our investigation shows that anonymizing an entire dataset with respect to the population from which it is derived yields significantly more utility than small study-specific datasets anonymized unto themselves. When evaluated using the correlation of genome-phenome association strengths on anonymized data versus original data, all nine simulated sites, results from largest-scale anonymizations (population ∼ 100;000) retained better utility to those on smaller sizes (population ∼ 6000—75;000). We observed a general trend of increasing r2 for larger data set sizes: r2 = 0.9481 for small-sized datasets, r2 = 0.9493 for moderately-sized datasets, r2 = 0.9934 for large-sized datasets. Conclusions This research implies that regardless of the

  1. Size and Charge Distributions of Stable Clusters Formed in Ion Sputtering of Metals

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Kapustin, S. N.

    2016-10-01

    A theory of ion sputtering of metals in the form of neutral and charged clusters with their subsequent fragmentation into the stable state is developed. The theory is based on simple physical assumptions and is in good agreement with experiment. Results are presented in the form of formulas convenient for practical application. As an example, calculations of the total yield of stable neutral and charged clusters of silver, indium, and niobium are carried out.

  2. Seasonal variations and size distributions of water-soluble ions in atmospheric aerosols in Beijing, 2012.

    PubMed

    Yang, Yongjie; Zhou, Rui; Wu, Jianjun; Yu, Yue; Ma, Zhiqiang; Zhang, Lejian; Di, Yi'an

    2015-08-01

    The characteristics of water-soluble ions in airborne particulate matter in Beijing were investigated using ion chromatography. The results showed that the total concentrations of ions were 83.7 ± 48.9 μg/m(3) in spring, 54.0 ± 17.0 μg/m(3) in summer, 54.1 ± 42.9 μg/m(3) in autumn, and 88.8 ± 47.7 μg/m(3) in winter, respectively. Furthermore, out of all the ions, NO3(-), SO4(2-) and NH4(+) accounted for 81.2% in spring, 78.5% in summer, 74.6% in autumn, and 76.3% in winter. Mg(2+) and Ca(2+) were mainly associated with coarse particles, with a peak that ranged from 5.8 to 9.0 μm. Na(+), NH4(+) and Cl(-) had a multi-mode distribution with peaks that ranged from 0.43 to 1.1 μm and 4.7 to 9.0 μm. K(+), NO3(-), and SO4(2-) were mainly associated with fine particles, with a peak that ranged from 0.65 to 2.1 μm. The concentrations of Na(+), K(+), Mg(2+), Ca(2+), NH4(+), Cl(-), NO3(-) and SO4(2-) were 2.69, 2.32, 1.01, 4.84, 16.9, 11.8, 42.0, and 44.1 μg/m(3) in particulate matter (PM) on foggy days, respectively, which were 1.4 to 7.3 times higher than those on clear days. The concentrations of these ions were 2.40, 1.66, 0.92, 4.95, 17.5, 7.00, 32.6, and 34.7 μg/m(3) in PM on hazy days, respectively, which were 1.2-5.7 times higher than those on clear days. Copyright © 2015. Published by Elsevier B.V.

  3. Computational Design Studies for an Ion Extraction System for a ''volume-type'' ECR Ion Source

    SciTech Connect

    Zaim, H.

    2001-11-05

    Numerical studies have been performed for optimally extracting high-intensity, space-charged-limited multi-charged ion beams from an all-permanent-magnet, ''volume-type'' ECR ion source, equipped with a three-electrode extraction system. These studies clearly demonstrate the importance of being able to adjust the extraction gap in order to ensure high quality, minimum divergence (highly transportable) ion beams. Optimum extraction conditions are reached whenever the plasma meniscus has an optimum curvature for a given current density. Optimum perveance (optimum current) values are found to closely agree with those derived from elementary analytical theory for extraction of space-charge-dominated beams. Details of the electrode system design as well as angular divergence and RMS emittance versus extraction parameter data (e.g., perveance and extraction gap) are provided for ion beams of varying charge-state and mass, extracted under the influence of a mirror-geometry plasma confinement magnetic field.

  4. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  5. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation.

    PubMed

    Zheng, Jing; Liu, Lei; Ji, Guangbin; Yang, Qifan; Zheng, Lirong; Zhang, Jing

    2016-08-10

    An improved hydrogenation strategy for controllable synthesis of oxygen-deficient anatase TiO2 (H-TiO2) is performed via adjusting the particle size of starting rectangular anatase TiO2 nanosheets from 90 to 30 nm. The morphology and structure characterizations obviously demonstrate that the starting materials of TiO2 nanosheets are transformed into nanoparticles with distinct size reduction; meanwhile, the concentration of oxygen vacancy is gradually increased with the decreasing particle size of starting TiO2. As a result, the Li-storage performance of H-TiO2 is not only much better than that of the pure TiO2 but also elevated stage by stage with the decreasing particle size of starting TiO2; especially the H-TiO2 with highest concentration of oxygen vacancy from smallest TiO2 nanosheets shows the best Li-storage performance with a stable discharge capacity 266 mAh g(-1) after 100 cycles at 1 C. Such excellent performance should be attributed to the joint action from oxygen vacancy and size effect, which promises significant enhancement of high electronic conductivity without weakening Li(+) diffusion via hydrogenation strategy.

  6. Simulation Studies of the Pulse Line Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Henestroza, Enrique; Martinez, Roxanne

    2007-11-01

    The Heavy Ion Fusion Science Virtual National Laboratory has been studying the Pulse Line Ion Accelerator (PLIA) concept, motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of high energy density matter and fusion ignition conditions. The PLIA uses a slow-wave structure based on a helical winding, on which a voltage pulse is launched and propagated to generate the accelerating fields. The PLIA has the ability to accelerate ion bunches to energies much greater than the peak applied voltage and over distances much larger than the voltage pulse ramp length; furthermore, the PLIA can axially confine the heavy ion beam bunch. These properties make it a good candidate for a high intensity, short bunch injector. We will present self-consistent numerical simulation studies of the beam dynamics in the PLIA.

  7. Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Lu-Hua; Li, Wen-Cui; Yan, Dong; Wang, Hua; Lu, An-Hui

    2016-07-01

    The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A clear correlation between the contact points and the electron transfer resistance has been established, which fits well with the quadratic function model and is dependent on the size of HCSs. To our knowledge, this is the first clear function that expresses the structure-sensing activity relationship of carbon-based electrodes. The prepared carbon electrode is capable of sensing Pb(ii) with a sensitivity of 0.160 μA nM-1, which is much higher than those of other electrodes reported in the literature. Its detection limit of 0.6 nM is far below the guideline value (72 nM) given by the US Environmental Protection Agency. In addition, the carbon electrode could be a robust alternative to various heavy metal sensors.The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A

  8. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  9. Energies, charges, and sizes of clusters under ion sputtering of a metal

    SciTech Connect

    Matveev, V. I. Kochkin, S. A.

    2010-04-15

    A theory of ion sputtering of a metal in the form of neutral and singly charged clusters with a number of atoms of N {>=} 5 has been developed. This theory is based on simple physical assumptions and agrees well with experiment. The results are presented in the form of expressions convenient for practical use. The energy spectra of clusters, charge distributions, ionization coefficients, and total yields of neutral and singly charged clusters at different target temperatures are calculated in terms of the proposed theory as an example.

  10. Experimental versus expected halide-ion size differences; structural changes in three series of isotypic bismuth chalcogenide halides.

    PubMed

    Keller, Egbert; Krämer, Volker

    2006-06-01

    Experimentally determined halide-ion size differences are compared with expected size differences in the three series of isotypic bismuth chalcogenide halide compounds, KBi(6)O(9)X (X = Cl, Br and I), BiOX (X = F, Cl, Br and I) and BiSX (X = Cl, Br and I). The strong deviations observed can be assigned to steric strain caused by the heterogeneity of the bond-valence pattern and (for BiOX) to anion-anion repulsion and a change in the connectivity scheme. Some special features of the BiOF structure and the question of "isotypism" within the BiOX series are briefly discussed. Structural changes within the BiSX series are analysed.

  11. On power and sample size calculation in ethnic sensitivity studies.

    PubMed

    Zhang, Wei; Sethuraman, Venkat

    2011-01-01

    In ethnic sensitivity studies, it is of interest to know whether the same dose has the same effect over populations in different regions. Glasbrenner and Rosenkranz (2006) proposed a criterion for ethnic sensitivity studies in the context of different dose-exposure models. Their method is liberal in the sense that their sample size will not achieve the target power. We will show that the power function can be easily calculated by numeric integration, and the sample size can be determined by bisection.

  12. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  13. High Power Accelerator and Magnetically Insulated Ion Diode for Ion Ring Studies.

    NASA Astrophysics Data System (ADS)

    Jones, Stephen Edward

    Ion ring generation for Cornell University's Megavolt Ion Coil Experiment (MICE) requires a suitable pulsed power accelerator to drive a high-power magnetically insulated ion diode. The diode then emits an intense ion-beam which forms an ion ring by using a cusped magnetic field. The goal of this thesis is to provide the necessary beam to form the ion-ring, and the present work consists of two parts: (1) the design, construction, testing, and operation of the pulsed power accelerator; and (2) the design, construction, testing, operation, and physics studies of a magnetically insulated diode for ion ring generation. For the required pulsed-power driver, we use a modified 2-MV, 100 kJ Marx generator, connected to a new 2-Omega-200-nsec pulse-forming line. For the diode, we use a novel applied-B, extraction diode with anode-side as well as cathode-side coils. This coil arrangement forms an easily variable pseudo-separatrix within the gap allowing flexibility for diode studies and optimization. Diode investigations reveal the efficacy of such a pseudo-separatrix located in the gap near the flashboard, in terms of anode turn-on and ion beam current. Further results (1) support the hypothesis that leakage electrons to the flashboard are instrumental for anode turn-on, (2) indicate that the gap electron-population has two different electron sources, and (3) discuss the possible long development time scale for diode development. Extensive computer simulations have also been conducted on the accelerator and diode, and results are compared with experiment. A driving constraint throughout this work is affordability on a university budget; also, unfortunately, some of the experiments had to be cut short due to funding cuts.

  14. Sample size estimation and power analysis for clinical research studies

    PubMed Central

    Suresh, KP; Chandrashekara, S

    2012-01-01

    Determining the optimal sample size for a study assures an adequate power to detect statistical significance. Hence, it is a critical step in the design of a planned research protocol. Using too many participants in a study is expensive and exposes more number of subjects to procedure. Similarly, if study is underpowered, it will be statistically inconclusive and may make the whole protocol a failure. This paper covers the essentials in calculating power and sample size for a variety of applied study designs. Sample size computation for single group mean, survey type of studies, 2 group studies based on means and proportions or rates, correlation studies and for case-control for assessing the categorical outcome are presented in detail. PMID:22870008

  15. How much does size really matter? Exploring the limits of graphene as Li ion battery anode material

    NASA Astrophysics Data System (ADS)

    Sun, H.; Varzi, A.; Pellegrini, V.; Dinh, D. A.; Raccichini, R.; Del Rio-Castillo, A. E.; Prato, M.; Colombo, M.; Cingolani, R.; Scrosati, B.; Passerini, S.; Bonaccorso, F.

    2017-02-01

    We unravel the role of flake dimensionality on the lithiation/de-lithiation processes and electrochemical performance of anodes based on few-(FLG) and multi-layer graphene (MLG) flakes prepared by liquid phase exfoliation (LPE) of pristine graphite. The flakes are sorted by lateral size (from 380 to 75 nm) and thickness from 20 (MLG) to 2 nm (FLG) exploiting a sedimentation-based separation in centrifugal field and, finally, deposited onto Cu disks for the realization of four binder-free anodes. The electrochemical results show that decreasing lateral size and thickness leads to an increase of the initial specific capacity from ≈590 to ≈1270mAhg-1. However, an increasing irreversible capacity is also associated to the reduction of flakes' size. We find, in addition, that the preferential Li ions storage by adsorption rather than intercalation in small lateral size (<100 nm) FLG flakes has a detrimental effect on the average de-lithiation voltage, resulting on low voltage efficiency of these anodes. We believe that the results reported in this work, provide the guidelines for the practical exploitation of graphene-based electrodes.

  16. Size distributions of gold nanoclusters studied by liquid chromatography

    SciTech Connect

    WILCOXON,JESS P.; MARTIN,JAMES E.; PROVENCIO,PAULA P.

    2000-05-23

    The authors report high pressure liquid chromatography, (HPLC), and transmission electron microscopy, (TEM), studies of the size distributions of nanosize gold clusters dispersed in organic solvents. These metal clusters are synthesized in inverse micelles at room temperature and those investigated range in diameter from 1--10 nm. HPLC is sensitive enough to discern changes in hydrodynamic volume corresponding to only 2 carbon atoms of the passivating agent or metal core size changes of less than 4 {angstrom}. The authors have determined for the first time how the total cluster volume (metal core + passivating organic shell) changes with the size of the passivating agent.

  17. [Study on effect of seed vigor and agronomic characters of Cassia seeds implanted with low energy nitrogen ion beans].

    PubMed

    Song, Mei; Wang, Xiang-Yang

    2012-07-01

    To study the effect of low energy nitrogen ion implantation on seed germination and agronomic characters. Different doses of low energy nitrogen ion implantation were implanted into fresh Cassia seed embryos. Seed germination, seedling growth and field agronomic characters were observed. The seeds after ion implantation showed significant reduction in germination energy, germination percentage and germination index, besides the significant decreasement in root length, fresh weight and vigor index of seedling. Plant height decreased despite the increase in grain size and grain weight. The low energy nitrogen ion implantation have significant effect on Cassia seeds, and being of great significance on Cassia artificial cultivation.

  18. Thionium ion initiated medium-sized ring formation: the total synthesis of asteriscunolide D.

    PubMed

    Trost, Barry M; Burns, Aaron C; Bartlett, Mark J; Tautz, Thomas; Weiss, Andrew H

    2012-01-25

    The first synthesis of the biologically active humulene natural product asteriscunolide D has been accomplished in nine steps without the use of protecting groups. The challenging 11-membered ring was forged via a diastereoselective thionium ion initiated cyclization, which constitutes a formal aldol disconnection to form a strained macrocycle. A stereospecific thioether activation-elimination protocol was developed for selective E-olefin formation, thus providing access to the most biologically active asteriscunolide. The absolute stereochemical configuration was established by the Zn-ProPhenol catalyzed enantioselective addition of methyl propiolate to an aliphatic aldehyde to afford a γ-hydroxy propiolate as a handle for butenolide formation via Ru-catalyzed alkene-alkyne coupling.

  19. Bubble size distribution in a laboratory-scale electroflotation study.

    PubMed

    Alam, Raquibul; Shang, Julie Q; Khan, Adnan Hossain

    2017-04-01

    The performance of electroflotation (EF) is strongly influenced by the size of O2 and H2 bubbles. Therefore, in this study, the bubble sizes are measured in a lab-scale EF cell using a high-speed camera. The mean bubble size is found to vary in the range of 32.7-68.6 μm under different operating conditions. This study shows that the electrode material, current density, water pH, ionic strength, and frother (Tennafroth 250) concentration are important factors in controlling the bubble size. Furthermore, four mathematical distributions (normal, log-normal, Weibull, and gamma distributions) are fitted to the experimental data, among which the log-normal distribution is found to be the best fit based on the lower Anderson-Darling (AD) value.

  20. Photofragmentation and vibrational relaxation of size-selected clusters ions : Non-adiabatic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Douady, J.; Gervais, B.; Jacquet, E.; Zanuttini, D.; Giglio, E.

    2009-11-01

    We present non-adiabatic molecular dynamics simulations of size-selected Na2+ Arn (n=6-11-17) cluster. Their electronic structure is obtained from an accurate 1-electron model using core polarization pseudopotentials. We follow the dynamics of two specific photoexcitation processes (X2 Σ+g → A2Σ+u) and (X2 Σ+g → B2 Πu) during the first 10 ps. We identify a variety of processes in these clusters, such as dissociation of the Na2+ chromophore, solvation of the Na+ fragment as Na+ Arp and the recombination to the ground state of the Na2+ Arp with an important solvent evaporation. These processes depend significantly on the transition and on the isomer. We discuss these processes as a function of the cluster size.

  1. Theoretical study of the thioformyl ion

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1978-01-01

    The equilibrium structure of the thioformyl ion has been determined from an ab initio matrix Hartree-Fock calculation, and an estimated rotation constant has been derived. A rotation constant of 21.7 GHz is obtained for HCS(+); the corresponding constant for DCS(+) is 18.3 GHz. If the vibration-rotation interaction constants for HCS(+) are assumed to be the same as those for HCP, then the rotation constant is 21.6 GHz, while the vibration-rotation constants of DCP give a rotation constant of 18.3 GHz for DCS(+).

  2. Study directed at development of an implantable biotelemetry ion detector

    NASA Technical Reports Server (NTRS)

    Hanley, L. D.; Kress, D.

    1971-01-01

    A literature search was conducted to currently update known information in the field of ion-selective electrodes. The review attempts to identify present trends in cation and anions selective electrodes pertinent to the area of bioimplantable units. An electronic circuit was designed to provide the high impedance interface between the ion-selective sensors and signal-processing equipment. The resulting design emphasized the need for low power and miniaturization. Many of the circuits were constructed and used to evaluate the ion-selective electrodes. A cuvette capable of holding the ion-selective and the reference electrodes was designed and constructed. This equipment was used to evaluate commercially available ion-selective electrodes and the electrodes designed and constructed in the study. The results of the electrode tests are included.

  3. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    SciTech Connect

    Goto, I.; Nishioka, S.; Hatayama, A.; Miyamoto, K.

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  4. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  5. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies.

    PubMed

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M; Rogers, Peter J; Hardman, Charlotte A

    2016-03-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a 'normal' sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. VASIMR Simulation Studies of Auroral Ion Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    Brukardt, M.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Glover, T. W.; Jacobs0n, V. T.; McCaskill, G. E.; Cassady, L. D.; Bengtson, R. D.

    2006-12-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies and can be used to simulate several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating (ICRH) similar to auroral zone processes. The production of upward moving `ion conics' and ion heating are significant features in auroral processes. It is believed that ion cyclotron heating plays a role in these processes, but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once. In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) we have successfully simulated these effects. The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance. The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power. This is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been confirmed with several independent measurements. The ion cyclotron resonance heating (ICRH) shows a substantial increase in ion velocity. Pitch angle distribution studies

  7. System-size independence of directed flow measured at the BNL relativistic heavy-ion collider.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kumar, A; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, Y Y; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-12-19

    We measure directed flow (v_{1}) for charged particles in Au+Au and Cu+Cu collisions at sqrt[s_{NN}]=200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p_{t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v_{1} in different collision systems, and investigate possible explanations for the observed sign change in v_{1}(p_{t}).

  8. A simulation study of linear RF ion guides for AMS

    NASA Astrophysics Data System (ADS)

    Zhao, X.-L.; Litherland, A. E.

    2015-02-01

    The use of radiofrequency multipoles and particularly the radiofrequency quadrupole (RFQ) controlled gas cell to facilitate on-line isobar separations for Accelerator Mass Spectrometry (AMS) is being explored experimentally and theoretically in a preliminary way at present. These new methods have the potential to extend greatly the analytical scope of AMS. However, there are many technical challenges to adapt an RF gas cell isobar separating device and still maintain stable and high transmission for routine AMS using the high current Cs+ sputter ion sources developed for nuclear physics and adapted to the detection of rare radioactive isotopes for AMS. An overview of linear RF ion guide properties is therefore needed to assist in the conceptualization of their efficient additions into AMS. In this work the intrinsic properties of linear RF ion guides, which are relevant to the generation of the RF induced ion energy distributions and for the evaluation of the ion transmissions in vacuum, are systematically studied using SIMION 8.1. These properties are compared among radiofrequency quadrupole, hexapole and octupole ion guides, so that their usefulness for AMS applications can be evaluated and compared. By simulation it is found that to prepare a typical RF captured AMS ion beam to within a safe range of ion energies prior to the onset of gas interactions, a higher multipole is more suitable for the first RF field receptor, while a quadrupole operated with q2 ∼ 0.5 is more suited as the final ion guide for concentrating the energy-cooled ions near axis.

  9. SnSb micron-sized particles for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Simonin, L.; Lafont, U.; Kelder, E. M.

    Micrometre-sized particles of Sn/SnSb were produced with a simple technique consisting in melting commercial ingots of tin and antimony separately at 280 °C and 680 °C, respectively, and casting them together in a ceramic boat. The solid alloy was then crushed into a homogeneous powder by grinding and sieving. The obtained powder was characterised by X-ray diffraction, and electron microscopy. Elemental and phase composition analyses were performed via, inductive coupled plasma and differential scanning calorimetry, respectively. The material was further tested as electrode material in a lithium galvanic cell. It showed relatively good capacity retention for at least 15 cycles. TEM analysis on post-mortem electrode samples showed the formation of nanostructures after the first discharge followed by a progressive disappearance of the micron-sized particles upon further cycling. Fading at higher cycles is explained by the formation of isolated metallic nano-particles that become inactive for further storage of lithium.

  10. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries.

    PubMed

    Schmuelling, Guido; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Meyer, Hinrich-Wilhelm; Placke, Tobias; Parisi, Jürgen; Winter, Martin

    2014-09-05

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnOx and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry.

  11. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    SciTech Connect

    Chacon-Golcher, Edwin

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  12. Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(iii) ion reduction.

    PubMed

    Ershov, B G; Abkhalimov, E V; Solovov, R D; Roldughin, V I

    2016-05-21

    The shift of the localized surface plasmon resonance (LSPR) band of gold nanoparticles to shorter wavelengths upon saturation of the hydrosol with hydrogen is used as a tool to study the electrochemical processes on the particle surface. It is shown that dissociative adsorption of hydrogen takes place on the surface of a particle and results in the migration of a proton into the dispersion medium, while the electron remains on the nanoparticle, i.e., a hydrogen-like nanoelectrode is formed. It is shown that Au(iii) ions can be reduced on the gold nanoelectrodes. A thermodynamic scheme explaining the shift of the LSPR band is used to explain the peculiarities of the Au(iii) ion reduction. The reduction rate does not depend on the ion concentration and varies linearly with pH. The observed correlations are explained in terms of a simple model of electrochemical processes taking place on the nanoparticle as an electrode. It is shown that with an increase in the particle size, its capacity for dissociative adsorption of hydrogen decreases and the Au(iii) reduction slows down.

  13. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  14. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  15. Airblast atomization: studies on drop-size distribution

    SciTech Connect

    Rizk, N.K.; Lefebvze, A.H.

    1982-09-01

    The influence of air velocity and liquid properties on drop-size distribution is examined using an airblast atomizer in which a flat liquid sheet is exposed to high velocity air on both sides. Both photographic and lightscattering techniques are employed to measure drop sizes. The effect of the physical properties of liquids is studied by preparing special liquid solutions to obtain wide variations in one property while keeping the others sensibly constant. The results obtained show that increases in air velocity and/or reduction in liquid flow rate lead to more uniform sprays and a lower mean drop size. Higher values of viscosity and surface tension result in coarser sprays of larger mean drop size. The effect of liquid density on spray characteristics appears to be quite small. In general, it is found that any change in liquid properties or atomizer operating conditions which tends to lower the mean drop size will also tend to narrow the range of drop sizes produced.

  16. Sample size considerations for historical control studies with survival outcomes

    PubMed Central

    Zhu, Hong; Zhang, Song; Ahn, Chul

    2015-01-01

    Historical control trials (HCTs) are frequently conducted to compare an experimental treatment with a control treatment from a previous study, when they are applicable and favored over a randomized clinical trial (RCT) due to feasibility, ethics and cost concerns. Makuch and Simon developed a sample size formula for historical control (HC) studies with binary outcomes, assuming that the observed response rate in the HC group is the true response rate. This method was extended by Dixon and Simon to specify sample size for HC studies comparing survival outcomes. For HC studies with binary and continuous outcomes, many researchers have shown that the popular Makuch and Simon method does not preserve the nominal power and type I error, and suggested alternative approaches. For HC studies with survival outcomes, we reveal through simulation that the conditional power and type I error over all the random realizations of the HC data have highly skewed distributions. Therefore, the sampling variability of the HC data needs to be appropriately accounted for in determining sample size. A flexible sample size formula that controls arbitrary percentiles, instead of means, of the conditional power and type I error, is derived. Although an explicit sample size formula with survival outcomes is not available, the computation is straightforward. Simulations demonstrate that the proposed method preserves the operational characteristics in a more realistic scenario where the true hazard rate of the HC group is unknown. A real data application of an advanced non-small cell lung cancer (NSCLC) clinical trial is presented to illustrate sample size considerations for HC studies in comparison of survival outcomes. PMID:26098200

  17. Sample size considerations for historical control studies with survival outcomes.

    PubMed

    Zhu, Hong; Zhang, Song; Ahn, Chul

    2016-01-01

    Historical control trials (HCTs) are frequently conducted to compare an experimental treatment with a control treatment from a previous study, when they are applicable and favored over a randomized clinical trial (RCT) due to feasibility, ethics and cost concerns. Makuch and Simon developed a sample size formula for historical control (HC) studies with binary outcomes, assuming that the observed response rate in the HC group is the true response rate. This method was extended by Dixon and Simon to specify sample size for HC studies comparing survival outcomes. For HC studies with binary and continuous outcomes, many researchers have shown that the popular Makuch and Simon method does not preserve the nominal power and type I error, and suggested alternative approaches. For HC studies with survival outcomes, we reveal through simulation that the conditional power and type I error over all the random realizations of the HC data have highly skewed distributions. Therefore, the sampling variability of the HC data needs to be appropriately accounted for in determining sample size. A flexible sample size formula that controls arbitrary percentiles, instead of means, of the conditional power and type I error, is derived. Although an explicit sample size formula with survival outcomes is not available, the computation is straightforward. Simulations demonstrate that the proposed method preserves the operational characteristics in a more realistic scenario where the true hazard rate of the HC group is unknown. A real data application of an advanced non-small cell lung cancer (NSCLC) clinical trial is presented to illustrate sample size considerations for HC studies in comparison of survival outcomes.

  18. System-size independence of directed flow at the RelativisticHeavy-Ion Collider

    SciTech Connect

    STAR Coll

    2008-09-20

    We measure directed flow (v{sub 1}) for charged particles in Au + Au and Cu + Cu collisions at {radical}s{sub NN} = 200 GeV and 62.4 GeV, as a function of pseudorapidity ({eta}), transverse momentum (p{sub t}) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v{sub 1} in different collision systems, and investigate possible explanations for the observed sign change in v{sub 1}(p{sub t}).

  19. System-size independence of directed flow measured at the BNL relativistic heavy-ion collider.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2008-01-01

    We measure directed flow (v{sub 1}) for charged particles in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 and 62.4 GeV, as a function of pseudorapidity ({eta}), transverse momentum (p{sub t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v{sub 1} in different collision systems, and investigate possible explanations for the observed sign change in v{sub 1}(p{sub t}).

  20. Ion Mobility Studies on the Negative Ion-Molecule Chemistry of Isoflurane and Enflurane

    NASA Astrophysics Data System (ADS)

    González-Méndez, Ramón; Watts, Peter; Howse, David C.; Procino, Immacolata; McIntyre, Henry; Mayhew, Chris A.

    2017-05-01

    In the present work we present an investigation of the negative ion-molecule chemistry of the anaesthetics isoflurane, ISOF, and enflurane, ENF, in an ion mobility spectrometry/mass spectrometry (IMS/MS), in both air and nitrogen. Hexachloroethane (HCE) was introduced in both air and nitrogen to produce Cl- as a reactant ion. This study was undertaken owing to uncertainties in the chemical processes, which lead to the cluster ions reported in other work (Eiceman et al. Anal. Chem. 61, 1093-1099, 1). In particular for ISOF the product ion observed was ISOF.Cl-, and it was suggested that the Cl- was formed by dissociative electron attachment (DEA) although there was mention of a chlorine containing contaminant. We show in this study that ISOF and ENF do not produce Cl- in an IMS system either by capture of free electrons or reaction with O2 -. This demonstrates that the Cl- containing ions, reported in the earlier study, must have been the result of a chlorine containing contaminant as suggested. The failure of ISOF and ENF to undergo DEA was initially surprising given the high calculated electron affinities, but further calculations showed that this was a result of the large positive vertical attachment energies (VAEs). This experimental work has been supported by electronic structure calculations at the B3LYP level, and is consistent with those obtained in a crossed electron-molecular beam two sector field mass spectrometer. An unusual observation is that the monomer complexes of ISOF and ENF with O2 - are relatively unstable compared with the dimer complexes.

  1. Ion Mobility Studies on the Negative Ion-Molecule Chemistry of Isoflurane and Enflurane

    NASA Astrophysics Data System (ADS)

    González-Méndez, Ramón; Watts, Peter; Howse, David C.; Procino, Immacolata; McIntyre, Henry; Mayhew, Chris A.

    2017-02-01

    In the present work we present an investigation of the negative ion-molecule chemistry of the anaesthetics isoflurane, ISOF, and enflurane, ENF, in an ion mobility spectrometry/mass spectrometry (IMS/MS), in both air and nitrogen. Hexachloroethane (HCE) was introduced in both air and nitrogen to produce Cl- as a reactant ion. This study was undertaken owing to uncertainties in the chemical processes, which lead to the cluster ions reported in other work (Eiceman et al. Anal. Chem. 61, 1093-1099, 1). In particular for ISOF the product ion observed was ISOF.Cl-, and it was suggested that the Cl- was formed by dissociative electron attachment (DEA) although there was mention of a chlorine containing contaminant. We show in this study that ISOF and ENF do not produce Cl- in an IMS system either by capture of free electrons or reaction with O2 -. This demonstrates that the Cl- containing ions, reported in the earlier study, must have been the result of a chlorine containing contaminant as suggested. The failure of ISOF and ENF to undergo DEA was initially surprising given the high calculated electron affinities, but further calculations showed that this was a result of the large positive vertical attachment energies (VAEs). This experimental work has been supported by electronic structure calculations at the B3LYP level, and is consistent with those obtained in a crossed electron-molecular beam two sector field mass spectrometer. An unusual observation is that the monomer complexes of ISOF and ENF with O2 - are relatively unstable compared with the dimer complexes.

  2. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  3. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    NASA Astrophysics Data System (ADS)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  4. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  5. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Hattori, T.; Sugimoto, S.; Sasai, K.

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  6. Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles.

    PubMed

    Krpetić, Zeljka; Guerrini, Luca; Larmour, Iain A; Reglinski, John; Faulds, Karen; Graham, Duncan

    2012-03-12

    Colorimetric detection of analytes using gold nanoparticles along with surface-enhanced Raman spectroscopy (SERS) are areas of intense research activity since they both offer sensing of very low concentrations of target species. Multimodal detection promotes the simultaneous detection of a sample by a combination of different techniques; consequently, surface chemistry design in the development of multimodal nanosensors is important for rapid and sensitive evaluation of the analytes by diverse analytical methods. Herein it is shown that nanoparticle size plays an important role in the design of functional nanoparticles for colorimetric and SERS-based sensing applications, allowing controlled nanoparticle assembly and tunable sensor response. The design and preparation of robust nanoparticle systems and their assembly is reported for trace detection of Ni(II) ions as a model system in an aqueous solution. The combination of covalently attached nitrilotriacetic acid moieties along with the L-carnosine dipeptide on the nanoparticle surface represents a highly sensitive platform for rapid and selective detection of Ni(II) ions. This systematic study demonstrates that significantly lower detection limits can be achieved by finely tuning the assembly of gold nanoparticles of different core sizes. The results clearly demonstrate the feasibility and usefulness of a multimodal approach.

  7. Experimental studies on ion mobility in xenon-trimethylamine mixtures

    NASA Astrophysics Data System (ADS)

    Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.

    2017-07-01

    In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

  8. Studying mechanosensitive ion channels with an automated patch clamp.

    PubMed

    Barthmes, Maria; Jose, Mac Donald F; Birkner, Jan Peter; Brüggemann, Andrea; Wahl-Schott, Christian; Koçer, Armağan

    2014-03-01

    Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.

  9. LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions

    NASA Technical Reports Server (NTRS)

    Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.

    1993-01-01

    The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.

  10. Research and development optical deep space antenna sizing study

    NASA Technical Reports Server (NTRS)

    Wonica, D.

    1994-01-01

    Results from this study provide a basis for the selection of an aperture size appropriate for a research and development ground-based receiver for deep space optical communications. Currently achievable or near-term realizable hardware performance capabilities for both a spacecraft optical terminal and a ground terminal were used as input parameters to the analysis. Links were analyzed using OPTI, our optical link analysis program. Near-term planned and current missions were surveyed and categorized by data rate and telecommunications-subsystems prime power consumption. The spacecraft optical-terminal transmitter power was selected by matching these (RF) data rates and prime power requirements and by applying power efficiencies suitable to an optical communications subsystem. The study was baselined on a Mars mission. Results are displayed as required ground aperture size for given spacecraft transmitter aperture size, parametrized by data rate, transmit optical power, and wavelength.

  11. Electrophysiology investigation of Trichogin GA IV activity in planar lipid membranes reveals ion channels of well-defined size.

    PubMed

    Iftemi, Sorana; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio; Stella, Lorenzo; Luchian, Tudor

    2014-07-01

    Trichogin GA IV, an antimicrobial peptaibol, exerts its function by augmenting membrane permeability, but the molecular aspects of its pore-forming mechanism are still debated. Several lines of evidence indicate a 'barrel-stave' channel structure, similar to that of alamethicin, but the length of a trichogin helix is too short to span a normal bilayer. Herein, we present electrophysiology measurements in planar bilayers, showing that trichogin does form channels of a well-defined size (R=4.2⋅10(9)  Ω; corresponding at least to a trimeric aggregate) that span the membrane and allow ion diffusion, but do not exhibit voltage-dependent rectification, unlike those of alamethicin. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    NASA Astrophysics Data System (ADS)

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  13. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang; Kim, Dong Hyeon; Yi, Ran; Tang, Duihai; Lee, Sang-Eui; Jung, Yoon Seok; Wang, Donghai

    2016-12-01

    A semimicro-size agglomerate structured silicon-carbon (mSi-C) composite is constructed by an aggregation of silicon nanoparticles (∼100 nm) coated with conductive carbon layer through a facile and scalable aerosol-assisted process to be employed as an anode material for lithium-ion batteries (LIBs). As-formed mSi-C composite delivers good electrochemical performances of high reversible capacity (2084 mAh/g) between 0.01 and 1.50 V (vs. Li/Li+) at 0.4 A/g, 96% capacity retention (1999 mAh/g) after 50 cycles and good rate capability (906 mAh/g) at 12 A/g. Such good performances can be attributed to 1) unique composite structure which accommodates the stress induced by volume change of silicon during lithiation/delithiation and facilitates ion transport, and 2) conformally formed carbon layer which enhances conductivity of the composite and helps to form a stable SEI layer. In addition, a high tap density (0.448 g/cm3) of mSi-C composite leads to high volumetric capacity (933 mAh/cm3), allowing its practical applications as an anode material towards high performance LIBs.

  14. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojuan; Liu, Zirui; Zhang, Junke; Wen, Tianxue; Ji, Dongsheng; Wang, Yuesi

    2016-02-01

    Particulate matter (PM) pollution is a serious issue that has aroused great public attention in Beijing. To examine the seasonal characteristics of aerosols in typical pollution episodes, water-soluble inorganic ions (SO42 -, NO3-, NH4+, Cl-, K+, Na+, Ca2 + and Mg2 +) in size-segregated PM collected by an Anderson sampler (equipped with 50% effective cut-off diameters of 9.0, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65, 0.43 μm and an after filter) were investigated in four intensive campaigns from June 2013 to May 2014 in the Beijing urban area. Pronounced seasonal variation of TWSIs in fine particles (aerodynamic diameter less than 2.1 μm) was observed, with the highest concentration in summer (71.5 ± 36.3 μg/m3) and the lowest in spring (28.1 ± 15.2 μg/m3). Different ion species presented different seasonal characteristics of mass concentration and size distribution, reflecting their different dominant sources. As the dominant component, SO42 -, NO3- and NH4+ (SNA) in fine particles appeared to play an important role in the formation of high PM pollution since its contribution to the TWSIs and PM2.1 mass increased significantly during pollution episodes. Due to the hygroscopic growth and enhanced secondary formation in the droplet mode (0.65-2.1 μm) from clean days to polluted days, the size distribution peak of SNA in the fine mode tended to shift from 0.43-0.65 μm to 0.65-2.1 μm. Relative humidity (RH) and temperature contributed to influence the secondary formation and regulate the size distributions of sulfates and nitrates. Partial correlation analysis found that high RH would promote the sulfur and nitrogen oxidation rates in the fine mode, while high temperature favored the sulfur oxidation rate in the condensation mode (0.43-0.65 μm) and reduced the nitrogen oxidation rate in the droplet mode (0.65-2.1 μm). The NO3-/SO42 - mass ratio in PM2.1 (73% of the samples) exceeded 1.0, suggesting that vehicle exhaust currently makes a greater contribution to aerosol

  15. Ionization efficiency studies for xenon ions with thesuperconducting ECR ion source VENUS

    SciTech Connect

    Leitner, Daniela; Lyneis, Claude M.; Todd, DamonS.; Tarvainen,Olli

    2007-06-05

    Ionization efficiency studies for high charge state xenon ions using a calibrated gas leak are presented. A 75% enriched {sup 129}Xe gas leak with a gas flow equivalent to 5.11p{mu}A was used in all the measurements. The experiments were performed at the VENUS (Versatile ECR ion source for Nuclear Science) ion source for 18 GHz, 28 GHz and double frequency operation. Overall, total ionization efficiencies close to 100% and ionization efficiencies into a single charge state up to 22% were measured. The influence of the biased disk on the ionization efficiency was studied and the results were somewhat surprising. When the biased disk was removed from the plasma chamber, the ionization efficiency was dramatically reduced for single frequency operation. However, using double frequency heating the ionization efficiencies achieved without the biased disk almost matched the ionization efficiencies achieved with the biased probe. In addition, we have studied the influence of the support gas on the charge state distribution of the xenon ions. Either pure oxygen or a mixture of oxygen and helium were used as support gases. The addition of a small amount of helium can increase the ionization efficiency into a single charge state by narrowing the charge state distribution. Furthermore by varying the helium flow the most efficient charge state can be shifted over a wide range without compromising the ionization efficiency. This is not possible using only oxygen as support gas. Results from these studies are presented and discussed.

  16. Size-dependent study of pulmonary responses to nano-sized iron and copper oxide nanoparticles.

    PubMed

    Kumar, Rajiv; Nagesha, Dattatri K

    2013-01-01

    The application of nanotechnology in various fields has resulted in a tremendous increase in the synthesis of variety of engineered nanoparticles (NPs). These applications are possible only due to the small size and large surface area of the NPs which imparts them unique properties. Inorganic oxide NPs as iron and copper oxide NPs are widely used in several biomedical and synthetic applications. The beneficial aspects of these NPs are concurrently associated with several drastic and deleterious effects as well. Size of the NPs plays a critical role in systemic clearance from the body. Initial studies have confirmed inflammatory responses in mice associated with non-biodegradable oxide NPs. The associated oxidative stress varied from mild effects to reactive oxygen species generation which can potentiate DNA damage or even induced carcinogenesis. Copper oxide NPs, in particular, induced acute toxicity and inflict neutrophil infiltration. This chapter focuses on the applicability of various in vivo techniques for studying the effect of these NPs, especially on the pulmonary system. These in vivo techniques would certainly provide a better understanding and insight into the mechanistic pathways by which these NPs interact with various organ systems in human body.

  17. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel

    PubMed Central

    Wang, Yong; Liu, Yanxin; DeBerg, Hannah A; Nomura, Takeshi; Hoffman, Melinda Tonks; Rohde, Paul R; Schulten, Klaus; Martinac, Boris; Selvin, Paul R

    2014-01-01

    The mechanosensitive channel of large conductance, which serves as a model system for mechanosensitive channels, has previously been crystallized in the closed form, but not in the open form. Ensemble measurements and electrophysiological sieving experiments show that the open-diameter of the channel pore is >25 Å, but the exact size and whether the conformational change follows a helix-tilt or barrel-stave model are unclear. Here we report measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a ‘virtual sorting’ single-molecule fluorescence energy transfer. We observed directly that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter. In addition, based on the measurements, we developed a molecular dynamics model of the channel structure in the open state which confirms our direct observations. DOI: http://dx.doi.org/10.7554/eLife.01834.001 PMID:24550255

  18. Ion-Ion Neutralization.

    DTIC Science & Technology

    1982-05-31

    Accession No. 3. Recipient’s Catalog Number FGL -TR-82 -0202 b- /- 4. Title (and Subtitle) 5. Type of Report & Period Covered ION-ION NEUTRALIZATION Final...few years under the terms of the grant has been the detailed study of binary ion-ion neutralization reactions involving ions of atmospheric...2TT, England. 1. INTRODUCTION Binary positive-ion negative-ion mutual neutralization viz: A+ + B->C + D (1) can be an important loss process for

  19. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    NASA Astrophysics Data System (ADS)

    El-Atwani, Osman; Huynh, Chuong; Norris, Scott

    2016-05-01

    Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  20. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.

    PubMed

    Deshmukh, Dhananjay K; Kawamura, Kimitaka; Deb, Manas K

    2016-10-01

    The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India.

  1. Ion transport in porous media studied by NMR.

    PubMed

    Pel, L; Huinink, H P; Kopinga, K; Rijniers, L A; Kaasschieter, E F

    2001-01-01

    Moisture and salt transport in masonry can give rise to damages. Therefore a detailed knowledge of the moisture and salt transport is essential for understanding the durability of masonry. A special NMR apparatus has been made allowing quasi-simultaneous measurements of both moisture and Na profiles in porous building materials. Using this apparatus both the absorption of a 4 M NaCl solution in a calcium silicate brick and the drying of a 3 M NaCl capillary saturated fired-clay brick have been studied. It was found that during the absorption process the Na ions clearly stay behind, which this is caused by adsorption of these ions to the pore surface. For the drying it was found that at the beginning of the drying process the ions accumulate near the surface. As the drying rate decreases, diffusion becomes dominant and the ion profile levels off again.

  2. A statistical study of ion pitch-angle distributions

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.

  3. Coincidence studies of ion-molecule collisions

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    1998-05-01

    Two of the simplest collision systems one can imagine are H^+ + H(1s) and H^+ + D(1s). Electron transfer is resonant in the first and nearly resonant in the latter because of the 3.7 meV gap between the H(1s) and D(1s). Once the collision velocity becomes small enough quantum effects become more pronounced and the electron transfer rate as a function of collision energy exhibits many resonances(G. Hunter and M. Kuriyan, Proc. Roy. Soc. Lond. A 358), 321 (1977).^,(J.P. Davis and W.R. Thorson, Can. J. Phys. 56), 996 (1978).. However, most of the interesting features appear at very low energies, of a few meV, and these collision systems which are the ``theorist's dream'' become a nightmare to experimentalists. Nevertheless, we are undertaking the challenging measurement of near resonant electron transfer in the H^+ + D(1s) collision system. When a HD molecule is ionized quickly, such that the transition to the HD^+ molecular ion is vertical, about 1% of the HD^+(1sσ) is in the vibrational continuum. The transition probability falls off approximately exponentially above threshold and its width is about 200 meV. During the dissociation, the electron initially centered on the D core can make a transition to the H core when the 2pσ and 1sσ potential energy curves associated with the two dissociation limits get close to each other. It is important to note that during molecular dissociation the ``avoided crossing'' is crossed only once in contrast to twice during a full collision. Using a localized cold HD target and 3D imaging of the low energy H^+ and D^+ dissociation fragments one can experimentally determine the transition probability between these two states as a function of the dissociation energy. Clearly, a recoil energy resolution of the order of a meV is necessary, which is the primary experimental challenge.

  4. Subnanometer poly-silicon gap structure formation: Comparison study between size expansion and size reduction

    NASA Astrophysics Data System (ADS)

    Hashim, U.; Nazwa, T.; Dhahi, Th. S.

    2012-06-01

    This study describes the comparison among the three fabrication methods of an array of poly-silicon nanogap structures. The three different methods are size expansion technique (SET), size reduction technique (SRT) and e-beam lithography (EBL) technique. Generally, SRT involves the breaking of the primarily pattern with no gap structure into nanogap scale. Conversely, SET engages in the process of enhancing the initially microgap pattern into nanogap scale. EBL refers to a lithographic process that uses a focused beam of electrons to form the circuit patterns needed for material deposition on or removal from the wafer. Using conventional photolithography, a procedure to fabricate poly-silicon nanogap structure on the wafer scale is designed. The nanogap (NG) fabrication procedure is based on the standard CMOS technology follows by employing both methods respectively. The lateral nanogap is introduced in the fabrication process using poly-silicon as an anode electrode. The similarity and distinction will be highlighted for each particular process involved in the fabrication of nanogap structures. The simple least-cost method does not require complicated nanolithography method of fabrication but it is still possible to measure the electrical properties of a single molecule. On top of that, these techniques can be applied extensively to different designs of nanogap structure down to several nanometer levels of dimensions. The innovative method reported here can easily produce a nanogap electrode in a reproducible manner.

  5. Novel Method for Preparing Transmission Electron Microscopy Samples of Micrometer-Sized Powder Particles by Using Focused Ion Beam.

    PubMed

    Kim, Tae-Hoon; Kang, Min-Chul; Jung, Ga-Bin; Kim, Dong Soo; Yang, Cheol-Woong

    2017-10-01

    The preparation of transmission electron microscopy (TEM) samples from powders is quite difficult and challenging. For powders with particles in the 1-5 μm size range, it is especially difficult to select an adequate sample preparation technique. Epoxy is commonly used to bind powder, but drawbacks, such as differential milling originating from unequal milling rates between the epoxy and powder, remain. We propose a new, simple method for preparing TEM samples. This method is especially useful for powders with particles in the 1-5 μm size range that are vulnerable to oxidation. The method uses solder as an embedding agent together with focused ion beam (FIB) milling. The powder was embedded in low-temperature solder using a conventional hot-mounting instrument. Subsequently, FIB was used to fabricate thin TEM samples via the lift-out technique. The solder proved to be more effective than epoxy in producing thin TEM samples with large areas. The problem of differential milling was mitigated, and the solder binder was more stable than epoxy under an electron beam. This methodology can be applied for preparing TEM samples from various powders that are either vulnerable to oxidation or composed of high atomic number elements.

  6. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    NASA Astrophysics Data System (ADS)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  7. Studies of emittance of multiply charged ions extracted from high temperature superconducting electron cyclotron resonance ion source, PKDELIS

    SciTech Connect

    Rodrigues, G.; Lakshmy, P. S.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2010-02-15

    For the high current injector project at Inter University Accelerator Centre, a high temperature superconducting electron cyclotron resonance (ECR) ion source, PKDELIS, would provide the high charge state ions. The emittance of the ECR ion source is an important parameter to design further beam transport system and to match the acceptances of the downstream radio frequency quadrupole and drift tube linac accelerators of the high current injector. The emittance of the analyzed beam of PKDELIS ECR source has been measured utilizing the three beam size technique. A slit and two beam profile monitors positioned at fixed distances from each other were used to measure the beam size. The digitized beam profiles have been analyzed to determine the emittance of various multiply charged ions. The variation of emittance with gas mixing, ultrahigh frequency power, and extraction energy are discussed in this presentation.

  8. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    , which are important details for proper description of EDL properties. In this thesis, we implement an efficient and accurate classical solvation density functional theory (CDSFT) for EDLs of spherical macroions and cylindrical polyelectrolytes embedded in aqueous electrolytes. This approach extends the capabilities of mean field approximations by taking into account electrostatic ion-ion correlations, size asymmetry and excluded volume effects without compromising the computational cost. We apply the computational tool to study the structural and thermodynamic properties of the ionic atmosphere around B-DNA and spherical nanoparticles. We demonstrate that the presence of solvent molecules at experimental concentration and size values has a significant impact on the layering of ions. This layering directly influences the integrated charge and mean electrostatic potential in the diffuse region of the spherical electrical double layer (SEDL) and have a noticeable impact on the behavior of zeta potential (ZP). Recently, we have extended the aforementioned CSDFT to account for the charge-regulated mechanisms of the macroion surface on the structural and thermodynamic properties of spherical EDLs. In the approach, the CSDFT is combined with a surface complexation model to account for ion correlation and excluded volume effects on the surface titration of spherical macroions. We apply the proposed computational approach to describe the role that the ion size and solvent excluded volume play on the surface titration properties of silica nanoparticles. We analyze the effects of the nanoparticle size, pH and salt concentration of the aqueous solution on the nanoparticle's surface charge and zeta potential. The results reveal that surface charge density and zeta potential significantly depend on excluded volume and ion-ion correlation effects as well as on pH for monovalent ion species at high salt concentrations. Overall, our results are in good agreement with Monte Carlo

  9. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  10. Size effects on insect hovering aerodynamics: an integrated computational study.

    PubMed

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  11. Study of Cu ions acceleration via UV laser ablation

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, Vincenzo; Torrisi, Lorenzo

    2005-03-01

    In this work an ion acceleration system based on a laser ion source was studied. It was able to generate ion beams utilizing as a source a laser plasma produced by a XeCl laser from a copper target. The focused laser beam provided a power density on the target surface of about 3.5x108 W/cm2. Laser wavelength and pulse duration were 308 nm and 20 ns, respectively. The experimental apparatus consisted substantially of a plasma generation chamber, a drift tube and an expansion chamber mounted on the target stem inside the generation chamber. The expansion chamber end formed the acceleration gap together with a grounded bored electrode, placed in front of it at a distance of 1.3 cm. A Faraday cup placed at the end of the drift tube was used to reveal the ion intensity. Many attempts were done in order to accelerate plasma ions without the expansion chamber, but arcs were present. The maximum accelerating voltage applied to the extraction gap was 18 kV, resulting in an ion bunch of about 4.2 nC and a peak current of 220 μA.

  12. RISR Observations of High Ion Temperatures: A Case Study

    NASA Astrophysics Data System (ADS)

    Akbari, H.; Semeter, J. L.

    2015-12-01

    Incoherent scatter radars (ISRs) measure the frequency spectrum of the scattered signal from random thermal fluctuations in the ionospheric plasma. Once fitted to a theoretical model, the shape of the spectrum provides estimates to a number of plasma parameters including the ion temperature. The theoretical models of the frequency spectrum of the scattered signal have been often developed based on a set of assumptions on the state of the plasma. One of the most common assumptions is that the plasma is in thermal equilibrium consisting of electron and ion populations that can be described by Maxwellian distributions. Such an assumption, however, is commonly violated at high latitudes where the interactions between the ionosphere and the magnetosphere result in a very dynamic plasma environment. One example of such violations occurs on the edge of auroral arcs when the presence of strong electric fields (<100 mV/m) may cause the ion velocity distribution to deviate from Maxwellian. In such cases, the assumption of thermal equilibrium in the standard ISR fitting procedure results in significant errors in derivation of the plasma parameters. In this study we investigate an event in which the ion temperature measured by the Resolute Bay incoherent scatter radar (RISR) reaches to values as high as 8000 (K). Based on RISR measurements of the electric fields we calculate the expected Joule heating and investigate the possible role of ISR misfitting (caused by deviation of the ion distribution from Maxwellian) in over estimating the ion temperature.

  13. A parameter study of mode conversion at ion-ion hybrid resonances for ICRF-heating

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.

    1992-04-01

    By solving the wave equation for the radial electric field with constant poloidal electric field around the resonance layer of the fast Alfvén wave, various complex characteristics of mode conversion physics can be elucidated and analyzed for ion cyclotron heating of tokamaks. The validity of the Budden and tunnelling model [Ngan, Y. C. and Swanson, D. G., Phys. Fluids 20, 1920 (1977)] for the conversion studies is explored, and the conversion coefficient for the ion-ion hybrid resonance in the presence of cyclotron damping is found in closed form. The analytical results are compared with the numerical solution of the full wave equations expanded to second order in ion Larmor radius. It is found that the standard tunnelling solutions can be erroneous, not only in the case of strong damping, but also when the linearization of the plasma parameters around the resonance, peculiar to the tunnelling model, becomes inaccurate. The effects of the damping and cavity resonances on the conversion are separated in the derived analytical estimates, and the limits of the local theory of conversion are determined.

  14. Studies of highly charged iron ions using electron beam ion traps for interpreting astrophysical spectra

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Beilmann, C.; Bernitt, S.; Clementson, J.; Eberle, S.; Epp, S. W.; Graf, A.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Kubiček, K.; Leutenegger, M. A.; Mäckel, V.; Porter, F. S.; Rudolph, J. K.; Simon, M. C.; Steinbrügge, R.; Träbert, E.; Ullrich, J.; Crespo López-Urrutia, J. R.; Beiersdorfer, P.

    2013-09-01

    For over a decade, the x-ray astrophysics community has enjoyed a fruitful epoch of discovery largely as a result of the successful launch and operation of the high resolution, high sensitivity spectrometers on board the Chandra, XMM-Newton and Suzaku x-ray observatories. With the launch of the x-ray calorimeter spectrometer on the Astro-H x-ray observatory in 2014, the diagnostic power of high resolution spectroscopy will be extended to some of the hottest, largest and most exotic objects in our Universe. The diagnostic utility of these spectrometers is directly coupled to, and often limited by, our understanding of the x-ray production mechanisms associated with the highly charged ions present in the astrophysical source. To provide reliable benchmarks of theoretical calculations and to address specific problems facing the x-ray astrophysics community, electron beam ion traps have been used in laboratory astrophysics experiments to study the x-ray signatures of highly charged ions. A brief overview of the EBIT-I electron beam ion trap operated at Lawrence Livermore National Laboratory and the Max-Planck-Institut für Kernphysik's FLASH-EBIT operated at third and fourth generation advanced light sources, including a discussion of some of the results are presented.

  15. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  16. Computer Simulation Studies of Ion Channels at High Temperatures

    NASA Astrophysics Data System (ADS)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  17. What is the required minimum landscape size for dispersal studies?

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2007-11-01

    Among small animals dispersal parameters are mainly obtained by traditional methods using population studies of marked individuals. Dispersal studies may underestimate the rate and distance of dispersal, and be biased because of aggregated habitat patches and a small study area. The probability of observing long distance dispersal events decreases with distance travelled by the organisms. In this study a new approach is presented to solve this methodological problem. An extensive mark-release-recapture programme was performed in an area of 81 km(2) in southern Sweden. To estimate the required size of the study area for adequate dispersal measures we examined the effect of study area size on dispersal distance using empirical data and a repeated subsampling procedure. In 2003 and 2004, two species of diurnal burnet moths (Zygaenidae) were studied to explore dispersal patterns. The longest confirmed dispersal distance was 5600 m and in total 100 dispersal events were found between habitat patches for the two species. The estimated dispersal distance was strongly affected by the size of the study area and the number of marked individuals. For areas less than 10 km(2) most of the dispersal events were undetected. Realistic estimates of dispersal distance require a study area of at least 50 km(2). To obtain adequate measures of dispersal, the marked population should be large, preferably over 500 recaptured individuals. This result was evident for the mean moved distance, mean dispersal distance and maximum dispersal distance. In general, traditional dispersal studies are performed in small study areas and based on few individuals and should therefore be interpreted with care. Adequate dispersal measures for insects obtained by radio-tracking and genetic estimates (gene flow) is still a challenge for the future.

  18. Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster primary beams.

    PubMed

    Sheraz née Rabbani, Sadia; Razo, Irma Berrueta; Kohn, Taylor; Lockyer, Nicholas P; Vickerman, John C

    2015-02-17

    Following from our previous Letter on this topic, this Article reports a detailed study of time-of-flight-secondary ion mass spectrometry (TOF-SIMS) positive ion spectra generated from a set of model biocompounds (arginine, trehalose, DPPC, and angiotensin II) by water cluster primary ion beams in comparison to argon cluster beams over a range of cluster sizes and energies. Sputter yield studies using argon and water beams on arginine and Irganox 1010 have confirmed that the sputter yields using water cluster beams lie on the same universal sputtering curve derived by Seah for argon cluster beams. Thus, increased ion yield using water cluster beams must arise from increased ionization. The spectra and positive ion signals observed using cluster beams in the size range from 1,000 to 10,000 and the energy range 5-20 keV are reported. It is confirmed that water cluster beams enhance proton related ionization over against argon beams to a significant degree such that enhanced detection sensitivities from 1 μm(2) in the region of 100 to 1,000 times relative to static SIMS analysis with Ar2000 cluster beams appear to be accessible. These new studies show that there is an unexpected complexity in the ionization enhancement phenomenon. Whereas optimum ion yields under argon cluster bombardment occur in the region of E/n ≥ 10 eV (where E is the beam energy and n the number of argon atoms in the cluster) and fall rapidly when E/n < 10 eV; for water cluster beams, ion yields increase significantly in this E/n regime (where n is the number of water molecules in the cluster) and peak for 20 keV beams at a cluster size of 7,000 or E/n ∼3 eV. This important result is explored further using D2O cluster beams that confirm that in this low E/n regime protonation does originate to a large extent from the water molecules. The results, encouraging in themselves, suggest that for both argon and water cluster beams, higher energy beams, e.g., 40 and 80 keV, would enable larger

  19. Ions and size effects in nanoparticle/liquid crystal colloids sandwiched between two substrates. The case of two types of fully ionized species

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy

    2017-07-01

    This article reports the combined effect of nanoparticles and alignment layers of the cell on the concentration of mobile ions in liquid crystals. Assuming two types of fully ionized species-contaminants in liquid crystal nanocolloids sandwiched between two substrates, several size effects on their electrical properties are modelled. These effects describe the monotonous and non-monotonous dependence of the total concentration of mobile ions on the thickness of the cell and/or on the concentration of nanoparticles. In addition, the tuning of this dependence by varying the concentration of nanoparticles, their size and ionic purity is also discussed.

  20. Sample size considerations for clinical research studies in nuclear cardiology.

    PubMed

    Chiuzan, Cody; West, Erin A; Duong, Jimmy; Cheung, Ken Y K; Einstein, Andrew J

    2015-12-01

    Sample size calculation is an important element of research design that investigators need to consider in the planning stage of the study. Funding agencies and research review panels request a power analysis, for example, to determine the minimum number of subjects needed for an experiment to be informative. Calculating the right sample size is crucial to gaining accurate information and ensures that research resources are used efficiently and ethically. The simple question "How many subjects do I need?" does not always have a simple answer. Before calculating the sample size requirements, a researcher must address several aspects, such as purpose of the research (descriptive or comparative), type of samples (one or more groups), and data being collected (continuous or categorical). In this article, we describe some of the most frequent methods for calculating the sample size with examples from nuclear cardiology research, including for t tests, analysis of variance (ANOVA), non-parametric tests, correlation, Chi-squared tests, and survival analysis. For the ease of implementation, several examples are also illustrated via user-friendly free statistical software.

  1. Factors affecting pupil size after dilatation: the Twin Eye Study

    PubMed Central

    Hammond, C.; Snieder, H.; Spector, T.; Gilbert, C.

    2000-01-01

    BACKGROUND/AIMS—Well dilated pupils make eye surgery easier. A classic twin study was established to examine the relative importance of genes and environment in the variance of pupil size after mydriasis, and to examine the effects of other factors such as age, iris colour, and refractive error.
METHODS—506 twin pairs, 226 monozygotic (MZ) and 280 dizygotic (DZ), aged 49-79 (mean age 62.2 years, SD 5.7) were examined. Dilated pupil size was measured using a standardised grid superimposed over digital retroillumination images taken 50-70 minutes after mydriasis using tropicamide 1% and phenylephrine 10%. Univariate maximum likelihood model fitting was used to estimate genetic and environmental variance components.
RESULTS—Dilated pupil size was more highly correlated in MZ compared with DZ twins (intraclass correlation coefficients 0.82 and 0.39 respectively). A model specifying additive genetic and unique environmental factors showed the best fit to the data, yielding a heritability of 78-80%. Individual environmental factors explained 18-19% of the variance in this population. Age only accounted for 2-3% of the variance and refractive error and iris colour did not significantly contribute to the variance.
CONCLUSIONS—Pupil size after mydriasis is largely genetically determined, with a heritability of up to 80%.

 PMID:11004106

  2. Factors affecting pupil size after dilatation: the Twin Eye Study.

    PubMed

    Hammond, C J; Snieder, H; Spector, T D; Gilbert, C E

    2000-10-01

    Well dilated pupils make eye surgery easier. A classic twin study was established to examine the relative importance of genes and environment in the variance of pupil size after mydriasis, and to examine the effects of other factors such as age, iris colour, and refractive error. 506 twin pairs, 226 monozygotic (MZ) and 280 dizygotic (DZ), aged 49-79 (mean age 62.2 years, SD 5.7) were examined. Dilated pupil size was measured using a standardised grid superimposed over digital retroillumination images taken 50-70 minutes after mydriasis using tropicamide 1% and phenylephrine 10%. Univariate maximum likelihood model fitting was used to estimate genetic and environmental variance components. Dilated pupil size was more highly correlated in MZ compared with DZ twins (intraclass correlation coefficients 0.82 and 0.39 respectively). A model specifying additive genetic and unique environmental factors showed the best fit to the data, yielding a heritability of 78-80%. Individual environmental factors explained 18-19% of the variance in this population. Age only accounted for 2-3% of the variance and refractive error and iris colour did not significantly contribute to the variance. Pupil size after mydriasis is largely genetically determined, with a heritability of up to 80%.

  3. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions.

    PubMed

    Caporale, Antonio G; Punamiya, Pravin; Pigna, Massimo; Violante, Antonio; Sarkar, Dibyendu

    2013-09-15

    Arsenite [As(III)] and arsenate [As(V)] sorption by Fe- and Al-based drinking-water treatment residuals (WTR) was studied as a function of particle size at different pHs, and in the presence of competing ligands, namely, phosphate, citrate, and oxalate. Both WTRs showed high affinity for As oxyanions. However, Al-WTR showed higher As(III) and As(V) sorption capacity than Fe-WTR because of their greater surface area. The effect of particle size on As sorption was pronounced on Fe-WTR, where the smaller fraction sorbed more As(III) and As(V) than the larger fractions, whereas relatively minor effects of particle size on As sorption was observed for Al-WTR. Arsenite sorption on both WTRs increased with increasing pH up to circum-neutral pHs and then decreased at higher pHs, whereas As(V) sorption decreased steadily with increasing pH. The capacity of competing ligands to inhibit sorption was greater for As(III) than As(V) on both WTRs (particularly on Al-WTR) following the sequence: oxalateion residence time on the WTR surfaces: the longer the residence time, the less effective were the competing ligands in As desorption.

  4. A branching process model for the analysis of abortive colony size distributions in carbon ion-irradiated normal human fibroblasts.

    PubMed

    Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki

    2014-05-01

    A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.

  5. A branching process model for the analysis of abortive colony size distributions in carbon ion-irradiated normal human fibroblasts

    PubMed Central

    Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki

    2014-01-01

    A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log–log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE. PMID:24501383

  6. Reusable Launch Vehicle Tank/Intertank Sizing Trade Study

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Myers, David E.; Martin, Carl J.

    2000-01-01

    A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).

  7. Early negative ion studies related to C6H- and recent ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Fujimori, Ryuji; Ooe, Hiroki; Miyamoto, Yuki

    2015-01-01

    Through a spectral line survey observation with Nobeyama 45-m radio telescope in the 28-50 GHz region toward a late type star IRC+10216, a series of lines of a linear molecule was found in 1995. The rotational constant was determined to be 1376.8641(43) MHz, and the molecule is called B1377. After the detection, various studies related this species were carried out, which are presented in this paper, including Aoki's pioneering prediction and radio searches for NCO-, NCS-, and CCH-, etc. Finally, in 2006, McCarthy et al. succeeded in laboratory detection of the C6H- species by mm wave and FTMW spectroscopy and proved that the C6H- anion is B1377. We also report recent laboratory studies in the following topics:(1) time-resolved Fourier transform (FT) emission and absorption spectroscopy of molecular ions to obtain reaction rate constants, (2) FT infrared absorption spectrum of the H2F+ ion.

  8. Tooth Wear Prevalence and Sample Size Determination : A Pilot Study

    PubMed Central

    Abd. Karim, Nama Bibi Saerah; Ismail, Noorliza Mastura; Naing, Lin; Ismail, Abdul Rashid

    2008-01-01

    Tooth wear is the non-carious loss of tooth tissue, which results from three processes namely attrition, erosion and abrasion. These can occur in isolation or simultaneously. Very mild tooth wear is a physiological effect of aging. This study aims to estimate the prevalence of tooth wear among 16-year old Malay school children and determine a feasible sample size for further study. Fifty-five subjects were examined clinically, followed by the completion of self-administered questionnaires. Questionnaires consisted of socio-demographic and associated variables for tooth wear obtained from the literature. The Smith and Knight tooth wear index was used to chart tooth wear. Other oral findings were recorded using the WHO criteria. A software programme was used to determine pathological tooth wear. About equal ratio of male to female were involved. It was found that 18.2% of subjects have no tooth wear, 63.6% had very mild tooth wear, 10.9% mild tooth wear, 5.5% moderate tooth wear and 1.8 % severe tooth wear. In conclusion 18.2% of subjects were deemed to have pathological tooth wear (mild, moderate & severe). Exploration with all associated variables gave a sample size ranging from 560 – 1715. The final sample size for further study greatly depends on available time and resources. PMID:22589636

  9. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.

    PubMed

    Wu, Changzheng; Yin, Ping; Zhu, Xi; OuYang, Chuanzi; Xie, Yi

    2006-09-14

    surface area or diameter size of hematite nanorods can also influence the lithium intercalation performances. These results give us a guideline for the study of the size-dependent properties for functional materials as well as further applications for magnetic materials, lithium-ion batteries, and gas sensors.

  10. Shift reagents in ion mobility spectrometry: the effect of the number of interaction sites, size and interaction energies on the mobilities of valinol and ethanolamine.

    PubMed

    Fernández-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-05-01

    Overlapping peaks interfere in ion mobility spectrometry (IMS), but they are separated introducing mobility shift reagents (SR) in the buffer gas forming adducts with different collision cross-sections (size). IMS separations using SR depend on the ion mobility shifts which are governed by adduct's size and interaction energies (stabilities). Mobility shifts of valinol and ethanolamine ions were measured by electrospray-ionization ion mobility-mass spectrometry (MS). Methyl-chloro propionate (M) was used as SR; 2-butanol (B) and nitrobenzene (N) were used for comparison. Density functional theory was used for calculations. B produced the smallest mobility shifts because of its small size. M and N have two strong interaction sites (oxygen atoms) and similar molecular mass, and they should produce similar shifts. For both ethanolamine and valinol ions, stabilities were larger for N adducts than those of M. With ethanolamine, M produced a 68% shift, large compared to that using N, 61%, because M has a third weak interaction site on the chlorine atom and, therefore, M has more interaction possibilities than N. This third site overrode the oxygen atoms' interaction energy that favored the adduction of ethanolamine with N over that with M. On the contrary, with valinol mobility shifts were larger with N than with M (21 vs 18%) because interaction energy favored even more adduction of valinol with N than with M; that is, the interaction energy difference between adducts of valinol with M and N was larger than that between those adducts with ethanolamine, and the third M interaction could not override this larger difference. Mobility shifts were explained based on the number of SR's interaction sites, size of ions and SR, and SR-ion interaction energies. This is the first time that the number of interaction sites is used to explain mobility shifts in SR-assisted IMS. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  12. Experiments Studying Desorbed Gas and Electron Clouds in Ion Accelerators

    SciTech Connect

    Molvik, A W; Covo, M K; Friedman, A; Cohen, R; Lund, S M; Barnard, J J; Bieniosek, F; Seidl, P; Baca, D; Vay, J; Celata, C M; Waldron, W L; Vujic, J L

    2005-05-13

    Electron clouds and gas pressure rise limit the performance of many major accelerator rings. We are studying these issues experimentally with {approx}1 MeV heavy-ion beams, coordinated with significant efforts in self-consistent simulation and theory. The experiments use multiple diagnostics, within and between quadrupole magnets, to measure the sources and accumulation of electrons and gas. In support of these studies, we have measured gas desorption and electron emission coefficients for potassium ions impinging on stainless steel targets at angles near grazing incidence. Our goal is to measure the electron particle balance for each source--ionization of gas, emission from beam tubes, and emission from an end wall--determine the electron effects on the ion beam and apply the increased understanding to mitigation. We describe progress towards that goal.

  13. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  14. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    SciTech Connect

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Uchida, T.; Yoshida, Y.

    2016-02-15

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  15. Optimization of parameters of a surface-electrode ion trap and experimental study of influences of surface on ion lifetime

    NASA Astrophysics Data System (ADS)

    Ou, BaoQuan; Zhang, Jie; Zhang, XinFang; Xie, Yi; Chen, Ting; Wu, ChunWang; Wu, Wei; Chen, PingXing

    2016-12-01

    In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.

  16. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    PubMed

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  17. Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size.

    PubMed

    Lin, Chih-Yuan; Chen, Fu; Yeh, Li-Hsien; Hsu, Jyh-Ping

    2016-11-21

    Modern applications of nanotechnology such as salinity gradient power and ionic diodes usually involve the transport of ionic species in a system comprising a nanopore connecting two large reservoirs. The charge properties on the nanopore surface plays a key role, and they need to be estimated by fitting a mathematical model for the system to measurable quantities such as ionic current or conductance. This model can also be used to simulate the system behavior under various conditions. However, the large difference between the linear size of a nanopore and that of a reservoir makes relevant analyses difficult. Considering numerical efforts, the impact of the computational domain for the reservoir geometry and size on the system behavior is almost always overlooked in previous studies, where the computational domain for a reservoir is often assumed to have a relatively small size. Taking salinity gradient ionic current as an example, we show for the first time that the performance of a reservoir-nanopore-reservoir system is influenced appreciably by the computational domain for the reservoir geometry and size, especially when a voltage bias is not applied. Using the reported experimental data for the osmotic current in a single boron nitride nanopore, we show that its surface charge density can be estimated realistically by choosing an appropriate computational domain for reservoir geometry and size. Numerical simulation also reveals that choosing appropriate reservoir geometry and size is necessary; otherwise, the results obtained might be unreliable, or even misleading. To avoid this, we suggest that for the nanopore with the pore length smaller than 1000 nm, the size of the computational domain of a reservoir, (length × radius), with equal length and radius, should exceed 800 × 800 nm.

  18. Sample-size redetermination for repeated measures studies.

    PubMed

    Zucker, David M; Denne, Jonathan

    2002-09-01

    Clinical trialists recently have shown interest in two-stage procedures for updating the sample-size calculation at an interim point in a trial. Because many clinical trials involve repeated measures designs, it is desirable to have available practical two-stage procedures for such designs. Shih and Gould (1995, Statistics in Medicine 14, 2239-2248) discuss sample-size redetermination for repeated measures studies but under a highly simplified setup. We develop two-stage procedures under the general mixed linear model, allowing for dropouts and missed visits. We present a range of procedures and compare their Type I error and power by simulation. We find that, in general, the achieved power is brought considerably closer to the required level without inflating the Type I error rate. We also derive an inflation factor that ensures the power requirement is more closely met.

  19. Ion Sources

    NASA Astrophysics Data System (ADS)

    Haseroth, Helmut; Hora, Heinrich

    1993-03-01

    Ion sources for accelerators are based on plasma configurations with an extraction system in order to gain a very high number of ions within an appropriately short pulse and of sufficiently high charge number Z for advanced research. Beginning with the duoplasmatron, all established ion sources are based on low-density plasmas, of which the electron beam ionization source (EBIS) and the electron cyclotron resonance (ECR) source are the most advanced; for example they result in pulses of nearly 6 × 108 fully stripped sulfur ions per pulse in the Super Proton Synchrotron (SPS) at CERN with energies of 200 GeV/u. As an example of a forthcoming development, we are reporting about the lead ion source for the same purpose. Contrary to these cases of low-density plasmas, where a rather long time is always necessary to generate sufficiently high charge states, the laser ion source uses very high density plasmas and therefore produced, for example in 1983, single shots of Au51+ ions of high directivity with energies above 300 MeV within 2 ns irradiation time of a gold target with a medium-to-large CO2 laser. Experiments at Dubna and Moscow, using small-size lasers, produced up to one million shots with 1 Hz sequence. After acceleration by a linac or otherwise, ion pulses of up to nearly 5 × 1010 ions of C4+ or Mg12+ with energies in the synchrotrons of up to 2 GeV/u were produced. The physics of the laser generation of the ions is most complex, as we know from laser fusion studies, including non-linear dynamic and dielectric effects, resonances, self-focusing, instabilities, double layers, and an irregular pulsation in the 20 ps range. This explains not only what difficulties are implied with the laser ion source, but also why it opens up a new direction of ion sources.

  20. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  1. Amorphization of diamond by ion irradiation: a Raman study

    NASA Astrophysics Data System (ADS)

    Brunetto, Rosario; Baratta, Giuseppe A.; Strazzulla, Giovanni

    2005-01-01

    We performed ion irradiation experiments on diamond samples at room temperature, probed by in-situ Raman spectroscopy. Different ions are used with energies of 200 or 400 keV. The intensity of diamond Raman band (at 1332 cm-1) decreases exponentially as the ion fluence increases. Results from different ions demonstrate that this effect is due to changes in the optical properties of the damaged samples and is correlated with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp2) is formed after a threshold of about 2×1022 vacancies/cm3, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D-line and G-line of the synthesized amorphous carbon are studied. A comparison is made between the amorphization of diamond and that of graphite, forsterite, and water ice crystals. A linear relationship is found between the amorphization dose and the displacement energy. The results are discussed in view of their relevance in astrophysics.

  2. Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyang; Wu, Lili; Yang, Juan; Tang, Jingjing; Xi, Lihua; Wang, Biao

    2016-08-01

    Recently, nanostructured Si has been intensively studied as a promising anode candidate for lithium ion batteries due to its ultrahigh capacity. However, the downsizing of Si to nanoscale dimension is often impeded by complicated and expensive methods. In this work, natural halloysite clay was utilized for the production of Si nanoparticles through selective acid etching and modified magnesiothermic reduction processes. The physical and chemical changes of these samples during the various processes have been analyzed. The as-prepared Hsbnd Si from halloysite clay is composed of many interconnected Si nanoparticles with an average diameter of 20-50 nm. Owing to the small size and porous nature, the Hsbnd Si nanoparticles exhibit a satisfactory performance as an anode for lithium ion batteries. Without further modification, a stable capacity over 2200 mAh g-1 at a rate of 0.2 C after 100 cycles and a reversible capacity above 800 mAh g-1 at a rate of 1 C after 1000 cycles can be obtained. As a result, this synthetic route is cost-effective and can be scaled up for mass production of Si nanoparticles, which may facilitate valuable utilization of halloysite clay and further commercial application of Si-based anode materials.

  3. MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach

    PubMed Central

    2013-01-01

    Background Determining sample sizes for metabolomic experiments is important but due to the complexity of these experiments, there are currently no standard methods for sample size estimation in metabolomics. Since pilot studies are rarely done in metabolomics, currently existing sample size estimation approaches which rely on pilot data can not be applied. Results In this article, an analysis based approach called MetSizeR is developed to estimate sample size for metabolomic experiments even when experimental pilot data are not available. The key motivation for MetSizeR is that it considers the type of analysis the researcher intends to use for data analysis when estimating sample size. MetSizeR uses information about the data analysis technique and prior expert knowledge of the metabolomic experiment to simulate pilot data from a statistical model. Permutation based techniques are then applied to the simulated pilot data to estimate the required sample size. Conclusions The MetSizeR methodology, and a publicly available software package which implements the approach, are illustrated through real metabolomic applications. Sample size estimates, informed by the intended statistical analysis technique, and the associated uncertainty are provided. PMID:24261687

  4. Research study of droplet sizing technology leading to the development of an advanced droplet sizing system

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Smart, A. E.; Espinosa, V. E.

    1985-01-01

    An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail.

  5. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  6. SAXS studies of ion-nucleic acid interactions.

    PubMed

    Pollack, Lois

    2011-01-01

    Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.

  7. Diagnostic studies of ion beam formation in inductively coupled plasma

    SciTech Connect

    Jacobs, Jenee L.

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  8. Electrophoretic Mobility Study of the Adsorption of Alkyl Xanthate Ions on Galena and Sphalerite.

    PubMed

    Song, S.; Lopez-Valdivieso, A.; Ojeda-Escamilla, M. C.

    2001-05-01

    The adsorption of ethyl and amyl xanthate ions on galena and sphalerite fines has been studied using electrophoretic light-scattering (ELS) measurements. It was performed on galena and sphalerite (<2&mgr;m) in aqueous solution at different potassium ethyl xanthate (PEX) and potassium amyl xanthate (PAX) concentrations. It has been observed that the presence of PEX or PAX caused the isoelectric points (IEP) of galena and sphalerite fines to shift and the electrophoretic mobility to reverse in sign, indicating that the xanthate ions chemisorbed on galena and sphalerite surfaces. This adsorption markedly broadened the electrophoretic mobility distribution of the mineral fines, suggesting that the populations of the particles have quite different adsorption densities of xanthate ions, and therefore the particle hydrophobicity was different. This phenomenon might be attributable to the effect of the hemimicelle adsorption of the xanthate ions on the minerals, the nonuniform distribution of active sites and their degree of activity, the effect of particle size and shape, etc. The nonuniform adsorption has been found to increase with increasing PEX or PAX concentration, reaching a maximum at a medium concentration followed by a decline. Also, experimental results have demonstrated that the nonuniform adsorption of the xanthate ions is much stronger on sphalerite than on galena, which may explain why sphalerite has a worse flotation response than galena when alkyl xanthates are used as collectors in flotation systems. Copyright 2001 Academic Press.

  9. Study of SEUs generated by high energy ions

    SciTech Connect

    Dreute, J.; Roecher, H.; Heinrich, W. ); Harboe-Soerensen, R.; Adams, L. ); Schardt, D. )

    1994-06-01

    Using 1 GeV/nucleon ions SEUs have been studied in two types of CMOS-SRAMs with respect to tilt angle and tilt direction. Tracks of upset bits, which have been observed under large tilt angles, were used to determine the charge collection depth in these devices.

  10. Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-06-28

    We report a novel protocol to prepare titania hollow nanospheres of size about 28 ± 1 nm with micelles of asymmetric triblock copolymers. The hollow particles exhibit unique electrochemical properties in lithium ion rechargeable batteries such as high capacity, very low irreversible capacity loss, and high cycling performance. This journal is © The Royal Society of Chemistry 2011

  11. Magnesium-ion battery-relevant electrochemistry of MgMn2O4: crystallite size effects and the notable role of electrolyte water content

    DOE PAGES

    Yin, Jiefu; Brady, Alexander B.; Takeuchi, Esther S.; ...

    2017-03-06

    MgMn2O4 nanoparticles with crystallite sizes of 11 (MMO-1) and 31 nm (MMO-2) were synthesized and their magnesium-ion battery-relevant electrochemistry was investigated. Here, MMO-1 delivered an initial capacity of 220 mA h g–1 (678 mW h g–1). Electrolyte water content had a profound effect on cycle retention.

  12. Molecular dynamics study of micelles properties according to their size.

    PubMed

    Lebecque, S; Crowet, J M; Nasir, M N; Deleu, M; Lins, L

    2017-03-01

    Surfactants are molecules able to spontaneously self-assemble to form aggregates with well-defined properties, such as spherical micelles, planar bilayers, cylindrical micelles or vesicles. Micelles have notably several applications in many domains, such as drug delivery or membrane protein solubilization. In this context, the study of micelle formation in relation with the structural and physico-chemical properties of surfactants is of great interest to better control their use in the different application fields. In this work, we use the MD approach developed by Yoshii et al. and extend it to surfactants with different structures. We aim to systematically investigate different micellar properties as a function of the aggregates size by a molecular dynamics approach, to get an insight into the micellar organization and to collect some relevant descriptors about micelle formation. For this, we perform short MD simulations of preformed micelles of various sizes and analyze three parameters for each micelle size, namely the eccentricity of the micelles, the hydrophobic/hydrophilic surface ratio and the hydrophobic tails hydration. If these parameters are known descriptors of micelles, they were not yet studied in this way by MD. We show that eccentricity, used as "validator" parameter, exhibits minimal values when the aggregate size is close to the experimental aggregation number for surfactants that are known to form spherical micelles. This hence indicates that our methodology gives consistent results. The evolution of the two descriptors follows another scheme, with a sharp increase and decrease, respectively, followed by a leveling-off. The aggregate sizes at which this stabilization starts to occur are close to the respective aggregation number of each surfactant. In our approach, we validate the use of these descriptors to follow micelle formation by MD, from "simple" surfactants to more complex structures, like lipopeptides. Our calculations also suggest that

  13. A new high transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Franchin, A.; Downard, A. J.; Kangasluoma, J.; Nieminen, T.; Lehtipalo, K.; Steiner, G.; Manninen, H. E.; Petäjä, T.; Flagan, R. C.; Kulmala, M.

    2015-06-01

    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all DMAs have an unfavorable potential gradient at the outlet (e.g. long column, Vienna type) or at the inlet (nano-radial DMA). This feature prevents them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in mobility equivalent diameter (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a Particle Size Magnifier (PSM) and a booster Condensation Particle Counter (CPC) as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm, corresponding to a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD 7 measurement campaign at CERN. We achieved a higher size resolution than techniques currently used in field measurements, and maintained a good transmission efficiency at moderate inlet and sheath air flows (2.5 and 30 LPM, respectively). In this paper, by measuring size distribution at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.

  14. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power Pin ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  15. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects

    NASA Astrophysics Data System (ADS)

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power Pin ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  16. Studies of Beta-Delayed Neutron Emission using Trapped Ions

    NASA Astrophysics Data System (ADS)

    Siegl, Kevin; Aprahamian, A.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Levand, A. F.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Hirsh, T. Y.; Kolos, K.; Marley, S. T.; Morgan, G. E.; Norman, E. B.; Nystrom, A.; Orford, R.; Padgett, S.; Pérez Galván, A.; Sh, K. S.; Strauss, S. Y.; Wang, B. S.

    2017-01-01

    Using a radio-frequency quadrupole ion trap to confine radioactive ions allows indirect measurements of beta-delayed neutron (BDN) emission. By determining the recoil energy of the beta-decay daughter ions it is possible to study BDN emission, as the neutron emission can impart a significantly larger nuclear recoil than from beta-decay alone. This method avoids most of the systematic uncertainties associated with direct neutron detection but introduces dependencies on the specifics of the decay and interactions of the ion with the RF fields. The decays of seven BDN precursors were studied using the Beta-decay Paul Trap (BPT) to confine fission fragments from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The analysis of these measurements and results for the branching ratios and neutron energy spectra will be presented. Supported by the NSF under grant PHY-1419765, and the U.S. DOE under the NEUP project 13-5485, contracts DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and award DE-NA0000979 (NNSA).

  17. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  18. Experimental studies of ion flow near the sheath edge in multiple ion species plasma including argon, xenon and neon

    NASA Astrophysics Data System (ADS)

    Severn, Greg; Yip, Chi-Shung; Hershkowitz, Noah; Baalrud, Scott D.

    2017-05-01

    The Bohm sheath criterion was studied with laser-induced fluorescence (LIF) in three ion species plasmas using two tunable diode lasers. It was found in the first LIF studies of three ion species plasma (Yip et al 2016 Phys. Plasmas 23 050703) in which krypton was added to a mixture of argon and xenon plasma confined in a multidipole, dc hot filament discharge, that the addition of krypton served to turn off instability enhanced collisional friction (IEF) found in two ion species plasma (Yip et al 2010 Phys. Plasmas). In this study, neon, a less massive atomic gas than argon was added. Argon and xenon ion velocity distribution functions (IVDFs) were measured at the sheath-presheath boundary near a negatively biased boundary plate, and the Ne+ density was systematically increased. We found in both cases that once the added ion density significantly exceeded the density of the other two ions, IVDF measurements consistent with the absence of the instability were obtained, and the measured ion sheath edge speeds tended toward their individual Bohm velocities. For all other relative concentrations, the ions reached the sheath edge neither at their Bohm speeds nor the ion sound speed of the system, consistent, qualitatively, with the action of the IEF.

  19. Diffusion of water and sodium counter-ions in nanopores of a β-lactoglobulin crystal: a molecular dynamics study.

    PubMed

    Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier

    2005-07-01

    The dynamics of water and sodium counter-ions (Na(+)) in a C222(1) orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm(2) ns(-1), when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.

  20. Class-Size Policy: The STAR Experiment and Related Class-Size Studies. NCPEA Policy Brief. Volume 1, Number 2

    ERIC Educational Resources Information Center

    Achilles, Charles M.

    2012-01-01

    This brief summarizes findings on class size from over 25 years of work on the Tennessee Student Teacher Achievement Ratio (STAR) randomized, longitudinal experiment, and other Class-Size Reduction (CSR) studies throughout the United States, Australia, Hong Kong, Sweden, Great Britain, and elsewhere. The brief concludes with recommendations. The…

  1. Size control of nanopores formed on SiO{sub 2} glass by swift-heavy-ion irradiation and its application to highly sensitive biomolecular detection

    SciTech Connect

    Nomura, Ken-ichi; Fujimaki, Makoto; Awazu, Koichi; Komatsubara, Tetsuro

    2011-09-15

    Swift-heavy-ion irradiation creates latent tracks in SiO{sub 2} glass and nanopores with a high aspect ratio can be formed along these ion paths by selective etching of the latent tracks using hydrogen fluoride (HF) vapor. Here we report that the size of nanopores can easily be controlled by simply changing the temperature of the HF solution generating the vapor and/or that of the SiO{sub 2} glass exposed to the vapor. Furthermore, this method of size control was used to produce SiO{sub 2} glass sheets with nanopores of different sizes and number densities for use as the waveguide layer in the sensing plates for a waveguide-mode sensor. In comparison with nonperforated plates, the increased surface area due to the formation of nanopores was found to create up to a tenfold increase in sensitivity.

  2. Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex

    SciTech Connect

    Ostroumov, P. N.; Plastun, A. S.; Mustapha, B.; Conway, Z. A.

    2016-01-01

    The electron-ion collider (JLEIC) being proposed at JLab requires a new ion accelerator complex which includes a linac capable of delivering any ion beam from hydrogen to lead to the booster. We are currently developing a linac which consists of several ion sources, a normal conducting (NC) front end, up to 5 MeV/u, and a SC section for energies > 5 MeV/u. This design work is focused on the beam dynamics and electrodynamics studies performed to design efficient and cost-effective accelerating structures for both the NC and SC sections of the linac. Currently, we are considering two separate RFQs for the heavy-ion and light-ion beams including polarized beams, and different types of NC accelerating structures downstream of the RFQ. Quarter-wave and half-wave resonators can be effectively used in the SC section.

  3. Do US veterans wear appropriately sized shoes?: the Veterans Affairs shoe size selection study.

    PubMed

    Nixon, Brent P; Armstrong, David G; Wendell, Christopher; Vazquez, Jefferey R; Rabinovich, Zinoviy; Kimbriel, Heather R; Rosales, Mark Anthony; Boulton, Andrew J M

    2006-01-01

    Poorly fitting footwear has frequently been cited as an etiologic factor in the pathway to diabetic foot ulceration. However, we are unaware of any reports in the medical literature specifically measuring shoe size versus foot size in this high-risk population. We assessed the prevalence of poorly fitting footwear in individuals with and without diabetic foot ulceration. We evaluated the shoe size of 440 consecutive patients (94.1% male; mean +/- SD age, 67.2 +/- 12.5 years) presenting to an interdisciplinary teaching clinic. Of this population, 58.4% were diagnosed as having diabetes, and 6.8% had active diabetic foot ulceration. Only 25.5% of the patients were wearing appropriately sized shoes. Individuals with diabetic foot ulceration were 5.1 times more likely to have poorly fitting shoes than those without a wound (93.3% versus 73.2%; odds ratio [OR], 5.1; 95% confidence interval [CI], 1.2-21.9; P = .02). This association was also evident when assessing only the 32.3% of the total population with diabetes and loss of protective sensation (93.3% versus 75.0%; OR, 4.8; 95% CI, 1.1-20.9; P = .04). Poorly fitting shoes seem to be more prevalent in people with diabetic foot wounds than in those without wounds with or without peripheral neuropathy. This implies that appropriate meticulous screening for shoe-foot mismatches may be useful in reducing the risk of lower-extremity ulceration.

  4. A Condensed Phase Study of Ion-molecule Species

    NASA Astrophysics Data System (ADS)

    Tardif, M.; MacTaylor, R. S.

    2001-05-01

    Hydrogen chloride (HCl) plays a key role in a number of chemical reactions relevant to ozone levels in the polar stratosphere. Numerous studies have targeted a greater understanding of the properties of HCl as it reacts with water-ice mimics of Polar Stratospheric Clouds (PSCs). Surface studies have yeilded results that indicate gasseous HCl will dissolve into a solid ice layer. Gas-phase water cluster studies show similar results and propose a model accounting for HCl reactivity on PSC surfaces. This Molecular Activation by Surface Coordination (MASC) model suggests that molecular HCl is coordinated on the cloud surface by interaction with dissolved chloride ions. Molecular dynamics simulations indicate that such a species exists in concentrated hydrochloric acid. The present study seeks to use Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopic techniques to provide direct experimental evidence for molecular hydrogen chloride associated with chloride ions in solution.

  5. Effect of metal ions on the molecular weight distribution of humic substances derived from municipal compost: ultrafiltration and size exclusion chromatography with spectrophotometric and inductively coupled plasma-MS detection.

    PubMed

    Wrobel, Kazimierz; Sadi, Baki B M; Wrobel, Katarzyna; Castillo, Juan R; Caruso, Joseph A

    2003-02-15

    The effect of metal ions (Co, Cu, Ni, Pb, Zn) on the molecular weight distribution of humic substances (HSs) obtained from compost is studied. We believe this is the first of this type of study applied in this way to humic substances. Size exclusion chromatography is coupled with two on-line detection systems (spectrophotometric and ICPMS) to study the binding of metal ions by humic substances leached from compost. ICPMS provided highly specific, sensitive, and multielement analytical information that enabled obtaining direct experimental evidence for the participation of metal ions in molecular size distributions of humic compounds. The compost extract or its high molecular weight fraction (>5,000) was put in contact with EDTA or citrate ions, thereby competing with HSs for binding metals. The experiments were carried out by varying the pH maintained by Tris-HCl or CAPS buffer (pH 8.0 and 10.3) and keeping the ionic strength constant. The elution profile of humic substances using UV/ visible detection was compared with those from ICPMS detection of Co, Cu, Ni, Pb, and Zn in the same chromatographic runs. The results obtained suggested that both bridging between small molecules and complexation/ chelation by individual molecules are involved in metal ion binding to humic substances. The use of ICPMS to study the role of metal ions in aggregation/disassociation of humic substances proposed in this work is promising. Coupling element-specific detection with SEC or other separation systems allows better understanding of the mobility and bioaccessibility of elemental species in the environment and further elucidation of the dissolved humic structure.

  6. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  7. Studies on structural, optical and cluster size of poly(m-toluidine)-polyvinyl chloride blends

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Ali, Vazid; Siddiqui, Azher M.; Kulriya, Pawan K.; Zulfequar, M.

    Poly(m-toluidine) (PmT), a derivative of polyaniline, has been prepared by chemical oxidation polymerization method. The synthesized PmT powder is blended with plasticized polyvinyl chloride (PVC) to achieve 20 μm thick self-supported films. These films were irradiated with 60 MeV Si5+ ions at three different fluences whose Se (electronic energy loss) value is found to be 1.988×103 KeV/μ m, an order of magnitude larger than 60 MeV C5+ (2.958×102 KeV/μ m). Fourier transform infrared (FTIR), X-ray diffraction (XRD) and ultraviolet-visible (UV) absorption studies of pre- and post-irradiated films of PmT-PVC blends were carried out to study the heavy ion irradiation effects on these polymer blends. An overall change in the structure of the polymer blend has been observed from FTIR studies. UV-visible spectra show a decrease in the optical band gap (Eg) and an increase in cluster size with increasing fluence. An effort is made to compare these results with our earlier studies. We found that the variation in Se plays an important role in the structural and optical properties of PmT-PVC blends.

  8. Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Prajapati, Suman; Singh, Bhupendra; Singh, Bhartendu Kumar; Shanker, Rama

    2017-03-01

    Multiply charged argon ions produced from decay of L-shell hole states by impact of a continuous beam of 3.5 keV electrons are studied for the first time using an energy resolved electron-ion coincidence technique. The TOF spectra of argon ions are measured in coincidence with 18-energy selected electrons emitted in a wide energy range (126-242 eV). The coincidence measurement between the energy selected electrons and the correlated ions specifies the individual decay channel for various multiply charged ions. New experimental data are obtained and reported on the correlation probability for production of argon ions with charge states 1+ to 4+ as a function of ejected electrons in the considered energy range. The relative correlation probability of producing different charge state ions and corresponding physical processes involved in their production are presented and discussed. It has been found that the maximum probability for production of Ar2+ ions correlated to ejected Auger electrons in the energy range of 205-209 eV is 100%. No theoretical predictions are available to compare with these results. The present study shows further that not only the auto-ionization and normal Auger transitions but also several other decay processes including Coster-Kronig transitions followed by Auger cascades with a fraction of shake process play important role in producing ions with charge states 1+ to 4+.

  9. Thermal Characterization Study of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Miller, Thomas B.; Bennett, William R.

    2007-01-01

    The primary challenge in designing a full scale lithium-ion (Li-ion) battery system is safety under both normal operating as well as abusive conditions. The normal conditions involve expected charge/discharge cycles and it is known that heat evolves in batteries during those cycles. This is a major concern in the design for high power applications and careful thermal management is necessary to alleviate this concern. An emerging thermal measurement technology, such as the electrochemical calorimetric of batteries, will aid in the development of advanced, safe battery system. To support this technology, several "commercial-off-the-shelf" (COTS) Li-ion cells with different chemistries and designs are being evaluated for different cycling regimes at a given operating temperature. The Accelerated Rate Calorimeter (ARC)-Arbin cycler setup is used to measure the temperature, voltage, and current of the cells at different charge/discharge rates. Initial results demonstrated good cell cyclability. During the cycle testing, the cell exhibited an endothermic cooling in the initial part of the charge cycle. The discharge portion of the cycle is exothermic during the entire discharge period. The presence of an endothermic reaction indicates a significant entropy effect during the beginning of charge cycle. Further studies will be performed to understand the thermal characteristics of the Li-ion cells at the different operating conditions. The effects on the thermal response on cell aging and states-of-charge will also be identified.

  10. An infrared study of pure and ion irradiated frozen formamide

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Baratta, G. A.; Strazzulla, G.

    2006-08-01

    Context.The chemical evolution of formamide (HCONH2), a molecule of astrobiological interest that has been tentatively identified in interstellar ices and in cometary coma, has been studied in laboratory under simulated astrophysical conditions such as ion irradiation at low temperature.Aims.To evaluate the abundances of formamide observed in space or in laboratory, the integrated absorbances for all the principal IR features of frozen amorphous pure formamide deposited at 20 K were measured. Further evidence that energetic processing of ices occurring in space is extremely relevant both to astrochemistry and to astrobiology has been found, showing that new molecular species are synthesized by ion irradiation at a low temperature.Methods.Pure formamide were deposited at 20 K and IR transmission spectra measured for different ice thicknesses. The ice thickness was derived by looking at the interference pattern (intensity versus time) of a He-Ne laser beam reflected at an angle of 45 deg by the vacuum-film and film-substrate interfaces. Samples of formamide ice were irradiated with 200 keV H+ ions and IR spectra recorded at different ion fluences.Results.New molecules were synthesized among which are CO, CO2, N2O, isocyanic acid (HNCO), and ammonium cyanate (NH4^+OCN^-). Some of these species remain stable after warming up to room temperature.

  11. Ion engine auxiliary propulsion applications and integration study

    NASA Technical Reports Server (NTRS)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  12. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Oberdörster, Günter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  13. Analyzing insulin samples by size-exclusion chromatography: a column degradation study.

    PubMed

    Teska, Brandon M; Kumar, Amit; Carpenter, John F; Wempe, Michael F

    2015-04-01

    Investigating insulin analogs and probing their intrinsic stability at physiological temperature, we observed significant degradation in the size-exclusion chromatography (SEC) signal over a moderate number of insulin sample injections, which generated concerns about the quality of the separations. Therefore, our research goal was to identify the cause(s) for the observed signal degradation and attempt to mitigate the degradation in order to extend SEC column lifespan. In these studies, we used multiangle light scattering, nuclear magnetic resonance, and gas chromatography-mass spectrometry methods to evaluate column degradation. The results from these studies illustrate: (1) that zinc ions introduced by the insulin product produced the observed column performance issues; and (2) that including ethylenediaminetetraacetic acid, a zinc chelator, in the mobile phase helped to maintain column performance.

  14. Ion Studies Using Radon-222 in the EXO-200 Detector

    NASA Astrophysics Data System (ADS)

    Smith, Erica; EXO-200 Collaboration

    2015-04-01

    EXO-200 is a double beta decay experiment that uses liquid xenon enriched in xenon-136. While oscillation experiments have confirmed that neutrinos have mass, the nature of the neutrino remains elusive. The observation of neutrinoless double beta decay would confirm that the neutrino is Majorana, rather than Dirac. While studying double beta decay is the primary goal, EXO-200 can also perform many other robust analyses. Ion mobility and neutralization studies in liquid xenon detectors are particularly interesting, as the ability to extract barium ions from the detection medium and identify them would increase sensitivity to the double beta decay. We utilize the radon decay chain to perform these studies, which will be discussed in this talk. for the EXO-200 Collaboration.

  15. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Mason, Nigel J.; Currell, Fred J.; Solov'yov, Andrey V.

    2016-09-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model.

  16. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  17. The reduction process of phytic acid silver ion system: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Mukherjee, Tulsi

    2007-05-01

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag +→Ag 0→Ag 2+→Ag 32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size ( Rav=100 nm).

  18. A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Franchin, Alessandro; Downard, Andy; Kangasluoma, Juha; Nieminen, Tuomo; Lehtipalo, Katrianne; Steiner, Gerhard; Manninen, Hanna E.; Petäjä, Tuukka; Flagan, Richard C.; Kulmala, Markku

    2016-06-01

    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, Dp (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R = 5.5 at Dp = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R ˜ 2 at largest sizes, and R ˜ 1.8 at Dp = 1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min-1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible

  19. The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    SciTech Connect

    Tsai, W-F.

    2010-04-06

    We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.

  20. Empirical study of the tails of mutual fund size

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, Yonathan; Farmer, J. Doyne

    2010-06-01

    The mutual fund industry manages about a quarter of the assets in the U.S. stock market and thus plays an important role in the U.S. economy. The question of how much control is concentrated in the hands of the largest players is best quantitatively discussed in terms of the tail behavior of the mutual fund size distribution. We study the distribution empirically and show that the tail is much better described by a log-normal than a power law, indicating less concentration than, for example, personal income. The results are highly statistically significant and are consistent across fifteen years. This contradicts a recent theory concerning the origin of the power law tails of the trading volume distribution. Based on the analysis in a companion paper, the log-normality is to be expected, and indicates that the distribution of mutual funds remains perpetually out of equilibrium.

  1. Gas phase ion/molecule reactions in phosphine/germane mixtures studied by ion trapping

    NASA Astrophysics Data System (ADS)

    Benzi, P.; Operti, L.; Rabezzana, R.; Splendore, M.; Volpe, P.

    1996-01-01

    Gaseous mixtures of phosphine and germane have been investigated by ion trap mass spectrometry. Reaction pathways together with rate constants of the main reactions are reported. The mechanisms of ion/molecule reactions have been elucidated by single and multiple isolation steps. The GeHn+ (n = 1-3) ions react with phosphine to give GePHn+ (n = 2-4) ions. The GePH4+ ion further reacts with GeH4 to yield Ge2PH6+. The GePHn+ (n = 2-4) mixed ionic family also originates from the P+ phosphine primary ion, as well as from the P2Hn+ (n = 0-3) secondary ions of phosphine reacting with neutral germane and from Ge2H2+ reacting with phosphine. The main reaction pathways of the PHn+ (n = 0-2) ions with GeH4 lead to the formation of the GeH2+ and GeH3+ ionic species. Protonation of phosphine from different ionic precursors is a very common process and yields the stable phosphonium ion, PH4+. Trends in total abundances of secondary GePHn+ (n = 2-4) ions as function of reaction time for different PH3/GeH4 pressure ratios show that excess of germane slightly affects the nucleation of mixed Ge-P ions.

  2. Theoretical Study of Ion Transport in the Gramicidin a Channel

    NASA Astrophysics Data System (ADS)

    Roux, Benoi T.

    Modern techniques are used to study the permeation process of ions through the gramicidin A channel. The conformation of the gramicidin molecule is investigated experimentally in dimethylsulfoxide/acetone using the techniques of two-dimensional NMR spectroscopy. An empirical energy function is developed from ab initio calculations to represent the interaction of Li^{+}, Na^{+} and K^ {+} ions with the backbone of polypeptides; the parameters are tested in dense systems with free energy simulations. The dynamics of the gramicidin A channel dimer in the absence of water and ions is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The behavior of the water molecules in the channel is studied with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane. the potential of mean force and the mobility of Na^{+ }, K^{+} and water are calculated in the interior of a gramicidin-like periodic poly (L,D)-alanine beta -helix. The potential of mean force of Na^ {+} ion along the axis of the gramicidin A channel is calculated with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane; the gramicidin channel is modeled as a right -handed head-to-head beta-helix dimer. Binding sites are found at the extremities of the channel; no large activation energy barrier is caused by the dehydration process at the entrance of the channel. In the appendices, Statistical Mechanical theories are used to investigate the equilibrium and dynamical properties of the liquid state. A theory of aqueous solutions is used to provide an interpretation for the Born model of ion hydration at the molecular level; the Born radius of hydration is interpreted in terms of the first peak in the solute-solvent radial distribution function. We show that some proposed closures for the RISM equation of Chandler and Andersen possess no solution because

  3. DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis.

    PubMed

    Kraxenberger, F; Weber, K J; Friedl, A A; Eckardt-Schupp, F; Flentje, M; Quicken, P; Kellerer, A M

    1998-07-01

    The spatial distribution of DNA double-strand breaks (DSB) was assessed after treatment of mammalian cells (V79) with densely ionizing radiation. Cells were exposed to beams of heavy charged particles (calcium ions: 6.9 MeV/u, 2.1.10(3) keV/microm; uranium ions: 9.0 MeV/u, 1.4.10(4) keV/microm) at the linear accelerator UNILAC of GSI, Darmstadt. DNA was isolated in agarose plugs and subjected to pulsed-field gel electrophoresis under conditions that separated DNA fragments of size 50 kbp to 5 Mbp. The measured fragment distributions were compared to those obtained after gamma-irradiation and were analyzed by means of a convolution and a deconvolution technique. In contrast to the finding for gamma-radiation, the distributions produced by heavy ions do not correspond to the random breakage model. Their marked overdispersion and the observed excess of short fragments reflect spatial clustering of DSB that extends over large regions of the DNA, up to several mega base pairs (Mbp). At fluences of 0.75 and 1.5/microm2, calcium ions produce nearly the same shape of fragment spectrum, merely with a difference in the amount of DNA entering the gel; this suggests that the DNA is fragmented by individual calcium ions. At a fluence of 0.8/microm2 uranium ions produce a profile that is shifted to smaller fragment sizes in comparison to the profile obtained at a fluence of 0.4/microm2; this suggests cumulative action of two separate ions in the formation of fragments. These observations are not consistent with the expectation that the uranium ions, with their much larger LET, should be more likely to produce single particle action than the calcium ions. However, a consideration of the greater lateral extension of the tracks of the faster uranium ions explains the observed differences; it suggests that the DNA is closely coiled so that even DNA locations several Mbp apart are usually not separated by less than 0. 1 or 0.2 microm.

  4. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  5. Experimental study on the electric-sweep scanner and ion beam emittance of electron cyclotron resonance ion source

    SciTech Connect

    Cao, Y.; Sun, L.T.; Ma, L.; Ma, B.H.; Wang, H.; Feng, Y.C.; Li, J.Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; He, W.; Zhao, H.Y.; Guo, X.; Li, X.X.

    2006-03-15

    With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modern Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.

  6. Bach Adsorption Study for the Extraction of Silver Ions by Hydrazone Compounds from Aqueous Solution

    PubMed Central

    Mohamad Ali, Abdussalam Salhin; Abdul Razak, Norfarhah; Ab Rahman, Ismail

    2012-01-01

    Sorbent materials based on a hydrazone Schiff base compound, C14H11BrN4O4, were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag+, Cu2+, Co2+, Ni2+, Fe3+, Pb2+, Zn2+, and Mn2+) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag+ ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag+, the physically immobilized sorbent (SG1) is preferred. PMID:22629138

  7. Bach adsorption study for the extraction of silver ions by hydrazone compounds from aqueous solution.

    PubMed

    Mohamad Ali, Abdussalam Salhin; Abdul Razak, Norfarhah; Ab Rahman, Ismail

    2012-01-01

    Sorbent materials based on a hydrazone Schiff base compound, C(14)H(11)BrN(4)O(4), were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag(+), Cu(2+), Co(2+), Ni(2+), Fe(3+), Pb(2+), Zn(2+), and Mn(2+)) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag(+) ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag(+), the physically immobilized sorbent (SG1) is preferred.

  8. Zebrafish as an animal model to study ion homeostasis.

    PubMed

    Hwang, Pung-Pung; Chou, Ming-Yi

    2013-09-01

    Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during embryonic stages) assume the role of the kidney in body fluid ionic homeostasis. Four types of ionocyte expressing distinct sets of transporters have been identified in these organs: H(+)-ATPase-rich, Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing and K(+)-secreting cells; these ionocytes perform transepithelial H(+) secretion/Na(+) uptake/NH4 (+) excretion, Ca(2+) uptake, Na(+)/Cl(-) uptake, and K(+) secretion, respectively. Zebrafish ionocytes are analogous to various renal tubular cells, in terms of ion transporter expression and function. During embryonic development, ionocyte progenitors develop from epidermal stem cells and then differentiate into different types of ionocyte through a positive regulatory loop of Foxi3a/-3b and other transcription factors. Several hormones, including cortisol, vitamin D, stanniocalcin-1, calcitonin, and isotocin, were found to participate in the control pathways of ionic homeostasis by precisely studying the target ion transport pathways, ion transporters, or ionocytes of the hormonal actions. In conclusion, the zebrafish model not only enhances our understanding of body fluid ion homeostasis and hormonal control in fish but also informs studies on mammals and other animal species, thereby providing new insights into related fields.

  9. Formalization Studies in Functional Size Measurement: How Do They Help?

    NASA Astrophysics Data System (ADS)

    Ozkan, Baris; Demirors, Onur

    Functional size has been favored as a software characteristic that can be measured early and independent of language, tools, techniques and technology; hence has many uses in software project management. It has been about three decades since Albrecht introduced the concept of functional size. However, Functional Size Measurement (FSM) has not been a common practice in the software community. The problems with FSM method structures and practices have been discussed to be the major factors to explain this situation. In this paper, we make a review of formalization proposals to the problems in Functional Size Measurement (FSM). We analyze the works included in the papers and we explore the extent of their contributions.

  10. Microbeam Studies of Diffusion Time Resolved Ion Beam Induced Charge Collection from Stripe-Like Junctions

    SciTech Connect

    GUO,B.N.; BOUANANI,M.E.; RENFROW,S.N.; WALSH,DAVID S.; DOYLE,BARNEY L.; ATON,T.J.; SMITH,E.B.; BAUMANN,R.C.; DUGGAN,J.L.; MCDANIEL,F.D.

    2000-06-14

    To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 {micro}m. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices.

  11. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    PubMed

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey.

  12. Direct reaction experimental studies with beams of radioactive tin ions

    SciTech Connect

    Jones, K. L. Ayres, A.; Bey, A.; Burcher, S.; Cartegni, L.; Cerizza, G.; Ahn, S.; Allmond, J. M.; Beene, J. R.; Galindo-Uribarri, A.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Radford, D. C.; Schmitt, K. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; Baugher, T.; and others

    2015-10-15

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at {sup 100}Sn, through 10 stable isotopes and the N = 82 shell closure at {sup 132}Sn out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich {sup 130}Sn. Both techniques rely on selective particle identification and the measurement of γ rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  13. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    SciTech Connect

    Jones, K. L.; Ahn, S.H.; Allmond, James M; Ayres, A.; Bardayan, Daniel W; Baugher, T.; Bazin, D.; Beene, James R; Berryman, J. S.; Bey, A.; Bingham, C. R.; Cartegni, L.; Chae, K. Y.; Gade, A.; Galindo-Uribarri, Alfredo {nmn}; Garcia-Ruiz, R.F.; Grzywacz, Robert Kazimierz; Howard, Meredith E; Kozub, R. L.; Liang, J Felix; Manning, Brett M; Matos, M.; McDaniel, S.; Miller, D.; Nesaraja, Caroline D; O'Malley, Patrick; Padgett, S; Padilla-Rodal, Elizabeth; Pain, Steven D; Pittman, S. T.; Radford, David C; Ratkiewicz, Andrew J; Schmitt, Kyle; Smith, Michael Scott; Stracener, Daniel W; Stroberg, S.; Tostevin, Jeffrey A; Varner Jr, Robert L; Weisshaar, D.; Wimmer, K.

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  14. Structural and optical properties of SrS nanophosphors influenced by Ce3+ ions concentrations and particle size reduction

    NASA Astrophysics Data System (ADS)

    Mishra, Shubhra; Khare, Ayush; Kshatri, D. S.; Tiwari, Sanjay

    2015-10-01

    The SrS nanophosphors doped with different concentrations of Ce3+ are synthesized by solid state diffusion method (SSDM). Various characterization and spectral studies are reported in the light of varied dopant concentrations and reduction in particle size by milling. The as-obtained phosphors are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) including selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopic (EDX) studies. The FESEM and HRTEM results explain the surface morphology, agglomeration of particles, crystallite size, etc. The results of XRD studies confirm the cubic structure of most intense SrS: Ce3+ nanophosphors and exhibit wider diffraction peaks for 4 h milled sample. The EDX profiles are used to authenticate the occurrence of different starting materials in final products. Upon excitation with UV light (375 nm), two emission peaks are observed at around 459 nm and 551 nm due to transitions of electrons from the 2T2g(5d) → 2F5/2(4f) and 2T2g(5d) → 2F7/2(4f) energy levels. The afterglow decay behavior of different SrS: Ce3+ nanophosphors is presented and discussed systematically.

  15. A Raman study of ion irradiated icy mixtures

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Ferini, G.; Palumbo, M. E.

    2003-04-01

    We present a Raman study of pure CH_4, H_2O:CH_4:N_2 and CH_3OH:N_2 frozen films before and after ion irradiation at low (12 K) and high (100 K or 300 K) temperature. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose optical properties are deeply modified by the interaction with the ion beam. Raman spectra show that the sample is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon with a band near 1560 cm-1 (G line) and a shoulder at about 1360 cm-1 (D line). The specific parameters of this 'double-peaked' feature (peaks position, widths and relative intensities) can be used as diagnostic to classify different carbonaceous materials and infer information about their degree of order. We have compared these parameters for our samples (ion irradiated frozen films and residues), for different kinds of hydrogenated carbon grains and for some IDPs. We have found that IDPs have in general a narrower G line, which peaks at higher wavenumbers, than most of the laboratory samples here discussed. This implies that IDPs have a structure with a higher degree of order than that of our samples. Here we present the experimenal results and discuss their relevance to the study of the origin and evolution of IDPs.

  16. Electron spin resonance study of ion-implanted polymers

    NASA Astrophysics Data System (ADS)

    Wasserman, B.; Dresselhaus, M. S.; Braunstein, G.; Wnek, G. E.; Roth, G.

    1985-03-01

    The effect of ion implantation on the polymers PAN (polyacrylonitrile), PPO (poly 2,6-dimethylphenylene oxide) and PPS (p-polyphenylene sulfide) is studied using electron spin resonance. ESR measurements on these polymers were performed as a function of ion species and fluence in the temperature range 10 ion species used for implantation in this study (84Kr,80Br,75As,40Ar and14N). It is therefore concluded that the carrier concentration is related to the structural damage and not to chemical doping effects. From the shape of the ESR line, the ratio of the relaxation times for one-dimensional to three-dimensional spin diffusion is determined to be larger than 1000. The temperature dependence of the unpaired carrier concentration shows a strong deviation from a Curie law behavior, which can be explained by assuming that a defect band is formed with a bandgap due to strong Coulomb interaction between electrons on the defect sites.

  17. Studies on Amorphizing Silicon Using Silicon Ion Implantation.

    DTIC Science & Technology

    1985-04-01

    130-200 keV ions with doses of 5 x 1014 to 2 x 1015 2 15 2ions/cm and for 0.5 micron films, 260-300 keV ions at 1-2 x 10 ions/cm . Svensson et al...Vol. 42, pp. 707-709, 1983. 17. B. Svensson , J. Linnros & G. Holmen, "Ion Beam Induced Annealing of Radiation Damage in Silicon on Sapphire," Nucl...Mayer, Lennart Eriksson & John A. Davies, Ion Implantation in Semiconductors, Academic Press, NY, 1970. 21. L. T. Chadderton & F. H. Eisen, editors. Ion

  18. A comparative first principles study on trivalent ion incorporated SSZ-13 zeolites.

    PubMed

    Wen, Cui; Geng, Lu; Han, Lina; Wang, Jiancheng; Chang, Liping; Feng, Gang; Kong, Dejin; Liu, Jianwen

    2015-11-28

    The dispersion-corrected density functional theory has been used to study the trivalent ions B, Al, Ga, and Fe incorporated SSZ-13-type zeolites. The associated structure and Brønsted/Lewis acidity change caused by the incorporation ions were comparatively studied. It was found that the smaller the radius differences of the incorporation ions are, the smaller the changes in the structure will be and the less acidity will be enhanced for the Brønsted sites. The trivalent Al is found to be the most favorable trivalent incorporation ion and Na is found to be the most favorable charge balanced ion for the synthesis of SSZ-13-type zeolites due to size comparability, which are in line with the experimental observation. The substitution energies which show the relative synthesis difficulty level were also applied for B, Al, Ga, and Fe incorporated zeolites and found that the difficulty decreases with order of Fe > B > Ga ≫ Al, also in good agreement with the experimental observations. Adsorption studies for the NH3 and pyridine molecules indicate that adsorption on the Brønsted acid sites is more stable than on the Lewis acid sites. The Brønsted acidity was found to follow the order of HAl-SSZ-13 > HGa-SSZ-13 ≈ HFe-SSZ-13 > HB-SSZ-13 where the Lewis acidity was found to follow the order of HGa-SSZ-13 ≈ HFe-SSZ-13 > HAl-SSZ-13 > HB-SSZ-13. Our results provide new insights for the synthesis of the SSZ-13-type zeolites and fundamental information for the zeolitic catalyst designation to enhance the catalytic performance.

  19. An extensive study to observe the effects of thermal annealing and ion fluences in the ion beam synthesis of β-SiC

    NASA Astrophysics Data System (ADS)

    Poudel, P. R.; Rout, B.; Diercks, D. R.; McDaniel, F. D.; Paramo, J. A.; Strzhemechny, Y. M.

    2011-03-01

    A systematic study of the formation of β -SiC structures by low energy carbon ion (C-) implantation into Si followed by high temperature thermal annealing will be presented. The effects of thermal annealing in the formation of β -SiC structures has been studied. It is observed that the thermal annealing of 1100rC for 1 hr is required to observe the formation of β -SiC. The quantitative analysis in the formation of β -SiC nanostructures has been performed by the implantation of various carbon ion fluences in the range of 1 × 1017 - 8 × 1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β -SiC crystals decreases whereas the amount of β -SiC increases monotonically with ion fluence up to a fluence of 5 × 1017 atoms/cm2 and appears to saturate for a higher fluence of 8 × 1017 atoms/cm 2 when the samples were annealed at 1100rC for 1 hr. The stability of graphitic C-C bonds at 1100rC limits the growth of SiC precipitates in the sample implanted at a fluence of 8 × 1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study as predicted by various characterization techniques such as FTIR, Raman, XRD, XPS and Transmission electron microscopy.

  20. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  1. Development of a radio-frequency ion beam source for fast-ion studies on the large plasma device.

    PubMed

    Tripathi, S K P; Pribyl, P; Gekelman, W

    2011-09-01

    A helium ion beam source (23 kV/2.0 A) has been constructed for studying fast-ion physics in the cylindrical magnetized plasma of the large plasma device (LAPD). An inductive RF source produces a 10(19) m(-3) density plasma in a ceramic dome. A multi-aperture, rectangular (8 cm × 8 cm) three-grid system extracts the ion beam from the RF plasma. The ion beam is injected at a variety of pitch angles with Alfvénic speeds in the LAPD. The beam current is intense enough to excite magnetic perturbations in the ambient plasma. Measurements of the ion beam profile were made to achieve an optimum beam performance and a reliable source operation was demonstrated on the LAPD. © 2011 American Institute of Physics

  2. The inverse problem of the kinetics of redox sorption taking into account the size of ultradisperse metal particles in an electron-ion exchanger

    NASA Astrophysics Data System (ADS)

    Konev, D. V.; Fertikov, V. V.; Kravchenko, T. A.; Kalinichev, A. I.

    2008-08-01

    The inverse kinetic problem of reducing sorption of molecular oxygen by a copper-containing electron-ion exchanger was formulated and solved taking into account the influence of the size of ultradisperse metal particles on the total rate of the process. These results were used to determine the inside diffusion coefficient of oxygen and rate constants for its interaction with disperse copper from the experimental kinetic curves. The diffusion coefficient obtained was compared with the result of an independent experiment. The kinetic parameters found were used to perform a theoretical analysis of the contributions of various factors influencing the rate of the process under consideration. The reason for the experimentally observed acceleration of the reducing sorption of oxygen by a high-dispersity electron-ion exchanger sample was shown to be an increase in the surface area of metal because of a decrease in the size of its particles and a comparatively high copper content in the surface layer of grains.

  3. Characterisation of nanoparticle size and concentration for toxicological studies.

    PubMed

    Bendre, V; Gautam, M; Carr, R; Smith, J; Malloy, A

    2011-02-01

    The assessment of the complete distribution of nanoparticle sizes within a suspension is notoriously difficult to carry out. We demonstrate the Nanoparticle Tracking Analysis (NTA) technique that sizes nanoparticles in suspension, based on their Brownian motion. This technique has found significant use in the field of nano- and eco-toxicology, in several research groups showing of the technique to assess a range of engineered nanoparticles including gold, SiO2, TiO2 and polystyrene. This capability shares many features in common with conventional flow cytometry but is unique in this deeply sub-micron size range. NTA is a direct and fast technique by which nanoparticles in their natural solvated state in a liquid can be rapidly detected, sized and counted. The technique can be used to complement existing techniques for the sizing of nanoparticles (e.g., DLS, PCS) allowing data obtained from these methods to be validated by direct microscopical observation of the sample.

  4. Size homeostasis in adherent cells studied by synthetic phase microscopy

    PubMed Central

    Sung, Yongjin; Tzur, Amit; Oh, Seungeun; Choi, Wonshik; Li, Victor; Dasari, Ramachandra R.; Yaqoob, Zahid; Kirschner, Marc W.

    2013-01-01

    The coupling of the rate of cell growth to the rate of cell division determines cell size, a defining characteristic that is central to cell function and, ultimately, to tissue architecture. The physiology of size homeostasis has fascinated generations of biologists, but the mechanism, challenged by experimental limitations, remains largely unknown. In this paper, we propose a unique optical method that can measure the dry mass of thick live cells as accurately as that for thin cells with high computational efficiency. With this technique, we quantify, with unprecedented accuracy, the asymmetry of division in lymphoblasts and epithelial cells. We can then use the Collins–Richmond model of conservation to compute the relationship between growth rate and cell mass. In attached epithelial cells, we find that due to the asymmetry in cell division and size-dependent growth rate, there is active regulation of cell size. Thus, like nonadherent cells, size homeostasis requires feedback control. PMID:24065823

  5. EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions.

    PubMed

    Knauth, Philippe; Chadwick, Alan V; Lippens, Pierre E; Auer, Gerhard

    2009-06-02

    Nanocrystalline TiO(2) (anatase) is an essential oxide for environment and energy applications. A combination of EXAFS spectroscopy and DFT calculations on a series of dopants with quite similar ion radius, but increasing ion charge, show boundary space charge segregation of acceptor cations. The picture illustrates the Fourier-transformed EXAFS spectrum for Sn(4+)-doped TiO(2).A series of dopants, including acceptor ions (Zn(2+), Y(3+)), isovalent ions (Zr(4+), Sn(4+)) as well as a donor ion (Nb(5+)), were studied by EXAFS spectroscopy in nanocrystalline TiO(2) anatase powders and nanoceramics. Similar results were found for nanocrystalline powders and nanocrystalline ceramics, made by hot-pressing the powders. Boundary segregation was observed for the acceptor ions yttrium and zinc, whereas tin, zirconium and niobium ions were placed on substitutional bulk sites and did not segregate, whatever their concentration. These results can be interpreted based on defect thermodynamics, in the framework of a space charge segregation model with positive boundary core, due to excess oxide ion vacancies, and negative space charge regions, where ionized acceptors are segregated.

  6. First experimental studies of ion flow in 3 ion species plasmas at the presheath-sheath transition

    NASA Astrophysics Data System (ADS)

    Severn, Greg

    2016-09-01

    The Bohm sheath criterion is studied with laser-induced fluorescence (LIF) in three ion species plasmas using two tunable diode lasers. KrI or HeI is added to a low pressure unmagnetized dc hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas instability enhanced collisional friction (IEF) was demonstrated to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. Results are consistent with the presence of instabilities. Author gratefully acknowledges collaborators Dr. Noah Hershkowtiz, Dr. Chi-Shung Yip, Dept. of Engineering Physics, Univ. Wisconsin-Madison, and Dr. Scott Baalrud, Dept. Physics, Univ. Iowa. Thanks to US DOE, grant DE-SC00014226.

  7. Size-controlled SnO₂ hollow spheres via a template free approach as anodes for lithium ion batteries.

    PubMed

    Bhaskar, Akkisetty; Deepa, Melepurath; Rao, Tata Narasinga

    2014-09-21

    Tin oxide hollow spheres (SnO₂ HS) with high structural integrity were synthesized by using a one pot hydrothermal approach with organic moieties as structure controlling agents. By adjusting the proportion of acetylacetone (AcAc) in the precursor formulation, SnO₂ HS of 200 and 350 nm dimensions, with a uniform shell thickness of about 50 nm, were prepared. Using the optimized solution composition with a Sn precursor, heating duration dependent structural evolution of SnO₂ was performed at a fixed temperature of 160 °C, which revealed a transition from solid spheres (1 h) to aggregated spheres (4 h) to porous spheres (10 h) to optimized HS (13 h) and finally to broken enlarged HS (24 h). A heating temperature dependent study carried out with a constant heating span of 13 h showed a metamorphosis from spheres with solid cores (140 °C) to ones with hollow cores (160 °C), culminating with fragmented HS, expanded in dimensions (180 °C). A growth mechanism was proposed for the optimized SnO₂ HS (2.5 or 5.0 mL of AcAc, 160 °C, 13 h) and the performance of these HS as anodes for Li ions batteries was evaluated by electrochemical studies. The 200 nm SnO₂ HS demonstrated an initial lithium storage capacity of 1055 mA h g(-1) at a current density of 100 mA g(-1), and they retained a capacity of 540 mA h g(-1) after 50 charge-discharge cycles. The SnO₂ HS also showed excellent rate capability as the electrode exhibited a capacity of 422 mA h g(-1) even at a high current density of 2000 mA g(-1). The notable capacity of SnO₂ HS is a manifestation of the mono-disperse quality of the SnO₂ HS coupled with the high number of electrochemically addressable sites, afforded by the large surface area of the HS and the striking cyclability is also attributed to the unique structure of HS, which is resistant to degradation upon repeated ion insertion/extraction. The SnO₂ HS were also found to be luminescent, thus indicating their usefulness for not only energy

  8. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  9. Simulation Studies of Hydrogen Ion reflection from Tungsten for the Surface Production of Negative Hydrogen Ions

    SciTech Connect

    Kenmotsu, Takahiro; Wada, Motoi

    2011-09-26

    The production efficiency of negative ions at tungsten surface by particle reflection has been investigated. Angular distributions and energy spectra of reflected hydrogen ions from tungsten surface are calculated with a Monte Carlo simulation code ACAT. The results obtained with ACAT have indicated that angular distributions of reflected hydrogen ions show narrow distributions for low-energy incidence such as 50 eV, and energy spectra of reflected ions show sharp peaks around 90% of incident energy. These narrow angular distributions and sharp peaks are favorable for the efficient extraction of negative ions from an ion source equipped with tungsten surface as negative ionization converter. The retained hydrogen atoms in tungsten lead to the reduction in extraction efficiency due to boarded angular distributions.

  10. Simulation Studies of Hydrogen Ion reflection from Tungsten for the Surface Production of Negative Hydrogen Ions

    NASA Astrophysics Data System (ADS)

    Kenmotsu, Takahiro; Wada, Motoi

    2011-09-01

    The production efficiency of negative ions at tungsten surface by particle reflection has been investigated. Angular distributions and energy spectra of reflected hydrogen ions from tungsten surface are calculated with a Monte Carlo simulation code ACAT. The results obtained with ACAT have indicated that angular distributions of reflected hydrogen ions show narrow distributions for low-energy incidence such as 50 eV, and energy spectra of reflected ions show sharp peaks around 90% of incident energy. These narrow angular distributions and sharp peaks are favorable for the efficient extraction of negative ions from an ion source equipped with tungsten surface as negative ionization converter. The retained hydrogen atoms in tungsten lead to the reduction in extraction efficiency due to boarded angular distributions.

  11. Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach

    SciTech Connect

    Seo, D. H.; Das Arulsamy, A.; Rider, A. E.; Levchenko, I.; Ostrikov, K.

    2010-01-15

    A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si{sup 3+} and Si{sup 1+} ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si{sup 1+} ions in a low substrate temperature range (227-327 deg. C). As low substrate temperatures ({<=}500 deg. C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.

  12. Studies on the removal of Cd ions by gastrointestinal lactobacilli.

    PubMed

    Polak-Berecka, Magdalena; Boguta, Patrycja; Cieśla, Jolanta; Bieganowski, Andrzej; Skrzypek, Tomasz; Czernecki, Tomasz; Waśko, Adam

    2017-04-01

    Accumulation of toxic metal ions in food and water is nowadays a growing health-related problem. One detoxification method involves the use of microorganisms naturally inhabiting the gastrointestinal tract (GIT). The purpose of this study was to prove that lactic acid bacteria derived from the GIT are able to effectively remove Cd(2+) from water solution. Seven strains of lactobacilli, out of 11 examined, showed tolerance to high concentrations of cadmium ions. The metal-removal efficiencies of these seven lactobacilli ranged from 6 to 138.4 μg/h mg. Among these bacteria, Lactobacillus gallinarum and Lactobacillus crispatus belonged to the highest (85%) Cd-removal efficiency class. An analysis of the zeta potential (ζ) indicated that the bacterial cell surface had a negative charge at the pH ranging from 3 to 10. The presence of carboxyl, amide, and phosphate groups was favorable for Cd(2+) binding to the cell surface, which found confirmation in FTIR-ATR spectra. Elemental SEM/EDS analysis and TEM imaging not only confirmed the adsorption of Cd(2+) on the cell envelope but also gave us a reason to suppose that Lb. crispatus accumulates metal ions inside the cell. Our findings open perspectives for further research on the new biological function of GIT lactobacilli as natural biosorbents.

  13. A Raman study of ion irradiated icy mixtures

    NASA Astrophysics Data System (ADS)

    Ferini, G.; Baratta, G. A.; Palumbo, M. E.

    2004-02-01

    In this paper we present a Raman study of pure CH4, H2O:CH4:N2 and CH3OH:N2 frozen films before and after ion irradiation at 12 K, 100 K and 300 K. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose chemical and physical properties are deeply modified by the interaction with the ion beam. For the two methane containing samples, Raman spectra show that the initial ice is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon (AC) with a band near 1560 cm-1 (G line) and a shoulder at about 1360 cm-1 (D line). No evidence of the AC Raman band is seen in the spectra of the methanol-containing mixture. By means of Lorentzian fits, we have determined the specific parameters of the AC band (G and D line peak positions, widths and relative intensities) in our spectra after ion irradiation and we have compared them with the corresponding parameters of the band as observed in the spectra of 11 IDPs (Interplanetary Dust Particles). Here we present the experimental results and discuss their contribution to our knowledge of the origin and evolution of IDPs.

  14. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  15. Ion-macromolecule interactions studied with model polyurethanes.

    PubMed

    Fernández-d'Arlas, Borja; Huertos, Miguel Ángel; Müller, Alejandro J

    2017-09-02

    The solubility and self-assembly of macromolecules in solution can be tuned by the presence of different salts. Natural proteins have been long manipulated with the aid of salts, and natural silk is processed in the gland tip across a gradient of different salts which modifies its solubility. Hence, the comprehensive understanding of the role of ion-macromolecule interactions should pave the way towards a biomimetic processing of macromolecules. A model polyurethane catiomer (PU(+)) with high density of hydrogen donors and acceptors (similar to proteins) has been designed and synthesized in order to study ion-macromolecule interactions by means of dynamic light scattering (DLS), infrared spectroscopy (FTIR) and nuclear magnetic resonance ((13)C NMR). The PU(+) solubility in the presence of different salts exhibited a reversed anion Hofmeister series (i.e., the anion ability to precipitate the PU(+) was F(-)ion pairing in water solution. This work also helps understanding the role of cations and anions nature on their interaction with macromolecules backbone. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  17. Design studies for the next generation electron ion colliders

    NASA Astrophysics Data System (ADS)

    Sayed, Hisham Kamal; Bogacz, S. A.; Krafft, G.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3-11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large β function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  18. Design studies for the next generation electron ion colliders

    SciTech Connect

    Sayed, Hisham Kamal; Bogacz, Slawomir A.; Krafft, Geoffrey A.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3–11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large β function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  19. Effects of Ti charge state, ion size and beam-induced compaction on the formation of Ag metal nanoparticles in fused silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Meldrum, A.; Haglund, R. F.

    2015-04-01

    Metal nanoparticles formed by ion implantation in fused silica exhibit linear and nonlinear optical properties that can be altered by co-doping the silica substrate with transition-metal ions. For example, implantation of scandium in fused silica creates a directional optical dichroism due to the different spatial distribution of silver nanoparticles subsequently formed by Ag ion implantation. In this paper, we show that implantation of titanium ions alters the short- and intermediate-range order in the silica and thereby alters the diffusion and nucleation processes that lead to formation of silver nanoparticles. In particular, the dichroic response observed for Ag nanoparticles in Sc-implanted silica is, with one exception, in Ti-implanted silica. Compaction of the silica due to the ion implantation process appears to be similar for both Sc and Ti implantations, based on the observed shift of the 1,124 cm-1 transverse-optical phonon mode in the infrared reflectance spectrum. However, differences in chemical reactivity, bond lengths and electronic structure of Sc and Ti produce changes in electronic structure and strain that are sensitively reflected in the reflectance spectra of the Ag nanoparticles. These differences lead to modifications in the size, shape and spatial distributions of the silver nanoparticles and offer a powerful means of controlling their optical properties.

  20. Investigation of the transported heavy metal ions in xylem sap of cucumber plants by size exclusion chromatography and atomic absorption spectrometry.

    PubMed

    Mihucz, V G; Tatár, E; Kmethy, B; Záray, G; Cseh, E

    2000-07-15

    An 'off-line' high performance liquid chromatography-graphite furnace atomic absorption spectrometry (HPLC-GF-AAS) method using a size exclusion chromatography (SEC) column was developed to investigate heavy metal ions in xylem sap samples of cucumber plants grown in hydroponics containing iron as Fe(III)-ethylenediaminetetraacetate (Fe(III) EDTA), Fe(III) citrate or FeCl3 and exposed to lead, nickel or vanadium contamination. The SEC chromatogram of the samples contained the peak of nitrate ions (in significant concentration approximately 1400 microg/ml) and some small, unidentified compounds with molecular weight lower than 700 Da. The results indicate that Cu and Mn--which were added to the hydroponics as nutrient elements--determined in the collected fractions during the chromatographic runs are transported in the xylem vessels together with small inorganic ions like nitrate ions. In case of nickel other low-molecular weight compounds eluting earlier than the nitrate ions may take part in its transport toward the shoots. Lead could not be detected in the above mentioned fractions. Determination of vanadium in the fractions was not expected since it could not be detected in the sap samples.

  1. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  2. Charge transport studies of proton and ion conducting materials

    NASA Astrophysics Data System (ADS)

    Versek, Craig Wm

    The development of a high-throughput impedance spectroscopy instrumentation platform for conductivity characterization of ion transport materials is outlined. Collaborative studies using this system are summarized. Charge conduction mechanisms and conductivity data for small molecule proton conducting liquids, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and select mixtures of these compounds are documented. Furthermore, proton diffusivity measurements using a Pulse Field Gradient Nuclear Magnetic Resonance (PFG NMR) technique for imidazole and 1,2,3-triazole binary mixtures are compared. Studies of azole functionalized discotic and linear mesogens with conductivity, structural, and thermal characterizations are detailed.

  3. Felion: a Cryogenic Ion Trap Apparatus for Spectroscopic Studies with Felix

    NASA Astrophysics Data System (ADS)

    Brunken, S.; Kluge, L.; Fanghanel, S.; Potapov, A.; Asvany, O.; Schlemmer, S.; Oomens, J.; Redlich, B.; Stoffels, A.

    2013-06-01

    The combination of ion trapping techniques with sensitive action spectroscopy schemes has been developed in recent years as a powerful tool to obtain spectra of gas-phase molecular ions from the UV to the (F)IR spectral regions. Here we report on the status of a specifically designed, dedicated cryogenic 22-pole ion trap apparatus (FELion), developed and built in Cologne, Germany, and intended to be installed permanently at the "Free-Electron Lasers for Infrared eXperiments" (FELIX) facility in Nijmegen, the Netherlands. This instrument will allow to record gas-phase IR and FIR spectra of mass-selected, internally cold molecular ions at temperatures in the range 4-300 K. By the use of diverse ionization methods, e.g. electron impact and electrospray ionization, a multitude of molecular ions can be generated and stored in the trap, including astrophysically relevant species ranging in size from the three-atomic H_3^+ up to large polycyclic aromatic hydrocarbon (PAH) ions, but also biomolecular ions like amino acids, peptides, or nucleobases. In combination with the powerful (F)IR radiation of the free electron lasers FELIX-1 and -2 (60-2500 cm^{-1}) and FLARE (6-100 cm^{-1}) at the FELIX facility, a variety of action spectroscopy schemes can be employed to study the ro-vibrational spectra of the stored ions, such as IR multiphoton dissociation, (F)IR/UV double resonance spectroscopy, or the method of laser induced reactions (LIR). In this talk we will give a detailed account of the experimental setup and present the first results obtained with the new apparatus. e.g., S. Schlemmer, E. Lescop, J. von Richthofen, D. Gerlich, and M. A. Smith, J. Chem. Phys. 117, 2068 (2002) J. Oomens, B. G. Sartakov, G. Meijer, and G. van Helden, Int. J. Mass Spectrom. 254, 1 (2006) T. R. Rizzo, J. A. Stearns, and O. V. Boyarkin, International Reviews in Physical Chemistry 28, 481 (2009) FLARE: Free-electron Laser for Advanced spectroscopy and high-Resolution Experiments

  4. Electrochemical studies of lithium-ion battery anode materials in lithium-ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchuan

    The stability of uncoated copper (Cu) foils and graphite-coated copper (Cu-C) foils in lithium-ion battery electrolytes were extensively studied in this dissertation. At first, the electrochemical behavior and stability of the Cu foils and Cu-C foils were studied. Cyclic voltammetry was used to study the redox behavior of the foils in the electrolyte solutions. The reduction of electrolyte and its effect on the oxidation of copper was also studied. Bulk electrolysis was used to quantitatively study the dissolution of the foils in dry electrolytes and in electrolytes doped with impurities of H2O or HF. It was found that the graphite coating greatly influenced the redox behavior of the copper substrate and provided some protection to the copper from oxidation. Impurities increased the oxidation tendency of both Cu foils and Cu-C foils and may influence the integrity of the Cu-C foil electrode. During these studies, the open-circuit voltage (OCV) of Cu foil and Cu-C foil electrodes in Li-ion battery electrolytes was found to be a variable value over time. A detailed study showed that the OCV first rapidly decreased until reaching a minimum, and then gradually increased until reaching a meta-steady or steady state. These results were compared with OCV studies of Al foil, Pt wire, glassy carbon and Cu disk and wire electrodes. The OCV variation appeared to correlate to a surface change on the electrode after being immersed into the electrolyte solutions. The influence of aging of the reference electrode, the surface condition and edge effect of the copper foil, and solution impurities on the stability of the OCV was also studied. Atomic absorption spectroscopy (AAS) was used to quantitatively evaluate the stability of Cu and Cu-C foils in lithium-ion battery electrolytes at open-circuit. Results showed that the stability of Cu and Cu-C foils was different in "fresh" electrolytes whereas it was similar in "aged" electrolytes. For Cu foils, in the "fresh" electrolyte, the

  5. Design and construction of a imaging instrument for studying ion emission from pure ion emitters

    SciTech Connect

    Olson, John E.

    1993-09-01

    The development of new ion sources is important in the area of surface analysis to make it easier to perform more sensitive and accurate analyses. In surface analysis a primary ion beam composed of a single species can help when predicting and interpreting the results. Therefore, much interest and effort has been focused on producing pure ion emitters. An instrument has been designed and constructed to view the current densities of the ions being emitted from pure ion emitters. The instrument electrostatically accelerates and focuses the ion beam onto a microchannel plate detector equipped with a phosphor screen for viewing the images. These images are used to identify areas of enhanced ion emission. Once these areas are identified, the investigator can use other instruments to analyze them, and hopefully develop a better understanding of the chemistry and physics involved in the ion emission process. A computer based control system has been integrated into the system to simplify the operation of the instrument and provide safety features to protect the hardware from damage. A closed-circuit video camera system is used to allow the images to be remotely viewed during imaging procedures. Experiments show that the instrument has a lower detection limit of 7.45 x 103 ions/sec/mm2 and a spatial resolution of approximately 3 - 4 μm. Results from imaging cesium zeolite and perrhenate ion sources indicate that the ions are primarily being emitted from the surface of the sources and not from the interfacial region between the substrate and the emitter material.

  6. Formation of gas-phase peptide ions and their dissociation in MALDI: insights from kinetic and ion yield studies.

    PubMed

    Moon, Jeong Hee; Yoon, Sohee; Bae, Yong Jin; Kim, Myung Soo

    2015-01-01

    Insights on mechanisms for the generation of gas-phase peptide ions and their dissociation in matrix-assisted laser desorption ionization (MALDI) gained from the kinetic and ion yield studies are presented. Even though the time-resolved photodissociation technique was initially used to determine the dissociation kinetics of peptide ions and their effective temperature, it was replaced by a simpler method utilizing dissociation yields from in-source decay (ISD) and post-source decay (PSD). The ion yields for a matrix and a peptide were measured by repeatedly irradiating a region on a sample and collecting ion signals until the sample in the region was completely depleted. Matrix- and peptide-derived gas-phase cations were found to be generated by pre-formed ion emission or by ion-pair emission followed by anion loss, but not by laser-induced ionization. The total number of ions, that is, matrix plus peptide, was found to be equal to the number of ions emitted from a pure matrix. A matrix plume was found to cool as it expanded, from around 800-1,000 K to 400-500 K. Dissociation of peptide ions along b/y channels was found to occur statistically, that is, following RRKM behavior. Small critical energy (E0  = 0.6-0.7 eV) and highly negative critical entropy (ΔS(‡)  = -30 to -25 eu) suggested that the transition structure was stabilized by multiple intramolecular interactions.

  7. Size optimization and in vitro biocompatibility studies of chitosan nanoparticles.

    PubMed

    Thandapani, Gomathi; P, Supriya Prasad; P N, Sudha; Sukumaran, Anil

    2017-11-01

    Chitosan (CS), an amino polysaccharide has fascinating scientific applications due to its many flexible properties. The advantages of Chitosan tend to increase when it was modified. Thus, in the present research work, to improve the properties of chitosan, it was converted into chitosan nanoparticles (CS-NPs) through the ionic gelation method using sodium tripoyphosphate (TPP) and sodium hexametaphosphate (SHMP) as a crosslinker. The size optimization was done by varying the parameters such as crosslinker concentration, agitation method and rate, agitation time, temperature and drying method. The prepared samples were characterized using FTIR, TGA, XRD, SEM, TEM and DLS. Also the prepared CS-NPs with TPP and SHMP had been evaluated in vitro for determining its hemocompatibility, biodegradability, serum stability, cytotoxicity and cell viability. The results showed the significant participation of all the parameters in obtaining the nanoparticles in 20-30nm and 5-10nm for CS-NPs-TPP air dried and freeze dried samples and around 60-80nm and 20-30nm for CS-NPs-SHMP air dried and freeze dried samples. The in vitro biological studies revealed that the nanoparticles are non-toxic with a good degree of biodegradability, blood compatibility and stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hydration of magnesia cubes: a helium ion microscopy study

    PubMed Central

    Schneider, Johannes; Bourret, Gilles R

    2016-01-01

    Summary Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM) and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p < 10−7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH)2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials. PMID:27335725

  9. Hydration of magnesia cubes: a helium ion microscopy study.

    PubMed

    Schwaiger, Ruth; Schneider, Johannes; Bourret, Gilles R; Diwald, Oliver

    2016-01-01

    Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM) and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p < 10(-7) mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH)2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  10. Studies of transition states and radicals by negative ion photodetachment

    SciTech Connect

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  11. Studies of transition states and radicals by negative ion photodetachment

    SciTech Connect

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  12. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  13. Morphometric study of pillow-size spectrum among pillow lavas

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  14. Equilibrium studies of copper ion adsorption onto palm kernel fibre.

    PubMed

    Ofomaja, Augustine E

    2010-07-01

    The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r(2), and the non-linear Chi-square, chi(2) error analysis. The results revealed that sorption was pH dependent and increased with increasing solution pH above the pH(PZC) of the palm kernel fibre with an optimum dose of 10g/dm(3). The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 x 10(-4)mol/g at 339K. The sorption equilibrium constant, K(a), increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B(1), with increasing temperature. The Dubinin-Radushkevich (D-R) isotherm parameter, free energy, E, was in the range of 15.7-16.7kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO(3) and CH(3)COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.

  15. Accelerated simulation study of space charge effects in quadrupole ion traps using GPU techniques.

    PubMed

    Xiong, Xingchuang; Xu, Wei; Fang, Xiang; Deng, Yulin; Ouyang, Zheng

    2012-10-01

    Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 10(5) ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.

  16. Accelerated Simulation Study of Space Charge Effects in Quadrupole Ion Traps Using GPU Techniques

    NASA Astrophysics Data System (ADS)

    Xiong, Xingchuang; Xu, Wei; Fang, Xiang; Deng, Yulin; Ouyang, Zheng

    2012-10-01

    Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 105 ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.

  17. Ion plume/S-band carrier interaction study

    NASA Technical Reports Server (NTRS)

    Stanton, P.

    1981-01-01

    A study was performed to determine the effects of a mercury ion thruster plume on an S-band telecommunication carrier. Experiments were carried out on a 30 cm thruster in a JPL test chamber. Results from simple analytical models were compared with the above measurements and major discrepancies were discovered. Modifications to the electron density model provided a qualitative explanation, but further work is necessary for a quantitative answer. The results indicate the effects of the plume, on S and X Band telecommunications will be minor, with the possible exception of critical angle blockage.

  18. A new approach for the study of gas-phase ion-ion reactions using electrospray ionization.

    PubMed

    Ogorzalek Loo, R R; Udseth, H R; Smith, R D

    1992-10-01

    A simple flow reactor which facilitates the study and application of ion-ion and ion-molecule reactions at near atmospheric pressures is reported. Reactant ions were generated by electrospray ionization and discharge ionization methods, although any ionization sources amenable to atmospheric pressure may be used. Ions of opposite charge are generated in spatially separate ion sources and are swept into capillary inlets where the flows are merged and where reaction(s) can occur. Among the reactions investigated were the partial neutralization of multiply protonated polypeptides and proteins such as melittin, bradykinin, cytochrome c, and myoglobin by reaction with discharge-generated anions, the partial neutralization of multiply charged anions of oligodeoxyadenylic acid (d(pA)3) by reaction with discharge-generated cations, the partial neutralization of bovine A-chain insulin anions by reaction with myoglobin [M+nH](n+) ions, and the reaction of multiply protonated melittin with discharge-generated cations. The cation-anion reactions generally resulted in a shift to lower charge (higher mass-to-charge ratio) in the products' charge state distributions and the transfer of solvent molecules to the macromolecule products. Multiply protonated melittin was detected in a less highly solvated state with the positive discharge in operation.

  19. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; Xu, Honghui; An, Junlin; Xue, Guoqiang; Cao, Jinfei

    2015-12-01

    In order to investigate the regional variations of water-soluble ions (WSIs), size-resolved measurement of aerosol particles and WSIs was conducted by using Anderson Sampler and Ion Chromatography at five sites (Nanjing, Suzhou, Lin'an, Hangzhou and Ningbo) in the Yangtze River Delta (YRD) region, China in the Autumn of 2012 and Winter, Spring and Summer of 2013. WSIs exhibited obvious seasonal variations due to the monsoon conversion, with the highest level in winter and lowest level in summer. The aerosol mass concentrations and WSIs in different size segments varied with four seasons. The dominant ions concentrations in PM2.1 ranked in the order of SO42- > NO3- > NH4+ > Cl- > K+ > Ca2+, and the dominant ions concentrations in PM2.1-10 ranked in the order of Ca2+ > NO3- > SO42- > Cl- > NH4+ > Na+. The size spectra of mass and WSIs concentration peaked mostly at 0.43-0.65 μm in four seasons. The concentration discrepancies of WSIs in different cities were caused by the geographic locations and emission source. It's belonged to ammonium-rich distribution in PM2.1 and ammonium-poor distribution in PM2.1-10 in the YRD region. The impact of temperature on mass concentrations of NO3- and NH4+ in PM2.1 were stronger than those in PM2.1-10. PCA analysis shows that the sources of WSIs dominant by anthropogenic sources, soil particles or falling dust, sea salt and burning process.

  20. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Fomba, K. W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.; Herrmann, H.

    2015-09-01

    caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC, respectively, when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U"-shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the 3-stage collector and somewhat more pronounced from the 5-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the 5-stage collector was capable of resolving some features of solute size dependencies not seen in the 3-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  1. Computational studies of ion pairing. 8. Ion pairing of tetraalkylammonium ions to nitrosobenzene and benzaldehyde redox species. A general binding motif for the interaction of tetraalkylammonium ions with benzenoid species.

    PubMed

    Fry, Albert J

    2013-06-07

    Very little data is available on the detailed structures of ion pairs in solution, since few general experimental methods are available for obtaining such information. For this reason, computational methods have emerged as the method of choice for determining the structures of organic ion pairs in solution. The present study examines the ion pairs between a series of tetraalkylammonium ions and several redox forms of nitrosobenzene and a series of substituted benzaldehydes. The structures, though previously unexpected, are chemically reasonable and fit into a previous pattern of ion pairing described in previous publications in this series. To date in these studies, a total of 73 ion pairs and related species have in fact been identified having exactly the same unusual orientation of the tetraalkylammonium component with respect to the donor species. The results are pertinent to topics of general current interest, including self-assembly, molecular recognition, and supramolecular assembly.

  2. Composites from powder coated towpreg - Studies with variable tow sizes

    NASA Astrophysics Data System (ADS)

    Hugh, Maylene K.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.

  3. Composites from powder coated towpreg - Studies with variable tow sizes

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Part fabrication from composite materials usually costs less when larger fiber tow bundles are used. On the other hand, mechanical properties generally are lower for composites made using larger size tows. This situation gives rise to a choice between costs and properties in determining the best fiber tow bundle size to employ in preparing prepreg materials for part fabrication. To address this issue, unidirectional and eight harness satin fabric composite specimens were fabricated from 3k, 6k, and 12k carbon fiber reinforced LARC-TPI powder coated towpreg. Short beam shear strengths and longitudinal and transverse flexure properties were obtained for the unidirectional specimens. Tension properties were obtained for the eight harness satin woven towpreg specimens. Knowledge of the variation of properties with tow size may serve as a guide in material selection for part fabrication.

  4. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    SciTech Connect

    Angioni, C.

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  5. Test particle study of minor ions in solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Zurbuchen, Th.; Bochsler, P.; Politano, H.; Pouquet, A.

    1995-01-01

    We perform a parameter study of the temporal evolution of a test particle distribution function in MHD turbulence. The turbulent fields are calculated using a pseudo-spectral method and periodic boundary conditions on a regular grid of 180(exp 3) points, appropriate for incompressible, homogeneous and isotropic turbulence. Initially, the kinetic and the magnetic energy are equal on the average. Both, deterministic and random initial conditions are used, in the former case with zeros of the magnetic field located at grid points, in the latter case located by interpolation between grid points. The evolution of the minor ion distribution function is studied in detail as these turbulent fields evolve, developing strong current and vorticity sheets. Using the full collisionless equation of motion for the test particles, the efficiency of nonlinear interactions can be studied. The results are compared to theoretical predictions and are then discussed in connection with the observations of the dynamical properties of solar wind minor ions derived from in situ observations.

  6. Thomson parabola ion analyzer for laser-plasma studies.

    PubMed

    Slater, D C

    1978-10-01

    A compact, flexible design for a parallel-fields ion analyzer is presented. Accurate ion velocity and charge state measurements can be obtained over a wide range without the need for calibration sources. Etchable cellulose-nitrate foil is used to record individual ion tracks.

  7. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  8. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  9. Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Ebrahimian, A.

    2004-05-01

    The coordination of Ni 2+ ions in the dehydrated nickel-exchanged zeolites was investigated from the analysis of diffuse reflectance spectra. Solid-state ion exchange method was used to prepare nickel-containing mordenite, Y, L and mazzite zeolites. In the dehydrated mordenite and zeolite Y, nickel cations are presented in both forms of tetrahedral and distorted tetrahedral symmetries. The relative amount of tetrahedral and distorted tetrahedral nickel species are related to the heating temperature and heating time used for calcinations. In the dehydrated zeolite L and mazzite, Ni 2+ ions are mainly in the distorted octahedral symmetries.

  10. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  11. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential

  12. The Nevada Class Size Reduction Evaluation Study, 1995.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City.

    A primary purpose for reducing the student-teacher ratio in the early grades is to make students more successful in their later years. This document contains two separate, but interrelated reports that examined two aspects of the 1989 Class Size Reduction (CSR) Act in Nevada. The Act called for a reduction in student-teacher ratios for selected…

  13. Finite-size effects in nanocomposites: experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Clarke, L. I.; Roman, M. P.; Skau, E. W.; Stevens, D. R.; Downen, L. N.; Hoffman, T. J.; Bochinski, J. R.

    2012-02-01

    Many proposed applications for electrically-conducting composite materials (smart textiles, e-m shielding coatings, tissue scaffolds) are nanostructured - that is, characteristic sample length scales may be similar to at least one dimension of the embedded particle. This is particularly true for long aspect-ratio particles such as nanotubes where the length of the particle can approach or exceed the thickness of a thin nanocomposite film or a nanofiber diameter. In these cases, the formation of a particle network and thus the electrical conductivity enhancement is affected by finite size effects, that is, percolation thresholds and the width of the transition to percolation differ with sample size [Stevens et al., Phys. Rev. E 84, 021126 (2011)]. We present experimental electrical conductivity and 3-D continuum Monte-Carlo simulation results on such finite-sized percolation effects for particles with aspect ratios of 1 to 1000 and discuss proposed scaling laws and techniques to improve conductance in the finite-size regime.

  14. Statistical study of enhanced ion fluxes in the outer plasmasphere

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Burch, J. L.; Williams, R. L.; Gallagher, D. L.; Waite, J. H., Jr.

    Statistical studies of outer plasmaspheric ions in the northern hemisphere have been made utilizing the High Altitude Plasma Instrument (HAPI) on board the Dynamics Explorer-1 satellite. The data were collected during equinox and winter seasons and during a period of solar maximum activity conditions. The data include approximately 40 dayside and over 50 nightside plasmaspheric passes covering a range of magnetic activities (0 < Kp < 7). A total of six magnetic storms and recovery periods and a number of quiet times are included in the sampling. The range of magnetic local times on the dayside is from about 6 hours to 12 hours, while the nightside range is from about 18 hours to 23 hours. Our results indicate a clear enhancement in the low energy (5 eV < E < 30 eV) number flux during periods of large magnetic activity in both the dayside and nightside outer plasmasphere (the inner plasmasphere was not observed). The dayside plasmaspheric fluxes were predominately upward (anti-parallel to B¯) while the nightside plasmaspheric fluxes were predominately downward (parallel to B¯). The net number fluxes sometimes reached a value of over 108cm sec-1 (assuming H+ as the predominate species). The largest flows up the field line occur in the outer plasmasphere and decrease in the plasma trough. The ion temperatures in the outer plasmasphere were typically lower than those in the plasma trough and auroral regions. Since the largest flows both parallel and anti-parallel to B¯ are observed at periods of high magnetic activity, enhanced outer plasmaspheric fluxes may be due to ionospheric ions expanding into depleted plasmaspheric flux tubes. The nightside fluxes may be due to expansion of the ionosphere in the magnetic conjugate hemisphere.

  15. Size-controlled synthesis of hierarchical nanoporous iron based fluorides and their high performances in rechargeable lithium ion batteries.

    PubMed

    Lu, Yan; Wen, Zhao-yin; Jin, Jun; Wu, Xiang-wei; Rui, Kun

    2014-06-21

    High performance nanostructured iron fluorides with controllable sizes were successfully synthesized using oleylamine as a size tuning agent for the first time. They exhibited excellent cathode performances with large retensive capacities exceeding 200 mA h g(-1) after 50 cycles and outstanding rate performances of nearly 100 mA h g(-1) even at 10 C.

  16. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  17. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J

    2017-05-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.

  18. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-03-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  19. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-05-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  20. Unusual Li-Ion Transfer Mechanism in Liquid Electrolytes: A First-Principles Study.

    PubMed

    Tang, Zhen-Kun; Tse, John S; Liu, Li-Min

    2016-11-17

    Liquid electrolytes play an important role in commercial lithium-ion (Li-ion) batteries as a conduit for Li-ion transfer between anodes and cathodes. It is generally believed that the Li-ions move along with the salt ions; thus, Li-ion diffusion is only affected by the viscosity and salt concentration in the liquid electrolytes based on the Stokes-Einstein equation. In this study, a novel and faster Li-ion diffusion mechanism in electrolytes containing a cyanogen group is identified from first-principles molecular dynamics (FPMD) simulations. In this mechanism, the Li-ions are first detached from the Li-salt and then diffuse along with the solvent molecules, and the Li-ion diffusion does not obey the traditional Stokes-Einstein equation. The ionic conductivity of the electrolyte systems with this "solvent-assisted Li-ion diffusion" mechanism is further enhanced through Li-ion hopping. This novel Li-ion diffusion process explains recent findings of high Li-ion conductivity in electrolytes with cyanogen groups and furnishes a new paradigm for the design of fast-charging liquid electrolyte for Li-ion batteries.

  1. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    PubMed

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-01-30

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids.

  2. A critique of comparative studies of brain size

    PubMed Central

    Healy, Susan D; Rowe, Candy

    2006-01-01

    In recent years, there have been over 50 comparative analyses carried out in which social or ecological variables have been used to explain variation in whole brain size, or a part thereof, in a range of vertebrate species. Here, we review this body of work, pointing out that there are a number of substantial problems with some of the assumptions that underpin the hypotheses (e.g. what brain size means), with the data collection and with the ways in which the data are combined in the analyses. These problems are particularly apparent in those analyses in which attempts are made to correlate complex behaviour with parts of the brain that carry out multiple functions. We conclude that now is the time to substantiate these results with data from experimental manipulations. PMID:17476764

  3. Aircraft studies of size-dependent aerosol sampling through inlets

    NASA Technical Reports Server (NTRS)

    Porter, J. N.; Clarke, A. D.; Ferry, G.; Pueschel, R. F.

    1992-01-01

    Representative measurement of aerosol from aircraft-aspirated systems requires special efforts in order to maintain near isokinetic sampling conditions, estimate aerosol losses in the sample system, and obtain a measurement of sufficient duration to be statistically significant for all sizes of interest. This last point is especially critical for aircraft measurements which typically require fast response times while sampling in clean remote regions. This paper presents size-resolved tests, intercomparisons, and analysis of aerosol inlet performance as determined by a custom laser optical particle counter. Measurements discussed here took place during the Global Backscatter Experiment (1988-1989) and the Central Pacific Atmospheric Chemistry Experiment (1988). System configurations are discussed including (1) nozzle design and performance, (2) system transmission efficiency, (3) nonadiabatic effects in the sample line and its effect on the sample-line relative humidity, and (4) the use and calibration of a virtual impactor.

  4. Aircraft studies of size-dependent aerosol sampling through inlets

    NASA Technical Reports Server (NTRS)

    Porter, J. N.; Clarke, A. D.; Ferry, G.; Pueschel, R. F.

    1992-01-01

    Representative measurement of aerosol from aircraft-aspirated systems requires special efforts in order to maintain near isokinetic sampling conditions, estimate aerosol losses in the sample system, and obtain a measurement of sufficient duration to be statistically significant for all sizes of interest. This last point is especially critical for aircraft measurements which typically require fast response times while sampling in clean remote regions. This paper presents size-resolved tests, intercomparisons, and analysis of aerosol inlet performance as determined by a custom laser optical particle counter. Measurements discussed here took place during the Global Backscatter Experiment (1988-1989) and the Central Pacific Atmospheric Chemistry Experiment (1988). System configurations are discussed including (1) nozzle design and performance, (2) system transmission efficiency, (3) nonadiabatic effects in the sample line and its effect on the sample-line relative humidity, and (4) the use and calibration of a virtual impactor.

  5. Experimental Studies of Electrons in a Heavy-Ion Beam

    SciTech Connect

    Molvik, A W; Seidl, P A; Bieniosek, F M; Cohen, R H; Faltens, A; Friedman, A; Covo, M K; Lund, S M; Prost, L

    2004-06-23

    Electron cloud effects, ECEs, are normally a problem only in ring accelerators. However, heavy-ion induction linacs for inertial fusion energy have an economic incentive to fit beam tubes tightly to intense beams. This places them at risk from electron clouds produced by emission of electrons and gas from walls. We have measured electron and gas emission from 1 MeV K{sup +} impact on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach *values of 130, whereas gas desorption coefficients are near 10{sup 4}. Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. Here we discuss a new diagnostic technique that measures gas pressure and electron ionization rates within quadrupole magnets during the beam transit.

  6. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  7. Computational studies of transport in ion channels using metadynamics.

    PubMed

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  8. Radiographic Technique for Densitometric Studies Using Heavy Ion Microbeams

    SciTech Connect

    Muscio, J.; Somacal, H.; Burlon, A. A.; Debray, M. E.; Valda, A. A.; Kreiner, A. J.; Kesque, J. M.; Minsky, D. M.; Davidson, M.; Davidson, J.

    2007-10-26

    Different analytical techniques are typically used to perform multi-elemental and densitometric analysis by means of particle beams with micrometric space resolution. Usually, those analyses are respectively performed by PIXE and STIM. Traditionally, to characterize the trace element concentrations in a specimen two different experiments are required with differences in setups and types of detectors employed, as well as in the necessary ion current intensities. In this work, we discuss the latest results in the development of a new technique that synthesizes both analyses in just a single one, by means of heavy ion induced x-ray emission. This technique, implemented for the first time at the Tandar Laboratory, employs a second target in addition to the sample under study. The multi-elemental information of the specimen is provided by its PIXE signal and its densitometric information is supplied by the PIXE signal of the secondary target, which is placed immediately behind the sample under analysis. These PIXE signals are produced and acquired during the same experiment, allowing the analysis of both features (composition and density) at the same time. The X-rays originated in the secondary target are attenuated when traversing the specimen in the direction of the detector and consequently a radiographic image of the specimen is obtained. In this case, the characteristic X-rays of the secondary target act like a monochromatic secondary source. In the present work, a method to estimate the thickness of specimens is introduced and compared with estimations performed by the STIM method.

  9. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-06-01

    NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (˜6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (˜3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  10. Fully kinetic simulation study of ion-acoustic solitons in the presence of trapped electrons.

    PubMed

    Hosseini Jenab, S M; Spanier, F

    2017-05-01

    The nonlinear fluid theory developed by Schamel suggests a modified KdV equation to describe the temporal evolution of ion acoustic (IA) solitons in the presence of trapped electrons. The validity of this theory is studied here by verifying solitons' main characteristic, i.e., stability against successive mutual collisions. We have employed a kinetic model as a more comprehensive theory than the fluid one, and utilized a fully kinetic simulation approach (both ions and electrons are treated based on the Vlasov equation). In the simulation approach, these solitons are excited self-consistently by employing the nonlinear process of IA solitons formation from an initial density perturbation (IDP). The effect of the size of IDPs on the chain formation is proved by the simulation code as a benchmark test. It is shown that the IA solitons, in the presence of trapped electrons, can retain their features (both in spatial and velocity direction) after successive mutual collisions. The collisions here include encounters of IA solitons with the same trapping parameter, while differing in size. Kinetic simulation results reveal a complicated behavior during a collision between IA solitons in contrast to the fluid theory predictions and simulations. In the range of parameters considered here, two oppositely propagating solitons rotate around their collective center in the phase space during a collision, independent of their trapping parameters. Furthermore, they exchange some portions of their trapped populations.

  11. Fully kinetic simulation study of ion-acoustic solitons in the presence of trapped electrons

    NASA Astrophysics Data System (ADS)

    Hosseini Jenab, S. M.; Spanier, F.

    2017-05-01

    The nonlinear fluid theory developed by Schamel suggests a modified KdV equation to describe the temporal evolution of ion acoustic (IA) solitons in the presence of trapped electrons. The validity of this theory is studied here by verifying solitons' main characteristic, i.e., stability against successive mutual collisions. We have employed a kinetic model as a more comprehensive theory than the fluid one, and utilized a fully kinetic simulation approach (both ions and electrons are treated based on the Vlasov equation). In the simulation approach, these solitons are excited self-consistently by employing the nonlinear process of IA solitons formation from an initial density perturbation (IDP). The effect of the size of IDPs on the chain formation is proved by the simulation code as a benchmark test. It is shown that the IA solitons, in the presence of trapped electrons, can retain their features (both in spatial and velocity direction) after successive mutual collisions. The collisions here include encounters of IA solitons with the same trapping parameter, while differing in size. Kinetic simulation results reveal a complicated behavior during a collision between IA solitons in contrast to the fluid theory predictions and simulations. In the range of parameters considered here, two oppositely propagating solitons rotate around their collective center in the phase space during a collision, independent of their trapping parameters. Furthermore, they exchange some portions of their trapped populations.

  12. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography

    USDA-ARS?s Scientific Manuscript database

    A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....

  13. Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus

    PubMed Central

    Duque, María D.; Ma, Chunlong; Torres, Eva; Wang, Jun; Naesens, Lieve; Juárez-Jiménez, Jordi; Camps, Pelayo; Luque, F. Javier; DeGrado, William F.; Lamb, Robert A.; Pinto, Lawrence H.; Vázquez, Santiago

    2011-01-01

    Amantadine inhibits the M2 proton channel of influenza A virus, yet its clinical use has been limited by the rapid emergence of amantadine-resistant virus strains. We have synthesized and characterized a series of polycyclic compounds designed as ring-contracted or ring-expanded analogs of amantadine. Inhibition of the wild-type (wt) M2 channel and the A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Several bisnoradamantane and noradamantane derivatives inhibited the wt ion channel. The compounds bind to a primary site delineated by Val27, Ala30 and Ser31, though ring-expansion restricts the positioning in the binding site. Only the smallest analog 8 was found to inhibit the S31N mutant ion channel. The structure-activity relationship obtained by TEV assay was confirmed by plaque reduction assays with A/H3N2 influenza virus carrying wt M2 protein. PMID:21466220

  14. 78 FR 76888 - MAP-21 Comprehensive Truck Size and Weight Limits Study Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... Federal Highway Administration MAP-21 Comprehensive Truck Size and Weight Limits Study Materials AGENCY... for Progress in the 21st Century Act (MAP-21) Comprehensive Truck Size and Weight Limits Study, which... public meetings on the MAP-21 Comprehensive Truck Size and Weight Limits Study and to announce the...

  15. A new technique for studying ion-ion recombination in a flowing afterglow Langmuir probe apparatus

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.

    2007-11-01

    We present a new technique for measuring ion-ion recombination rate constants in a flowing afterglow Langmuir probe (FALP) apparatus. The technique involves measuring the fractional negative ion product distribution following electron attachment versus the initial electron density when two or more products are formed. The concentration of reactant gas is kept low enough that the plasma retains its electron-Ar+, ambipolar diffusion character along the entire length of the flow tube. If only polyatomic anions are formed, accurate relative rates are obtained. When one of the species is atomic, absolute rates are also possible by doing a detailed model of the plasma kinetics. Here we present rate constants for Ar+ recombining with Cl2- ((5.3 ± 1.6) × 10-8 cm3 s-1 at 302 K), Br2- ((3.9 ± 1.2) × 10-8 cm3 s-1 at 302 K), the phosgene negative ion CCl2O- ((8.9 ± 2.7) × 10-8 cm3 s-1 at 302 K), and relative rate constants for Ar+ + SF6- and SF5- (ratio 1.2 at 550 K, with an uncertainty of +0.3 and -0.1). The diatomic negative ions are found to recombine slower than the polyatomic ones, in agreement with earlier indications.

  16. Computational study of ion beam extraction phenomena through multiple apertures

    SciTech Connect

    Hu, Wanpeng; Sang, Chaofeng; Tang, Tengfei; Wang, Dezhen; Li, Ming; Jin, Dazhi; Tan, Xiaohua

    2014-03-15

    The process of ion extraction through multiple apertures is investigated using a two-dimensional particle-in-cell code. We consider apertures with a fixed diameter with a hydrogen plasma background, and the trajectories of electrons, H{sup +} and H{sub 2}{sup +} ions in the self-consistently calculated electric field are traced. The focus of this work is the fundamental physics of the ion extraction, and not particular to a specific device. The computed convergence and divergence of the extracted ion beam are analyzed. We find that the extracted ion flux reaching the extraction electrode is non-uniform, and the peak flux positions change according to operational parameters, and do not necessarily match the positions of the apertures in the y-direction. The profile of the ion flux reaching the electrode is mainly affected by the bias voltage and the distance between grid wall and extraction electrode.

  17. Surface studies of Li-ion and Mg battery electrodes

    NASA Astrophysics Data System (ADS)

    Esbenshade, Jennifer

    This dissertation focuses on studies of the surfaces of both Li-ion and Mg-ion battery electrodes. A fundamental understanding of processes occurring at the electrode surface is vital to the development of advanced battery systems. Additionally, modifications to the electrode surfaces are made and further characterized for improved performance. LiMn2O4 Cathodes for Li-ion Batteries: Effect of Mn in electrolyte on anode and Au coating to minimize dissolution: LiMn2O4 (LMO) is known to dissolve Mn ions with cycling. This section focuses on both the effect of the dissolution of Mn2+ into the electrolyte as well as Au coating on the LMO to improve electrochemical performance. Electrochemical quartz crystal microbalance (EQCM) was used to monitor changes in mass on the anode, SEM and AES were used to observe changes in surface morphology and chemical composition, and potentiostatic voltammetry was used to monitor charge and discharge capacity. The effect of Cu2+ addition in place of Mn2+ was also studied, as Cu is known to form an underpotential deposition (UPD) monolayer on Au electrodes. Following this, LMO particles were coated with a Au shell by a simple and scalable electroless deposition for use as Li-ion battery cathodes. The Au shell was intended to limit the capacity fade commonly seen with LMO cathodes by reducing the dissolution of Mn. Characterization by SEM, TEM, EELS, and AFM showed that the Au shell was approximately 3 nm thick. The Au shell prevented much of the Mn from dissolving in the electrolyte with 82% and 88% less dissolved Mn in the electrolyte at room temperature and 65 ºC, respectively, as compared to the uncoated LMO. Electrochemical performance studies with half cells showed that the Au shell maintained a higher discharge capacity over 400 cycles by nearly 30% with 110 mA hr g-1 for the 400th cycle as compared to a commercial LMO at 85 mA hr g-1. Similarly, the capacity fade was reduced in full cells: the coated LMO had 47% greater capacity

  18. On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper.

    SciTech Connect

    Jenkins, M. L.

    1998-10-30

    We have made an analysis of the conditions necessary for the successful use of the weak-beam technique for identifying and characterizing small point-defect clusters in ion-irradiated copper. The visibility of small defects was found to depend only weakly on the magnitude of the beam-convergence. In general, the image sizes of small clusters were found to be most sensitive to the magnitude of Sa with the image sizes of some individual defects changing by large amounts with changes as small as 0.025 nm{sup {minus}1}. The most reliable information on the true defect size is likely to be obtained by taking a series of 5-9 micrographs with a systematic variation of deviation parameter from 0.2-0.3 nm{sup {minus}1}. This procedure allows size information to be obtained down to a resolution limit of about 0.5 nm for defects situated throughout a foil thickness of 60 nm. The technique has been applied to the determination of changes in the sizes of small defects produced by a low-temperature in-situ irradiation and annealing experiment.

  19. Theoretical studies on dissociative recombination of molecular ions

    NASA Astrophysics Data System (ADS)

    Larson, Åsa

    2016-09-01

    In dissociative recombination a molecular ion captures an electron forming a neutral state that dissociates into fragment. Due to the Coulomb attraction between the reactants, the cross section is typically large at low collision energies and the process is important for different types of plasmas. Here, it will be described how the reaction can be studied theoretically. The goal is to compute reaction cross sections and to determine what fragments are formed. The calculations are done in close collaboration with experiments. In the process, the electron may be captured directly into an electronic resonant state that then is dissociated into fragments. An alternative mechanism is driven by an electron capture into a ro-vibrationally excited Rydberg state that then is predissociated. The two mechanisms are competing and should be considered coherently. The study of dissociative recombination requires both the accurate treatment of the electron scattering processes, but must also include an accurate representation of the potential energy curves, both for electronically bound states and the resonant states. In addition, the couplings between these states, both the coupling between the resonant states and the scattering continuum (the autoionization width) and the non-adiabatic coupling between all states are needed to complete describe the cross section including the branching ratios into final states. These are obtained using structure calculations as well as scattering calculations, using the complex Kohn variational method. The electronic states are diabatized before the nuclear dynamics is studied quantum mechanically. The theoretical method will be illustrated with examples on dissociative recombination of small molecular ions such as HF+, BeH+, H2O+ and N2H+.

  20. A study on the TAE-induced fast-ion loss process in LHD

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Toi, K.; Shimizu, A.; Spong, D. A.; Osakabe, M.; Yamamoto, S.; the LHD Experiment Group

    2013-05-01

    Characteristics of fast-ion losses induced by toroidal-Alfvén eigenmodes (TAEs) are investigated over wide parameter ranges of Large Helical Device (LHD) plasmas to reveal the fast-ion loss process. To study fast-ion losses, a scintillator-based lost-fast ion probe is used, and an increment of fast-ion loss flux due to TAEs from the neoclassical orbit loss level (ΔΓfast ion) is measured. The dependence of ΔΓfast ion on the TAE magnetic fluctuation amplitude (bθTAE) changes from a linear to a quadratic and finally a third power with an increase in the magnetic axis shift. It is found that the dependence of fast-ion loss flux on TAE magnetic fluctuation amplitudes changes at a certain fluctuation level in a fixed configuration. Experimental results show that in the small bθTAE regime, ΔΓfast ion is proportional to bθTAE, whereas ΔΓfast ion increases with the square of bθTAE in the larger bθTAE regime. A simulation by orbit-following codes that incorporate magnetic fluctuations with frequency chirping-down due to TAEs suggests the change in the fast-ion loss process from a convective (ΔΓfast ion ∝ bθTAE) to a diffusive (\\Delta \\Gamma_{fast\\ ion} \\propto b_{\\theta TAE}^{2} ) character as bθTAE increases.

  1. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  2. Study of EMIC wave excitation using direct ion measurements

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Bonnell, John W.; Breneman, Aaron W.; Denton, Richard E.; Funsten, Herbert O.; Jahn, Jöerg-Micha; Kletzing, Craig A.; Kurth, William S.; Larsen, Brian A.; Reeves, Geoffrey D.; Spence, Harlan E.; Wygant, John R.

    2015-04-01

    With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ˜2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

  3. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    NASA Astrophysics Data System (ADS)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  4. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    PubMed Central

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications. PMID:28045044

  5. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  6. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  7. Studies of internal sputtering in a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Rawlin, V. K.

    1975-01-01

    Initial studies have been made of the sputtering and deposition phenomena in a 30-cm thruster. Sputtering rates, of the cathode baffle, one of the main sources of sputtered material in a thruster, have beem measured by weight loss as a function of several thruster parameters. Sputtering rates were found to increase with both cathode flow rate and beam current when constant discharge voltage of 37 volts and power losses of 185 ev/ion were maintained. Sputtering rates were reduced 24% as discharge voltage was decreased from 37 to 33 volts while keeping discharge power constant. Qualitative agreement was found between sputtering rates obtained by the weight loss and those implied by spectroscopically observed line intensities of the excited iron sputtered atoms. After the completion of the sputtering tests, deposition and sputtering sites inside the thruster were identified.

  8. Studies of internal sputtering in a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Rawlin, V. K.

    1975-01-01

    Initial studies have been made of the sputtering and deposition phenomena in a 30-cm thruster. Sputtering rates, of the cathode baffle, one of the main sources of sputtered material in a thruster, have been measured by weight loss as a function of several thruster parameters. Sputtering rates were found to increase with both cathode flow rate and beam current when constant discharge voltage of 37 volts and power loses of 185 ev/ion were maintained. Sputtering rates were reduced 24% as discharge voltage was decreased from 37 to 33 volts while keeping discharge power constant. Qualitative agreement was found between sputtering rates obtained by the weight loss and those implied by spectroscopically observed line intensities of the excited iron sputtered atoms. After the completion of the sputtering tests, deposition and sputtering sites inside the thruster were identified.

  9. Heavy-ion physics studies for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi,