Science.gov

Sample records for ion sound wave

  1. Fundamental plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  2. Fundamental plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  3. Negative ion sound solitary waves revisited

    NASA Astrophysics Data System (ADS)

    Cairns, R. A.; Cairns

    2013-12-01

    Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

  4. Second harmonic plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  5. Second harmonic plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  6. Dynamics of Ion Sound Waves in the Front of the Terrestrial Bow Shock

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Walker, S. N.; Balikhin, M.; Krasnoselskikh, V.

    2010-12-01

    Ion-sound turbulence played a crucial role in early models of anomalous processes in the shock front. Both the current and the gradient of electron temperature within the magnetic ramp region have been considered as sources of free energy for the ion sound instability in the shock front. Since the solar wind velocity upstream of the terrestrial bow shock usually exceeds the velocity of ion sound waves, these waves were expected to be observed in the region the ramp and downstream of it. However, the EFW instrument on board Cluster 3 measured ion sound wave packets in the upatream part of the foot region. These observations pose two questions, namely 'What is the generation mechanism of these waves?', and 'Why are ion sound waves observed as confined quasimonchromatic wave packets?'. The envelope of such wave packets results from nonlinearities in the wave dynamics. However, these nonlineararities do not appear in the solutions to the KdV equations which theoretically describe such wave packets. Internal burst mode data from the EFW instrument are used to separate spatial and temporal variations on a distance about 60 meters. Nonlinear frequency domain identification techniques have been applied to the observed ion sound waves. The results are used to identify possible wave sources and investigate their dynamics.

  7. Solitary dust sound waves in a plasma with two-temperature ions and distributed grain size

    SciTech Connect

    Prudskikh, V. V.

    2009-01-15

    The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.

  8. Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even

  9. Dynamics of Langmuir and ion-sound waves in type III solar radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The study traces the evolution of Langmuir and ion-sound waves in type III sources, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. It is shown that the conditions in the solar wind do not allow a steady state to be attained; instead, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be rapid enough to saturate the growth of the parent Langmuir waves in the available interaction time. The competing processes of nonlinear wave collapse and quasi-linear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth.

  10. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    SciTech Connect

    Dubinov, A. E. Sazonkin, M. A.

    2010-11-15

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  11. Sound wave transmission (image)

    MedlinePlus

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  12. Plasma waves produced by the xenon ion beam experiment on the Porcupine sounding rocket

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M.

    1982-01-01

    The production of electrostatic ion cyclotron waves by a perpendicular ion beam in the F-region ionosphere is described. The ion beam experiment was part of the Porcupine program and produced electrostatic hydrogen cyclotron waves just above harmonics of the hydrogen cyclotron frequency. The plasma process may be thought of as a magnetized background ionosphere through which an unmagnetized beam is flowing. The dispersion equation for this hypothesis is constructed and solved. Preliminary solutions agree well with the observed plasma waves.

  13. Kinetic Effects on the Ion Sound Waves Generated by Stimulated Brillouin Scattering of a Spatially Smoothed Laser Beam

    NASA Astrophysics Data System (ADS)

    Riconda, Caterina; Hüller, Stefan; Myatt, Jason; Pesme, Denise

    Stimulated Brillouin Scattering (SBS) can drive ion sound waves to amplitudes such that steepening and particle kinetic effects occur. Such phenomena have been studied recently in spatial volumes corresponding to a single laser speckle, in two [Cohen, B. I. et al. Phys. Plasmas 4, 956 (1997)], and three spatial dimensions [Vu, H. X., Phys. Plasmas 4, 1841 (1997)]. We analyze the results of 2D kinetic simulations modeling the evolution of SBS in the case of a spatially smoothed laser beam interacting with a plasma containing many speckles. For this purpose, we have coupled a 2D particle-in-cell code to a 2D non-paraxial electromagnetic wave solver. The generation of a fast ion population is observed to initially take place in the most intense hot spots, resulting in a decrease of the amplitude of the ion sound wave amplitude generated by SBS in these hot spots. SBS activity is consequently reduced in the most intense laser speckles, so that the overall backscattering SBS reflectivity drops considerably below the values expected from models that do not account for particle kinetics and/or nonlinear hydrodynamics.

  14. Blow-up of ion-sound waves in plasma with non-linear sources on the boundary

    NASA Astrophysics Data System (ADS)

    Korpusov, Maxim O.

    2012-04-01

    We consider a model equation of ion-sound waves in 'non-magnetized' plasma taking account of non-linear sources localized on the boundary. This generates a non-linear dynamical boundary condition which is 'close' to the non-linear Neumann-Dirichlet condition. We prove the existence of a weak generalized solution of this initial-boundary value problem and obtain sufficient conditions for the blow-up of this solution in finite time. We give an upper bound for the time of existence of the solution, which equals its blow-up time. We also obtain sufficient conditions for the existence of a strong generalized solution.

  15. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    SciTech Connect

    Kirichok, A. V. Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  16. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    NASA Astrophysics Data System (ADS)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  17. Just How Does Sound Wave?

    ERIC Educational Resources Information Center

    Shipman, Bob

    2006-01-01

    When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…

  18. Just How Does Sound Wave?

    ERIC Educational Resources Information Center

    Shipman, Bob

    2006-01-01

    When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…

  19. SU-E-J-138: On the Ion Beam Range and Dose Verification in Hadron Therapy Using Sound Waves

    SciTech Connect

    Fourkal, E; Veltchev, I; Gayou, O; Nahirnyak, V

    2015-06-15

    Purpose: Accurate range verification is of great importance to fully exploit the potential benefits of ion beam therapies. Current research efforts on this topic include the use of PET imaging of induced activity, detection of emerging prompt gamma rays or secondary particles. It has also been suggested recently to detect the ultrasound waves emitted through the ion energy absorption process. The energy absorbed in a medium is dissipated as heat, followed by thermal expansion that leads to generation of acoustic waves. By using an array of ultrasound transducers the precise spatial location of the Bragg peak can be obtained. The shape and intensity of the emitted ultrasound pulse depend on several variables including the absorbed energy and the pulse length. The main objective of this work is to understand how the ultrasound wave amplitude and shape depend on the initial ion energy and intensity. This would help guide future experiments in ionoacoustic imaging. Methods: The absorbed energy density for protons and carbon ions of different energy and field sizes were obtained using Fluka Monte Carlo code. Subsequently, the system of coupled equations for temperature and pressure is solved for different ion pulse intensities and lengths to obtain the pressure wave shape, amplitude and spectral distribution. Results: The proposed calculations show that the excited pressure wave amplitude is proportional to the absorbed energy density and for longer ion pulses inversely proportional to the ion pulse duration. It is also shown that the resulting ionoacoustic pressure distribution depends on both ion pulse duration and time between the pulses. Conclusion: The Bragg peak localization using ionoacoustic signal may eventually lead to the development of an alternative imaging method with sub-millimeter resolution. It may also open a way for in-vivo dose verification from the measured acoustic signal.

  20. Ion sound instability driven by the ion flows

    SciTech Connect

    Koshkarov, O.; Smolyakov, A. I.; Kaganovich, I. D.; Ilgisonis, V. I.

    2015-05-15

    Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instability is studied analytically and the results are compared with direct, initial value numerical simulations.

  1. Sound Waves Levitate Substrates

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  2. Ion sound turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Dum, C. T.; Marsch, E.; Pilipp, W. G.; Gurnett, D. A.

    1979-01-01

    A stability analysis for ion sound is carried out in order to contribute to clarifying the mechanism of some observed fluctuations, which directly uses detailed measured particle distributions rather than model distributions. Correlation with measured wave activity is satisfactory. Valuable information about the instability mechanism, transport processes, and the accuracy of measured distributions can be obtained by this method. An illustration from Helios 1 data is presented.

  3. Hydrodynamic ion sound instability in systems of a finite length

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Chapurin, O.; Smolyakov, A.; Kaganovich, I.; Ilgisonis, V.

    2016-09-01

    Plasmas permeated by an energetic ion beam is prone to the kinetic ion-sound instability that occurs as a result of the inverse Landau damping for ion velocity. It is shown here that in a finite length system there exists another type of the ion sound instability which occurs for v02 wave coupling mediated by reflections from the walls. Analytical theory is developed and is compared with results of direct initial value numerical simulations. Formally analogous model is applicable for the excitation of the lower-hybrid waves in Hall thruster. It is expected that this mechanism of ion sound and lower hybrid instabilities may be operative in E × B plasma discharges in which the ion beam is created by the application of the external voltage.

  4. Waves and Sound, An Experiment that Walks.

    ERIC Educational Resources Information Center

    Brunschwig, Fernand

    An experiment on sound waves, developed for non-science majors in a college physics course, is described. The student investigates the interference of two sound waves and measures and wavelength as he uses a prerecorded tape and a cassette player. The student is tutored by the cassette tape recorder, which also produces the overlapping sound…

  5. Waves and Sound, An Experiment that Walks.

    ERIC Educational Resources Information Center

    Brunschwig, Fernand

    An experiment on sound waves, developed for non-science majors in a college physics course, is described. The student investigates the interference of two sound waves and measures and wavelength as he uses a prerecorded tape and a cassette player. The student is tutored by the cassette tape recorder, which also produces the overlapping sound…

  6. Sound wave propagation through glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim P.

    This work investigates the use of glow discharge plasma for acoustic wave manipulation. The broader goal is the suppression of aerodynamic noise using atmospheric glow discharge plasma as a sound barrier. Part of the effort was devoted to the development of a system for the generation of a large volume stable DC glow discharge in air both at atmospheric and at reduced pressures. The single tone sound wave propagation through the plasma was systematically studied. Attenuation of the acoustic wave passing through the glow discharge was measured for a range of experimental conditions including different discharge currents, electrode configurations, air pressures and sound frequencies including audible sound and ultrasound. Sound attenuation by glow discharge plasma as high as -28 dB was recorded in the experiments. Two types of possible mechanisms were considered that can potentially cause the observed sound attenuation. One is a global mechanism and the other is a local mechanism. The global mechanism considered is based on the reflection and refraction of acoustic wave due to the gas temperature gradients that form around the plasma. The local mechanism, on the other hand, is essentially the interaction of the acoustic wave with the plasma as it propagates inside the discharge and it can be viewed as a feedback system. Detailed temperature measurements, using laser-induced Rayleigh scattering technique, were carried out in the glow discharge plasma in order to evaluate the role of global mechanism in the observed attenuation. These measurements were made for a range of conditions in the atmospheric glow discharge. Theoretical analysis of the sound attenuation was carried out to identify the physical mechanism for the observed sound attenuation by plasma. It was demonstrated that the global mechanism is the dominant mechanism of sound attenuation. As a result of this study, the potentials and limitations of the plasma noise suppression technology were determined and

  7. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  8. Reflection of underwater sound from surface waves.

    PubMed

    Tindle, Chris T; Deane, Grant B; Preisig, James C

    2009-01-01

    A tank experiment has been conducted to measure reflection of underwater sound from surface waves. Reflection from a wave crest leads to focusing and caustics and results in rapid variation in the received waveform as the surface wave moves. Theoretical results from wavefront modeling show that interference of three surface reflected eigenrays for each wave crest produces complicated interference waveforms. There is good agreement between theory and experiment even on the shadow side of caustics where there are two surface reflected arrivals but only one eigenray.

  9. Extreme driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Friedland, L.; Shagalov, A. G.

    2017-08-01

    The excitation of large amplitude, strongly nonlinear ion acoustic waves from trivial equilibrium by a chirped frequency drive is discussed. Under certain conditions, after passage through the linear resonance in this system, the nonlinearity and the variation of parameters work in tandem to preserve the phase-locking with the driving wave via excursion of the excited ion acoustic wave in its parameter space, yielding controlled growth of the wave amplitude. We study these autoresonant waves via a fully nonlinear warm fluid model and predict the formation of sharply peaked (extreme) ion acoustic excitations with local ion density significantly exceeding the unperturbed plasma density. The driven wave amplitude is bound by the kinetic wave-breaking, as the local maximum fluid velocity of the wave approaches the phase velocity of the drive. The Vlasov-Poisson simulations are used to confirm the results of the fluid model, and Whitham's averaged variational principle is applied for analyzing the evolution of autoresonant ion acoustic waves.

  10. Crova's Disc: A Way to Make Sound Waves "Visible."

    ERIC Educational Resources Information Center

    Hastings, R. B.

    1981-01-01

    Explained are the differences between and offered are examples of longitudinal and transverse sound waves. Described is the construction of the Crova's Disc, a device used in the teaching of the propagation and properties of sound waves. (DS)

  11. Crova's Disc: A Way to Make Sound Waves "Visible."

    ERIC Educational Resources Information Center

    Hastings, R. B.

    1981-01-01

    Explained are the differences between and offered are examples of longitudinal and transverse sound waves. Described is the construction of the Crova's Disc, a device used in the teaching of the propagation and properties of sound waves. (DS)

  12. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  13. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  14. Mathematical models of sound waves in fluids

    NASA Astrophysics Data System (ADS)

    Birkhoff, Garrett

    1987-08-01

    The research discusses mathematical problems of numerical ocean acoustics. These concern the propagation of sound waves in (generally inhomogeneous) elastic fluids, with special reference ot the consistency of the elastic fluid model with ray theory (Fermat-Huygens), in predicting reflection, refraction, and diffraction. The standard modern explanation in terms of relaxation times, although sixty years old, has not yet been substantiated (especially in liquids) by clear answers to many basic questions. These include the following: To what extent is the absorption of sound per wave length, alpha lambda, in air, CO2, and other dilute gases determined by the absolute temperature, T, and the ratio f/p of the frequency to the pressure. To what extent are contributions to alpha from different causes demonstrably additive, in gases and in liquids.

  15. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  16. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  17. How to Use a Candle to Study Sound Waves

    ERIC Educational Resources Information Center

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  18. How to Use a Candle to Study Sound Waves

    ERIC Educational Resources Information Center

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  19. Thermodynamic effect of the ion sound instability in the ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gombosi, T. I.; Gorbachev, O. A.; Trukhan, A. A.; Miller, R. H.

    1994-01-01

    During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of non-isothermal region (in which T(sub e) greater than 3.4 T(sub i) at ionospheric heights) caused by a rapid cooling the H(+) ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence.

  20. Thermodynamic effect of the ion sound instability in the ionosphere

    SciTech Connect

    Khazanov, G.V.; Gombosi, T.I.; Gorbachev, O.A.

    1994-04-01

    During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of a non isothermal region (in which T{sub e}>3.4 T{sub i} at ionospheric heights) caused by a rapid cooling the H{sup +} ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence. 33 refs., 3 figs.

  1. Wave generation by contaminant ions

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Investigations dealing with the generation of waves by contaminant ions are reported. The studies included the properties of the velocity distribution function of such ions. It was found that it takes about one ion-cyclotron period for the distribution function to transform from a beam to a ring distribution. A linear instability analysis was performed to examine the possibility of wave excitation by an ion beam streaming perpendicular to the ambient magnetic field in an ionospheric type of plasma. A simulation code was developed to study the nonlinear behavior of the waves excited by beam and ring types of ion distributions. The code treats both electrons and ions as particles kinetically to also factor in the possible involvement of lower-hybrid waves.

  2. Sound waves in multifractional liquids with bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gafiyatov, R. N.

    2017-01-01

    The propagation of sound waves in multifractional mixtures of liquid with vapor–gas and gas bubbles of different sizes and different compositions with phase transitions is studied. The dispersed phase consists of N+M fractions having various gases in bubbles and different in the bubbles radii. Phase transitions accounted for N fractions. The total bubble volume concentration is small (less than 1%). The dispersion relation is derived and dispersion curves is built. The evolution of the weak pulsed perturbations of the pressure in this mixture was calculated numerically.

  3. Damping of Sound Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    A method for numerical calculation of the sound wave damping and dispersion law in a strong centrifugal field of the order of 106 g is considered. The damping is defined from the width of the resonance peak for different wave vectors. In the strong centrifugal field damping of the sound waves essentially exceeds the damping in the quiescent gas.

  4. Standing Sound Waves in Air with DataStudio

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  5. Standing Sound Waves in Air with DataStudio

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  6. Sounding of the Ion Energization Region: Resolving Ambiguities

    NASA Technical Reports Server (NTRS)

    LaBelle, James

    2003-01-01

    Dartmouth College provided a single-channel high-frequency wave receiver to the Sounding of the Ion Energization Region: Resolving Ambiguities (SIERRA) rocket experiment launched from Poker Flat, Alaska, in January 2002. The receiver used signals from booms, probes, preamplifiers, and differential amplifiers provided by Cornell University coinvestigators. Output was to a dedicated 5 MHz telemetry link provided by WFF, with a small amount of additional Pulse Code Modulation (PCM) telemetry required for the receiver gain information. We also performed preliminary analysis of the data. The work completed is outlined below, in chronological order.

  7. Rayleigh scattering of a spherical sound wave.

    PubMed

    Godin, Oleg A

    2013-02-01

    Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.

  8. How to Use a Candle to Study Sound Waves

    NASA Astrophysics Data System (ADS)

    Simeão Carvalho, P.; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-10-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow" (transport of particles) in sound waves. ,2 These difficulties arise from the impossibility to actually "see" air particles moving, and from the common sense idea that free particles always have translational motion.

  9. Testing cosmology with cosmic sound waves

    SciTech Connect

    Corasaniti, Pier Stefano; Melchiorri, Alessandro

    2008-05-15

    Wilkinson Microwave Anisotropy Probe (WMAP) observations have accurately determined the position of the first two peaks and dips in the cosmic microwave background (CMB) temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However prerecombination processes can contaminate this distance information. In order to assess the amplitude of these effects, we use the WMAP data and evaluate the relative differences of the CMB peak and dip multipoles. We find that the position of the first peak is largely displaced with respect to the expected position of the sound horizon scale at decoupling. In contrast, the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a Markov Chain Monte Carlo likelihood analysis of the location of WMAP extrema to constrain, in combination with recent BAO data, a constant dark energy equation of state parameter w. For a flat universe we find a strong 2{sigma} upper limit w<-1.10, and including the Hubble Space Telescope prior, we obtain w<-1.14, which is only marginally consistent with limits derived from the Supernova Legacy Survey sample. On the other hand, we infer larger limits for nonflat cosmologies. From the full CMB likelihood analysis, we also estimate the values of the shift parameter R and the multipole l{sub a} of the acoustic horizon at decoupling for several cosmologies, to test their dependence on model assumptions. Although the analysis of the full CMB spectra should always be preferred, using the position of the CMB peaks and dips provides a simple and consistent method for combining CMB constraints with other data sets.

  10. Ion Bernstein wave heating research

    SciTech Connect

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  11. Ion Bernstein wave heating research

    SciTech Connect

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  12. Visualization of Sound Waves Using Regularly Spaced Soap Films

    ERIC Educational Resources Information Center

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  13. Spin current-induced by a sound wave.

    PubMed

    Lyapilin, Igor I

    2013-04-01

    The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.

  14. Visualization of Sound Waves Using Regularly Spaced Soap Films

    ERIC Educational Resources Information Center

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  15. [Pneumonia, when sound waves mix things up].

    PubMed

    Wachters, C; Hildebrand, M

    2011-01-01

    A 29-year old man is admitted in our hospital for a dry cough which appeared a few weeks earlier and is now associated with a breath depending thoracic pain. As an engineer, he is realizing a thesis about the sound waves produced by coughing and is therefore frequently exposed to patients with various pulmonary infections. The chest X-ray, presents predominant pulmonary infiltrates on the periphery of the upper fields of the lungs. Blood analysis revealed a hypereosinophilia of 4.650/microl. The various bacteriological, parasitic and viral investigation tests are negative. The bronchioalveolar washing reveals more than 50% eosinophils. Exclusive pulmonary impairment and lack of autoantibody moved us to the diagnosis of chronic eosinophilic pneumonia (or Carrington syndrome). Corticosteroids were started at the dosis of 0,5 mg/kg of methyl-prednisolone. Clinical and biological features improved amazingly within 48 hours. This case report illustrates the overlap between the chronic eosinophilic pneumonia and the Churg-Strauss desease who can be considered as variants of the hypereosinophilic syndrome (HES). Therefore, the use of anti-interleukin-5 antibodies, already used in the SHE and Churg-Strauss syndrome, might be useful in this case.

  16. A mechanism study of sound wave-trapping barriers.

    PubMed

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  17. Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Gratton, F.T.; Gnavi, G.

    1995-02-01

    The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.

  18. Suppression of slag foaming by a sound wave.

    PubMed

    Komarov, S V; Kuwabara, M; Sano, M

    2000-10-01

    The aim of this work was to study the effects of sound frequency, sound intensity and viscosity of slag on the slag foaming rate and the steady-state foam height. Experiments were carried out using two slags (BaO-B2O3) melted at a temperature of 1223 or 1273 K, as well as water-glycerin solutions at room temperature. Low frequency sound waves (< 1.3 kHz) are found to be more effective in the slag foaming suppression than high frequency waves (1.3-12 kHz). The steady-state foam height decreases abruptly when the sound pressure reaches a threshold value that depends on sound frequency and liquid viscosity. The results can be explained in terms of enhancing the rates of liquid drainage and film rupture induced by sound.

  19. Synthesis of very small diameter silica nanofibers using sound waves.

    PubMed

    Datskos, Panos; Chen, Jihua; Sharma, Jaswinder

    2014-07-14

    Silica nanofibers of an average diameter ≈30 nm and length ≈100 μm have been synthesized using an unprecedented strategy: sound waves. A new phenomenon, spinning off the nanofibers at silica rod tips, is also observed.

  20. Synthesis of very small diameter silica nanofibers using sound waves

    SciTech Connect

    Datskos, Panos; Chen, Jihua; Sharma, Jaswinder

    2014-01-01

    We synthesized silica nanofibers of an average diameter ≈30 nm and length ≈100 μm using an unprecedented strategy: sound waves. Moreover, a new phenomenon, spinning off the nanofibers at silica rod tips, is also observed.

  1. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker

    ERIC Educational Resources Information Center

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea

    2013-01-01

    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  2. Analyzing Sound Waves Produced by Musical Notes & Chords.

    ERIC Educational Resources Information Center

    Cassidy, Michael

    This project description is designed to show how graphing calculators and calculator-based laboratories (CBL) can be used to explore topics in the physics of sound. The activities address topics such as sound waves, musical notes, and chords. Teaching notes, calculator instructions, and blackline masters are included. (MM)

  3. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker

    ERIC Educational Resources Information Center

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea

    2013-01-01

    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  4. Air-borne sound generated by sea waves.

    PubMed

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  5. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  6. The Sound Wave Method for Measurement of Evaporation Coefficient

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeto; Yano, Takeru; Watanabe, Masao; Fujikawa, Shigeo

    A new method for measurement of evaporation coefficient using sound resonance experiment is proposed on the basis of a theory of molecular gas dynamics, by which the evaporation coefficient is expressed as a function of the amplitude of standing sound wave between a planar sound source and a vapor-liquid interface facing against it. To demonstrate the applicability of this method, we carried out test experiments under the condition of neither evaporation nor condensation for several initial pressures, 30, 50, 80 and 101 kPa, at room temperature. In the experiments, we measure the amplitude of standing wave with a resonant frequency generated in a cylindrical space filled with air and closed by liquid water. We utilize the second harmonics component excited by the nonlinearity of sound to determine the evaporation coefficient, thereby eliminating the electromagnetic noises from measured signals. We find that the amplitude of the second harmonics at sound resonance decreases with the decrease in the initial pressure.

  7. Scattering of sound waves by a compressible vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  8. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  9. Iron sound velocities in shock wave experiments

    SciTech Connect

    Holmes, N C; Nguyen, J H

    1999-08-20

    We have performed a series of sound velocity measurements in iron at earth's core pressures. Experiments were carried out at shock pressures as high as 400 GPa, with particular emphasis on the pressure range between 175 GPa and 275 GPa. The measured sound velocities of iron at elevated pressures exhibit a single discontinuity near 250 GPa, corresponding to the vanishing of shear strength as the iron melts. A second discontinuity reported by Brown and McQueen in their previous iron sound velocity studies was not observed in our study. Our results are consistent with their data otherwise. Experimental details and error propagation techniques essential to determining the melting point will also be discussed.

  10. Reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields

    SciTech Connect

    Hatano, H.; Watanabe, T.

    1997-03-01

    A new system was developed for the reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. In order to reduce interference from spurious waves due to reflections and mode conversions, a large cylindrical block of forged steel was prepared for the transfer medium, and direct and spurious waves were discriminated between on the basis of their arrival times. Frequency characteristics of velocity sensitivity to both the Rayleigh wave and longitudinal wave were determined in the range of 50 kHz{endash}1 MHz by means of electrical measurements without the use of mechanical sound sources or reference transducers. {copyright} {ital 1997 Acoustical Society of America.}

  11. Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves

    DTIC Science & Technology

    2016-09-01

    internal waves resulted in higher sound energy loss , as internal waves tend to cause sound waves to strike the seabed at steeper angles and over...the effects of internal waves resulted in higher sound energy loss , as internal waves tend to cause sound waves to strike the seabed at steeper angles...7    Transmission Loss Plots for a Rocky Seabed (top), a Sandy Seabed Figure 5. (center

  12. Diffusion of Sound Waves in a Turbulent Atmosphere

    NASA Technical Reports Server (NTRS)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  13. Monograph on propagation of sound waves in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, Wojciech

    1991-01-01

    After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.

  14. Scattering of Second Sound Waves by Quantum Vorticity

    NASA Astrophysics Data System (ADS)

    Lund, Fernando; Steinberg, Victor

    1995-08-01

    A new method of detection and measurement of quantum vorticity by scattering second sound off quantized vortices in superfluid helium is suggested. Theoretical calculations of the relative amplitude of the scattered second sound waves from a single quantum vortex, a vortex lattice, and bulk vorticity are presented. The relevant estimates show that an experimental verification of the method is feasible. Moreover, it can even be used for the detection of a single quantum vortex.

  15. Shallow water sound propagation with surface waves.

    PubMed

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  16. Determining the speed of sound in the air by sound wave interference

    NASA Astrophysics Data System (ADS)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  17. Scattering of coherent sound waves by atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Chow, P. L.; Liu, C. H.; Maestrello, L.

    1975-01-01

    An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.

  18. Glottal Waves via Inverse Filtering of Vowel Sounds.

    PubMed

    Deng, Huiqun; Ward, Rabab; Beddoes, Michael

    2005-01-01

    This paper shows how to obtain accurate glottal waves via inverse filtering of vowel sounds and how to determine if these glottal waves contain any significant resonance of vocal tracts. We obtain vocal-tract filter (VTF) estimates for the inverse filtering from sustained vowel sounds over closed glottal phases using a new method, which minimizes the effects of glottal waves on the VTF estimates. It is common that VTF estimates contain the effects of incomplete glottal closures, and the glottal waves obtained via inverse filtering contain residual vocal-tract resonance. Our simulations show that the residual resonance appears as stationary ripples superimposed on the derivatives of the original glottal waves over the duration of a glottal cycle. The VTF estimates and the glottal waves obtained from sustained vowel sounds /a/ produced by male and female subjects are presented. The derivatives of the obtained glottal waves exhibit transient positive peaks during vocal-fold collision and negative levels in the earlier stage of vocal-fold parting.

  19. Ion Bernstein wave heating research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1993-02-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and

  20. Strength and wave parameters for sound propagation in random media.

    PubMed

    Ostashev, Vladimir E; Wilson, D Keith

    2017-03-01

    Line-of-sight sound propagation of plane and spherical waves in a statistically isotropic, random moving medium is considered. The variances of the phase and log-amplitude fluctuations of these waves are expressed in terms of the strength and wave parameters for arbitrary spectra of temperature and velocity fluctuations, and results are then derived specifically for the Gaussian and generalized von Kármán spectra. This representation of the variances reduces significantly the number of independent parameters of the problem and enables better understanding of sound scattering by plane and spherical waves, and due to temperature and velocity fluctuations. Using this representation, the boundary between the weak and strong scattering regimes is determined in terms of the strength and wave parameters. The results obtained are compared with the Λ - Φ diagram adopted in ocean acoustics. Other statistical moments of plane and spherical waves in a medium with arbitrary spectra of temperature and velocity fluctuations such as the mean sound field, the spatial and temporal mutual coherence functions, the coherence bandwidth, and the variance of the angle-of-arrival fluctuations are expressed in terms of the strength parameter and length scale of the fluctuations.

  1. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  2. Non-contact sound speed measurement by optical probing of beam deflection due to sound wave.

    PubMed

    Jung, Sung Soo; Kim, Yong Tae; Pu, Yu Cheon; Kim, Min Gon; Kim, Ho Chul

    2006-01-01

    We report a non-contact and non-invasive method of sound speed measurement by optical probing of deflected laser beam due to normally incident degenerated shock wave. In this study the shock wave from an exploding wire was degenerated to an ordinary sound wave at the distance exceeding 0.23 m. Temporal resolution of the deflected beam signal was improved by passing through an adequate electronic high-pass filter, as a result we obtained a better temporal resolution than that of the acoustic pressure detection by PZT transducer in terms of rising time. The spatial resolution was improved by passing the refracted beam signal into the edge of focusing lens to make a larger deflection angle. Sound speed was calculated by monitoring the time of flight of transient deflected signal at the predetermined position. Sound speed has been measured in air, distilled water and acryl, agreed well with the published values. The sound speed measured in the solution of glycerin, magnesium sulfate (MgSO4), and dimethylformamide with various mole fractions also agrees within 3% of relative error with those measured in the present work by ultrasonic pulse echo method. The results suggest that the method proposed is to be reliable and reproducible.

  3. Understanding and Affecting Student Reasoning about Sound Waves.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2003-01-01

    Explains the design and development of curriculum materials that ask students to think about physics from a different view. These group-learning classroom materials specifically aim to bring about improvement of student understanding of sound waves. (Contains 29 references.) (Author/SOE)

  4. Understanding and Affecting Student Reasoning about Sound Waves.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2003-01-01

    Explains the design and development of curriculum materials that ask students to think about physics from a different view. These group-learning classroom materials specifically aim to bring about improvement of student understanding of sound waves. (Contains 29 references.) (Author/SOE)

  5. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  6. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  7. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  8. Multiple slow waves in metaporous layers for broadband sound absorption

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2017-01-01

    Sound absorption for a broad frequency range requires sound dissipation. The mechanics of acoustic metamaterials for non-dissipative applications has been extensively studied, but sound absorption using dissipative porous metamaterials has been less explored because of the complexity resulting from the coupling of its dissipative mechanism and metamaterial behavior. We investigated broadband sound absorption by engineering dissipative metaporous layers, which absorb sound by the mechanism of multiple slow waves, and combined local and global resonance phenomena. A set of rigid partitions of varying lengths was elaborately inserted in a hard-backed porous layer of a finite thickness. An effective medium theory was used to explain the physics involved; high performance at a low-frequency range was found to be mainly due to the formation of global resonances caused by multiple slow waves over the thickness of the metaporous layer, while enhancement at a high-frequency range was attributed to the combined effects of the global resonances and the local resonances directly related to the sizes of the inserted partitions.

  9. Sound

    NASA Astrophysics Data System (ADS)

    Capstick, J. W.

    2013-01-01

    1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.

  10. Stochastic ion acceleration by beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-01-01

    A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves.

  11. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    PubMed

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  12. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation

    PubMed Central

    Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631

  13. Determination of ocean surface wave shape from forward scattered sound.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2016-08-01

    Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

  14. Investigation of an ion-ion hybrid Alfven wave resonator

    SciTech Connect

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.

    2013-01-15

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  15. Cylindrical sound wave generated by shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  16. Effect of Intense Sound Waves on a Stationary Gas Flame

    NASA Technical Reports Server (NTRS)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  17. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  18. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  19. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  20. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  1. Laboratory measurements of the effect of internal waves on sound propagation

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Swinney, Harry L.; Lin, Ying-Tsong

    2016-11-01

    The fidelity of acoustic signals used in communication and imaging in the oceans is limited by density fluctuations arising from many sources, particularly from internal waves. We present results from laboratory experiments on sound propagation through an internal wave field produced by a wave generator consisting of multiple oscillating plates. The fluid density as a function of height is measured and used to determine the sound speed as a function of the height. Sound pulses from a transducer propagate through the fluctuating stratified density field and are detected to determine sound refraction, pulse arrival time, and sound signal distortion. The results are compared with sound ray model and numerical models of underwater sound propagation. The laboratory experiments can explore the parameter dependence by varying the fluid density profile, the sound pulse signal, and the internal wave amplitude and frequency. The results lead to a better understanding of sound propagation through and scattered by internal waves.

  2. Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.

    2016-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  3. Elastic wave from fast heavy ion irradiation on solids

    NASA Astrophysics Data System (ADS)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  4. Ion heating with beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2011-02-25

    The nonlinear interaction of a magnetized ion with two beating electrostatic waves (BEW) whose frequencies differ by a cyclotron harmonic can lead, under some conditions [Phys. Rev. E 69, 046402 (2004)], to vigorous acceleration for an ion with arbitrarily low initial velocity. When applied to an ensemble of ions, this mechanism promises enhanced heating over single electrostatic wave (SEW) heating for comparable wave energy densities. The extension of single ion acceleration to heating (SEWH and BEWH) of an ensemble of initially thermalized ions was carried out to compare the processes. Using a numerical solution of the Vlasov equation as a guideline, an analytical expression for the heating level was derived with Lie transforms and was used to show BEWH's superiority over all parameter space. © 2011 American Physical Society

  5. Ion cyclotron waves observed near the plasmapause

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Mcpherron, R. L.; Russell, C. T.

    1986-01-01

    Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 - 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width about 1 earth radius and penetrated about 1 earth radius into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He(+) and the warm (0.1-16 keV/e) O(+) and He(+) heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered as an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.

  6. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  7. Sound waves and resonances in electron-hole plasma

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2016-06-01

    Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.

  8. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  9. Fate of the initial state perturbations in heavy ion collisions. II. Glauber fluctuations and sounds

    SciTech Connect

    Staig, Pilar; Shuryak, Edward

    2011-09-15

    Heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly ideal) hydrodynamics for average events. In the present paper we study initial state fluctuations appearing on an event-by-event basis and the propagation of perturbations induced by them. We found that (i) fluctuations of several of the lowest harmonics have comparable magnitudes and (ii) that at least all odd harmonics are correlated in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local perturbations should be the source of the ''tiny bang,'' a pulse of sound propagating from it. We identify its two fundamental scales as (i) the ''sound horizon'' (analogous to the absolute ruler in cosmic microwave background and galaxy distributions) and (ii) the ''viscous horizon'' separating damped and undamped harmonics. We then qualitatively describe how one can determine them from the data and thus determine two fundamental parameters of the matter: the (average) speed of sound and viscosity. The rest of the paper explains how one can study mutual coherence of various harmonics. For that, one should go beyond the two-particle correlations to three (or more) particles. Mutual coherence is important for the picture of propagating sound waves.

  10. Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?

    NASA Astrophysics Data System (ADS)

    Vick, Matthew

    2010-10-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.

  11. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  12. Evaluation of Interaction Between Fundamental Landscapes and Sounds in a District via Brain Wave

    NASA Astrophysics Data System (ADS)

    Okutani, Iwao; Takase, Tatsuo

    Interactions between regional landscape and sound are investigated in terms of subjects’ brain wave properties, i.e., α wave power spectrum and frequency fluctuation index of brain wave. The landscape samples consist of sea, buildings, crowds, trees, flowers, streamlet, vehicular traffic flow and residential area while the sound samples are made up of crowds sound, insect chirpings, rustling sound of leaves, wave sound, stream murmurings, bird chirpings and supersonic. It is revealed that (1) most of the best combinations of landscape and sound include natural landscape and sound whereas the worst combinations are associated with artificial environments, (2) best(worst) combinations determined via fluctuation index are composed of the landscape and sound which are evaluated as bests(worsts) at landscape only or sound only stimulus tests, (3) based on theα wave power spectrum, some of the best combinations include the landscapes and sounds which are evaluated low at the single stimulus tests and also some worst combinations include the stream murmuring sound or wave sound which are highly ranked at the sound only tests, (4) since supersonic appears in many worst combinations, it is likely to bring about unpleasant effects on human psychology.

  13. Finite-Difference Algorithms For Computing Sound Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  14. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    SciTech Connect

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-11-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab.

  15. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  16. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  17. Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation

    SciTech Connect

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; Hampton, D. L.; Bekkeng, T. A.; Cohen, I. J.; Conde, M.; Fisher, L. E.; Horak, P.; Lessard, M. R.; Miceli, R. J.; Michell, R. G.; Moen, J.; Powell, S. P.

    2016-01-25

    Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure ExB convection away from the arc (poleward) and downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.

  18. Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation

    DOE PAGES

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; ...

    2016-01-25

    Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E→xB→ convection away from the arc (poleward) andmore » downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less

  19. Measuring the seeds of ion outflow: Auroral sounding rocket observations of low-altitude ion heating and circulation

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; Hampton, D. L.; Bekkeng, T. A.; Cohen, I. J.; Conde, M.; Fisher, L. E.; Horak, P.; Lessard, M. R.; Miceli, R. J.; Michell, R. G.; Moen, J.; Powell, S. P.

    2016-02-01

    We present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E→×B→ convection away from the arc (poleward) and downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). The low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.

  20. Fundamentals of traveling wave ion mobility spectrometry.

    PubMed

    Shvartsburg, Alexandre A; Smith, Richard D

    2008-12-15

    Traveling wave ion mobility spectrometry (TW IMS) is a new IMS method implemented in the Synapt IMS/mass spectrometry system (Waters). Despite its wide adoption, the foundations of TW IMS were only qualitatively understood and factors governing the ion transit time (the separation parameter) and resolution remained murky. Here we develop the theory of TW IMS using derivations and ion dynamics simulations. The key parameter is the ratio (c) of ion drift velocity at the steepest wave slope to wave speed. At low c, the ion transit velocity is proportional to the squares of mobility (K) and electric field intensity (E), as opposed to linear scaling in drift tube (DT) IMS and differential mobility analyzers. At higher c, the scaling deviates from quadratic in a way controlled by the waveform profile, becoming more gradual with the ideal triangular profile but first steeper and then more gradual for realistic profiles with variable E. At highest c, the transit velocity asymptotically approaches the wave speed. Unlike with DT IMS, the resolving power of TW IMS depends on mobility, scaling as K(1/2) in the low-c limit and less at higher c. A nonlinear dependence of the transit time on mobility means that the true resolving power of TW IMS differs from that indicated by the spectrum. A near-optimum resolution is achievable over an approximately 300-400% range of mobilities. The major predicted trends are in agreement with TW IMS measurements for peptide ions as a function of mobility, wave amplitude, and gas pressure. The issues of proper TW IMS calibration and ion distortion by field heating are also discussed. The new quantitative understanding of TW IMS separations allows rational optimization of instrument design and operation and improved spectral calibration.

  1. Nightside sounding rocket study of precipitating ions in a Poleward Boundary Intensification

    NASA Astrophysics Data System (ADS)

    Mella, M. R.; Lynch, K. A.; Lundberg, E. T.; Lessard, M.; Hampton, D. L.

    2011-12-01

    The sounding rocket Cascades-2 launched on 20 March 2009 from the Poker Flat Research Range at 11:04:00 UT. The rocket initially crosses a diffuse arc, then crosses a streamer, which is the equatorward extent of one PBI (poleward boundary intensification), and finally crosses the initiation of a separate PBI before entering the polar cap. In this presentation we examine the in situ ion signatures at various times in the flight. At the poleward edge of the electron precipitation, as the rocket crosses the PBI, medium energy (between 10 eV and 800 eV), precipitating ions are observed. This population is not present at the time of the streamer or earlier in the flight. We hypothesize that the precipitating ions are drifting into the auroral region from the polar cap, which is why they are observed at the poleward boundary of the auroral oval. There they encounter the Alfvenic activity which is creating the soft electron precipitation of the PBI. This Alfvenic activity accelerates them down the field to the observation point, with dispersion signatures indicating wave-particle interactions at similar altitudes to those of the field-aligned electron bursts. The precipitating ion population is depleted in the poleward boundary region, and thus not observed in the more equatorward streamer. Similar signatures have been observed on previous nightside auroral sounding rockets at the poleward boundary by Lynch et al. [Annales Geophysicae, 2007]. In this presentation we examine the rocket data along with various scenarios for ion source regions to check the plausibility of our hypothesis. In particular we consider the scenario by which the source of these ions is the dayside cusp/cleft ion fountain upflow region.

  2. Transmission and reflection of sound wave from a layer of liquid with gas bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2017-01-01

    The problem of reflection and transmission of sound wave through the two-layer medium containing a layer of bubble liquid is considered. A comparison of the reflection and transmission of wave coefficients with known experimental data is presented.

  3. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  4. Towards a matter wave interferometer on a sounding rocket

    NASA Astrophysics Data System (ADS)

    van Zoest, Tim; Peters, Achim; Ahlers, Holger; Wicht, Andreas; Vogel, Anika; Wenzlawski, Anderas; Deutsch, Christian; Kajari, Endre; Gaaloul, Naceur; Dittus, Hansjürg; Hartwig, Jonas; Herr, Waldemar; Herrmann, Sven; Reichel, Jakob; Bongs, Kai; Koenemann, Thorben; Laemmerzahl, Claus; Lewoczko-Adamczyk, Wojtek; Schiemangk, Max; Müntinga, Hauke; Meyer, Nadine; Rasel, Ernst Maria; Walser, Reinhold; Resch, Andreas; Rode, Christina; Seidel, Stephan; Sengstock, Klaus; Singh, Yeshpal; Schleich, Wolfgang; Ertmer, Wolfgang; Rosenbusch, Peter; Wilken, Tobias; Goeklue, Ertan

    Applications of coherent matter waves are high resolution interferometers for measuring inertial and gravitational forces as well as testing fundamental physics, for which they may serve as a laser like source with mesoscopic quantum features. Out of possible applications, the test of the principle of equivalence in the quantum domain is selected as a target with the highest scientific interest on timescales of a microgravity experiment at the ISS or on a free flyer (ATV, FOTON or other satellites). The QUANTUS project demonstrated the technological feasibil-ity of coherent matter waves in microgravity. As a next step, the consortium will prepare and procure a sounding rocket mission to demonstrate technologies for matter wave interferome-try based on the broad experience of former developments with experiments in the droptower. Therefore, the experiment has to withstand strong requirements concerning environmental con-ditions (Temperature, shock, environmental pressure, etc.) and needs to be designed to fit in a 600 l volume (diameter 35 cm, length 160 cm). It is considered as an important step towards the technology required for the ISS and other platforms. These experiments will give further insights on the potential of inertial sensors based on atom interferometers and the technology is for example of interest for applications in earth observation and geodesy. They could replace classical techniques relying on test masses and promise a further improvement in the accuracy of such devices.

  5. Transmission of high frequency sound waves through a slug flow jet

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Vijayaraghavan, A.

    1980-01-01

    An analysis has been performed of sound waves which propagate in a pipe with gas flow. At the pipe exit these waves are partially reflected and the remainder are diffracted. The analysis is carried out by resolving the sound at the exit into its Fourier components and then continuing the solution, which is a combination of elementary plane waves, beyond the exit. These waves are of two types: homogeneous waves which propagate to infinity, and inhomogeneous waves with complex wave numbers which decay. The reflected waves are evaluated from the inhomogeneous waves. At the boundary of the jet, refraction of the elementary plane waves is accounted for and the far field sound is evaluated by the method of stationary phase. Comparisons of the theoretical calculations are made with experimental results and with calculations of other theories.

  6. Initial Ion Results from the RENU2 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Harrington, M.; Lessard, M.; Lynch, K. A.

    2016-12-01

    RENU2 (Rocket Experiment for Neutral Upwelling 2) is a multiple investigator sounding rocket campaign that was designed to transit the cusp region between 200 and 600 km and study particle processes during a neutral upwelling event. The RENU2 payload dayside observations will be compared with measurements made by the EISCAT Svalbard radars. This project aims to investigate the connection between ion upflows and outflows, and neutral upwelling from the topside ionosphere. Low-earth orbiting satellites are affected by these regions of enhanced neutral densities which decay their orbits due to satellite drag. Three electrostatic analyzers were flown to measure 2D ion distribution functions, providing observations of temperature enhancements, bulk velocity moments, anisotropy and conics. The thermal energy ion detector (HT) sweeps over an energy range of .12 to 22 eV and the medium energy detector (HM) has an energy range from 3.6 to 790 eV. The thermal mass ion detector (BPS) sweeps over the same energy range as the thermal energy detector, but also has a crude mass discriminator separating atomic oxygen from hydrogen. All of the detectors provide two dimensional phase space distributions; the thermal detectors have a cadence of 128 ms while the medium energy detector provides a distribution every 64 ms. These measurements of the upwelling process will be used as input for coupled models or be used as a metric to compare to what the models predict. During initial data analysis, we found nongyrotropy in the medium energy ions, a proton enhancement during an otherwise uneventful region, and three ion upflow events which will be further investigated.

  7. Mississippi Sound Wave-Hindcast Study: Main Text and Appendices A and B.

    DTIC Science & Technology

    1983-04-01

    rate follows that described by Jensen (in preparation). 32. Wave conditions generated in Mississippi Sound must also con- sider dispersion effects...influence the maximum wave condition. The parametric formulation follows the work conducted by Vincent (1981). The depth-limiting maximum wave condition is...wind direction. With this information, the SWWM is now ready to compute the wave conditions throughout Mississippi Sound. This procedure is followed for

  8. Wind wave spectral observations in Currituck Sound, North Carolina

    NASA Astrophysics Data System (ADS)

    Long, Charles E.; Resio, Donald T.

    2007-05-01

    We examine a set of 1626 high-resolution frequency-direction wind wave spectra and collocated winds collected during a 7-month period at a site in Currituck Sound, North Carolina, in terms of one-dimensional spectral structure and directional distribution functions. The data set includes cases of shore-normal winds in broad-fetch conditions as well as winds oblique to the basin geometry, with all fetches of order 10 km or less. Using equilibrium-range scaling, all one-dimensional spectra have a spectral peak region, an equilibrium range of finite bandwidth following an f-4 slope at slightly higher frequencies, and a high-frequency tail that falls off more rapidly than f-4. For shore-normal winds, spectral peakedness appears to be high and approximately constant for young waves, low and approximately constant for old waves, and steeply graded for intermediate inverse wave ages in the range 1.0 < u10/cp < 1.7. Equilibrium-range bandwidth seems to be narrow for young waves and increases with increasing wave age. Directional distribution functions in shore-normal winds are symmetric about the wind direction, narrow at spectral peaks, and broad at high frequencies with distinct directionally bimodal peaks, consistent with other observations. In oblique-wind cases, directional distribution functions are asymmetric and directionally sheared in spectral peak regions, with peak directions aligned with longer fetch directions. At high frequencies, directional distributions are more nearly symmetric about the wind direction. One-dimensional spectra tend to have reduced spectral peakedness and highly variable equilibrium-range bandwidths in oblique-wind conditions, clearly indicating a more complex balance of source terms in these cases than in the more elementary situation of shore-normal winds. These complications are not without consequence in wave modeling, as any bounded or semibounded lake or estuary will be subject to oblique winds, and current operational models do not

  9. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  10. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2017-08-08

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  11. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  12. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  13. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  14. Electrostatic ion waves in non-Maxwellian pair-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.

    2010-12-15

    The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

  15. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  16. Sound waves and modulational instabilities on continuous-wave solutions in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tasgal, Richard S.; Band, Y. B.

    2015-01-01

    We analyze sound waves (phonons, i.e. Bogoliubov excitations) propagating on continuous-wave (cw) solutions of repulsive F =1 spinor Bose-Einstein condensates (BECs) such as 23Na (which is antiferromagnetic or polar) and 87Rb (which is ferromagnetic). Zeeman splitting by a uniform magnetic field is included. All cw solutions to ferromagnetic BECs with vanishing MF=0 particle density and nonzero components in both MF=±1 fields are subject to modulational instability (MI). Modulational instability increases with increasing particle density. Modulational instability also increases with differences in the components' wave numbers; this effect is larger at lower densities but becomes insignificant at higher particle densities. Continuous-wave solutions to antiferromagnetic (polar) BECs with vanishing MF=0 particle density and nonzero components in both MF=±1 fields do not suffer MI if the wave numbers of the components are the same. If there is a wave-number difference, MI initially increases with increasing particle density and then peaks before dropping to zero beyond a given particle density. The cw solutions with particles in both MF=±1 components and nonvanishing MF=0 components do not have MI if the wave numbers of the components are the same, but do exhibit MI when the wave numbers are different. Direct numerical simulations of a continuous wave with weak white noise confirm that weak noise grows fastest at wave numbers with the largest MI and show some of the results beyond small-amplitude perturbations. Phonon dispersion curves are computed numerically; we find analytic solutions for the phonon dispersion in a variety of limiting cases.

  17. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  18. Ion Acceleration in Plasmas with Alfven Waves

    SciTech Connect

    O.Ya. Kolesnychenko; V.V. Lutsenko; R.B. White

    2005-06-15

    Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered.

  19. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2008-11-01

    Electron Acoustic Waves (EAWs) are the low frequency branch of electrostatic plasma waves; these waves exist in neutralized plasmas, pure electrons, and pure ion plasmas. The EAWs typically have a phase velocity Vphase / Vth ˜1.4, quite low compared to typical plasma waves. Linear Landau damping would suggest that such slow phase velocity waves are strongly damped; but at finite wave amplitudes, trapping of particles at the phase velocity effectively flattens the distribution function, resulting in a ``BGK-like'' state with weak damping. Our experiments on standing mz= 1, mθ= 0 waves show that the small-amplitude dispersion relation for both fast Trivelpiece-Gould (TG) and slow (EAW) plasma modes is in close agreement with the ``thumb-shaped'' dispersion relation predicted by kinetic theory neglecting damping. However, the surprise here is that a moderate amplitude ``off-resonant'' drive readily modifies the velocity distribution so as to make the plasma mode resonant with the drive frequency. We have observed the plasma adjusting its velocity distribution so as to become resonant with a 100 cycle drive ranging from 10 kHz to 30 kHz. With a chirped frequency drive, the particle velocity distribution suffers extreme distortion, and the resulting plasma wave is almost undamped with γ/ φ˜10-5. Laser-Induced-Fluorescence measurements of the wave-coherent particle distribution f (vz, t), clearly show particle trapping in the EAW, with trapping widths as expected from theory considering two non-interacting traveling waves forming the standing wave. The coherent f (vz, t ) measurement also shows that particles slower than the wave phase velocity vph oscillate in phase with the wave, contrasting with the 180^o out-of-phase response of the particles moving faster than vph. The differing response of the fast and slow particles results in a small net fluid velocity, because the electrostatic restoring force is almost totally balanced by the kinetic pressure, consistent

  20. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  1. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    SciTech Connect

    Hayrapetyan, A.G.; Grigoryan, K.K.; Petrosyan, R.G.; Fritzsche, S.

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

  2. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    NASA Technical Reports Server (NTRS)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  3. Excitation of instability waves in a two-dimensional shear layer by sound

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.

    1978-01-01

    The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.

  4. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Jie; Xu, Kun

    2012-08-01

    Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carried out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct simulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.

  5. High-frequency sound waves to eliminate a horizon in the mixmaster universe.

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1972-01-01

    From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.

  6. High-frequency sound waves to eliminate a horizon in the mixmaster universe.

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1972-01-01

    From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.

  7. Source and listener directivity for interactive wave-based sound propagation.

    PubMed

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh

    2014-04-01

    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  8. Molecular Gas Dynamics on Condensation and Evaporation of Water Induced by Sound Waves

    NASA Astrophysics Data System (ADS)

    Inaba, M.; Fujikawa, S.; Yano, T.

    2008-12-01

    The condensation and evaporation induced at a vapor-liquid interface by the incidence and reflection of sound waves are studied theoretically. In particular, we focus on the case that the vapor is a polyatomic gas, e.g., water, and the liquid is its own condensed phase and no other species of molecules are included. One-dimensional behavior of the sound waves in a finite region bounded by an oscillating plate, sound source, and the vapor-liquid interface is analyzed by applying the general asymptotic theory by Sone. It is assumed that the Knudsen number defined as the ratio of the mean free path of gas molecules to the wavelength of sound is sufficiently small compared with unity and the Mach number defined by the ratio of the maximum speed of oscillating plate to the sound speed is sufficiently small compared with the Knudsen number. The result shows that the gas region may be comprised of three regions of the linear isentropic region of sound wave, the thermal boundary layer and the Knudsen layer. From the analytical solution in the time-periodic case, it is found that the amplitude of the sound wave decreases with increase in the evaporation coefficient at the interface. When the evaporation coefficient is unity, almost 80 percent in amplitude of sound wave incident on the interface is absorbed there.

  9. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition

    PubMed Central

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-01-01

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065

  10. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition.

    PubMed

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-05-10

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved.

  11. Magnetosonic shock wave in collisional pair-ion plasma

    SciTech Connect

    Adak, Ashish Khan, Manoranjan; Sikdar, Arnab

    2016-06-15

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  12. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  13. A volume-based hydrodynamic approach to sound wave propagation in a monatomic gas

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Reese, Jason M.

    2010-01-01

    We investigate sound wave propagation in a monatomic gas using a volume-based hydrodynamic model. In Dadzie et al. [Physica A 387, 6079 (2008)], a microscopic volume-based kinetic approach was proposed by analyzing molecular spatial distributions; this led to a set of hydrodynamic equations incorporating a mass-density diffusion component. Here we find that these new mass-density diffusive flux and volume terms mean that our hydrodynamic model, uniquely, reproduces sound wave phase speed and damping measurements with excellent agreement over the full range of Knudsen number. In the high Knudsen number (high frequency) regime, our volume-based model predictions agree with the plane standing waves observed in the experiments, which existing kinetic and continuum models have great difficulty in capturing. In that regime, our results indicate that the "sound waves" presumed in the experiments may be better thought of as "mass-density waves," rather than pressure waves.

  14. Acceleration of solitary ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1991-10-01

    We consider the interaction between long-wavelength ion-acoustic and electron-plasma surface waves on a semi-infinite plasma. It then turns out that an ion-acoustic solitary wave can be accelerated when the amplitude of the electron-plasma surface wave varies in time.

  15. Hazardous sound levels produced by extracorporeal shock wave lithotripsy

    SciTech Connect

    Lusk, R.P.; Tyler, R.S.

    1987-06-01

    Sound emitted from the Dornier system GmbH lithotriptor was found to be of sufficient intensity to warrant concern about noise-induced sensorineural hearing loss. The patients were exposed to impulses of 112 dB. peak sound pressure level. Operating room personnel were exposed to sounds of less intensity, although the number of impulses they were exposed to was much greater, thereby increasing the risk of hearing loss. Hearing protection is recommended for patients and operating room personnel.

  16. Chiral heat wave in cold Fermi liquid and modified zero sound

    NASA Astrophysics Data System (ADS)

    Frenklakh, D.; Gorsky, A.

    2017-08-01

    We discuss kinetic equations involving the anomalous terms responsible for the chiral anomaly. The general chiral heat wave in cold Fermi liquid is described and the modification of the anomalous zero sound at small temperature and vorticity is found.

  17. Sound Radiated by a Wave-Like Structure in a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, V. V.; Prieto, A. F.; Mankbadi, R. R.; Dahl, M. D.; Hixon, R.

    2003-01-01

    This paper extends the analysis of acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. Compared to previous work, a modified approach to the sound source modeling is examined that employs a set of solutions to linearized Euler equations. The sound radiation is then calculated using an integral surface method.

  18. Diagnosis of ankylosis in permanent incisors by expert ratings, Periotest and digital sound wave analysis.

    PubMed

    Campbell, Karen M; Casas, Michael J; Kenny, David J; Chau, Tom

    2005-08-01

    The objectives of this investigation were to: (i) assess the reliability of expert raters to detect ankylosis from recordings of percussion sounds, (ii) measure differences in Periotest values (PTV) between ankylosed and non-ankylosed incisors and (iii) identify characteristic differences in recorded percussion sounds from ankylosed and non-ankylosed incisors using digital sound wave analysis. A convenience sample of healthy children (age range 7-18 years) was invited to participate. Ankylosis group children had one or more documented ankylosed maxillary incisors. Control group children had intact, non-ankylosed incisors. Digital recordings of percussion sounds and PTV were acquired for each incisor of interest. Four experienced pediatric dentists rated the randomized percussion sound pairs for the presence of ankylosis. Percussion sounds were also subjected to digital sound wave analysis. Overall agreement for the expert raters was substantial (kappa = 0.7). Intra-rater agreement was substantial to almost perfect (kappa = 0.6-0.9). Diagnosis of ankylosis demonstrated sensitivity of 76-92% and specificity of 74-100%. PTV from ankylosed incisors were statistically lower than PTV from non-ankylosed incisors. Ankylosed incisor digital sound wave signals exhibited significantly more energy in high-frequency bands than non-ankylosed incisors. This investigation demonstrated that: (i) experienced pediatric dentists reliably detected ankylosis by percussion sound alone; (ii) PTV for ankylosed incisors were statistically lower than PTV from non-ankylosed incisors; and (iii) ankylosed incisors exhibited a higher proportion of their signal energy in high-frequency bands.

  19. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  20. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  1. Effective isolation of primo vessels in lymph using sound- and ultrasonic-wave stimulation.

    PubMed

    Park, Do-Young; Lee, Hye-Rie; Rho, Min-Suk; Lee, Sang-Suk

    2014-12-01

    The effects of stimulation with sound and ultrasonic waves of a specific bandwidth on the microdissection of primo vessels in lymphatic vessels of rabbit were investigated. The primo vessels stained with alcian-blue dye injected in the lymph nodes were definitely visualized and more easily isolated by sound-wave vibration and ultrasonic stimulation applied to rabbits at various frequencies and intensities. With sound wave at 7 Hz and ultrasonic waves at 2 MHz, the probability of detecting the primo vessels was improved to 90%; however, without wave stimulation the probability of discovering primo vessels was about 50% only. Sound and ultrasonic waves at specific frequency bands should be effective for microdissection of the primo vessels in the abdominal lymph of rabbit. We suggest that oscillation of the primo vessels by sound and ultrasonic waves may be useful to visualize specific primo structure, and wave vibration can be a very supportive process for observation and isolation of the primo vessels of rabbits.

  2. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.

  3. Electrostatic ion-cyclotron waves in a two-ion component plasma

    NASA Technical Reports Server (NTRS)

    Suszcynsky, David M.; Merlino, Robert L.; D'Angelo, Nicola

    1988-01-01

    The excitation of electrostatic ion cyclotron (EIC) waves is studied in a single-ended Q machine in a two-ion component plasma (Ca+ and K+). Over a large range of relative concentrations of Cs+ and K+ ions, two modes are excited with frequencies greater than the respective cyclotron frequencies of the ions. The results are discussed in terms of a fluid theory of electrostatic ion cyclotron waves in a two-ion component plasma.

  4. Discrimination Among Wave-Generated Sounds by a Swash-Riding Clam.

    PubMed

    Ellers, O

    1995-10-01

    Clams, Donax variabilis, responded to sound stimuli presented to them in a laboratory aquarium by jumping out of the sand, lying on the sand for several seconds, and digging in again. On a beach, clams jump out of the sand and ride waves, migrating shoreward with the rising tide and seaward with the falling tide. Parallels between clam behavior on a beach and that elicited in the laboratory suggest that clams cue on wave sounds to jump out of the sand. Three aspects of the response to sound were parallel. (i) Clams were most responsive to low-frequency sounds similar to those produced on a beach by waves rolling onto shore. (ii) Clams were also more responsive to louder sounds; on a beach, clams jump preferentially for the largest (loudest) 20% of waves, (iii) Responsiveness in the laboratory had an endogenous tidal rhythm, with highest activity occurring at high tide and no activity occurring at low tide; this rhythm corresponds to the activity of clams on the beach from which they were collected. By using sounds to identify large waves, clams can ride selected waves and continuously maintain position at the sea's edge as the tide floods and ebbs.

  5. Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis.

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rohit; Luding, Stefan

    2016-04-01

    Disorder in the form of size (polydispersity) and mass of discrete elements/particles in a disordered media (a granular matter like soil) have numerous effects on it's sound propagation characteristics [1,2]. The influence of disorder on the sound wave speed and it's frequency filtering characteristics is the subject of investigation. The study will assist in understanding the connection between particle-scale dynamics and system-scale behavior of wave propagation which can be further used for modeling during non-destructive testing, seismic exploration of buried objects (oil, mineral, etc.) or to study the internal structure of the Earth. Studying the wave propagation characteristics through Discrete Element Models with varying polydispersity and mass of discrete elements in real-time, frequency space as well as through dispersion curves (ω (frequency) v/s k (wavenumber)) can shed light on this aspect by providing better microscopic understanding. To isolate the P-wave from shear and rotational modes, a one-dimensional system of elements/particles is used to study the effect of mass disorder on bulk sound wave speed through ensemble averaging of signals. Increasing polydispersity/disorder decreases the sound wave speed because of decrease in the number of contacts between particles [2] but, in contrast, increasing mass disorder increases the sound wave speed (in 1 D chains). Thus we conclude that a competition exists between these two kinds of disorder for their influence on the bulk sound wave speed. References [1] Brian P. Lawney and Stefan Luding. Frequency filtering in disordered granular chains. Acta Mechanica, 225(8):2385-2407, 2014. [2] O. Mouraille and S. Luding. Sound wave propagation in weakly polydisperse granular materials. Ultrasonics, 48(6-7):498 - 505, 2008. Selected Papers from ICU 2007.

  6. Stopping power of charged particles due to ion wave excitations.

    PubMed

    Nitta, H; Muroki, C; Nambu, M

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  7. Stopping power of charged particles due to ion wave excitations

    NASA Astrophysics Data System (ADS)

    Nitta, H.; Muroki, C.; Nambu, M.

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  8. Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse

    NASA Astrophysics Data System (ADS)

    Qi, Lirong; Teng, Guanghui; Hou, Tianzhen; Zhu, Baoying; Liu, Xiaona

    In this paper, we adopt the QGWA-03 plant audio apparatus to investigate the sound effects on strawberry in the leaf area, the photosynthetic characteristics and other physiological indexes. It was found that when there were no significant differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave stimulation grew stronger than in the control and its leaf were deeper green, and shifted to an earlier time about one week to blossom and bear fruit. It was also found that the resistance of strawberry against disease and insect pest were enhanced. The experiment results show that sound wave stimulation can certainly promote the growth of plants.

  9. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  10. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  11. Stochastic Ion Heating by the Lower-Hybrid Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G.; Tel'nikhin, A.; Krotov, A.

    2011-01-01

    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.

  12. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  13. Recurrence of initial state of nonlinear ion waves

    SciTech Connect

    Abe, K.; Satofuka, N.

    1981-06-01

    By solving the Korteweg--deVries equation in a wide range of the ratio between the nonlinearity and the dispersion, the recurrence of the initial state of the ion wave is examined. The recurrence is assured of taking place only when the dispersion of the initial ion wave predominates over the nonlinearity. If the initial wave has strong nonlinearity compared with the dispersion, the recurrence is indistinct, and the initial monochromatic wave evolves to a turbulent state.

  14. Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves

    NASA Technical Reports Server (NTRS)

    Liepmann, H. W.; Torczynski, J. R.

    1983-01-01

    Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.

  15. Wave field synthesis of a sound field described by spherical harmonics expansion coefficients.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2012-03-01

    Near-field compensated higher order Ambisonics (NFC-HOA) and wave field synthesis (WFS) constitute the two best-known analytic sound field synthesis methods. While WFS is typically used for the synthesis of virtual sound scenes, NFC-HOA is typically employed in order to synthesize sound fields that have been captured with appropriate microphone arrays. Such recorded sound fields are essentially represented by the coefficients of the underlying surface spherical harmonics expansion. A sound field described by such coefficients cannot be straightforwardly synthesized in WFS. This is a consequence of the fact that, unlike in NFC-HOA, it is critical in WFS to carefully select those loudspeakers that contribute to the synthesis of a given sound source in a sound field under consideration. In order to enable such a secondary source selection, it is proposed to employ the well-known concept of decomposing the sound field under consideration into a continuum of plane waves, for which the secondary source selection is straightforward. The plane wave representation is projected onto the horizontal plane and a closed form expression of the secondary source driving signals for horizontal WFS systems of arbitrary convex shape is derived.

  16. Enhancement of CO2 capture in limestone and dolomite granular beds by high intensity sound waves

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel; Perez-Ebri, Jose Manuel; Sanchez-Quintanilla, Miguel Angel

    2017-06-01

    The calcium looping (CaL) process, based on the calcination/carbonation of CaCO3 at high temperatures, has emerged in the last years as a potentially low cost technology for CO2 capture. In this work, we show that the application of high intensity sound waves to granular beds of limestone and dolomite in a CaL reactor enhances significantly their multicycle CO2 capture capacity. Sound waves are applied either during the calcination stage of each CaL cycle or in the carbonation stage. The effect of sound is to intensify the transfer of heat, mass and momentum and is more marked when sound is applied during calcination by promoting CaO regeneration. The application of sound would allow reducing the calcination temperature thereby mitigating the decay of capture capacity with the number of cycles and reducing the energy penalty of the technology.

  17. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  18. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    SciTech Connect

    Andreev, Pavel A.

    2016-06-15

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves (SEAWs). This kinetic theory allows us to obtain the spectrum of the SEAWs including the effects of occupation of quantum states more accurately than the quantum hydrodynamic theory. We derive and apply the quantum kinetic theory to calculate the Landau damping of the SEAWs. We consider the contribution of ions dynamics into the SEAW spectrum. We obtain the contribution of ions in the Landau damping in the temperature regime of classic ions. Kinetic analysis for the ion-acoustic, zero sound, and Langmuir waves at the separated spin-up and spin-down electron dynamics is presented as well.

  19. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  20. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  1. Parametric decays of electromagnetic ion cyclotron waves in a H{sup +}-He{sup +}-O{sup +} magnetosphericlike plasma

    SciTech Connect

    Gomberoff, L.; Gnavi, G.; Gratton, F.T.

    1995-09-01

    Parametric decays of large-amplitude electromagnetic ion cyclotron waves (EICW) due to a minor {Omicron}{sup +} ion component in the magnetosphere are studied. It is shown that the presence of {Omicron}{sup +} ions leads to a number of new wave couplings which in turn lead to new instabilities. Some coupling involve sound waves carried mainly by the {Omicron}{sup +} ions, and a sideband EICW which has a resonace at the {Omicron}{sup +} ion gyrofrequency. These are decay instabilities which can lead to {Omicron}{sup +} heating through Landau damping and/or resonance absorption. There is also a modulational instability involving two sideband EICW, one propagating forward and the other propagating backward relative to the external magnetic field. These waves can also transfer energy to the {Omicron}{sup +} ions through resonance absorption. The other branches of the dispersion relation, namely, the He{sup +} and proton branch, have additional decay instabilities due to the presence of a minor {Omicron}{sup +} ion component. It is also shown that in the fluid description, the decays to sound waves associated with the minority heavy ion species have growth rates comparable to, or even larger than, the decays to the acoustic branch corresponding to the majority proton species. 44 refs., 5 figs.

  2. Modeling linear Rayleigh wave sound fields generated by angle beam wedge transducers

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei

    2017-01-01

    In this study, the reciprocity theorem for elastodynamics is transformed into integral representations, and the fundamental solutions of wave motion equations are obtained using Green's function method that yields the integral expressions of sound beams of both bulk and Rayleigh waves. In addition to this, a novel surface integral expression for propagating Rayleigh waves generated by angle beam wedge transducers along the surface is developed. Simulation results show that the magnitudes of Rayleigh wave displacements predicted by this model are not dependent on the frequencies and sizes of transducers. Moreover, they are more numerically stable than those obtained by the 3-D Rayleigh wave model. This model is also applicable to calculation of Rayleigh wave beams under the wedge when sound sources are assumed to radiate waves in the forward direction. Because the proposed model takes into account the actual calculated sound sources under the wedge, it can be applied to Rayleigh wave transducers with different wedge geometries. This work provides an effective and general tool to calculate linear Rayleigh sound fields generated by angle beam wedge transducers.

  3. Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun

    ERIC Educational Resources Information Center

    Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo

    2015-01-01

    Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…

  4. Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun

    ERIC Educational Resources Information Center

    Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo

    2015-01-01

    Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…

  5. Study of EMIC wave excitation using direct ion measurements

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Bonnell, John W.; Breneman, Aaron W.; Denton, Richard E.; Funsten, Herbert O.; Jahn, Jöerg-Micha; Kletzing, Craig A.; Kurth, William S.; Larsen, Brian A.; Reeves, Geoffrey D.; Spence, Harlan E.; Wygant, John R.

    2015-04-01

    With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ˜2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

  6. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  7. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  8. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  9. Heating of ionospheric O(+) ions by shear Alfven waves

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.

    1987-01-01

    Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.

  10. Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna

    SciTech Connect

    Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.

    1984-12-01

    Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated.

  11. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  12. Sounding rocket observations of precipitating ions in the morning auroral region

    SciTech Connect

    Clemmons, J.H.

    1992-01-01

    The origin of highly-structured ion fluxes measured by a sounding rocket launched into the morning auroral region on January 23, 1985 is investigated. The energy spectra of the precipitating ions exhibit an energy-time dependence in which particles of higher energies arrived at the rocket before those of lower energies. The spectra are interpreted as being due to the impulsive injection of particles onto high-altitude magnetic field lines, followed by their subsequent drift down the field lines to rocket altitudes. The dispersal to low energies with increasing time is explained as a time-of-flight effect in which the slower particles take longer times to traverse the distance. The ion signatures are used to constrain several possible physical models which characterize the source region. Source locations in the nightside magnetopause boundary layer are deduced through the examination of electron energy spectra and the use of a magnetospheric magnetic field model. The modeling efforts indicate that the data are consistent with sources located in the mid-latitude region of the flank boundary layer on the morning side of the magnetosphere, being in the range of 20-30 earth radii down the geomagnetic tail from the earth. Multiple injections of ions are observed, with a deduced quasi-periodicity of 100-200 s. Several candidate injection mechanisms are examined, with a mechanism related to the propagation of waves on the surface of the boundary layer found to be the most plausible explanation for the observations. Comparison is made to similar analyses by others and suggestions for future work are made.

  13. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  14. Nonlinear evolution of high frequency R-mode waves excited by water group ions near comets - Computer experiments

    NASA Technical Reports Server (NTRS)

    Kojima, H.; Matsumoto, H.; Omura, Y.; Tsurutani, B. T.

    1989-01-01

    An ion beam resonates with R-mode waves at a high-frequency RH mode and a low-frequency RL mode. The nonlinear evolution of ion beam-generated RH waves is studied here by one-dimensional hybrid computer experiments. Both wave-particle and subsequent wave-wave interactions are examined. The competing process among coexisting RH and RL mode beam instabilities and repeated decay instabilities triggered by the beam-excited RH mode waves is clarified. It is found that the quenching of the RH instability is not caused by a thermal spreading of the ion beam, but by the nonlinear wave-wave coupling process. The growing RH waves become unstable against the decay instability. This instability involves a backward-traveling RH electromagnetic wave and a forward-traveling longitudinal sound wave. The inverse cascading process is found to occur faster than the growth of the RL mode. Wave spectra decaying from the RH waves weaken as time elapses and the RL mode waves become dominant at the end of the computer experiment.

  15. Thermal and viscous effects on sound waves: revised classical theory.

    PubMed

    Davis, Anthony M J; Brenner, Howard

    2012-11-01

    In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.

  16. Intensity statistics of very high frequency sound scattered from wind-driven waves.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2016-05-01

    The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required.

  17. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  18. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  19. Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas

    SciTech Connect

    Elfimov, A. G.; Smolyakov, A. I.; Melnikov, A. V.; Galvão, R. M. O.

    2016-05-15

    A kinetic treatment of geodesic acoustic modes (GAMs), taking into account ion parallel dynamics, drift and the second poloidal harmonic effects is presented. It is shown that first and second harmonics of the ion sound modes, which have respectively positive and negative radial dispersion, can be coupled due to the geodesic and drift effects. This coupling results in the drift geodesic ion sound eigenmode with a frequency below the standard GAM continuum frequency. Such eigenmode may be able to explain the split modes observed in some experiments.

  20. Effect of lighter and heavier pair ions on solitary waves

    NASA Astrophysics Data System (ADS)

    Sijo, S.; Anu, V.; Manesh, M.; Sreekala, G.; Neethu, T. W.; Savithri, D. E.; Venugopal, C.

    2017-05-01

    We investigate solitary waves in a multicomponent plasma of positively and negatively charged lighter and heavier ions and electrons of solar and cometary origin; the electron components are modeled by kappa distributions. The solitary wave solution of the Zakharov-Kuznetsov (ZK) equation is plotted for parameters of comet Halley; physical variables like densities and temperatures of negatively charged lighter ions significantly affect the width and amplitude of the solitary waves.

  1. Sound power spectrum and wave drag of a propeller in flight

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1989-01-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  2. Sound power spectrum and wave drag of a propeller in flight

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1989-01-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  3. Self-focusing of ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1996-06-01

    An electrostatic ion-acoustic surface wave propagating along the boundary of a semi-infinite plasma is considered. It is shown that a nonlinear Schrödinger equation can describe the development of the wave amplitude. The self-focusing length of a wave beam is estimated.

  4. Sound waves in two-dimensional ducts with sinusoidal walls

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  5. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  6. Detailed study of nonlinear wave front distortion of focused sound in superfluid4He

    NASA Astrophysics Data System (ADS)

    Sasaki, Yasuo; Kishi, Hidenobu; Karaki, Koichi; Okuda, Yuichi

    1995-02-01

    We have investigated a nonlinear phenomenon which appears in a focused sound in superfluid4He under pressure higher than 18 atm. Wave front distortion of the focused ultrasound by nonlinear effect was obtained by the Fourier transform of the transducer output as a function of the defocusing length. The wave was found to suffer discontinuous wave front distortion for the input power above a certain value. This distortion is well represented by the picture that a second wave whose phase is shifted by approx. π develops, and interferes with the original wave. The amplitude of this second wave decreases suddenly as the pressure is lowered below 18 atm and the nonlinear wave front distortion also disappears. The possible mechanism of this second wave generation are discussed.

  7. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    NASA Astrophysics Data System (ADS)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  8. Motion of a rigid prolate spheroid in a sound wave field.

    PubMed

    Zhou, Hongkun; Hong, Lianjin

    2014-08-01

    The motions of a rigid and unconstrained prolate spheroid subjected to plane sound waves are computed using preliminary analytic derivation and numerical approach. The acoustically induced motions are found comprising torsional motion as well as translational motion in the case of acoustic oblique incidence and present great relevance to the sound wavelength, body geometry, and density. The relationship between the motions and acoustic particle velocity is obtained through finite element simulation in terms of sound wavelengths much longer than the overall size of the prolate spheroid. The results are relevant to the design of inertial acoustic particle velocity sensors based on prolate spheroids.

  9. Damping of sound waves in superfluid nucleon-hyperon matter of neutron stars

    SciTech Connect

    Kantor, Elena M.; Gusakov, Mikhail E.

    2009-02-15

    We consider sound waves in superfluid nucleon-hyperon matter of massive neutron-star cores. We calculate and analyze the speeds of sound modes and their damping times due to the shear viscosity and nonequilibrium weak processes of particle transformations. For that, we employ the dissipative relativistic hydrodynamics of a superfluid nucleon-hyperon mixture, formulated recently 1. We demonstrate that the damping times of sound modes calculated using this hydrodynamics and the ordinary (nonsuperfluid) one, can differ from each other by several orders of magnitude.

  10. [Observation on the receiving sensibilities of the points on the hand's six channels for vibromusic sound wave].

    PubMed

    Wei, Yu-lin; Yang, Yong; Tu, Yi-wen; Kong, Jing; Han, Biao; Liu, Guo-ling; Liu, Wei

    2007-04-01

    To understand the receiving sensibility of the points on the hand's six channels for music sound wave in the healthy persons, so as to provide experimental basis for exploring the mechanism of music treatment. By the radiating and receiving sound wave system, the total receiving music sound (RMS) power of the music sound wave were measured at the points of the hand's six channels and non-acupuncture in 34 healthy undergraduates. There was the specific receiving sensibility at Taiyuan (LU 9). The total RMS power of the music sound wave at Daling (PC 7) and Shaohai (HT 3) in the female was stronger than that in the male. There is the difference in the receiving sensibility of the music sound wave at the different acupoints of different channels.

  11. Adaptive wave field synthesis for active sound field reproduction: experimental results.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain

    2008-04-01

    Sound field reproduction has applications in music reproduction, spatial audio, sound environment reproduction, and experimental acoustics. Sound field reproduction can be used to artificially reproduce the spatial character of natural hearing. The objective is then to reproduce a sound field in a real reproduction environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. The room response thus reduces the quality of the physical sound field reproduction by WFS. In recent research papers, adaptive wave field synthesis (AWFS) was defined as a potential solution to compensate for these quality reductions from which WFS objective performance suffers. In this paper, AWFS is experimentally investigated as an active sound field reproduction system with a limited number of reproduction error sensors to compensate for the response of the listening environment. Two digital signal processing algorithms for AWFS are used for comparison purposes, one of which is based on independent radiation mode control. AWFS performed propagating sound field reproduction better than WFS in three tested reproduction spaces (hemianechoic chamber, standard laboratory space, and reverberation chamber).

  12. On the electric activity of superfluid helium at the excitation of first and second sound waves

    SciTech Connect

    Pashitskii, E. A. Gurin, A. A.

    2010-01-15

    We show that the electric activity of superfluid helium (HeII) observed in the experiments [3] during the excitation of standing second sound waves in an acoustic resonator can be described in terms of the phenomenological mechanism of the inertial polarization of atoms in a dielectric, in particular, in HeII, when the polarization field induced in the medium is proportional to the mechanical acceleration, by analogy with the Stewart-Tolman effect. The variable relative velocity w = v{sub n} - v{sub s} of the normal and superfluid HeII components that emerges in the second sound wave determines the mean group velocity of rotons, V{sub g} Almost-Equal-To w, with the density of the normal component related to their equilibrium number density in the temperature range 1.3 K {<=} T {<=} 2 K. Therefore, the acceleration of the 4He atoms involved in the formation of a roton excitation is proportional to the time derivative of the relative velocity.w. In this case, the linear local relations between the variable values of the electric induction, electric field strength, and polarization vector should be taken into account. As a result, the variable displacement current induced in the bulk of HeII and the corresponding potential difference do not depend on the anomalously low polarizability of liquid helium. This allows the ratio of the amplitudes of the temperature and potential oscillations in the second sound wave, which is almost independent of T in the above temperature range, consistent with experimental data to be obtained. At the same time, the absence of an electric response during the excitation of first sound waves in the linear regime is related to an insufficient power of the sound oscillations. Based on the experimental data on the excitation of first and second sounds, we have obtained estimates for the phenomenological coefficient of proportionality between the polarization vector and acceleration and for the drag coefficient of helium atoms by rotons in the

  13. The Impact of Sound on Electroencephalographic Waves during Sleep in Patients Suffering from Tinnitus.

    PubMed

    Pedemonte, Marisa; Testa, Martín; Díaz, Marcela; Suárez-Bagnasco, Diego

    2014-09-01

    Based on the knowledge that sensory processing continues during sleep and that a relationship exists between sleep and learning, a new strategy for treatment of idiopathic subjective tinnitus, consisted of customized sound stimulation presented during sleep, was tested. It has been previously shown that this treatment induces a sustained decrease in tinnitus intensity; however, its effect on brain activity has not yet been studied. In this work, we compared the impact of sound stimulation in tinnitus patients in the different sleep stages. Ten patients with idiopathic tinnitus were treated with sound stimulation mimicking tinnitus during sleep. Power spectra and intra- and inter-hemispheric coherence of electroencephalographic waves from frontal and temporal electrodes were measured with and without sound stimulation for each sleep stage (stages N2 with sleep spindles; N3 with slow wave sleep and REM sleep with Rapid Eye Movements). The main results found were that the largest number of changes, considering both the power spectrum and wave׳s coherence, occurred in stages N2 and N3. The delta and theta bands were the most changed, with important changes also in coherence of spindles during N2. All changes were more frequent in temporal areas. The differences between the two hemispheres do not depend, at least exclusively, on the side where the tinnitus is perceived and, hence, of the stimulated side. These results demonstrate that sound stimulation during sleep in tinnitus patients׳ influences brain activity and open an avenue for investigating the mechanism underlying tinnitus and its treatment.

  14. Tracking kidney stones with sound during shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  15. CRRES observations of ion composition during EMIC mode wave events

    SciTech Connect

    Macdonald, Elizabeth; Larsen, Brian

    2010-12-13

    EMIC mode waves may play an important role in the dynamics of the growth and loss of the radiation belts. CRRES mission analysis has provided extensive information on the distributions of EMIC mode waves. Less well studied and understood is the role that ion composition plays in the formation of the EMIC mode waves. The CRESS plasma mass spectrometer LOMICS measured all ion species of interest up to 45 keV/q. This preliminary study will examine the characteristics of heavy ions during a multitude of wave events, in particular, the effect of ion composition on wave-particle interactions, amplitude, and frequency. The relevance of such data to the upcoming RBSP mission will be highlighted.

  16. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  17. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  18. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  19. Mode conversion of fast Alfvén waves at the ion-ion hybrid resonance

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Bers, A.; Schultz, S. D.; Fuchs, V.

    1996-05-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion-ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvén waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvén waves in the immediate vicinity of the ion-ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvén waves on the high magnetic-field side of the ion-ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvén wave power incident on the ion-ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvén waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion-ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvén waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters.

  20. Inferring magnetospheric heavy ion density using EMIC waves

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2015-08-01

    We present a method to infer heavy ion concentration ratios from electromagnetic ion cyclotron (EMIC) wave observations that result from ion-ion hybrid (IIH) resonance. A key feature of the IIH resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. These mode-converted waves at the IIH resonance are localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this paper, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and wave frequencies using a dipole magnetic field model. We find that the resonance only occurs over a limited range of wave frequency such that the IIH resonance frequency is close to but not exactly the same as the crossover frequency. Using the wave absorption and EMIC waves observed from the GOES 12 satellite, we demonstrate how this technique can be used to estimate the He+ concentration of around 4% near L = 6.6 assuming electron-H+-He+ plasma.

  1. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.

    PubMed

    Luo, J; Badiey, M; Karjadi, E A; Katsnelson, B; Tskhoidze, A; Lynch, J F; Moum, J N

    2008-09-01

    Fluctuations of the low frequency sound field in the presence of an internal solitary wave packet during the Shallow Water '06 experiment are analyzed. Acoustic, environmental, and on-board ship radar image data were collected simultaneously before, during, and after a strong internal solitary wave packet passed through the acoustic track. Preliminary analysis of the acoustic wave temporal intensity fluctuations agrees with previously observed phenomena and the existing theory of the horizontal refraction mechanism, which causes focusing and defocusing when the acoustic track is nearly parallel to the front of the internal waves [J. Acoust. Soc. Am., 122(2), pp. 747-760 (2007)].

  2. Electromagnetic ion cyclotron waves in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  3. Anisotropic ion heating and BBELF waves within the low-altitude ion upflow region

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Knudsen, D. J.; Burchill, J. K.; James, H. G.; Miles, D. M.

    2016-12-01

    Previous studies have shown that low-energy (<10 eV) ion upflow energization processes involve multiple steps. At the initial stage, contributions from transverse-to-B ion heating by wave-particle interaction (WPI) are often underestimated. The wave-generation mechanisms, the specific wave modes leading to the ion heating, and the minimum altitude where WPI takes place remain unresolved. With this in mind, we statistically investigate the relation between anisotropic ion temperature enhancements and broadband extremely low frequency (BBELF) wave emissions within the ion upflow region using data from the Suprathermal Electron imager (SEI), the Fluxgate Magnetometer (MGF), and the Radio Receiver Instrument (RRI) onboard the e-POP satellite. Initial results demonstrate that perpendicular-to-B ion temperatures can reach up to 4.3 eV in approximately 1 km wide spatial region near 410 km altitude inside an active auroral surge. Intense small-scale field-aligned currents (FACs) as well as strong BBELF wave emissions, comprising electromagnetic waves below 80 Hz and electrostatic waves above, accompany these ion heating events. The minimum altitude of potential WPI reported here is lower than as previously suggested as 520 km by Frederick-Frost et al. 2007. We measure polarization and power spectral density for specific wave modes to explore the nature of ion heating within the BBELF waves. Acknowledgement: This research is supported by an Eyes High Doctoral Recruitment Scholarship at University of Calgary.

  4. Sound propagation through internal gravity wave fields in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Swinney, Harry L.; Lin, Ying-Tsing

    2014-11-01

    We conduct laboratory experiments and numerical simulations for sound propagation through an internal gravity wave field. The goal is to improve the understanding of the effect of internal gravity waves on acoustic propagation in the oceans. The laboratory tank is filled with a fluid whose density decreases linearly from the bottom to the top of the tank; the resultant buoyancy frequency is 0.15 Hz. A 1 MHz sound wave is generated and received by 12.5 mm diameter transducers, which are positioned 0.2 m apart on a horizontal acoustic axis that is perpendicular to the internal wave beam. The fluid velocity field, measured by Particle Image Velocimetry (PIV), agrees well with results from simulations made using a Navier-Stokes spectral code. The sound intensity at the receiver is computed numerically for different measured and simulated frozen density fields. Fluctuations in the sound speed and intensity are determined as a function of the location of the receiver and the frequency and phase of the internal waves. Supported by ONR MURI Grant N000141110701 (WHOI). Also, L.Z. is supported by the 2013-14 ASA F. V. Hunt Postdoctoral Research Fellowship.

  5. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  6. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  7. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  8. Ultralow Frequency Waves In Saturn's Magnetosphere: More Than Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Crary, Frank; Dols, Vincent; Usanova, Maria; Meeks, Zachary; Simon, Sven

    2017-04-01

    Electromagnetic waves near the oxygen/water group cyclotron frequency are an ubiquitous feature of Saturn's inner magnetosphere. These left-circularly polarized, transverse waves are generated by the anisotropic velocity distribution of recently produced ions, and reflect the ion production rate. The properties and distribution of these emissions have been previous studies and related to the distribution of neutrals in the system (Leisner et al., 2006; Crary et al., 2013; Meeks et al., 2016.) In addition to these waves, other, related mode have been observed by the Cassini spacecraft. The waves near the W+ (water group) cyclotron frequency sometimes have a compressional component and/or accompanying emission the first (2f) harmonic (implying the waves are oblique rather than parallel propagating. Neither of these properties is predicted by the classic theory of wave growth from a ring-beam distribution. In addition, ion cyclotron waves are also observed near the gyrofrequency of a 32 AMU ion, suggesting production of O2+. While observed, O2+ is a very low abundance species outside of 4 Saturn radii, and in the regions where these waves are present. Finally, strong but linearly polarized waves are sometimes observed near the orbit of Enceladus. The association between these waves and W+ ion cyclotron waves is unclear. We will present the measurements of these ULF waves, their frequency of occurrence with respect to position and time, and discuss their implications for plasma production in Saturn's magnetosphere.

  9. Propagation of sound waves in tubes of noncircular cross section

    NASA Technical Reports Server (NTRS)

    Richards, W. B.

    1986-01-01

    Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.

  10. Sound Scattering by a Hard Half-Plane Experimental Evidence of the Edge-Diffracted Wave

    NASA Astrophysics Data System (ADS)

    OUIS, D.

    2002-05-01

    In this short note, some experimental results are presented on the diffraction of a spherical way by a hard half-plane. This study was conducted with the aim to give evidence to the existence of the edge-diffracted wave. The sound source used in this experimental study is a condenser microphone operating in a reverse way. The wave emitted by a sound source propagates in space and hits a thin aluminium sheet with a straight edge, considered as an idealization of the hard half-plane. The resulting impulse response includes among others a wave diffracted by the edge of the half-plane, which is compared to its theoretical prediction. This latter is calculated from the exact Biot and Tolstoy solution to the problem of diffraction of a spherical wave by a hard wedge. Relatively satisfactory agreement is found between theory and experiment.

  11. Singular waves in a magnetized pair-ion plasma

    SciTech Connect

    Samanta, Sukanta; Misra, Amar P.

    2009-07-15

    The existence of singular waves along the boundary of a magnetized pair-ion plasma is proved for both plasma-metal and plasma-vacuum interfaces. Such waves are shown to propagate at the points of intersection of the complex-zone boundary and the surface wave dispersion curve in a weakly magnetized plasma. The results could be relevant for negative ion plasmas in the laboratory and space as well as for the modeling of a plasma sustained by a traveling surface wave.

  12. Wave tilt sounding of multilayered structures. [for probing of stratified planetary surface electrical properties and thickness

    NASA Technical Reports Server (NTRS)

    Warne, L.; Jaggard, D. L.; Elachi, C.

    1979-01-01

    The relationship between the wave tilt and the electrical parameters of a multilayered structure is investigated. Particular emphasis is placed on the inverse problem associated with the sounding planetary surfaces. An inversion technique, based on multifrequency wave tilt, is proposed and demonstrated with several computer models. It is determined that there is close agreement between the electrical parameters used in the models and those in the inversion values.

  13. Magnetosonic wave in pair-ion electron collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Hasnain, H.

    2017-03-01

    Low frequency magnetosonic waves in positive and negative ions of equal mass and opposite charges in the presence of electrons in collisional plasmas are studied. The collisions of ions and electrons with neutrals are taken into account. The nonlinearities in the plasma system arise due to ion and electrons flux, Lorentz forces, and plasma current densities. The reductive perturbation method is applied to derive the Damped Korteweg de Vries (DKdV) equation. The time dependent solution of DKdV is presented. The effects of variations of different plasma parameters on propagation characteristics of magnetosonic waves in pair-ion electron plasma in the context of laboratory plasmas are discussed.

  14. Ion-cyclotron wave heating of heavy ions in the equatorial magnetosphere - A numerical simulation theory

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Hada, T.; Ashour-Abdalla, M.

    A 1-2/2 dimensional hybrid numerical simulation code is used to study the heating of cold H(+) ions and heavy ions by electromagnetic ion-cyclotron waves (ICWs) in the ring current region of the equatorial magnetosphere. Consideration is given to a plasma consisting of electrons, hot H(+) ions, and cold heavy ions in which the ICWs are driven by the temperature anisotropy of the hot protons. For large-amplitude ICWs, it is found that the cold H(+) ions are preferentially heated over the heavy ions although the cold H(+) ions are heated by a three-step process.

  15. Asymptotic permanent profile of the ion acoustic wave driven by the Langmuir wave

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.; Latifi, A.; Leon, J.

    1992-08-01

    We study the evolution of Langmuir waves coupled to the ion acoustic wave by means of the ponderomotive force in the Karpman limit (caviton equation). Using the spectral transform with singular dispersion relation, it is shown that the background noise (fluctuations in the ion density) is amplified and its time asymptotic behavior will be a static solution which is totally reflective for the Langmuir wave. Moreover, if the initial ion density contains a local depression, the asymptotic profile will contain a number of permanent localized density depressions (cavitons), static in the rest frame of the acoustic wave and entrained in its wake.

  16. Visualization and Measurements of Sound Pressure Distribution of Ultrasonic Wave by Stroboscopic Real-Time Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Hisada, Shigeyoshi; Suzuki, Takahiro; Nakahara, Sumio; Fujita, Takeyoshi

    2002-05-01

    The sound pressure distribution of underwater ultrasonic waves is measured by real-time stroboscope holographic interferometry using bismuth silicon oxide single crystal. Stroboscopic sub-microsecond irradiation of laser light enables the recording of the stationary holographic interferogram of refractive index changes of water by ultrasonic waves for the frame time of a charge coupled device camera. The fringe order distribution is calculated from the interferogram by Fourier transform fringe analysis. The optical path differences caused by sound field along the optical path are converted into local field values of sound pressure, which is displayed as a gray scale distribution image. In the experiment, the sound pressure distributions of ultrasonic waves through rectangular and circular apertures are observed. They are compared with the theoretical sound pressure distribution. The sound pressure values obtained by a hydrophone show good agreement with the measured values obtained by this method. The converging and diverging sound pressure fields realized by an acoustic lens are measured.

  17. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    SciTech Connect

    Chawla, J. K.; Mishra, M. K.

    2010-10-15

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,{sigma}), where p and {sigma} are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  18. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    PubMed

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  19. Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.

    NASA Astrophysics Data System (ADS)

    Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus

    2017-04-01

    The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.

  20. Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility

    NASA Astrophysics Data System (ADS)

    Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.

    2010-02-01

    A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.

  1. Effect of disorder on bulk sound wave speed: a multiscale spectral analysis

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-08-01

    Disorder of size (polydispersity) and mass of discrete elements or particles in randomly structured media (e.g., granular matter such as soil) has numerous effects on the materials' sound propagation characteristics. The influence of disorder on energy and momentum transport, the sound wave speed and its low-pass frequency-filtering characteristics is the subject of this study. The goal is understanding the connection between the particle-microscale disorder and dynamics and the system-macroscale wave propagation, which can be applied to nondestructive testing, seismic exploration of buried objects (oil, mineral, etc.) or to study the internal structure of the Earth. To isolate the longitudinal P-wave mode from shear and rotational modes, a one-dimensional system of equally sized elements or particles is used to study the effect of mass disorder alone via (direct and/or ensemble averaged) real time signals, signals in Fourier space, energy and dispersion curves. Increase in mass disorder (where disorder has been defined such that it is independent of the shape of the probability distribution of masses) decreases the sound wave speed along a granular chain. Energies associated with the eigenmodes can be used to obtain better quality dispersion relations for disordered chains; these dispersion relations confirm the decrease in pass frequency and wave speed with increasing disorder acting opposite to the wave acceleration close to the source.

  2. Growth rate measurement of ULF waves in the ion foreshock

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Hietala, H.; Astfalk, P.; Angelopoulos, V.

    2016-12-01

    Waves generated by accelerated particles are important throughout our heliosphere. These particles often gain their energy at shocks via Fermi acceleration. At the Earth's bow shock, this mechanism accelerates ion beams back into the solar wind; the beams can then generate ultra low frequency (ULF) waves via an ion-ion right hand resonant instability. These waves influence the shock structure and particle acceleration, lead to coherent structures in the magnetosheath, and are a possible source of the ULF waves that play a key role in magnetospheric dynamics.ULF wave observations at the Earth's ion foreshock have been primarily conducted using missions within 30 Earth radii (Re). However, many of the events observed at this location consist of waves generated further upstream that are convected back towards the spacecraft. By contrast, the present study makes use of the two ARTEMIS spacecraft orbiting the moon at 60 Re from Earth to investigate the properties of ULF waves further upstream while they are in the linear stage of instability growth.The present study represents the first satellite measurement of the ULF wave growth rate in the upstream region. Using the flux gate magnetometer and electrostatic analyzer instruments aboard the two ARTEMIS spacecraft, we characterize crescent-shaped ion beams and relatively monochromatic ULF waves. The selected event features spacecraft separation in the solar wind flow direction along a nearly radial Interplanetary Magnetic Field. We estimate the ULF wave growth rate and find it to match dispersion solver predictions during the initial growth time. Observed frequencies and wavenumbers are also within the predicted range. Other ULF wave properties such as the phase speed and obliquity are consistent with expectations from prior satellite measurements. Multiple frequency peaks observed in ARTEMIS data and additional events characterized by diffuse ion beams are currently under investigation.Supported by NASA & NASA Eddy

  3. Analog of Optical Elements for Sound Waves in Air

    ERIC Educational Resources Information Center

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  4. Analog of Optical Elements for Sound Waves in Air

    ERIC Educational Resources Information Center

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  5. Softening of stressed granular packings with resonant sound waves.

    PubMed

    Reichhardt, C J Olson; Lopatina, L M; Jia, X; Johnson, P A

    2015-08-01

    We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of the packing. We measure the response experienced by a wall on the opposite edge of the packing and obtain the resonant frequency of the packing as the static or dynamic pressures are varied. Under increasing static pressure, the resonant frequency increases, indicating a velocity increase of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the wave velocity. This occurs both for compressional and for shear dynamic forcing and is in agreement with experimental results. We find that the average contact number Zc at the resonant frequency decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is associated with a reduced number of grain-grain contacts through which the elastic waves can travel. We image the excitations created in the packing and show that there are localized disturbances or soft spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement with experiments on glass bead packings and earth materials such as sandstone and granite and may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures during earthquake excitation.

  6. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    ERIC Educational Resources Information Center

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  7. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    ERIC Educational Resources Information Center

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  8. Electrostatic solitary waves in dusty pair-ion plasmas

    SciTech Connect

    Misra, A. P.; Adhikary, N. C.

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  9. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  10. Rogue wave triplets in an ion-beam dusty plasma with superthermal electrons and negative ions

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; Shi, Weijuan

    2013-11-01

    A new dust ion-acoustic wave structure called ‘Rogue wave triplets’ is investigated in an unmagnetized plasma consisting of stationary negatively charged dust grains, charged positive and negative ions, and electrons obeying kappa distribution, which is penetrated by an ion beam. The reductive perturbation theory is used to derive the nonlinear Schrödinger equation governing the dynamics as well as the modulation of wave packets. The rogue wave triplets which are composed of three separate Peregrine breathers can be generated in the modulation instability region. It has been suggested that a laboratory experiment be performed to test the theory presented here.

  11. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.

    PubMed

    Kroon, Aart; Abermann, Jakob; Bendixen, Mette; Lund, Magnus; Sigsgaard, Charlotte; Skov, Kirstine; Hansen, Birger Ulf

    2017-02-01

    A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.

  12. Three-in-One Resonance Tube for Harmonic Series Sound Wave Experiments

    ERIC Educational Resources Information Center

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-01-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and…

  13. Suggested Courseware for the Non-Calculus Physics Student: Simple Harmonic Motion, Wave Motion, and Sound.

    ERIC Educational Resources Information Center

    Grable-Wallace, Lisa; And Others

    1989-01-01

    Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)

  14. Amplification of sound waves in an imploding plasma shell: Exact results

    SciTech Connect

    Han, S.J.

    1988-01-01

    In an extended model, a rigorous proof is given for sound-wave amplifications in an imploding plasma shell. It is shown that, in the absence of a massless free surface, the boundary conditions give the exact eigenvalues which determine the asymptotic solution to the problem.

  15. Numerical study of three-dimensional sound reflection from corrugated surface waves.

    PubMed

    Choo, Youngmin; Song, H C; Seong, Woojae

    2016-10-01

    When a sound wave propagates in a water medium bounded by a smooth surface wave, reflection from a wave crest can lead to focusing and result in rapid variation of the received waveform as the surface wave moves [Tindle, Deane, and Preisig, J. Acoust. Soc. Am. 125, 66-72 (2009)]. In prior work, propagation paths have been constrained to be in a plane parallel to the direction of corrugated surface waves, i.e., a two-dimensional (2-D) propagation problem. In this paper, the azimuthal dependence of sound propagation as a three-dimensional (3-D) problem is investigated using an efficient, time-domain Helmholtz-Kirchhoff integral formulation. When the source and receiver are in the plane orthogonal to the surface wave direction, the surface wave curvature vanishes in conventional 2-D treatments and the flat surface simply moves up and down, resulting in minimal temporal variation of the reflected signal intensity. On the other hand, the 3-D propagation analysis reveals that a focusing phenomenon occurs in the reflected signal due to the surface wave curvature formed along the orthogonal plane, i.e., out-of-plane scattering.

  16. Ion plasma wave and its instability in interpenetrating plasmas

    SciTech Connect

    Vranjes, J.; Kono, M.

    2014-04-15

    Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

  17. Mode identification of whistler mode, Z-mode, and Langmuir/Upper Hybrid mode waves observed in an auroral sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Labelle, J.

    2008-04-01

    The SIERRA (Sounding of the Ion Energization Region - Resolving Ambiguities) rocket was launched to 735 km over an active auroral substorm from Poker Flat, Alaska, on 14 January 2002. A wealth of wave modes at frequencies from below 100 kHz to above 2000 kHz were detected with a dipole electric field antenna that was alternately parallel and perpendicular to Earth's magnetic field. At least two types of whistler mode waves were detected: unstructured broadband whistler waves commonly referred to as auroral hiss occurring at frequencies from <100 kHz up to 1000 kHz, and structured narrowband features in the whistler mode at frequencies of 100 kHz to 600 kHz (Samara and LaBelle, 2006a). Other waves detected in the frequency range 1200 to 2000 kHz were interpreted as Langmuir-upper hybrid waves and Z-mode waves. For the unstructured whistler mode waves, comparison of the observed spin dependence of the wave electric fields with Monte Carlo simulations of the expected spin dependence for various polarizations suggests that these waves propagate on or near the resonance cone, which is consistent with previous measurements. Similar analyses of the presumed Langmuir and Z-mode waves show their electric fields are preferentially parallel and perpendicular to the ambient magnetic field, respectively. These characteristics, together with the relation of the wave frequencies to the Z cutoff frequency, serve to confirm the mode identification of these waves.

  18. Acoustofluidics 15: streaming with sound waves interacting with solid particles.

    PubMed

    Sadhal, S S

    2012-08-07

    In Part 15 of the tutorial series "Acoustofluidics-exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation," we examine the interaction of acoustic fields with solid particles. The main focus here is the interaction of standing waves with spherical particles leading to streaming, together with some discussion on one non-spherical case. We begin with the classical problem of a particle at the velocity antinode of a standing wave, and then treat the problem of a sphere at the velocity node, followed by the intermediate situation of a particle between nodes. Finally, we discuss the effect of deviation from sphericity which brings about interesting fluid mechanics. The entire Focus article is devoted to the analysis of the nonlinear fluid mechanics by singular perturbation methods, and the study of the streaming phenomenon that ensues from the nonlinear interaction. With the intention of being instructive material, this tutorial cannot by any means be considered 'complete and comprehensive' owing to the complexity of the class of problems being covered herein.

  19. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  20. Sound waves induce Volkov-like states, band structure and collimation effect in graphene.

    PubMed

    Oliva-Leyva, M; Naumis, Gerardo G

    2016-01-20

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves.

  1. The generation of sound by vorticity waves in swirling duct flows

    NASA Technical Reports Server (NTRS)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  2. NEW APPROACHES: The Doppler effect: a unified approach for sound and light waves

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.

    1996-11-01

    A derivation of the Doppler effect is presented where the analysis of the Doppler shift for sound is the same as for electromagnetic waves (in vacuum). Furthermore, for sound waves the treatment is the same no matter whether only the sounce (S) is moving (with respect to the medium), or only the observer (O), or both S and O. The analysis shows clearly that the basic cause of the Doppler shift is the relative velocity between S and O in all cases, and not just for electromagnetic waves (where individual velocities of S and O are not even definable). The difference in the expressions for the Doppler shift in different cases is due to other factors which are easy to understand.

  3. Laboratory Measurements of the Sound Generated by Breaking Waves

    DTIC Science & Technology

    1991-12-01

    inch stainless steel rods which had rubber stoppers installed on the ends of the rods. The frame was then wedged tightly in place against the glass...wire mounted on 1/4 inch stainless steel frames. The gauges were calibrated by sampling the still water level in 7.5 inch (19 cm) increments over a 30...proportional to u.3. £~m~n.a.1EWavrc The experiments were conducted in a steel -framed glass wave channel 25m long and 0.38m wide at the R.M. Parsons Laboratory

  4. Weakly dissipative dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  5. Ion acoustic waves in a multi-ion plasma.

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; White, R. B.; Samec, T. K.

    1971-01-01

    An exact treatment of the multispecies ion acoustic dispersion relation is given for an argon/helium plasma. Phase velocity and damping are obtained as a function of ion-electron temperature ratio and relative densities of the two species. There are two important modes in the plasma, with quite different phase velocities, which are referred to as principal heavy ion mode and principal light ion mode. Which of these is dominant depends on the relative densities of the two components, but, in general, the light ion mode becomes important for surprisingly small light ion contamination. Approximate analytic expressions are derived from damping rates and phase velocities and their domains of validity are investigated. Relevance of the results for the investigation of collisionless shocks is discussed.

  6. On the theory of magneto-sound double simple waves

    NASA Astrophysics Data System (ADS)

    Tskhakaya, Davy D.; Eshraghi, Homayoon

    2008-08-01

    A two-dimensional double simple wave solution is given for both weakly and highly magnetized non-relativistic plasmas moving across the magnetic field. The dependence of the density and the magnetic field on the two independent phases, namely, components of the fluid velocity, is derived. It is shown that initial spatial distributions must satisfy a definite equation whose solution determines a special category for initial conditions. The time of blow up for any fixed value of the pair phase is found. A large general class of solutions for initial distributions is obtained. For any chosen initial distribution, the physical plane of flow at any instant of time splits into two regions, one forbidden and the other permitted. These regions are obtained numerically at a typical time for a special initial distribution. For this double wave solution, differential equations for streamlines and fluid trajectories are derived. Only for the simplest cases can the corresponding curves be completely integrated and these are given in this paper. The results are qualitatively similar to the one-dimensional case derived by Stenflo and Shukla.

  7. Application of the Wave and Finite Element Method to Calculate Sound Transmission Through Cylindrical Structures

    NASA Astrophysics Data System (ADS)

    Kingan, Michael J.; Yang, Yi; Mace, Brian R.

    2016-09-01

    This paper concerns the prediction of sound transmission through a cylindrical structure. The problem considered is that of sound generated by a line source located exterior to a two-dimensional circular cylinder which produces sound waves which transmit through the cylinder to an internal medium. An analytical solution is presented for the case of sound transmission through a thin cylindrical shell, by modelling the shell response using the Flugge- Byrne-Lur'ye equations. This solution is then compared to calculations where the response of the cylinder is calculated using the Wave and Finite Element (WFE) method. The WFE method involves modelling a small segment of a structure using traditional finite element (FE) methods. The mass and stiffness matrices of the segment are then used to calculate the response of the structure to excitation by an acoustic field. The WFE approach for calculating sound transmission is validated by comparison with the analytic solution. Formulating analytic solutions for more complicated structures can be cumbersome whereas using a numerical technique, such as the WFE method, is relatively straightforward.

  8. Sound waves in the compactified D0-D4 brane system

    NASA Astrophysics Data System (ADS)

    Cai, Wenhe; Li, Si-wen

    2016-09-01

    As an extension to our previous work, we study the transport properties of the Witten-Sakai-Sugimoto model in the black D4-brane background with smeared D0 branes (D0-D4/D8 system). Because of the presence of the D0 branes, in the bubble configuration, this model is holographically dual to four-dimensional QCD or Yang-Mills theory with a Chern-Simons term, and the number density of the D0 branes corresponds to the coupling constant (θ angle) of the Chern-Simons term in the dual field theory. In this paper, we accordingly focus on the small number density of the D0 branes to study the sound mode in the black D0-D4 brane system since the coupling of the Chern-Simons term should be quite weak in QCD. Then, we derive its five-dimensional effective theory and analytically compute the speed of sound and the sound wave attenuation in the approach of gauge/gravity duality. Our result shows the speed of sound and the sound wave attenuation are modified by the presence of the D0 branes. Thus, they depend on the θ angle or chiral potential in this holographic description.

  9. Effect of RF Waves on Ion Temperature Gradient Modes

    NASA Astrophysics Data System (ADS)

    Sen, S.; Martinell, J.; Imadera, K.; Kishimoto, Y.

    2016-10-01

    The ion-temperature-driven modes are studied in the presence of radio frequency waves by the use of the Gyro-Kinetic simulation Code and ASTRA Code. It is shown that the radio frequency waves through the ponderomotive force can stabilize the ion-temperature-gradient instabilities and contrary to the usual belief no radio frequency wave-induced flow generation hypothesis is required. This might be a major way to create a transport barrier in the fusion energy generation. Funding from Department of Energy is ackowledged.

  10. Ion-neutral collision effect on an Alfven wave

    SciTech Connect

    Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )

    1993-07-19

    This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.

  11. Analysis of sound propagation in ducts using the wave envelope concept

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  12. A wave field synthesis approach to reproduction of spatially correlated sound fields.

    PubMed

    Berry, Alain; Dia, Rokhiya; Robin, Olivier

    2012-02-01

    This article discusses an open-loop wave field synthesis (WFS) approach for the reproduction of spatially correlated sound fields. The main application concerns laboratory reproduction of turbulent boundary layer wall pressure on aircraft fuselages and measurement of their sound transmission loss. The problem configuration involves reconstruction of random sound pressure distributions on a planar reproduction surface using a planar array of reproduction monopoles parallel to the reproduction plane. In this paper, the WFS formulation is extended to sound fields with imposed time and spatial correlation properties (or equivalently imposed cross-spectral density in the frequency and wave number domains). Numerical examples are presented for the reproduction of a propagating plane wave, diffuse acoustic field and wall pressure in subsonic or supersonic turbulent boundary layers. The reproduction accuracy is examined in terms of the size of the source plane and reproduction plane, their separation, and the number of reproduction sources required per acoustic wavelength. While the reproduction approach cannot reconstruct sub-wavelength correlation scales of subsonic turbulent boundary layers, it effectively reconstructs correlation scales larger than the acoustic wavelength, making it appropriate for diffuse acoustic field and supersonic turbulent layers.

  13. Outgoing long-wave radiation computed from HIRS2/MSU soundings. [High InfraRed Spectrometer/Microwave Sounding Unit

    SciTech Connect

    Wu, M.C.; Susskind, J. )

    1990-05-20

    Fields of outgoing long-wave radiation (OLR) have been computed using geophysical parameters retrieved from analysis of HIRS2/MSU sounding data as input to a modified version of the Wu-Kaplan radiation code used in the Goddard Laboratory for Atmospheres fourth-order general circulation model. Monthly mean results for 1979 agree with monthly mean OLR fields measured by the Nimbus 7 Earth radiation budget (ERB) broadband narrow field of view instrument within standard deviations of 6.3 W/m{sup 2} but with a global mean bias of 8.0 W/m{sup 2}. Results are shown for July 1979. The areas of disagreement between high-resolution infrared radiation sounder OLR and ERB OLR are small but spatially coherent with patterns which may be related to sampling differences. The difference patterns are much less extensive than those between OLR derived from advanced very high resolution radiometer 11-{mu}m observations and ERB OLR. The ability to compute OLR from geophysical parameters is complementary to direct measurement of OLR because it enables one to attribute changes in OLR in space and time to changes in other geophysical parameters. In addition, it allows one to compute fields not directly measurable from satellite, such as the difference of the upward long-wave flux between the surface and the top of the atmosphere and the long-wave cloud radiative forcing.

  14. Oblique ion acoustic shock waves in a magnetized plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2013-08-15

    Ion acoustic (IA) shock waves are studied in a magnetized plasma consisting of a cold viscous ion fluid and Maxwellian electrons. The Korteweg–de Vries–Burgers equation is derived by using the reductive perturbation method. It is shown that the combined effects of external magnetic field and obliqueness significantly modify the basic properties (viz., amplitude, width, speed, etc.) of the IA shock waves. It is observed that the ion-viscosity is a source of dissipation, and is responsible for the formation of IA shock structures. The implications of our results in some space and laboratory plasma situations are discussed.

  15. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    NASA Astrophysics Data System (ADS)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  16. Investigation of an ion-ion hybrid Alfvén wave resonator

    NASA Astrophysics Data System (ADS)

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.

    2013-01-01

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfvén waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfvén wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H+-He+ mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  17. Ion Bernstein waves in a magnetic reconnection region

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K. H.; Motschmann, U.; Comisel, H.

    2015-12-01

    Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using the four-point magnetometer data from the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram for the waves in the quasi-perpendicular directions in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves particularly at the second harmonic of the proton gyro-frequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection. We discuss the causality of the Bernstein waves with magnetic reconnection with an estimate of the anomalous resistivity, and propose an observationally-driven model of turbulent magnetic reconnection.

  18. Stochastic threshold for ion heating with beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-06-14

    The stochastic threshold for the heating of ions in a magnetized plasma with two electrostatic waves is experimentally characterized. Two obliquely propagating electrostatic modes are launched in a magnetized plasma with frequencies that differ by the ion cyclotron frequency. The values of the wave amplitudes where a rapid increase in the local ion temperature occurs is then parametrically investigated. It is found that the two threshold wave amplitudes are linearly related and that this dependence translates to a lower required energy density for the onset of heating when compared to the case of a single electrostatic wave. Agreement also is demonstrated between the experimentally observed threshold for stochastic heating and an analytical prediction [B. Jorns and E. Y. Choueiri, Phys. Rev. E 87, 013107 (2013)] for this threshold.

  19. Shock wave initiated by an ion passing through liquid water

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'Yov, Andrey V.

    2010-11-01

    We investigate the shock wave produced by an energetic ion in liquid water. This wave is initiated by a rapid energy loss when the ion moves through the Bragg peak. The energy is transferred from the ion to secondary electrons, which then transfer it to the water molecules. The pressure in the overheated water increases by several orders of magnitude and drives a cylindrical shock wave on a nanometer scale. This wave eventually weakens as the front expands further; but before that, it may contribute to DNA damage due to large pressure gradients developed within a few nanometers from the ion’s trajectory. This mechanism of DNA damage may be a very important contribution to the direct chemical effects of low-energy electrons and holes.

  20. Sound wave energy emitted by water drop during the splash on the soil surface

    NASA Astrophysics Data System (ADS)

    Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz

    2017-04-01

    A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016

  1. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  2. Wave Activity in Europa's Wake: Implications for Ion Pickup

    NASA Technical Reports Server (NTRS)

    Volwerk, M.; Kivelson, M. G.; Khurana, K. K.

    2001-01-01

    Intense wave power at frequencies near and below the cyclotron frequencies of heavy ions was detected in Europa's wake during the E11 and E15 flybys. The fluctuations are mainly transverse to the background magnetic field. Wave characteristics indicate that they are ion cyclotron waves driven by positively charged pickup ions. In both flybys there is evidence, derived from the wave polarization, for pickup of negatively charged chlorine ions. When the moon is near the center of the Jovian current sheet, the pickup rate inferred for the E15 flyby is larger than that for the E11 flyby, when the moon is outside the Jovian current sheet. The wave power does not provide exact pickup density values because the waves are observed in regions where their growth has not yet fully developed. At the edges of the wake region, low-frequency (< K+ gyrofrequency) magnetohydrodynamic waves are also present. We identify magnetic field signatures that are reminiscent of interchange/ballooning of mass-loaded flux tubes from the wake/pickup region expanding into ambient medium that is less dense.

  3. Weakly nonlinear ion waves in striated electron temperatures

    NASA Astrophysics Data System (ADS)

    Guio, P.; Pécseli, H. L.

    2016-04-01

    The existence of low-frequency waveguide modes of electrostatic ion acoustic waves is demonstrated in magnetized plasmas for cases where the electron temperature is striated along magnetic field lines. For low frequencies, the temperature striation acts as waveguide that supports a trapped mode. For conditions where the ion cyclotron frequency is below the ion plasma frequency we find a dispersion relation having also a radiative frequency band, where waves can escape from the striation. Arguments for the formation and propagation of an equivalent of electrostatic shocks are presented and demonstrated numerically for these conditions. The shock represents here a balance between an external energy input maintained by ion injection and a dissipation mechanism in the form of energy leakage of the harmonics generated by nonlinear wave steepening. This is a reversible form for energy loss that can replace the time-irreversible losses in a standard Burgers equation.

  4. Stimulated scattering of a whistler off an ion Bernstein wave

    NASA Astrophysics Data System (ADS)

    Kumar, Asheel; Tripathi, V. K.

    2011-12-01

    In a hot magnetized plasma, where electron thermal speed exceeds the Alfvén speed, a high-frequency whistler is susceptible to parametric decay into an ion Bernstein wave and a sideband whistler propagating at an angle to the magnetic field. The electron density perturbation associated with the ion Bernstein wave couples with the oscillatory velocity due to the pump to produce a nonlinear current, driving the sideband. The pump and sideband whistler exert a low-frequency ponderomotive force on electrons driving the ion Bernstein wave. For tokamak parameters with electron oscillatory velocity a few times the acoustic speed, the growth rate is around one-tenth of the ion cyclotron frequency.

  5. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  6. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  7. Electrohydrodynamic instability of ion-concentration shock wave in electrophoresis

    NASA Astrophysics Data System (ADS)

    Gaur, Rahul; Bahga, Supreet Singh

    2017-06-01

    Capillary electrophoresis techniques often involve ion-concentration shock waves in an electrolyte solution, propagating under the effect of an external electric field. These shock waves are characterized by self-sharpening gradients in ion concentrations and electrical conductivity that are collinear with the electric field. The coupling of electric field and fluid motion at the shock interface sometimes leads to an undesirable electrohydrodynamic (EHD) instability. Using linear stability analysis, we describe the motion of small-amplitude disturbances of an electrophoretic shock wave. Our analysis shows that the EHD instability results due to the competition between destabilizing electroviscous flow and stabilizing electromigration of the shock wave. The ratio of timescales corresponding to electroviscous flow and electromigration yields a threshold criterion for the onset of instability. We present a validation of this threshold criterion with published experimental data and also describe the physical mechanism underlying the EHD instability of the electrophoretic shock wave.

  8. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  9. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  10. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  11. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  12. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  13. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  14. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  15. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  16. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  17. Observation of two-dimensional classical wave localization: third sound on superfluid 4He films on a disordered substrate.

    PubMed

    Luhman, D R; Herrmann, J C; Hallock, R B

    2005-05-06

    We present the results of measurements of the propagation of third sound waves on superfluid 4He adsorbed to two-dimensional ordered and disordered substrates. In the disordered case we compare the experimental results to theoretical predictions of classical wave localization in such systems and conclude that classical wave localization is present in our system.

  18. Measured and calculated transmission losses of sound waves through a helium layer

    NASA Technical Reports Server (NTRS)

    Norum, T. D.

    1973-01-01

    An experiment was performed to measure the transmission losses of sound waves traversing an impedance layer. The sound emanated from a point source and the impedance layer was created by a low-speed helium jet. The transmission losses measured were of the order of 12 db for frequencies of the source between 4 and 12 kHz. These losses are greater than those predicted from analysis when the observer angle is less than about 35 deg, but less than those predicted for larger observer angles. The experimental results indicate that appreciable noise reductions can be realized for an observer shielded by an impedance layer, irrespective of his position relative to the source of sound.

  19. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  20. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  1. Alfven waves and associated energetic ions downstream from Uranus

    SciTech Connect

    Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )

    1991-02-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  2. High-Frequency Electrostatic Wave Generation and Transverse Ion Acceleration by Low Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2006-01-01

    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.

  3. High-Frequency Electrostatic Wave Generation and Transverse Ion Acceleration by Low Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2006-01-01

    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.

  4. Sounding-Rocket Studies of Langmuir-Wave Microphysics in the Auroral Ionosphere

    NASA Astrophysics Data System (ADS)

    Dombrowski, Micah P.

    Since their discovery in laboratory plasmas in the 1920s, Langmuir waves have been observed to be ubiquitous in plasma environments, particularly in space plasmas. From the greater solar wind to planetary foreshocks and the auroral ionosphere, Langmuir waves are a key factor mediating electron temperature, and controlling electron beam propagation and beam-plasma energy transfer. Because they are so important, Langmuir waves in the space environment have been intensively investigated; however, there remain two challenging types of experiments that are relatively lacking: three-dimensional measurements of Langmuir-wave fields, and measurements of Langmuir wave-electron correlations. This thesis works on filling these two gaps, plus development of new Langmuir-wave instrumentation. The CHARM-II wave-particle Correlator instrument was designed to study the energy transfer between electron beams and plasmas via the sorting of incoming particles by concurrent Langmuir-wave phase, allowing for direct observation of electron bunching. Data from the CHARM-II sounding rocket comprises the first such observations with statistical levels of events, revealing an association between the polarity of the resistive component of the electron phase-bunching and changes in the electron flux at the associated energy, such that a negative resistive component goes with an increase in electron flux, and vice versa, effectively showing energy flow from the beam to the waves, and subsequent enhancements of wave damping. Surprisingly, the results also show comparable amounts of resistive and reactive activity. A test-particle simulation was developed to confirm the details of the theoretical explanation for the observed effect. A three-dimensional Langmuir-wave receiver flown on the TRICE sounding rocket mission reveals the beat signature of the amplitude-modulated 'bursty' form of Langmuir waves which has been observed in many environments. An analysis of the three-dimensional data shows

  5. The electric response in the wave of second sound: Hardware aspect

    NASA Astrophysics Data System (ADS)

    Rybalko, A. S.; Chagovets, T. V.; Korolev, A. M.

    2017-06-01

    A detailed description of the standard measuring techniques and original technical solutions used by the authors while studying the recently discovered phenomenon of electric response in the second sound wave. The most successful amplifier circuits used for precision low-temperature measurements are presented, as well as a sensitivity analysis of the different measuring systems. The main goal of the study is to substantiate the reliability of the electrical activity effect occurring in a resonator with He II when a second sound wave is excited. It is shown that the observed electric response signal is not associated with external interference or internal pick-ups, and is also not the result of either direct acoustoelectric conversion or thermal contact potentials. An analysis and comparison of new experimental data obtained by two scientific groups is also presented.

  6. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  7. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  8. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  9. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  10. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  11. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.

    PubMed

    Dijckmans, A; Vermeir, G

    2013-04-01

    In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.

  12. Excitation of Ion Acoustic Waves by Electron Beams

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro; Tokluoglu, Erinc; Kaganovich, Igor; Startsev, Edward; Davidson, Ronald

    2012-10-01

    The interaction of electron beams with plasmas is of considerable importance particularly for hybrid DC/RF coupled plasma sources used in plasma processing [1]. An electron beam is formed by emission from one surface, is accelerated through a dc bias electric field and enters the bulk plasma. Emitted electrons excite electron plasma (Langmuir) waves through the two-stream instability. Due to the high localized plasmon pressure, ion acoustic waves are excited parametrically. The plasma waves saturate by non-linear wave trapping. Eventually coupling between electron plasma waves and ion acoustic waves deteriorates the Langmuir waves, which leads to a bursting behavior. The two-stream instability and the consequent ion fluctuations are studied over a wide range of system parameters using the particle-in-cell codes EDIPIC and LSP. The influenceof these instabilities on collisionless electron heating are presented for a hybrid RF-DC plasma source.[4pt] [1] Lin Xu, et al, Appl. Phys. Lett., 93, 261502 (2008).

  13. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  14. Stability of giant sand waves in eastern Long Island Sound, U.S.A.

    USGS Publications Warehouse

    Fenster, M.S.; FitzGerald, D.M.; Bohlen, W.F.; Lewis, R.S.; Baldwin, C.T.

    1990-01-01

    A combination of a highly accurate bathymetric surveying technique and in-situ submersible observations and measurements were used to assess the migrational trends and morphological changes of large sand waves (Ht ??? 17 m) in eastern Long Island Sound. Although residing in a high-energy tidal environment characterized by a net westward sediment flux, the large bedforms are relatively stable over the short term. Over a 7 month period, 55.1% of a total 2942 m of sand wave crestline lengths migrated less than the horizontal accuracy limits of navigation (2 m). Approximately 35% of the remaining sand wave crests migrated less than 4 m. Net migration of the sand wave crests in the study area was 0.2 m. In addition, the bulk form (center of area in profile view) or the base of the sand waves showed little, if any, movement. These data, in conjunction with flow data within the sand wave field, suggest that net migration rates are greater than the time span of this study and/or the sand waves move in response to large residual flows created by high-energy, aperiodic storm events. The latter scenerio suggests that day to day processes only serve to rework and modify the sand waves. ?? 1990.

  15. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  16. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  17. Sound waves excitation by jet-inflated bubbles in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sternberg, Assaf; Soker, Noam

    2009-05-01

    We show that repeated sound waves in the intracluster medium (ICM) can be excited by a single inflation episode of an opposite bubble pair. To reproduce this behaviour in numerical simulations, the bubbles should be inflated by jets, rather than being injected artificially as already full-blown bubbles. The multiple sound waves are excited by the motion of the bubble-ICM boundary that is caused by vortices inside the inflated bubbles and the backflow (`cocoon') of the ICM around the bubble. These sound waves form a structure that can account for the ripples observed in the Perseus cooling flow cluster. We inflate the bubbles using slow massive jets either with a very wide opening angle or that are narrow and precessing. The wide jets (or collimated fast winds) are slow in the sense that they are highly subrelativistic, vj ~ 0.01c- 0.1c, and they are massive in the sense that the pair of bubbles carries back to the ICM a large fraction of the cooling mass, i.e. ~1-50Msolaryr-1. We use a two-dimensional axisymmetric (referred to as 2.5D) hydrodynamical numerical code (VH-1).

  18. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.

    PubMed

    Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying

    2016-04-01

    Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications.

  19. Solitary and freak waves in superthermal plasma with ion jet

    NASA Astrophysics Data System (ADS)

    Abdelsalam, U. M.; Abdelsalam

    2013-06-01

    The nonlinear solitary and freak waves in a plasma composed of positive and negative ions, superthermal electrons, ion beam, and stationary dust particles have been investigated. The reductive perturbation method is used to obtain the Korteweg-de Vries (KdV) equation describing the system. The latter admits solitary wave solution, while the dynamics of the modulationally unstable wavepackets described by the KdV equation gives rise to the formation of freak/rogue excitation described by the nonlinear Schrödinger equation. In order to show that the characteristics of solitary and freak waves are influenced by plasma parameters, relevant numerical analysis of appropriate nonlinear solutions are presented. The results from this work predict nonlinear excitations that may associate with ion jet and superthermal electrons in Herbig-Haro objects.

  20. New Ion-Wave Path in the Energy Cascade

    SciTech Connect

    Valentini, Francesco; Califano, Francesco; Pegoraro, Francesco; Perrone, Denise; Veltri, Pierluigi

    2011-04-22

    We present the results of kinetic numerical simulations that demonstrate the existence of a novel branch of electrostatic nonlinear waves driven by particle trapping processes. These waves have an acoustic-type dispersion with phase speed comparable to the ion thermal speed and would thus be heavily Landau damped in the linear regime. At variance with the ion-acoustic waves, this novel electrostatic branch can exist at a small but finite amplitude even for low values of the electron to ion temperature ratio. Our results provide a new interpretation of observations in space plasmas, where a significant level of electrostatic activity is observed in the high frequency region of the solar-wind turbulent spectra.

  1. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  2. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  3. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  4. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    NASA Astrophysics Data System (ADS)

    Kaladze, T.; Mahmood, S.

    2014-03-01

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  5. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Kaladze, T.; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  6. Flute waves at the ion Larmor radius scales

    SciTech Connect

    Onishchenko, O. G.

    2010-12-14

    The theory of the magnetic Rayleigh-Taylor instability (RTI) is discussed. Modified linear kinetic theory allows us to investigate RTI and flute waves with arbitrary perpendicular spatial scales compared to the ion Larmor radius. It is shown that in the linear limit a Fourier transform of these equations yields the dispersion relation which in the so-called Pade approximation corresponds to results of the kinetic theory. This analysis represents an extension of the previous study of the magnetic RTI obtained in the large wave scale approximation. It is shown that incorporation of the effects associated with wave scales of the order of the ion Larmor radius leads to a broader wave number range of the magnetic RTI.

  7. Shock waves in dusty plasma with two temperature superthermal ions

    NASA Astrophysics Data System (ADS)

    Ghai, Yashika; Saini, N. S.

    2017-03-01

    An investigation of dust acoustic shock waves in dusty plasma containing two temperature ions is presented. The present investigation is motivated by the observations of Geotail spacecraft that report the occurrence of two temperature ion populations in Earth's magnetotail. We have derived Burgers equation to study dust acoustic shock structures in an unmagnetized plasma with two temperature superthermal ions. We have also derived the modified Burgers equation at critical values of physical parameters for which nonlinear coefficient (A) of Burgers equation vanishes. The numerical analysis is performed in context with observations in Earth's magnetotail and the influence of various plasma parameters viz. ions temperature ratio, superthermality of hot and cold ions, kinematic viscosity etc. has been observed on characteristics of DA shocks. It is observed that the amplitude of positive shocks via Burgers equation decreases whereas that of modified shocks with higher order nonlinearity increases with increase in superthermality of cold ions.

  8. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  9. Scattering of longitudinal waves (sound) by defects in fluids. Rough surface

    NASA Astrophysics Data System (ADS)

    Apostol, Bogdan

    2013-08-01

    The classical theory of scattering of longitudinal waves (sound) by small inhomogeneities (scatterers) in an ideal fluid is generalized to a distribution of scatterers and such as to include the effect of the inhomogeneities on the elastic properties of the fluid. The results are obtained by a new method of solving the wave equation with spatial restrictions (caused by the presence of the scatterers), which can also be applied to other types of inhomogeneities (like surface roughness, for instance). A coherent forward scattering is identified for a uniform distribution of scatterers (practically equivalent with a mean-field approach), which is due to the fact that our treatment does not include multiple scattering. The reflected wave is obtained for a half-space (semi-infinite fluid) of uniformly distributed scatterers, as well as the field diffracted by a perfect lattice of scatterers. The same method is applied to a (inhomogeneous) rough surface of a semi-infinite ideal fluid. A perturbation-theoretical scheme is devised, with the roughness function as a perturbation parameter, for computing the waves scattered by the surface roughness. The waves scattered by the rough surface are both waves localized (and propagating only) on the surface (two-dimensional waves) and waves reflected back in the fluid. They exhibit directional effects, slowness, attenuation or resonance phenomena, depending on the spatial characteristics of the roughness function. The reflection coefficients and the energy carried on by these waves are calculated both for fixed and free surfaces. In some cases, the surface roughness may generate waves confined to the surface (damped, rough-surface waves).

  10. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  11. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  12. Ion-wave stabilization of an inductively coupled plasma

    SciTech Connect

    Camparo, J.C.; Mackay, R.

    2006-04-24

    Stabilization of the rf power driving an inductively coupled plasma (ICP) has implications for fields ranging from atomic clocks to analytical chemistry to illumination technology. Here, we demonstrate a technique in which the plasma itself acts as a probe of radio wave power, and provides a correction signal for active rf-power control. Our technique takes advantage of the resonant nature of forced ion waves in the plasma, and their observation in the ICP's optical emission.

  13. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  14. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  15. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  16. The observation and production of ion acoustic waves during the Trigger experiment

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.; Holmgren, G.; Bostrom, R.

    1980-01-01

    The third flight of the Trigger experiment is described here. Band-limited electric field and density waves were observed shortly after the ion cloud was detected. Since the electric field and density components had similar spectral shape and the wave electric field was oriented parallel to the ambient magnetic field, the waves were identified as collisionless ion acoustic waves. The linear theory of ion-ion streaming is considered a likely generation mechanism for the waves.

  17. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2014-09-30

    M/V Super Emerald , was chartered out of Saipan (at no cost to us) and used for the four-day deployment. However, severe weather in the form of...Typhoon Mufia prohibited the deployment of any of the Deep Sound systems. Moreover, the M/V Super Emerald was not well suited to the task, and at least

  18. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2015-09-30

    Geographic group, a research vessel, the M/V Super Emerald , was chartered out of Saipan (at no cost to us) and used for the four-day deployment. However...severe weather in the form of Typhoon Mufia prohibited the deployment of any of the Deep Sound systems. Moreover, the M/V Super Emerald was not well

  19. Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling

    NASA Astrophysics Data System (ADS)

    Artru, Juliette; Farges, Thomas; Lognonné, Philippe

    2004-09-01

    Since 1960, experiments have shown that perturbations of the ionosphere can occur after earthquakes, by way of dynamic coupling between seismic surface waves and the atmosphere. The atmospheric wave is amplified exponentially while propagating upwards due to the decrease of density, and interaction with the ionospheric plasma leads to clearly identified signals on both ground-based or satellite ionospheric measurements. In 1999 and 2000, after an upgrade of the HF Doppler sounder, the Commisariat à l'Énergie Atomique systematically recorded these effects in the ionosphere with the Francourville (France) network, by measuring vertical oscillations of ionospheric layers with the Doppler technique. Normal-mode theory extended to a solid Earth with an atmosphere allows successful modelling of such signals, even if this 1-D approach is probably too crude, especially in the solid Earth, where 20 s surface waves see large lateral variations in the crust. The combination of observations and simulations provides a new tool to determine acoustic gravity wave propagation characteristics from the ground to ionospheric height. Observed velocity and amplification of the atmospheric waves show good agreement from the ground up to moderate sounding altitudes (140-150 km); however, at higher altitudes the propagation speed is found to be much smaller than predicted and attenuation is underestimated. This shows that the standard formalism of acoustic gravity waves in the atmosphere cannot efficiently describe propagation in the ionized atmosphere. Further work is needed to characterize the propagation of acoustic waves in this altitude range: we believe that seismic waves can provide a well-constrained source for such study.

  20. Ion-acoustic waves in ultracold neutral plasmas: Modulational instability and dissipative rogue waves

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.

    2017-02-01

    Progress is reported on the modulational instability (MI) of ion-acoustic waves (IAWs) and dissipative rogue waves (RWs) in ultracold neutral plasmas (UNPs). The UNPs consist of inertial ions fluid and Maxwellian inertialess hot electrons, and the presence of an ion kinematic viscosity is allowed. For this purpose, a modified nonlinear Schrödinger equation (NLSE) is derived and then solved analytically to show the occurrence of MI. It is found that the (in)stability regions of the wavepacks are dependent on time due to of the existence of the dissipative term. The existing regions of the MI of the IAWs are inventoried precisely. After that, we use a suitable transformation to convert the modified NLSE into the normal NLSE whose analytical solutions for rogue waves are known. The rogue wave propagation condition and its behavior are discussed. The impact of the relevant physical parameters on the profile of the RWs is examined.

  1. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    SciTech Connect

    Abdelwahed, H. G.; El-Shewy, E. K.; Mahmoud, A. A.

    2016-06-15

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal’s method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth’s ionosphere.

  2. Case Study of the Seeds and Evolution Auroral Ion Upflow From the SIERRA Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Labelle, J.; Samara, M.; Arnoldy, R.; MacDonald, E.; Klatt, E.; Kintner, P.

    2005-12-01

    The SIERRA nightside auroral sounding rocket made observations of the origins of ion upflow, at low altitudes (below 700 km), low scale height (densities above 20,000/cc), and low energies (10 eV.) Upflowing ions with bulk velocities up to 2 km/s are seen in conjunction with the poleward edge of a nightside substorm arc. The upflow is limited within the poleward edge to a region (a) of northward convection and (b) where Alfvenic and Pedersen conductivities are well-matched, leading to good ionospheric transmission of Alfvenic power. Also throughout the poleward edge, precipitation of moderate-energy (100s of eV) protons and oxygen is observed. This population is interpreted as reflection from a higher altitude field aligned potential of upgoing transversely heated ion conics. Details of this case study observation of the seeds and evolution of auroral ion outflow are presented as an example for testing of models of ionospheric/magnetospheric coupling.

  3. Wave-particle resonance condition test for ion-kinetic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.

    2016-04-01

    Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).

  4. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.

    PubMed

    Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr

    2012-05-01

    Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.

  5. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave

    NASA Astrophysics Data System (ADS)

    Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr

    2012-05-01

    Molecular-dynamics simulations of the Lennard-Jones fluid (up to 107 atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature Tmax in the focal point of the collapse is approximately ΣR0a, where Σ is the surface density of energy injected at the boundary of the container of radius R0 and α ≈ 0.4-0.45. For Σ = 1.6 J/m2 and R0 = 51 nm, the shock wave velocity, which is proportional toΣ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and Tmax reaches 40 000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.

  6. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  7. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  8. Ion temperature in plasmas with intrinsic Alfven waves

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  9. Ion temperature in plasmas with intrinsic Alfven waves

    SciTech Connect

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-15

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  10. On waves in gases. Part II: Interaction of sound with magnetic and internal modes

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    1987-04-01

    This work completes a two-part review on waves in gases, of which the first part

    [Rev. Mod. Phys. 58, 117 (1986)]
    dealt with the modern aspects of acoustics of jets, turbulence, and ducts; this second part extends the range of topics from sound to magnetic, internal, and (to a lesser extent) inertial waves, thus considering all four restoring forces (pressure, gravity, and Lorentz and Coriolis forces). The motivations for the study of these waves were outlined in the introduction to Part I. Part II reviews the coupling of acoustic, magnetic, and internal waves, in four stages: in Sec. I dispersion relations are used to study the propagation and radiation of magneto-acoustic-gravity-inertial waves in media for which the wave speeds and scattering scales are constant; in Sec. II the case of linear waves in stratified media, with nonuniform propagation velocity, is then discussed by means of special functions, appearing as exact solutions of second-order problems; in Sec. III the study of linear waves with variable propagation speeds is extended to certain classes of higher-order problems including a discussion of cutoff frequencies, critical levels, partition of energy, mode coupling and conversion, etc; in Sec. IV the preceding studies are extended to damped and nonlinear waves, to include dissipation with variable damping scales and large disturbances in media under nonuniform external forces, such as magnetic flux tubes. The conclusion (Sec. V) sums up both parts of the review, in the sense that it deals with all types of waves in fluids; it mentions a few currently controversial topics, points out some directions for future research, and indicates methods available to address these issues.

  11. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  12. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  13. Growth rate measurement of ULF waves in the ion foreshock

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Hietala, H.; Astfalk, P.; Angelopoulos, V.

    2017-03-01

    We report the first satellite measurement of the ultralow frequency (ULF) wave growth rate in the upstream region of the Earth's bow shock. We employ the two identical ARTEMIS spacecraft orbiting the Moon to characterize crescent-shaped reflected ion beams and relatively monochromatic ULF waves. The event presented here features spacecraft separation of ˜2.5 Earth radii (0.9 ± 0.1 wavelengths) in the solar wind flow direction along a nearly radial interplanetary magnetic field. The ULF wave growth rate is estimated and found to fall within dispersion solver predictions during the initial growth time. Observed frequencies and wave numbers are also within the predicted range. Other ULF wave properties such as the phase speed, obliquity, and polarization are consistent with expectations from resonant beam instability theory and prior satellite measurements. These results will inform future missions near bow and interplanetary shocks as well as future nonlinear studies related to turbulence and dissipation in the heliosphere.

  14. Ion radial transport induced by ICRF waves in tokamaks

    SciTech Connect

    Chen, L.; Vaclavik, J.; Hammett, G.W.

    1987-05-01

    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant.

  15. Coupling between ion-acoustic waves and neutrino oscillations.

    PubMed

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  16. Coupling between ion-acoustic waves and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  17. Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas

    SciTech Connect

    Rasheed, A.; Tsintsadze, N. L.; Murtaza, G.

    2011-11-15

    The arbitrary and the small amplitude ion-acoustic solitary waves (IASWs) have been studied. The former is studied by using the Sagdeev pseudo-potential approach in a plasma consisting of the degenerate ultrarelativistic electrons, positrons, and the non-relativistic classical ions. It is seen that only compressive solitary waves can propagate through such plasmas. The numerical calculations show that the region of existence of the ion-acoustic solitary waves depends upon the positron (ion) number density and the plasma thermal temperature. This study is appropriate for applications in inertial confinement fusion laboratory research as well as the study of astrophysical dense objects such as white dwarf and dense neutron stars.

  18. A model for gravity-wave spectra observed by Doppler sounding systems

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.

  19. Analysis of EMIC waves in relation to magnetospheric heavy ion density

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, E. H.; Johnson, J.; Lee, D. H.; Clauer, C. R.; Lessard, M.; Engebretson, M. J.; Xu, Z.

    2014-12-01

    This study presents observations of EMIC wave events and their relation to heavy ion density in the magnetosphere. It is well known that EMIC waves play an important role in particle acceleration and loss via wave-particle interaction. It is critical to know the ion composition in the plasma with which EMIC waves interact in order to understand wave generation and propagation because it controls ion cyclotron resonance frequencies of EMIC waves. The presence of heavy ions (He+ and O+) causes the wave modes to be more complex with two additional resonance (ion-ion hybrid and Buchsbaum resonances) and polarization changes, making it challenging to analyze wave generation and propagation. In this study, we show wave polarization and Poynting flux using data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes (VAP) satellites and their ground conjunctions and compare them with the heavy ion density estimated by a wave model.

  20. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  1. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  2. Sound waves in a liquid with polydisperse vapor-gas bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-03-01

    A mathematical model is presented for the propagation of plane, spherical, and cylindrical sound waves in a liquid containing polydisperse vapor-gas bubbles with allowance for phase transitions. A system of integro-differential equations is constructed to describe perturbed motion of a two-phase mixture, and a dispersion relation is derived. An expression for equilibrium sound velocity is obtained for a gas-liquid or vapor-liquid mixture. The theoretical results agree well with the known experimental data. The dispersion curves obtained for the phase velocity and the attenuation coefficient in a mixture of water with vapor-gas bubbles are compared for various values of vapor concentration in the bubbles and various bubble distributions in size. The evolution of pressure pulses of plane and cylindrical waves is demonstrated for different values of the initial vapor concentration in bubbles. The calculated frequency dependence of the phase sound velocity in a mixture of water with vapor bubbles is compared with experimental data.

  3. Estimation of seismic wave velocity at seafloor surface and sound source localization based on transmitted wave observation with an ocean bottom seismometer offshore of Kamaishi, Japan

    NASA Astrophysics Data System (ADS)

    Iwase, Ryoichi

    2016-07-01

    An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.

  4. Contaminant ions and waves in the space station environment

    NASA Technical Reports Server (NTRS)

    Murphy, G. B.

    1988-01-01

    The probable plasma (ions and electrons) and plasma wave environment that will exist in the vicinity of the Space Station and how this environment may affect the operation of proposed experiments are discussed. Differences between quiescent operational periods and non-operational periods are also addressed. Areas which need further work are identified and a course of action suggested.

  5. Detection of Indirectly-Driven Ion Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Carroll, J. J., III; Drake, R. P.; Smith, T. B.; Montgomery, D. S.; Watt, R. G.; de Groot, J. S.

    1998-11-01

    Recent theory^1 suggests that the non-resonant decay instability and induced scattering (IS) may explain the saturation of ion acoustic waves (IAWs) in laser fusion experiments. IS is found to explain ion wave saturation in lower-density microwave-driven plasmas.^2 We report the results of an experiment at Trident designed to detect ion wave scattering in a high-density laser plasma. The plasma is created from a CH target (6.5 μm thick, 1 mm wide) using a preform beam (175 J, 1.3 ns sq. pulse starting at t=0 ns, 527 nm, line-focus RPP). A pump beam (20 J, 200 ps Gaussian pulse centered at t=+1.7 ns, 527 nm, RPP) drives IAWs with k=2k_0, where k0 is the pump wavenumber. A probe beam (12 J, 1.3 ns sq. pulse starting at t=+1.0 ns, 527 nm, intensity below the SBS threshold) detects strong 2k0 IAWs at 30^o from the original SBS-pump-beam direction but not at 150^o. This is evidence of ion wave scattering. (Work supported by the U.S. DOE and the University of Michigan) ^1B.I. Cohen, B.F. Lasinski, A.B. Langdon and E.A. Williams, Phys. Plasmas 4, 956 (1997). ^2K. Mizuno, F. Kehl and J.S. DeGroot, Phys. Rev. Lett. 56, 2184 (1986).

  6. Ion cyclotron waves below the proton gyrofrequency in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Molina, M.

    1985-02-01

    A numerical comparison between the linear theory of ion-cyclotron waves below the proton gyrofrequency and the data recorded on board the GEOS satellites is made. It is shown that the experimental data are in good agreement with the theory.

  7. Solar wind implication on dust ion acoustic rogue waves

    SciTech Connect

    Abdelghany, A. M. Abd El-Razek, H. N. El-Labany, S. K.; Moslem, W. M.

    2016-06-15

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  8. Solar wind implication on dust ion acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Abd El-Razek, H. N.; Moslem, W. M.; El-Labany, S. K.

    2016-06-01

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  9. Redirection and Splitting of Sound Waves by a Periodic Chain of Thin Perforated Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Bozhko, Andrey; Sánchez-Dehesa, José; Cervera, Francisco; Krokhin, Arkadii

    2017-06-01

    The scattering of sound by finite and infinite chains of equally spaced perforated metallic cylindrical shells in an ideal (inviscid) and viscous fluid is theoretically studied using rigorous analytical and numerical approaches. Because of perforations, a chain of thin shells is practically transparent for sound within a wide range of frequencies. It is shown that strong scattering and redirection of sound by 90° may occur only for a discrete set of frequencies (Wood's anomalies) where the leaky eigenmodes are excited. The spectrum of eigenmodes consists of antisymmetric and symmetric branches with normal and anomalous dispersion, respectively. The antisymmetric eigenmode turns out to be a deaf mode, since it cannot be excited at normal incidence. However, at slightly oblique incidence, both modes can be resonantly excited at different but close frequencies. The symmetric mode, due to its anomalous dispersion, scatters sound in the "wrong" direction. This property may find an application for the splitting of the two resonant harmonics of the incoming signal into two beams propagating along the chain in the opposite directions. A chain of perforated cylinders may also be used as a passive antenna that detects the direction to the incoming signal by measuring the frequencies of the waves excited in the chain. Calculations are presented for aluminum shells in viscous air where the effects of anomalous scattering, redirection, and signal splitting are well manifested.

  10. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  11. Plasma Wave Observations during Ion Gun Experiments

    DTIC Science & Technology

    1990-03-20

    Spacecraft Charging by Magnetospheric Plasma , Progress in Aeronautics and Astronautics , Vol. 47, ed. A. Rosen, IAA, pp. 15-30 (1976). 3. H. C. Koons, P. F...AIAA 75-92 (January 20-22, 1975). 2. D. A. McPherson and W. R. Schober, " Spacecraft Charging at High Altitudes: The SCATHA Satellite Program," in...on the AF/NASI P78-2 (SCATHA) satellite were conducted with a plasma /ion source in the inner magnetosphere . These experiments were monitored with

  12. Pickup ion mediated plasmas: Shock wave structure

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-03-01

    Energetic particles such as pickup ions, solar energetic particles, or cosmic rays play an important role in determining shock structure. Cosmic-ray modified shocks were discussed by Axford et al. [2]. Jokipii and Williams [8] considered the effect of cosmic ray viscosity on the structure of cold thermal gas shocks mediated by cosmic rays. In the present paper, we consider a background thermal gas of arbitrary temperature to extend their work. The Zank et al. [7] model is used to determine the shock structure when energetic particle collisionless heat flux and viscosity is included.

  13. Tritium Minority Heating by Ion Bernstein Waves in Ignitor

    NASA Astrophysics Data System (ADS)

    Castaldo, C.; Cardinali, A.

    2010-11-01

    A promising scenario of minority heating of Tritium ions by Ion Bernstein Waves (IBW) coupled by mode conversion of fast waves in D(H) plasmas has been recently proposed.ootnotetextC. Castaldo and A. Cardinali, Phys. of Plasmas, in press (2010) The tritium ions are accelerated at energies high enough to increase significantly the DT fusion reactivity at relatively low temperature. It has been shown that breakeven can be reached considering a specific heating scenario for the JET machine. A similar heating scheme is analyzed for the Ignitor machine at reduced parameters. It is shown that 10 MW of ICRF power at f = 91.6 MHz, N||=3.6 that are coupled as fast waves to plasmas at BT=9 T, Ip=6 MA, ne0= 2 x10^20 m-3, Te0=Ti0=8 keV, with 25% T, 40% D, 35% H concentration, are mode converted to IBW near the D-H hybrid resonant layer and are efficiently absorbed by tritium ions via cyclotron damping at φ=2φT. The tritium ions are accelerated at energies of the order of 100 keV, where the the DT fusion reactivity peaks. As a result about 50 MW/m^3 of peak fusion power are obtained, and the expected fusion power is about 30 MW, with Q =2. The detailed comparison between equivalent scenarios in 50-50 D-T plasma is underway by means of the JETTO transport code.

  14. Ion acceleration by beating electrostatic waves: domain of allowed acceleration.

    PubMed

    Spektor, R; Choueiri, E Y

    2004-04-01

    The conditions under which a magnetized ion can be accelerated through a nonlinear interaction with a pair of beating electrostatic waves are explored. It has been shown [Benisti et al., Phys. Plasma 5, 3224 (1998)] that the electric field of the beating waves can, under some conditions, accelerate ions from arbitrarily low initial velocity in stark contrast with the well-known nonlinear threshold criteria for ion acceleration by a single wave. It is shown here that the previously found condition is necessary but not sufficient for acceleration to occur. The sufficient and necessary conditions are identified in terms of the location of the critical points of the motion on the Poincaré section. A second-order perturbation analysis was carried out to approximate the location of these critical points and define the domains of allowed and forbidden acceleration. It is shown that for an ion to be significantly energized, the Hamiltonian must be outside the energy barrier defined by the location of the elliptic and hyperbolic critical points. Despite the restriction on the Hamiltonian, an ion with arbitrarily low initial velocity may benefit from this acceleration mechanism.

  15. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  16. Plasma wave interactions with energetic ions near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1976-01-01

    An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 9 earth radii. Recent wide band wave form measurements with the Imp 6 and Hawkeye 1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few hertz to a few tens of hertz. The purpose of this paper is to suggest that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role that these waves play in controlling the distribution of the energetic ions is considered.

  17. Plasma wave interactions with energetic ions near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1975-01-01

    An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 5 Re. Recent wideband wave-form measurements with the IMP-6 and Hawkeye-1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few Hz to a few tens of Hz. It is suggested that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role these waves play in controlling the distribution of the energetic ions is considered.

  18. Ion Bernstein waves in the magnetic reconnection region

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.

    2016-01-01

    Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using data from four-spacecraft measurements by the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves at the second and higher harmonics of the proton gyrofrequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection, which may contribute to bifurcation of the current sheet in the outflow region.

  19. Cluster Observation Of Ion And Electron Cyclotron Waves Near Magnetopause

    NASA Astrophysics Data System (ADS)

    Silin, I.; Panov, E. V.

    2012-12-01

    We examine observations of electromagnetic ion cyclotron (EMIC) and electron cyclotron waves by Cluster spacecraft during a magnetopause transition near polar cusp region. The waves appear to be generated locally, on the magnetospheric side of the magnetopause current layer, due to large particle temperature anisotropy (T⊥}/T{∥ >3 for all ions and T⊥}/T{∥ ˜ 1.3 for electrons) and large plasma beta (0.5 < β < 10). The compact configuration of Cluster spacecraft and high-resolution electromagnetic field data allowed us to measure the wave vectors k by two independent methods: the wave-telescope and the polarization methods. Such measurements are essential for estimation of minimum energies of particles scattered by EMIC waves via cyclotron resonance. The results show good agreement with linear dispersion theory. The EMIC waves propagate along the magnetic field with frequencies near 1 Hz, wavelength of 260 km at speeds of ˜ 500 km/s. We discuss the implications of these results for the particle diffusion coefficients and minimum resonant scattering energies.

  20. Sound transmission into shells doubly excited by incident waves and by arbitrary surface forcing functions

    NASA Astrophysics Data System (ADS)

    Gaunaurd, G. C.; Barlow, J.

    1985-01-01

    We develop the fundamental exact analytical and computational model required to study the transmission of incident plane sound waves into submerged elastic cylindrical shells subjected to arbitrary loads on their outer surface. We use the superposition principle in this linear problem to separate the contributions to the internally transmitted field caused by the incident wave from that of the surface load. This basic model uses the exact (2-D) formulation of elastodynamics to describe the shell motions, and that of general linear acoustics to describe the wave motion in the inner and outer fluids. We display the isobaric contours of the internally transmitted pressure fields, exhibiting their caustics and their progressive development as the frequency is increased within the band 0sound fields transmitted into the loaded shells. This analysis makes the work valid for various metals and for shell relative-thickness between 1% and 20%, which is a range covering most practical cases.

  1. Growth and nonlinear saturation of electromagnetic ion cyclotron waves in multi-ion species magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Denton, R. E.; Bortnik, J.; An, X.; Glocer, A.; Komar, C.

    2017-06-01

    The growth and saturation of electromagnetic ion cyclotron (EMIC) waves is essential to the magnetospheric dynamics. Determining and isolating the effects of multiple ion parameters such as temperatures, anisotropies, and relative abundances is important for quantifying these processes in the magnetospheric plasma. In order to study these process, we utilize a 2.5-D hybrid model (where ions are modeled with the particle-in-cell (PIC) method, and electrons are modeled as background neutralizing fluid) to study the nonlinear electromagnetic wave-particle interactions of hot H+, cold H+, cold He+, and cold or hot O+ ions for a broad range of typical magnetospheric parameters. The excitation of EMIC waves is driven by the temperature anisotropy of hot H+ in our model. As a result, we quantify the parametric dependence of the linear growth, the nonlinear saturation level of perpendicular magnetic fluctuations, and the temporal evolution of the ion temperature anisotropies. We establish the relation between key plasma parameters and the saturated EMIC wave power, using either power law fits or a nonlinear regression method. We construct the dispersion relation of the waves using the results of the model and investigate the energy content in the various branches of the dispersion (k∥-ω space), showing that the different modes can generate wave power in different regions of k space. We find that large O+ concentration reduces the growth and saturated amplitude of the waves; but the waves are less sensitive to the temperature of the O+ in the temperature range relevant to the magnetosphere.

  2. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Sakthivel, R.

    2016-05-01

    The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg-de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark-gluon plasma as well as for astrophysical plasmas.

  3. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  4. Sounding rocket based investigations of HF waves in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    McAdams, Kristin Lynn

    1999-10-01

    The PHAZE II and Auroral Turbulence II sounding rockets were launched into active, pre-midnight aurora during the February 1997 sounding rocket campaign from Poker Flat, Alaska. Both rockets carried a full complement of plasma intruments including particle detectors and electric field instruments. The high frequency electric field instrument (HFE), flown on both rockets, was designed and built at Dartmouth College. This unusual instrument transmitted the full electric field waveform using a dedicated telemetry link. The unprecedented resolution in both frequency and time yielded the first identifiable observations of several HF wave phenomena. We investigated two of these phenomena, HF chirps in the region when fpe > fce and HF bands at higher altitudes where fpe < fce. HF chirps are extremely narrowband, short-lived emissions which occur when fpe > fce. We propose that these waves are created as Z-modes waves which are quasi- trapped in density cavities. HF bands have long durations and narrowband, constant frequency structure and are observed in regions where the local plasma density is varying. These emissions occur when fpe < fce and the whistler mode connects to the Langmuir mode. They are generated by an electron beam interaction which produces Langmuir waves which then move onto the whistler mode when the local plasma density increases. The HFE also provided a method for determining the local plasma density without relying on Langmuir probes or active plasma experiments. When the frequency cutoff of the background wideband emissions is evident, this cutoff is used as a track of the local plasma frequency, which is dependent on the plasma density. We used this technique to definitively correlate lower hybrid solitary structures with density gradients. The use of the HFE on both flights has allowed us to observe HF wave phenomena which have been inaccessible previously.

  5. The instability of electrostatic ion cyclotron waves in a multi-component plasma

    NASA Astrophysics Data System (ADS)

    khaira, Vibhooti; Ahirwar, G.

    2017-05-01

    The instability of electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (H+), oxygen ions (both positively and negatively charged and denoted by O+ and O-) and electron. ESIC waves with multi component plasma have been studied by kinetic approach at different plasma densities. The dispersion relation and growth rate of the electrostatic ion-cyclotron waves with multi-ion plasma has been investigated. The effect of different plasma densities on ESIC waves in multi-ions is to enhance the growth rate of ESIC waves. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of earth’s magneto-plasma.

  6. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Churazov, Eugene

    2017-07-01

    We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.

  7. Polymers for Traveling Wave Ion Mobility Spectrometry Calibration

    NASA Astrophysics Data System (ADS)

    Duez, Quentin; Chirot, Fabien; Liénard, Romain; Josse, Thomas; Choi, ChangMin; Coulembier, Olivier; Dugourd, Philippe; Cornil, Jérôme; Gerbaux, Pascal; De Winter, Julien

    2017-07-01

    One of the main issues when using traveling wave ion mobility spectrometry (TWIMS) for the determination of collisional cross-section (CCS) concerns the need for a robust calibration procedure built from referent ions of known CCS. Here, we implement synthetic polymer ions as CCS calibrants in positive ion mode. Based on their intrinsic polydispersities, polymers offer in a single sample the opportunity to generate, upon electrospray ionization, numerous ions covering a broad mass range and a large CCS window for different charge states at a time. In addition, the key advantage of polymer ions as CCS calibrants lies in the robustness of their gas-phase structure with respect to the instrumental conditions, making them less prone to collisional-induced unfolding (CIU) than protein ions. In this paper, we present a CCS calibration procedure using sodium cationized polylactide and polyethylene glycol, PLA and PEG, as calibrants with reference CCS determined on a home-made drift tube. Our calibration procedure is further validated by testing the polymer calibration to determine CCS of numerous different ions for which CCS are reported in the literature. [Figure not available: see fulltext.

  8. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  9. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  10. Radiative amplification of sound waves in the winds of O and B stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  11. Observation of standing waves of electron-hole sound in a photoexcited semiconductor.

    PubMed

    Padmanabhan, P; Young, S M; Henstridge, M; Bhowmick, S; Bhattacharya, P K; Merlin, R

    2014-07-11

    Three-dimensional multicomponent plasmas composed of species with very different masses support a new branch of charge-density fluctuations known as acoustic plasmons. Here, we report on an ultrafast optical method to generate and probe coherent states of acoustic plasmons in a slab of GaAs, which relies on strong photoexcitation to create a large population of light electrons and heavy holes. Consistent with the random-phase-approximation theory, the data reveal standing plasma waves confined to these slabs, similar to those of conventional sound but with associated velocities that are significantly larger.

  12. Solar cycle dependence of ion cyclotron wave frequencies

    NASA Astrophysics Data System (ADS)

    Lessard, Marc R.; Lindgren, Erik A.; Engebretson, Mark J.; Weaver, Carol

    2015-06-01

    Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one of many topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of the EMIC to lower L and resulting in the higher frequencies. A numerical estimate of the change in plasmapause location, however, implies that it is not enough to account for the shift in EMIC frequencies that are observed at Halley Station. Another possible explanation for the frequency shift, however, is that the relative density of heavier ions in the magnetosphere (that would be associated with increased solar activity) could account for the change in frequencies. In terms of effects on radiation belt dynamics, the shift to higher frequencies tends to mean that these waves will interact with less energetic electrons, although the details involved in this process are complex and depend on the specific plasma and gyrofrequencies of all populations, including electrons. In addition, the change in location of the generation region to lower L shells means that the waves will have access to higher number fluxes of resonant electrons. Finally, we show that a sunlit ionosphere can inhibit ground observations of EMIC waves with frequencies higher than ˜0.5 Hz and note that the effect likely has resulted in an underestimate of the solar-cycle-driven frequency changes described here.

  13. The influence of f-wave pairing fluctuations on sound propagation in superfluid3He-A

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Wojciech

    1986-09-01

    The theory of sound propagation in pair-correlated Fermi liquids developed previously by Wölfle, with additional f-wave pairing fluctuations, is applied to the ABM state. Expressions for the anisotropic sound absorption and velocity at arbitrary temperature and frequency in the collisionless limit are derived. The f-wave pairing fluctuations give a large effect on the normal-flapping mode frequency at low temperatures. The corresponding shift in the sound attenuation peak of this collective mode provides a sensitive probe of the f-wave pair coupling constant g 3. There is also a pronounced effect on the super-flapping mode attenuation peak, which becomes well defined when f-wave pairing fluctuations are considered.

  14. Dust negative ion acoustic shock waves considering dust size distribution effect

    SciTech Connect

    Ma Yirong; Wang Canglong; Zhang Jianrong; Sun Jianan; Duan Wenshan; Yang Lei

    2012-11-15

    A multi-ion dusty plasma containing hot isothermal electrons, ions (light positive ions and heavy negative ions), and extremely and negatively charged dust grains is studied in the present paper. The dust negative ion acoustic shock waves have been investigated by employing the reductive perturbation method. How the dust size distribution affects the height and the thickness of the nonlinear shock wave is studied. It is noted that the different dust size distribution has different shock wave form and different moving speed.

  15. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  16. Freak waves in negative-ion plasmas: an experiment revisited

    NASA Astrophysics Data System (ADS)

    Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian

    2016-10-01

    Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.

  17. Contribution of Antisymmetric and Symmetric Waves to the Reflection of Sound in a Fluid by a Thick, Homogeneous Plate.

    DTIC Science & Technology

    1980-10-23

    SOUND IN A FLUID BY A THICK, HOMOGENEOUS PLATE INTRODUCTION In a recent report Rudgers [11 describes the acoustical behavior of thick, fluid-loaded...symmetric waves to the plate-fluid interactions studied by Rudgers (1]. In the present report, the role of antisymmetric and symmetric waves is analyzed...defined by Rudgers (4]. The structural response function of the two types of waves in combination is related to the response functions of the two types

  18. Nonlinear heavy-ion-acoustic waves in an adiabatic collisionless bi-ion plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2017-03-01

    The basic properties of heavy-ion-acoustic (HIA) waves have been investigated in a collisionless plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The Kortewg-de Vries and Burgers equations are derived in nonplanar (cylindrical and spherical) geometry by employing the standard reductive perturbation method for studying the basic features (viz. amplitude, phase speed, etc.) of HIA solitary and shock waves, which are associated with either positive or negative potential. It is found that the effects of nonplanar geometry, adiabaticity of positively charged inertial heavy ions, the presence of nonthermal (Cairns distributed) electrons, and number densities of the plasma components significantly modify the basic features of nonplanar HIA waves. It has been observed that the properties of solitary and shock waves associated with HIA waves in a nonplanar geometry differ from those in a planar geometry. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.

  19. Gravitational waves from the sound of a first order phase transition.

    PubMed

    Hindmarsh, Mark; Huber, Stephan J; Rummukainen, Kari; Weir, David J

    2014-01-31

    We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.

  20. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  1. Damping of sound waves in the terahertz range and strength of the boson peak.

    PubMed

    Bove, Livia E; Petrillo, C; Fontana, A; Sokolov, A P

    2008-05-14

    By applying a new two-step line-shape analysis to inelastic neutron and x-ray scattering spectra of glassy systems, we were able to resolve the acoustic excitations from the low-frequency excess modes and to accurately estimate the damping of sound waves in the terahertz frequency range. Using this approach, we estimated the damping parameter for terahertz acoustic waves in a wide class of chemically different glasses and did a quantitative comparison of the results with prediction of theoretical models. By comparing the estimates of the mean-free path of the acoustic modes in different glasses and the corresponding boson peak strengths, we show the existence of a simple correlation between these two quantities. The relationship between attenuation of the terahertz acoustic modes, strength of the boson peak, and fragility is discussed.

  2. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  3. Do sound waves transport the AGN energy in the Perseus cluster?

    NASA Astrophysics Data System (ADS)

    Fabian, A. C.; Walker, S. A.; Russell, H. R.; Pinto, C.; Sanders, J. S.; Reynolds, C. S.

    2017-01-01

    The level of random motions in the intracluster gas lying between 20 and 60 kpc radius in the core of the Perseus cluster has been measured by the Hitomi Soft X-ray Spectrometer (SXS) at 164 ± 10 km s-1. The maximum energy density in turbulent motions on that scale is therefore low. If dissipated as heat, the turbulent energy will be radiated away in less than 80 Myr and cannot spread across the core. A higher velocity is needed to prevent a cooling collapse. Gravity waves are shown to travel too slowly in a radial direction. Here we investigate propagation of energy by sound waves. The energy travels at ˜ 1000 km s-1 and can cross the core in a cooling time. We show that the displacement velocity amplitude of the gas required to carry the power is consistent with the Hitomi result and that the inferred density and temperature variations are consistent with Chandra observations.

  4. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  5. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  6. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  7. On the rogue wave propagation in ion pair superthermal plasma

    SciTech Connect

    Abdelwahed, H. G. E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A.; El-Shewy, E. K. Elwakil, S. A.

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  8. Statistical Analysis of Bursty Langmuir Waves, Alfvén and Whistler Waves, and Precipitating Electrons Seen by the CHARM II Nightside Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2013-12-01

    Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.

  9. Magnetosonic Wave Instability in a Multi-Ion Cometary Plasma

    NASA Astrophysics Data System (ADS)

    Sreekala, G.; Michael, Manesh; Sebastian, Sijo; Venugopal, Chandu

    2016-07-01

    A generalized dispersion relation of the magnetosonic waves in a five component plasma consisting of electrons and hydrogen ions of solar origin, positively and negatively charged oxygen ions of cometary origin and static dust has been derived by using the Vlasov kinetic model. Parallel to the magnetic field, the components are modelled by a drifting Maxwellian distribution and perpendicular to the magnetic field, we use a loss cone type distribution obtained by the subtraction of two Maxwellian distributions having different temperatures. The effect of drift velocity, density inhomogeneity and temperature anisotropy in driving the instability has been analyzed both analytically and numerically.

  10. Differential Sound Absorption Technique and Effect of Ion-Pairing and Pressure on Sound Absorption in Seawater and Aqueous Mixtures of Magnesium Sulfate and sodium Chloride.

    DTIC Science & Technology

    1981-11-01

    Ws Sound absorption, seawater, ion-pairing, pressure, ion-association models, MgSo4 solutions, MgS0 4 - MaC1 mixtures, Debye - Huckel theory . 20...solution upon the addition of NaCI can be accounted for theoretically by Debye - Huckel theory and by formation of MgCW and NaSO ion-pairs. The measured...M NaCl addition. For 0.6M NaCI addition to 0.02 M MgS04, the absorption results cannot be explained by either simple Debye - Huckel theory , the Johnson

  11. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.

    PubMed

    Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude

    2012-10-01

    A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.

  12. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-12-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  13. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Qingsong; Xiao, Chengzhuo; Wang, Qing; Zheng, Chunyang; Liu, Zhanjun; Cao, Lihua; He, Xiantu

    2016-10-01

    The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas has been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to theoretical result of multi-ion species plasmas. When the wave number kλDe is small, such as kλDe = 0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude | eϕ / Te | 0.1 , which indicates that in the condition of small kλDe , the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large. National Natural Science Foundation of China (Grant Nos. 11575035, 11475030 and 11435011) and National Basic Research Program of China (Grant No. 2013CB834101).

  14. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  15. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  16. Synergy between middle infrared and millimetre-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, U.; Del Bianco, S.; Ceccherini, S.; Gai, M.; Dinelli, B. M.; Castelli, E.; Oelhaf, H.; Woiwode, W.; Höpfner, M.; Gerber, D.

    2015-11-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote-sounding and increasing attention is devoted to investigate optimised or innovative methods for the combination of two or more measured data sets. This paper is focusing on the synergy between middle infrared and millimetre-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimetre wave Emitted Radiation) mission candidate to the Core Missions of ESA Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments onboard the high altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O2, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inverse processing of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inverse processing of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori information (L1

  17. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  18. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  19. CWIS Experiment On Board REXUS-16 Sounding Rocket: Investigation of the Chemical Wave in Binary Mixture

    NASA Astrophysics Data System (ADS)

    Tzevelecos, W.; Pugliese, A.; de Filippis, L.; Manzone, S.; Alfano, B.; Mancino, F.; Runge, W.; Desenfans, O.; Galand, Q.; Van Vaerenbergh, S.

    2015-09-01

    Chemical Wave in Soret Effect (CWIS) is an experiment launched in May 2014 on-board a REXUS sounding rocket from Esrange Space Center. The experiment was completely designed and assembled by students from different countries under an international collaboration between the Université libre de Bruxelles (ULB) and the University of Naples Federico II. This student program called REXUS/BEXUS allows students to perform experiments in space science applications under the supervision of the European Space Agency (ESA). The objective of the CWIS Team was to visualize the Chemical Wave (CW) during the transient of the Soret effect. The CW is a concentration front that rapidly propagates under thermal gradient in a liquid mixture, and which marks the beginning of the chemical separation phenomenon by thermodiffusion (the separation process is itself named Soret effect, but is usually analyzed statically). The selected mixture was a solution of Ethylene Glycol in Water and concentration variation due to thermal gradients was recorded using a modified Fizeau interferometer, with modifications designed to enlarge a very small region of the test cell using cylindrical squeezing. We recorded more than 100 images with the chemical information and in this paper work we will show the final results of the sounding rocket experiment.

  20. Sound waves generated due to the absorption of a pulsed electron beam in gas

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Pushkarev, M. A.; Remnev, G. E.

    2002-03-01

    The results of an experimental investigation of acoustic vibrations (their frequency, amplitude, and attenuation coefficient) generated in a gas mixture as a result of the injection of a high-current pulsed electron beam into a closed reactor are presented. It is shown that the change in the phase composition of the initial mixture under the action of the electron beam leads to a change in the frequency of the sound waves and to an increase in the attenuation coefficient. By measuring the change in frequency, it is possible to evaluate with sufficient accuracy (about 2%) the degree of conversion of the initial products in the plasmochemical process. Relations describing the dependence of the sound energy attenuation coefficient on the size of the reactor and on the thermal and physical properties of the gases under study are derived. It is shown that a simple experimental setup measuring the parameters of acoustic waves can be used for monitoring the plasmochemical processes initiated by a pulsed excitation of a gas mixture.

  1. Adaptive wave field synthesis for broadband active sound field reproduction: signal processing.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain

    2008-04-01

    Sound field reproduction is a physical approach to the reproduction of the natural spatial character of hearing. It is also useful in experimental acoustics and psychoacoustics. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. A real reflective reproduction space thus reduces the objective accuracy of WFS. Recently, adaptive wave field synthesis (AWFS) was defined as a combination of WFS and active compensation. AWFS is based on the minimization of reproduction errors and on the penalization of departure from the WFS solution. This paper focuses on signal processing for AWFS. A classical adaptive algorithm is modified for AWFS: filtered-reference least-mean-square. This modified algorithm and the classical equivalent leaky algorithm have similar convergence properties except that the WFS solution influences the adaptation rule of the modified algorithm. The paper also introduces signal processing for independent radiation mode control of AWFS on the basis of plant decoupling. Simulation results for AWFS are introduced for free-field and reflective spaces. The two algorithms effectively reproduce the sound field and compensate for the reproduction errors at the error sensors. The independent radiation mode control allows a more flexible tuning of the algorithm.

  2. Sound-wave coherence in atmospheric turbulence with intrinsic and global intermittency.

    PubMed

    Wilson, D Keith; Ostashev, Vladimir E; Goedecke, George H

    2008-08-01

    The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence.

  3. Foreshock waves as observed in energetic ion flux

    NASA Astrophysics Data System (ADS)

    Petrukovich, A. A.; Chugunova, O. M.; Inamori, T.; Kudela, K.; Stetiarova, J.

    2017-05-01

    Oscillations of energetic ion fluxes with periods 10-100 s are often present in the Earth's foreshock. Detailed analysis of wave properties with Time History of Events and Macroscale Interactions during Substorms data and comparisons with other data sets confirm that these oscillations are the previously unnoticed part of well-known "30 s" waves but are observed mainly for higher-speed solar wind. Simultaneous magnetic oscillations have similar periods, large amplitudes, and nonharmonic unstable waveforms or shocklet-type appearance, suggesting their nonlinearity, also typical for high solar wind speed. Analysis of the general foreshock data set of Interball project shows that the average flux of the backstreaming energetic ions increases more than 1 order of magnitude, when solar wind speed increases from 400 to 500 km/s.

  4. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  5. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  6. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  7. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    PubMed

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  8. Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines

    SciTech Connect

    Erlandson, R.E.; Zanetti, L.J.; Acuna, M.H.; Eliasson, L.; Boehm, M.H.; Blomberg, L.G.

    1994-08-15

    Extremely low-frequency (ELF) magnetic and electric field plasma wave emissions were recorded on 2 October 1993 on auroral field lines by the Magnetic Field Experiment during Freja orbit 4770. The ELF wave frequencies were below the local oxygen gyrofrequency (25 Hz) and between the helium and proton gyrofrequencies (100 to 400 Hz). The ELF waves, interpreted as electromagnetic ion cyclotron (EMIC) waves, were observed in a region of inverted-V-type electron precipitation. The EMIC waves were correlated over time with auroral and lower energy ({approximately} 100 eV) electrons, which are both possible sources of free energy, and also with transversely accelerated oxygen ions. The waves above the helium gyrofrequency were more closely correlated with the transverse oxygen ion acceleration than the waves below the oxygen gyrofrequency. These observations are consistent with a scenario in which electron beams generate EMIC waves, which then produce transverse oxygen ion acceleration through a gyroresonant interaction. 16 refs., 4 figs.

  9. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    PubMed

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  10. Character, distribution, and ecological significance of storm wave-induced scour in Rhode Island Sound, USA

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Parker, Castle E.

    2015-01-01

    Multibeam bathymetry, collected during NOAA hydrographic surveys in 2008 and 2009, is coupled with USGS data from sampling and photographic stations to map the seabed morphology and composition of Rhode Island Sound along the US Atlantic coast, and to provide information on sediment transport and benthic habitats. Patchworks of scour depressions cover large areas on seaward-facing slopes and bathymetric highs in the sound. These depressions average 0.5-0.8 m deep and occur in water depths reaching as much as 42 m. They have relatively steep well-defined sides and coarser-grained floors, and vary strongly in shape, size, and configuration. Some individual scour depressions have apparently expanded to combine with adjacent depressions, forming larger eroded areas that commonly contain outliers of the original seafloor sediments. Where cobbles and scattered boulders are present on the depression floors, the muddy Holocene sands have been completely removed and the winnowed relict Pleistocene deposits exposed. Low tidal-current velocities and the lack of obstacle marks suggest that bidirectional tidal currents alone are not capable of forming these features. These depressions are formed and maintained under high-energy shelf conditions owing to repetitive cyclic loading imposed by high-amplitude, long-period, storm-driven waves that reduce the effective shear strength of the sediment, cause resuspension, and expose the suspended sediments to erosion by wind-driven and tidal currents. Because epifauna dominate on gravel floors of the depressions and infauna are prevalent in the finer-grained Holocene deposits, it is concluded that the resultant close juxtaposition of silty sand-, sand-, and gravel-dependent communities promotes regional faunal complexity. These findings expand on earlier interpretations, documenting how storm wave-induced scour produces sorted bedforms that control much of the benthic geologic and biologic diversity in Rhode Island Sound.

  11. Character, distribution, and ecological significance of storm wave-induced scour in Rhode Island Sound, USA

    NASA Astrophysics Data System (ADS)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Parker, Castle E.

    2015-04-01

    Multibeam bathymetry, collected during NOAA hydrographic surveys in 2008 and 2009, is coupled with USGS data from sampling and photographic stations to map the seabed morphology and composition of Rhode Island Sound along the US Atlantic coast, and to provide information on sediment transport and benthic habitats. Patchworks of scour depressions cover large areas on seaward-facing slopes and bathymetric highs in the sound. These depressions average 0.5-0.8 m deep and occur in water depths reaching as much as 42 m. They have relatively steep well-defined sides and coarser-grained floors, and vary strongly in shape, size, and configuration. Some individual scour depressions have apparently expanded to combine with adjacent depressions, forming larger eroded areas that commonly contain outliers of the original seafloor sediments. Where cobbles and scattered boulders are present on the depression floors, the muddy Holocene sands have been completely removed and the winnowed relict Pleistocene deposits exposed. Low tidal-current velocities and the lack of obstacle marks suggest that bidirectional tidal currents alone are not capable of forming these features. These depressions are formed and maintained under high-energy shelf conditions owing to repetitive cyclic loading imposed by high-amplitude, long-period, storm-driven waves that reduce the effective shear strength of the sediment, cause resuspension, and expose the suspended sediments to erosion by wind-driven and tidal currents. Because epifauna dominate on gravel floors of the depressions and infauna are prevalent in the finer-grained Holocene deposits, it is concluded that the resultant close juxtaposition of silty sand-, sand-, and gravel-dependent communities promotes regional faunal complexity. These findings expand on earlier interpretations, documenting how storm wave-induced scour produces sorted bedforms that control much of the benthic geologic and biologic diversity in Rhode Island Sound.

  12. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum.

    PubMed

    Li, Biao; Wei, Jinmin; Wei, Xiaolan; Tang, Kun; Liang, Yilong; Shu, Kunxian; Wang, Bochu

    2008-06-01

    The effect of sound wave stress on important medicinal plant, Dendrobium candidum Wall. ex Lindl, was investigated, including the responses on malondialdehyde (MDA) content, the activities change of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). Results were found that the activities of SOD, CAT, POD and APX enhanced totally in different organs of D. candidum, as leaves, stems and roots, in response to the stress. Furthermore there happened similar shift of antioxidant enzymes activities, which increased in the initial stimulation and decreased afterwards. Data showed SOD, CAT, POD and APX activities ascended to max at day 9, 6, 9 and 12 in leaves, at day 9, 6, 12 and 9 in stems, and at day 12, 6, 9 and 9 in roots, respectively. As a lipid peroxidation parameter, MDA content in different organs increased in the beginning, dropped afterward, and increased again in the late. Anyway the total trend was the rise of MDA level compared to the control. It was interesting that the MDA content appeared the lowest levels almost when the antioxidant enzymes activities were up to the highest. Our results demonstrated the different organs of D. candidum might produce accumulation of active oxygen species (AOS) under initial treatment of sound wave stress. Later AOS might start to reduce due to the enhancement of antioxidant enzymes activities treated by the stress. The data revealed that the antioxidant metabolism was to be important in determining the ability of plants to survive in sound stress, and the up regulation of these enzymes activities would help to reduce the build up of AOS, which could protect plant cells from oxidative damage. Moreover, different cell compartments might activate different defensive system to reduce excessive amount of AOS. Finally the mechanism of this action was also discussed simply.

  13. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  14. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    PubMed

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  15. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  16. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  17. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  18. Kinetic ion-acoustic solitary waves in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2014-05-01

    The excitation and the propagation of solitary waves of ion-acoustic nature are analyzed by means of kinetic Eulerian simulations, in both collision-free and collisional plasmas, composed of kinetic warm protons and linear Boltzmannian electrons. The process of soliton formation is discussed in detail through the description of the time evolution of the electrostatic potential and of the associated phase space portraits of the proton distribution function. We study the effects of collisions on the propagation of solitary waves, by modeling proton-proton interactions through the one-dimensional nonlinear Dougherty operator, which is a collisional operator of the Fokker-Planck type. We show how, in a case of non-negligible collisionality, short spatial scales in the electrostatic potential are dissipated in time and the phase space structures, observed in the distribution function in absence of collisions, are significantly smoothed out. Finally, by exploiting the analogy between ion-acoustic waves in neutral infinite plasma and Trivelpiece-Gould waves in nonneutral plasmas columns, a recipe to observe solitary structures in nonneutral plasma devices is proposed.

  19. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  20. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  1. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  2. Propagation of ion acoustic shock waves in negative ion plasmas with nonextensive electrons

    SciTech Connect

    Hussain, S.; Akhtar, N.; Mahmood, S.

    2013-09-15

    Nonlinear ion acoustic shocks (monotonic as well as oscillatory) waves in negative ion plasmas are investigated. The inertialess electron species are assumed to be nonthermal and follow Tsallis distribution. The dissipation in the plasma is considered via kinematic viscosities of both positive and negative ion species. The Korteweg-de Vries Burgers (KdVB) equation is derived using small amplitude reductive perturbation technique and its analytical solution is presented. The effects of variation of density and temperature of negative ions and nonthermal parameter q of electrons on the strength of the shock structures are plotted for illustration. The numerical solutions of KdVB equation using Runge Kutta method are obtained, and transition from oscillatory to monotonic shock structures is also discussed in detail for negative ions nonthermal plasmas.

  3. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  4. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions

    SciTech Connect

    Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui

    2014-05-15

    Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.

  5. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  6. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. Magnetic effects on the ion beams are included, but the electrons are treated as a magnetized fluid. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. These results are extensions of Kovner's analysis for weak beams. The parameters are then chosen to be applicable for parallel shocks. It is found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5.

  7. Classification of biological cells using a sound wave based flow cytometer

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  8. Ion acoustic shock waves in electron-positron-ion quantum plasma

    SciTech Connect

    Masood, W.; Mirza, Arshad M.; Hanif, M.

    2008-07-15

    Ion acoustic shock waves (IASWs) are studied in an unmagnetized quantum plasma consisting of electrons, positrons, and ions employing the quantum hydrodynamic (QHD) model. Nonlinear quantum IASWs are investigated by deriving the Korteweg-deVries-Burger equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. The temporal evolution of the shock for a quantum e-p-i plasma in a spherical geometry is also investigated. It is found that the strength and the steepness of the quantum ion acoustic shock wave increases with decreasing stretched time coordinate (representing slow time scale) |{tau}|. It is also found that an increase in the quantum Bohm potential decreases the strength as well as the steepness of the shock. The temporal evolution of the quantum ion acoustic solitons in an e-p-i plasma for cylindrical and spherical geometries is also explored by substituting the dissipative coefficient C equal to zero. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  9. Study of Interactions Between ULF Waves and Ring Current Heavy (He+ and O+) Ions

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lanzerotti, L. J.; Gerrard, A. J.; Manweiler, J. W.; Soto-chavez, A. R.; Cohen, R. J.; Bortnik, J.; Kim, E. H.; Johnson, J.

    2015-12-01

    We report the spatiotemporal structure of interactions between ULF waves and ring current heavy (He+ and O+) ions using a suite of Van Allen Probes instruments. It is well known that although heavy ions constitute only a fraction of magnetospheric particles in most conditions (especially during quiet times), their role in wave generation and propagation is significant. The relative contribution of each heavy ion species to ULF wave generation and propagation still needs to be further investigated to understand ring current heavy ion dynamics. We present data from the ion composition (Radiation Belt Storm Probes Ion Composition Experiment; RBSPICE) and field (Electric and Magnetic Field Instrument Suite and Integrated Science; EMFISIS) instruments onboard Van Allen Probes to examine ULF wave activity in the presence of heavy ions and the scattering of heavy ions. Ground-based data near spacecraft conjunction sites are also used to investigate wave propagation associated with wave-particle interactions.

  10. Radiation of Sound Waves Via Soliton Excitation of the Angarmonic Chain of Atoms in a Dislocation Core

    NASA Astrophysics Data System (ADS)

    Gestrin, S. G.; Shchukina, E. V.

    2016-07-01

    It is demonstrated that propagation of the soliton described by the Boussinesq equation along a linear defect of the crystal structure leads to radiation of sound waves (analog of the Vavilov-Cherenkov effect). Radiation that has a continuous spectrum diverges conically from the dislocation line, and the apex angle of the cone is determined by the ratio of the sound speed in the crystal to the soliton speed. With increasing soliton speed, the maximum of the spectral flux density of sound energy is displaced toward higher frequencies. An analytical expression for energy losses is derived.

  11. Nonlinear interaction of kinetic Alfvén waves and ion acoustic waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2016-05-01

    Over the years, coronal heating has been the most fascinating question among the scientific community. In the present article, a heating mechanism has been proposed based on the wave-wave interaction. Under this wave-wave interaction, the high frequency kinetic Alfvén wave interacts with the low frequency ion acoustic wave. These waves are three dimensionally propagating and nonlinearly coupled through ponderomotive nonlinearity. A numerical code based on pseudo-spectral technique has been developed for solving these normalized dynamical equations. Localization of kinetic Alfvén wave field has been examined, and magnetic power spectrum has also been analyzed which shows the cascading of energy to higher wavenumbers, and this cascading has been found to have Kolmogorov scaling, i.e., k-5 /3 . A breakpoint appears after Kolmogorov scaling and next to this spectral break; a steeper scaling has been obtained. The presented nonlinear interaction for coronal loops plasmas is suggested to generate turbulent spectrum having Kolmogorov scaling in the inertial range and steepened scaling in the dissipation range. Since Kolmogorov turbulence is considered as the main source for coronal heating; therefore, the suggested mechanism will be a useful tool to understand the mystery of coronal loop heating through Kolmogorov turbulence and dissipation.

  12. Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions

    SciTech Connect

    Sayed, F.; Haider, M. M.; Mamun, A. A.; Shukla, P. K.; Eliasson, B.; Adhikary, N.

    2008-06-15

    Properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves in a dusty plasma composed of inertialess electrons, positive and negative inertial ions, and immobile negative/positive charged dust grains are investigated. By using the multifluid dusty plasma model, the Kortweg-de Vries equation and energy integral for small and large amplitude solitary pulses, are derived. It is found that the presence of the negative ions modifies the properties of the solitary DIA waves, and provides the possibility of positive and negative solitary potential structures to coexist. The present results may be useful for understanding the salient features of localized DIA excitations that may appear in data from forthcoming laboratory experiments and space observations.

  13. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    SciTech Connect

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.

  14. W-type ion-acoustic solitary waves in plasma consisting of cold ions and nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Paul, I.; Chandra, S.; Chattopadhyay, S.; Paul, S. N.

    2016-10-01

    Sagdeev potential approach is used for the study of nonlinear propagation of ion-acoustic waves in plasma consisting of cold positive ions and nonthermal electrons. The nonlinear equation so derived are analysed with the help of Bogoliubov-Mitropolosky method. The profiles of Sagdeev potential solitary waves are evaluated in first-, second- and third- order which are depicted for different values of nonthermal parameter of electrons. It is seen that nonthermal electrons has considerable impact on the shape of ion-acoustic solitary waves in each order. The plasma consisting of cold positive ions and no negative ions can support the formation of compressive as well as W-type solitary waves in second- and third- order for certain value of nonthermal parameter of electrons. The results are new because W-type ion-acoustic solitary wave is found by earlier authors in plasma in presence of negative ions only. The ion-acoustic solitary waves near critical value of nonthermal parameter and arbitrary amplitude solitary waves in presence of nonthermal electrons have also been studied in the paper. Moreover, the solution for ion-acoustic double layers in plasma consisting of nonthermal electrons is obtained. Our results in the paper would be useful to understand the nonlinear wave processes in ionospheric and magnetospheric multicomponent plasma having nonthermal electrons.

  15. ATP-gated ion channels mediate adaptation to elevated sound levels

    PubMed Central

    Housley, Gary D.; Morton-Jones, Rachel; Vlajkovic, Srdjan M.; Telang, Ravindra S.; Paramananthasivam, Vinthiya; Tadros, Sherif F.; Wong, Ann Chi Yan; Froud, Kristina E.; Cederholm, Jennie M. E.; Sivakumaran, Yogeesan; Snguanwongchai, Peerawuth; Khakh, Baljit S.; Cockayne, Debra A.; Thorne, Peter R.; Ryan, Allen F.

    2013-01-01

    The sense of hearing is remarkable for its auditory dynamic range, which spans more than 1012 in acoustic intensity. The mechanisms that enable the cochlea to transduce high sound levels without damage are of key interest, particularly with regard to the broad impact of industrial, military, and recreational auditory overstimulation on hearing disability. We show that ATP-gated ion channels assembled from P2X2 receptor subunits in the cochlea are necessary for the development of temporary threshold shift (TTS), evident in auditory brainstem response recordings as sound levels rise. In mice null for the P2RX2 gene (encoding the P2X2 receptor subunit), sustained 85-dB noise failed to elicit the TTS that wild-type (WT) mice developed. ATP released from the tissues of the cochlear partition with elevation of sound levels likely activates the broadly distributed P2X2 receptors on epithelial cells lining the endolymphatic compartment. This purinergic signaling is supported by significantly greater noise-induced suppression of distortion product otoacoustic emissions derived from outer hair cell transduction and decreased suprathreshold auditory brainstem response input/output gain in WT mice compared with P2RX2-null mice. At higher sound levels (≥95 dB), additional processes dominated TTS, and P2RX2-null mice were more vulnerable than WT mice to permanent hearing loss due to hair cell synapse disruption. P2RX2-null mice lacked ATP-gated conductance across the cochlear partition, including loss of ATP-gated inward current in hair cells. These data indicate that a significant component of TTS represents P2X2 receptor-dependent purinergic hearing adaptation that underpins the upper physiological range of hearing. PMID:23592720

  16. Propagation and linear mode conversion of magnetosonic and electromagnetic ion cyclotron waves in the radiation belts

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Miyoshi, Yoshizumi

    2016-10-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  17. Shaken, then stirred: The interaction of sound waves with X-ray cavities and bubbles in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian

    2008-09-01

    We propose to investigate the complex interaction of sound waves with bubbles and filaments of radio plasma in the inhomogeneous intracluster medium. This interaction is important for dissipating wave energy (thus heating cooling flow atmospheres) and creating a complex, turbulent, multiphase mixture of gas in the wake of the waves that can severely affect the X-ray appearance of clusters. Our planned program of 3D hydro and MHD simulations will investigate the role that shock wave/bubble interactions play in shaping the X-ray emitting atmospheres of galaxy clusters observed with Chandra.

  18. Effect of anisotropy of lighter and heavier ions on solitary waves in a multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Manesh, M.; Sijo, S.; Anu, V.; Sreekala, G.; Neethu, T. W.; Savithri, D. E.; Venugopal, C.

    2017-06-01

    We have studied the combined effect of the pressure anisotropies of lighter and heavier ions of opposite polarities on solitary waves in a plasma composed of these ions as well as kappa described electrons of solar and cometary origin. Using the theory of Chew, Goldberger, and Low (the CGL theory), the anisotropies of all three ions have been included in the derivation of the Zakharov-Kuznetsov equation. The effects of various combinations of pressure anisotropies of both lighter as well as heavier ions of opposite polarities have been considered. From the figures, plotted for parameters observed at comet Halley, it is seen that different properties of the solitary wave such as width and amplitude, as well as dispersion and nonlinear coefficients, are profoundly affected by the anisotropies of the ions. Also, the pressure anisotropy of the lighter ions determines the polarity of the solitary waves: the plasma supports compressive (rarefactive) solitary waves when the lighter ions are pressure isotropic (anisotropic).

  19. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  20. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    PubMed

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies <1,000 Hz. Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p < 0.05). Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610 Hz, 650 Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p < 0.05). CLSM imaging further confirmed these findings. Low frequency vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  1. Numerical Analysis of Long Range Sound Wave Propagation in Ocean by Wave Equation Finite Difference Time Domain Method with Graphics Processing Unit

    NASA Astrophysics Data System (ADS)

    Nakai, Shigeyoshi; Ishii, Takuto; Tsuchiya, Takao

    2012-07-01

    The wave equation finite difference time domain (WE-FDTD) method is applied to the analysis of the long range sound wave propagation in the deep ocean. In the WE-FDTD method, the wave equation in the cylindrical coordinate is directly discretized on the basis of the central differences. The method is then implemented on a graphics processing unit (GPU) cluster system, which consists of 32 GPUs. Assuming the axisymmetric field, two-dimensional numerical models whose region size is 1000 km × 5000 m are developed for various cell sizes (1-3 m). Some numerical demonstrations are made for sound wave propagation in the deep ocean under the assumption of the Munk profile, which is known as the sound speed profile of the mid-latitude of the Pacific Ocean. The numerical results are compared with the results obtained using the ray-tracing method. It is found that the numerical dispersion error appears strikingly in the WE-FDTD solutions when the points per wavelength are less than 20 p.p.w., while the WE-FDTD solutions show good agreement with the ray-tracing solutions in the propagation time when the points per wavelength are more than 20 p.p.w. It is confirmed that the WE-FDTD method can be applied to the analysis of long range sound wave propagation in the deep ocean with reasonable accuracy.

  2. Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects

    NASA Astrophysics Data System (ADS)

    Ma, J. Z. G.; Hirose, A.; St.-Maurice, J.-P.; Liu, W.

    2011-01-01

    Nonlinear "oscilliton" structures features a low-frequency (LF) solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF) oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA) oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar) are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW) mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL) mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles), but on initial conditions as well.

  3. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  4. A Schamel equation for ion acoustic waves in superthermal plasmas

    SciTech Connect

    Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  5. Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.

    2015-12-01

    We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.

  6. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  7. Ion reflection by shock waves and pulse generation by cross-field ion beams

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2017-02-01

    Comparisons are made of two different particle simulations: one for the study of plasma-based accelerators (Gueroult & Fisch, Phys. Plasmas, vol. 23, 2016, 032113) and the other for the study of shock formation in the interstellar medium (Yamauchi & Ohsawa, Phys. Plasmas, vol. 14, 2007, 053110). In the former, shock waves used for plasma density control create ion beams by reflection. In the latter, a fast and dense beam of exploding ions penetrates a surrounding plasma. In both simulations, magnetic bumps are generated from the motion of ion beams perpendicular to a magnetic field. Despite the apparent differences of their purposes, configurations and spatial scales, the two simulations show strong similarities in the generation processes and effects of the bumps, suggesting that these are not rare plasma phenomena. The bump created by the exploding ions develops into backward and forward magnetosonic pulses.

  8. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  9. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  10. Fire Sources of Tropospheric Ozone from the Summer 2008 ARCTAS/ARC-IONS Soundings: Budgets, Trajectory Mapping and IONS-04 and IONS-06 Comparisons

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Macfarlane, A.; Tarasick, D. W.; Oltmans, S. J.; Forbes, G.; Miller, S. K.; Klich, C.; Witte, J. C.; Soja, A. J.

    2009-12-01

    Soundings from the ARC-IONS (ARCTAS [Arctic Research of the Composition of the Troposphere with Aircraft and Satellites; http://espo.nasa.gov/arctas] Intensive Ozonesonde Network Study; [http://croc.gsfc.nasa.gov/arcions]) coordinated ozonesonde network have been used to produce (1) five-term tropospheric ozone budgets [based on Laminar ID, as in Luzik, 2009], including fires, using trajectories, fire maps and other tracers; (2) 3-D ozone maps across northern North America using trajectory mapping techniques [Tarasick et al., 2009]. Results will be presented for daily soundings taken over 15 Canadian and US sites in late June and early July 2008, when three NASA aircraft operated for fire-related studies. Besides fire contribution, regional linkages for each site will be illustrated, along with assessment of stratospheric-tropospheric interactions. Ozone budgets from IONS-04 [Tarasick et al., 2007; Thompson et al., 2007] and IONS-06 [Thompson et al., 2008] put ARCTAS in perspective. For several eastern Canadian sites, there were more fire influences in 2008 than in the earlier campaigns, owing to high US fire activity.

  11. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  12. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  13. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  14. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    SciTech Connect

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth`s atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth`s climate that may be caused by radiatively active gases introduced into the earth`s atmosphere by man`s activities. Radiatively active trace gases produce temperature changes in the earth`s atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992.

  15. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    SciTech Connect

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth's atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth's climate that may be caused by radiatively active gases introduced into the earth's atmosphere by man's activities. Radiatively active trace gases produce temperature changes in the earth's atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992.

  16. Surface refraction of sound waves affects calibration of three-dimensional ultrasound.

    PubMed

    Ballhausen, Hendrik; Ballhausen, Bianca Désirée; Lachaine, Martin; Li, Minglun; Parodi, Katia; Belka, Claus; Reiner, Michael

    2015-05-27

    Three-dimensional ultrasound (3D-US) is used in planning and treatment during external beam radiotherapy. The accuracy of the technique depends not only on the achievable image quality in clinical routine, but also on technical limitations of achievable precision during calibration. Refraction of ultrasound waves is a known source for geometric distortion, but such an effect was not expected in homogenous calibration phantoms. However, in this paper we demonstrate that the discontinuity of the refraction index at the phantom surface may affect the calibration unless the ultrasound probe is perfectly perpendicular to the phantom. A calibration phantom was repeatedly scanned with a 3D-US system (Elekta Clarity) by three independent observers. The ultrasound probe was moved horizontally at a fixed angle in the sagittal plane. The resulting wedge shaped volume between probe and phantom was filled with water to couple in the ultrasound waves. Because the speed of sound in water was smaller than the speed of sound in Zerdine, the main component of the phantom, the angle of the ultrasound waves inside the phantom increased. This caused an apparent shift in the calibration features which was recorded as a function of the impeding angle. To confirm the magnitude and temperature dependence, the experiment was repeated by two of the observers with a mixture of ice and water at 0 °C and with thermalized tap water at 21 °C room temperature. During the first series of measurements, a linear dependency of the displacements dx of the calibration features on the angle α of the ultrasound probe was observed. The three observers recorded significantly nonzero (p < 0.0001) and very consistent slopes of dx/dα of 0.12, 0.12, and 0.13 mm/°, respectively.. At 0 °C water temperature, the slope increased to 0.18 ± 0.04 mm/°. This matched the prediction of Snell's law of 0.185 mm/° for a speed of sound of 1,402 m/s at the melting point of ice. At 21 °C, slopes of 0.11 and 0

  17. Outgoing long-wave radiation computed from HIRS2/MSU soundings

    NASA Astrophysics Data System (ADS)

    Wu, Man-Li C.; Susskind, J.

    1990-05-01

    Fields of outgoing long-wave radiation (OLR) have been computed using geophysical parameters retrieved from analysis of HIRS2/MSU sounding data as input to a modified version of the Wu-Kaplan radiation code used in the Goddard Laboratory for Atmospheres fourth-order general circulation model. Monthly mean results for 1979 agree with monthly mean OLR fields measured by the Nimbus 7 earth radiation budget (ERB) broadband narrow field of view instrument within standard deviations of 6.3 W/sq m but with a global mean bias of 8.0 W/sq m. Results are shown for July 1979. The areas of disagreement between high-resolution infrared radiation sounder OLR and ERB OLR are small but spatially coherent with patterns which may be related to sampling differences. The difference patterns are much less extensive than those between OLR derived from advanced very high resolution radiometer 11-micron observations and ERB OLR.

  18. Three-in-one resonance tube for harmonic series sound wave experiments

    NASA Astrophysics Data System (ADS)

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-07-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and a plastic stopper. The resonance tube is utilized with visual analyser freeware to detect, display and measure the resonance frequencies for each harmonic series. The speeds of sound in air, v, are determined from the gradient of the 2(L+e) versus n fn-1 , 4(L+e) versus n fn-1 and 2L versus n fn-1 graphs for both-open-end, one-closed-end and both-closed-end tubes, respectively. The compatibility of a resonance tube for a harmonic series experiment is determined by comparing the experimental and standard values of v. The use of a resonance tube produces accurate results for v within a 1.91% error compared to its standard value. It can also be used to determine the values of end correction, e, in both-open-end and one-closed-end tubes. The special resonance tube can also be used for the values of n for a harmonic series experiment in the three types of resonance tubes: both-open-end, one-closed-end and both-closed-end tubes.

  19. First evidence of patchy flickering aurora modulated by multi-ion electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoko; Kataoka, Ryuho; Uchida, Herbert Akihito; Miyoshi, Yoshizumi; Hampton, Donald; Shiokawa, Kazuo; Ebihara, Yusuke; Whiter, Daniel; Iwagami, Naomoto; Seki, Kanako

    2017-05-01

    Electromagnetic ion cyclotron (EMIC) waves, one of the possible origins of flickering aurora, have been thought to modulate the electron flux at a few thousand kilometers. In fact, flickering aurora with a frequency range of 3-15 Hz has often been identified by ground-based optical observations and has been interpreted to be caused by O+-band EMIC waves. However, extant research to date has not identified possible signatures of H+-band EMIC waves due to technical limitations of ground-based high-speed imagers. The present study shows the first evidence that patchy flickering aurora could be modulated by H+-band EMIC waves, based on the data obtained from imaging observations at 160 frames per second. The sporadic appearance of the flickering aurora in the frequency range of 50-80 Hz coexisted with typical flickering auroras of approximately 10 Hz. These results are consistent with the hypothesis that flickering auroras are generated by multi-ion EMIC waves.

  20. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  1. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  2. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    SciTech Connect

    Emadi, E.; Zahed, H.

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  3. Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Denton, Richard E.; Liu, Kaijun; Gary, S. Peter; Spence, Harlan E.

    2017-05-01

    This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, ΩO+, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (˜15%) whose phase space density exhibits a local peak at energy ˜20 keV. Given that the electron plasma-to-cyclotron frequency ratio is ωpe/Ωe≳1, this energy corresponds to the particle speed v/vA≳0.3, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic shell distribution. Kinetic linear dispersion theory then predicts unstable Bernstein modes at or near the harmonics of ΩO+ and at propagation quasi-perpendicular to the background magnetic field, B0. If the cold ions are mostly protons, these unstable modes are characterized by a low compressibility (|δB∥|2/|δB|2≲0.01), a small phase speed (vph˜0.2vA), a relatively small ratio of the electric field energy to the magnetic field energy (between 10-4 and 10-3), and the Poynting vector directed almost parallel to B0. These linear properties are overall in good agreement with the properties of the observed waves. We demonstrate that superposition of the predicted unstable Bernstein modes at quasi-perpendicular propagation can produce the observed polarization properties, including the minimum variance direction on average almost parallel to B0.

  4. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  5. Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia

    2016-10-01

    The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.

  6. Ion Bernstein wave heating on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.; Ono, M.

    1989-02-01

    In the present plan, CIT is to be heated by power in the ion cyclotron range of frequencies (ICRF), and electron cyclotron heating (ECH) may be used if suitable rf sources can be developed. We consider the option of ion Bernstein wave heating (IBWH). The key points are that a simple vacuum waveguide launcher can be well- removed from high fluxes of heat and particles and that the development of a suitable source is straightforward. A practical point is that an IBWH waveguide launcher, including transition from coaxial power feeds, fits inside the shield wall surrounding CIT. To confirm IBWH as an option for CIT, experiments are needed on a shaped, H-mode plasma at high power. Successful experiments should be followed by a tube development program to allow CIT heating at 200 - 275 MHz. 2 refs., 3 figs.

  7. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  8. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  9. Longitudinal and Transverse Instability of Ion Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Berger, R. L.; Cohen, B. I.; Banks, J. W.; Brunner, S.

    2017-08-01

    Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.

  10. [The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics].

    PubMed

    Ayan, Irfan; Aslan, Gönül; Cömelekoğlu, Ulkü; Yilmaz, Nejat; Colak, Mehmet

    2008-01-01

    We investigated the effect of low-intensity pulsed sound waves delivered by the Exogen device, which is recommended for the treatment of delayed union and nonunion in orthopedic surgery, on the colony number, antimicrobial susceptibility, bacterial morphology, and genetics of Staphylococcus aureus, which is a frequent pathogen in orthopedic infections. Thirty tubes containing 0.5 McFarland suspensions of S. aureus (ATCC 25923) were used. Fifteen tubes forming the test group were subjected to low-intensity sound waves by the Exogen device for 20 minutes. The remaining 15 tubes were untreated as controls. The two groups were then compared with respect to colony number, antibiotic susceptibility, and genotypic properties. The tubes were examined histologically by electron microscopy. The test tubes treated with sound waves showed a significantly lower number of bacteria colonies compared to the control tubes (p<0.001). The two groups were similar with respect to antibiotic susceptibility and genotypic properties. Bacterial cell wall structure in the control group was of normal appearance, whereas partial destruction and break-up were observed in test samples. Bacterial cell wall thickness was significantly higher in the test group compared to the control group (41.54 nm and 24.27 nm, respectively; p<0.001). Low-intensity sound waves may be beneficial as a prophylactic measure to prevent infections in primary orthopedic operations and as an adjuvant therapy for infected nonunions.

  11. Nonlinear ion turbulent heating in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Diamond, Patrick H.

    2012-10-01

    The total turbulent heat transfer is composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating. In a previous paper [1], we discussed quasilinear turbulent heating and zonal flow frictional heating. Here we apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the beat mode resonance in electron drift wave turbulence [2]. The nonlinear diffusion in velocity space, affected by E x B motion and by the parallel velocity scattering, is further analyzed. This calculation proposes and analyzes a new collisionless turbulent energy transfer channel through nonlinear Landau damping. This process enters the electron-ion energy coupling. We estimate it by using the saturation balance. The results show that the collisionless turbulent energy transfer through the nonlinear Landau damping and the zonal flow frictional damping can both be important in a low collisionality, electron heated plasma, such as ITER. [4pt] [1] L. Zhao and P. H. Diamond, submitted to Phys. Plasma, 2012.[0pt] [2] W.M. Manheimer and T.H. Dupree, Phys. Fluid, 11, 2709 (1968).

  12. High power ion Bernstein wave experiments on DIII-D

    SciTech Connect

    Pinsker, R.I.; Mayberry, M.J.; Porkolab, M.; Prater, R.

    1989-05-01

    Previous tokamak experiments with Ion Bernstein Wave (IBW) heating have exhibited efficient central ion heating and associated improvement in particle confinement. The prospect of localized bulk ion heating, along with the prediction that coupling to the IBW should improve under edge conditions characteristic of H-mode plasmas, motivated the present IBW program on the DIII-D tokamak. The 30-60 MHz tunability of the modified 2.25 MW FMIT rf power supply permits consideration of many different heating scenarios; in which central ion heating at 3/2..cap omega../sub H/ with a small He/sup 4/ minority (3..cap omega../sub He/sup 4//) was observed. Therefore, the transmitter frequency was 38 MHz and the nominal central toroidal field was B/sub T/ = 1.8 T, which places the 3/2..cap omega../sub H/(3..cap omega../sub He/sup 4//) layer a few centimeters outboard of the magnetic axis, and the 2..cap omega../sub H/ layer just behind the radiating element in the antenna, as is required theoretically for efficient coupling to the IBW. 8 refs., 3 figs

  13. Ionospheric Ion Upflows Associated with the Alfven Wave Heating

    NASA Astrophysics Data System (ADS)

    Song, P.; Tu, J.

    2014-12-01

    In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.

  14. Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Steffy, S. V.; Ghosh, S. S.

    2017-10-01

    The transition of an ion acoustic solitary wave into a "supersoliton," or a super solitary wave have been explored in a two electron temperature warm multi-ion plasma using the Sagdeev pseudopotential technique. It is generally believed that the ion acoustic solitary wave can be transformed to a super solitary wave only through a double layer. The present work shows that the transition route of an ion acoustic solitary wave to a super solitary wave is not unique. Depending on the electron temperature ratio, a regular solitary wave may transform to a super solitary wave either via the double layer, or through an extra-nonlinear solitary structure whose morphology differs from that of a regular one. These extra-nonlinear structures are associated with a fluctuation of the charge separation within the potential profile and are named as "variable solitary waves." Depending on these analyses, the upper and lower bounds of a super solitary wave have been deciphered and its existence domain has been delineated in the parametric space. It reveals that super solitary waves are a subset of a more generalized class of extra-nonlinear solitary structures called variable solitary waves.

  15. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  16. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    SciTech Connect

    El-Bedwehy, N. A.

    2016-07-15

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  17. Analysis of propagation characteristics of flexural wave in honeycomb sandwich panel and design of loudspeaker for radiating inclined sound

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2015-07-01

    A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On

  18. Low Frequency Waves and Reflected Ions in the Lunar Plasma Environment

    NASA Astrophysics Data System (ADS)

    Howard, S. K.; Halekas, J. S.; Farrell, W. M.; McFadden, J. P.; Glassmeier, K. H.; Fruehauff, D.

    2016-12-01

    Recent observations show that a significant fraction of incoming solar wind protons are reflected by localized crustal magnetic fields on the lunar surface. These reflected ions can generate plasma waves in the lunar plasma environment through several mechanisms, including resonant interactions that drive waves with frequencies that lie near the ion cyclotron frequency in the reference frame of the ions. On 31 January 2014 one of the ARTEMIS probes detected plasma waves right before it crossed into the lunar wake; these waves were not detected by the second ARTEMIS probe upstream of the Moon in the undisturbed solar wind. The power and polarization spectra of these waves reveal that they are right hand polarized in the Moon frame, with a frequency below the ion cyclotron frequency. We analyze the ARTEMIS observations to determine that ions reflected from the lunar surface are the most likely cause of these. Using minimum variance analysis of the magnetic field data we determine the propagation direction of the waves (with a 180 degree uncertainty). We solve the Doppler shift and the cyclotron resonance equations to determine the conditions needed for reflected ions to excite the observed waves. We use model results obtained from a simulated tracing of ions reflected from the lunar surface to reproduce the ARTEMIS ion observations, supporting the hypothesis that reflected ions are the primary driver of the waves. We then use the simulated trajectories to determine if ions with the requisite parameters for the possible scenarios exist in the right location to generate the observed waves.

  19. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers.

    PubMed

    Salissou, Yacoubou; Panneton, Raymond

    2010-11-01

    Several methods for measuring the complex wave number and the characteristic impedance of sound absorbers have been proposed in the literature. These methods can be classified into single frequency and wideband methods. In this paper, the main existing methods are revisited and discussed. An alternative method which is not well known or discussed in the literature while exhibiting great potential is also discussed. This method is essentially an improvement of the wideband method described by Iwase et al., rewritten so that the setup is more ISO 10534-2 standard-compliant. Glass wool, melamine foam and acoustical/thermal insulator wool are used to compare the main existing wideband non-iterative methods with this alternative method. It is found that, in the middle and high frequency ranges the alternative method yields results that are comparable in accuracy to the classical two-cavity method and the four-microphone transfer-matrix method. However, in the low frequency range, the alternative method appears to be more accurate than the other methods, especially when measuring the complex wave number.

  20. A wave-envelope of sound propagation in nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.

    1979-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. The solution recovers the solution based on the method of multiple scales for slowly varying duct geometry. A computer program was developed based on the wave-envelope analysis for general mean flows. Results are presented for the reflection and transmission coefficients as well as the acoustic pressure distributions for a number of conditions: both straight and variable area ducts with and without liners and mean flows from very low to high subsonic speeds are considered.