NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
Huggins, T G; Henion, J D
1993-01-01
The determination of inorganic cations and anions by capillary electrophoresis/mass spectrometry (CE/MS) is reported using an ion spray-sheath flow interface coupling. A twelve-component synthetic mixture of cations which included the positive ions of K, Ba, Ca, Mn, Cd, Co, Pb, Cr, Ni, Zn, Ag, and Cu was loaded into the capillary column at levels ranging from 30 to 300 pg, separated by CE, and detected by indirect UV and in the full-scan (m/z 35-450) positive ion CE/MS mode using an aqueous buffer containing 30 mM creatinine and 8 mM alpha-hydroxyisobutyric acid, pH 4.8. Creatinine forms adducts with the cations which are observed in the gas phase and requires rather high (120 electron volts) declustering energy to dissociate. This produces a reduction in charge state to form the free, singly charged, inorganic cations which are observed in the mass spectra. CE/MS analysis of an aqueous acidic extract of used aircraft engine oil revealed high levels of lead as well as lower levels of chromium and nickel. CE-indirect UV analysis of a synthetic mixture containing 300 pg each of 11 inorganic ions, which included the anions of Br, Cl, NO2, NO3, S2O3, N3, SCN, SO4, SeO4, oxalate, and MoO4, is shown. The running buffer which affected this separation contained 5 mM ammonium dichromate, 10 mM ammonium acetate, and 20 mM diethylenetriamine at pH 9.3. Although indirect UV detection revealed good separation of these anions, CE/MS analysis of this mixture was complicated by interfering ion current signals from the cluster ions formed by the interaction between the additives and the analytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Chen, Chao-Jung; Li, Fu-An; Her, Guor-Rong
2008-05-01
A multiplexed CE-MS interface using four low-flow sheath liquid ESI sprayers has been developed. Because of the limited space between the low-flow sprayers and the entrance aperture of the ESI source, multichannel analysis is difficult using conventional rotating plate approaches. Instead, a multiplexed low-flow system was achieved by applying an ESI potential sequentially to the four low-flow sprayers, resulting in only one sprayer being sprayed at any given time. The synchronization of the scan event and the voltage relays was accomplished by using the data acquisition signal from the IT mass spectrometer. This synchronization resulted in the ESI voltage being sequentially applied to each of the four sprayers according to the corresponding scan event. With this design, a four-fold increase in analytical throughput was achieved. Because of the use of low-flow interfaces, this multiplexed system has superior sensitivity than a rotating plate design using conventional sheath liquid interfaces. The multiplexed design presented has the potential to be applied to other low-flow multiplexed systems, such as multiplexed capillary LC and multiplexed CEC.
Weidolf, L O; Lee, E D; Henion, J D
1988-03-01
Sulfoconjugated anabolic steroids were separated by micro-bore high-performance liquid chromatography. The eluent was introduced into the atmospheric pressure ion source of the triple-quadrupole mass spectrometer via an ion spray liquid chromatograph/mass spectrometer interface operated in the negative ion mode. The limit of detection was 10 pg on-column by selected ion monitoring of the molecular ion and the response increased linearly over a concentration range of 2.4 orders of magnitude. Following work-up by a liquid-solid extraction procedure of equine urine samples, full-scan daughter ion spectra of boldenone sulfate could be obtained up to 17 days after a therapeutic dose of boldenone undecylenate to a horse.
NASA Astrophysics Data System (ADS)
Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng
2018-05-01
Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.
Spray algorithm without interface construction
NASA Astrophysics Data System (ADS)
Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.
2012-05-01
This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.
Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-Jun
2017-08-01
Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.
Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.;
2014-01-01
The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.
Electrochemical impedance analysis of perovskite–electrolyte interfaces
Li, Zhen; Mercado, Candy C.; Yang, Mengjin; ...
2017-01-31
Here, the flat band potentials and carrier densities of spin coated and sprayed MAPbI 3, FA 0.85Cs 0.15PbI 3, and MAPbBr 3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 10 16 cm -3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.
Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho
2012-12-21
Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.
Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC
Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham
2011-01-01
We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428
Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry
NASA Astrophysics Data System (ADS)
Vega, Carolina; Spence, Corina; Zhang, Chengsen; Bills, Brandon J.; Manicke, Nicholas E.
2016-04-01
Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent.
Simultaneous Extraction of Lithium and Hydrogen from Seawater
2011-01-26
ion chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ...Cation Ion Chromatography (Instrument Dionex DX-500, Cation Column Dionex CS12A; CG12A Guard, eluent: 20.00 mM methanesulfonic acid, flow rate:1.25...for 2 hours and sprayed (P=6psig) with an air-sprayer on Nafion. The dimension of sprayed area is 1˝ x 1˝. Ion Chromatography (IC): Ions
Method for Continuous Monitoring of Electrospray Ion Formation
NASA Astrophysics Data System (ADS)
Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard
2017-10-01
A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.
2012-01-01
During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.
Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.
Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J
2015-05-01
Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.
Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
Kobayashi, A; Ando, Y; Kurokawa, K
2012-06-01
Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,
Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M
2011-10-01
The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011
Metal ion reactive thin films using spray electrostatic LbL assembly.
Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T
2008-11-20
By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang
2015-10-15
Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed ofmore » nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.« less
Enhanced ion signals in desorption electrospray ionization using surfactant spray solutions.
Badu-Tawiah, Abraham; Cooks, R Graham
2010-08-01
Solvent optimization is an important procedure in desorption electrospray ionization (DESI) and in this study the effects of solvent surface tension are explored. Data are presented for methanol/water/surfactant solvent systems, which show increases in ion signals of more than an order of magnitude when low concentrations of surfactants are added to the standard methanol/water (1:1) spray solvent. Examples of analytes tested include food chemicals, peptides, pharmaceuticals, and drugs of abuse. The improvement in ion intensity is mainly attributed to the effect of surface tension in producing smaller spray droplets, which are shown to cover a larger surface area. Surfactant-containing spray solutions allowed extension of DESI-MS analysis to previously intractable analytes like melamine and highly hydrophobic compounds like the sudan dyes. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Xiao, Gui-Yong; Li, Shi-Tong; Sun, Rui-Xue; Li, Mu-Sen
2006-01-01
The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca 2P 2O 7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca 2P 2O 7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.
Wang, Lingling; Wang, Yujiao; Jiang, Shichang; Ye, Mingyue; Su, Ping; Xiong, Bo
2016-10-28
Nitrogen-assisted nanoelectrospray emitter (NANE) was developed to achieve accurate mass-to-charge ratio (m/z) measurements with a single monolithic nozzle. Deposition patterns of generated electrosprays from NANE confirmed their wrapped configurations. Additionally, the intensity of the sample ion and its ratio relative to a reference ion was inclined to focus on the central region of the spray; this trend further supported the existence of wrapped configurations. Further, the proposed NANE was fabricated from poly-(dimethylsiloxane) (PDMS) with octadecyltrichlorosilane modification to restrain the dissolution of PDMS monomers. Assist nitrogen flows were introduced to improve the ionization of reference ions. Moreover, the NANE could regulate the distribution of reference ions by microfluidic three dimensional hydrodynamic focusing. By regulating the distribution of reference ions, the ionization depression was reduced to some degree, and an improved sensitivity was accomplished compared with the mixing of sample and reference solutions. Achieved relative errors of m/z were between 0.2-4.5ppm and 5.2-9.2ppm for ten organic molecules and four biological macromolecules, respectively. Acceptable linear ranges were obtained in quantifications for rhodamine B and emamectin benzoate. Finally, the NANE was compatible with broad infusion rates (from 50nLmin -1 to 15μLmin -1 ) and solutions of different compositions (from 100% methanol to 100% water). Considering the comprehensive application of PDMS in microfluidics, the proposed NANE could be used as a compact and monolithic interface to achieve accurate m/z measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-01-01
Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.
Characterization and Analysis of Paper Spray Ionization of Organic Compounds.
Aliaga-Aguilar, Hugo
2018-01-01
Paper spray ionization has arisen relatively recently as a complement and alternative to electro- and nanospray ionization with silica capillaries. A majority of the work in the present literature focuses on the chemical aspect of paper spray. In order to study the physical and phenomenological facet of its implementation, we measured current and voltage distributions of Taylor cones. To study transport phenomena on filter paper, we addressed the behavior of large, sparingly soluble tetraalkylammonium ions, which are usually used as mobility standards, in paper spray. The variation of intensity with time of monomers and dimers of these ions was measured with a differential mobility analyzer and compared with that produced by contamination in the paper. At the same time, we evaluated the proficiency of different paper spray techniques for protein analysis using nano spray as a reference. Experiments suggest that Taylor cones in paper spray are subject to hysteresis, whereas transport phenomena in the porous substrate notably affects the ionization of the sample. Additionally, we observed that paper spray tends to favor lower charge states in proteins. Graphical Abstract.
Optical study on thermal radiation energy of diesel spray combustion in a shock tube
NASA Astrophysics Data System (ADS)
Tsuboi, T.; Nagaya, K.; Ishii, K.
. A ``tailored'' interface shock tube was used to measure the thermal energy radiated from diesel-spray combustion. Experiments were performed in a steel shock tube with a seven m long low-pressure section filled with air and a six m long high-pressure section. Pre-compressed fuel was injected through a throttling nozzle into air behind a reflected shock wave. Monochromatic emissive powers and emissive powers of the whole IR-wavelengths were followed with IR-detectors set along the central axis of the tube. Time-dependent-radii, where soot particles radiate, were also determined. Results were : (1) the tailored interface shock tube could be applied to a study of diesel-spray combustion. (2) thermal radiation energy could be described well from the ignition delay of the fuel spray.
Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.
Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A
1997-01-01
The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.
The effects of mannitol on the transport of ciprofloxacin across respiratory epithelia.
Ong, Hui Xin; Traini, Daniela; Salama, Rania; Anderson, Sandra D; Daviskas, Evangelia; Young, Paul M
2013-08-05
Inhalation of antibiotics and mucolytics is the most important combination of inhaled drugs for chronic obstructive lung diseases and has become a standard part of treatment. However, it is yet to be determined whether the administration of a mucolytic has an effect on the transport rate of antibiotics across the airway epithelial cells. Consequently, the aim of this study was to investigate the effects of inhalation dry powder, specifically mannitol, on ciprofloxacin transport using a Calu-3 air-interface cell model. Transport studies of ciprofloxacin HCl were performed using different configurations including single spray-dried ciprofloxacin alone, co-spray-dried ciprofloxacin with mannitol, and deposition of mannitol prior to ciprofloxacin deposition. To understand the mechanism of transport and interactions between the drugs, pH measurements of apical surface liquid (ASL) and further transport studies were performed with ciprofloxacin base, with and without the presence of ion channel/transport inhibitors such as disodium cromoglycate and furosemide. Mannitol was found to delay absorption of ciprofloxacin HCl through the increase in ASL volume and subsequent reduction in pH. Conversely, ciprofloxacin base had a higher transport rate after mannitol deposition. This study clearly demonstrates that the deposition of mannitol prior to ciprofloxacin on the air-interface Calu-3 cell model has an effect on its transport rate. This was also dependent on the salt form of the drug and the timing and sequence of formulations administered.
David, Lamuel; Asok, Deepu; Singh, Gurpreet
2014-09-24
Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2009-02-06
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 microm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2008-01-01
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431
2014-05-01
solver to treat the spray process. An Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with...Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with high fidelity while keeping the cell...in single and multi-hole nozzle configurations. The models were added to the present CONVERGE liquid fuel database and validated extensively
Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry
NASA Astrophysics Data System (ADS)
Mounfield, William P.; Garrett, Timothy J.
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.
Mounfield, William P; Garrett, Timothy J
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Sol-gel coated ion sources for liquid chromatography-direct electron ionization mass spectrometry.
Riboni, Nicolò; Magrini, Laura; Bianchi, Federica; Careri, Maria; Cappiello, Achille
2017-07-25
Advances in interfacing liquid chromatography and electron ionization mass spectrometry are presented. New ion source coatings synthesized by sol-gel technology were developed and tested as vaporization surfaces in terms of peak intensity, peak width and peak delay for the liquid chromatography-direct electron ionization mass spectrometry (Direct-EI) determination of environmental pollutants like polycyclic aromatic hydrocarbons and steroids. Silica-, titania-, and zirconia-based coatings were sprayed inside the stainless steel ion source and characterized in terms of thermal stability, film thickness and morphology. Negligible weight losses until 350-400 °C were observed for all the materials, with coating thicknesses in the 6 (±1)-11 (±2) μm range for optimal ionization process. The best performances in terms of both peak intensity and peak width were obtained by using the silica-based coating: the detection of the investigated compounds was feasible at low ng μl -1 levels with a good precision (RSD < 9% for polycyclic aromatic hydrocarbons and <11% for hormones). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.
2016-07-01
The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.
NASA Astrophysics Data System (ADS)
Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng
2017-12-01
The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
Hosein, Yara K; King, Graham J W; Dunning, Cynthia E
2013-09-01
The ulnar component of a total elbow replacement can fail by "pistoning." Stem surface treatments have improved stability at the stem-cement interface but with varied success. This study investigated the role of surface treatment and stem substrate material on implant stability under axial loading. Sixty circular stems (diameter, 8 mm) made of cobalt chrome (n = 30) or titanium (n = 30) had different surfaces: smooth, sintered beads, and plasma spray. The surface treatment length was either 10 mm or 20 mm. Stems were potted in bone cement, allowed to cure for 24 hours, and tested in a materials testing machine under a compressive staircase loading protocol. Failure was defined as 2 mm of push-out or completion of the protocol. Two-way analyses of variance compared the effects of surface treatment and substrate material on interface strength and motion. Significant interactions were found between surface treatment and substrate material for both interface strength and motion (P < .05). For titanium, the 20-mm beaded stems had greater interface strength than all other stems (P < .05) and had less motion than the 10-mm plasma-spray and smooth stems (P < .05). For cobalt chrome, the 20-mm beaded stems showed greater interface strength (P < .05) and similar motion (P > .05) to the 20-mm plasma-spray stems (P < .05), which outperformed all other stems (P < .05). Mechanisms of catastrophic failure varied: smooth stems debonded at the stem-cement interface, beaded stems experienced debonding of the beads from the stem, and plasma-spray stems showed loss of frictional force between the surface treatment and cement. Stem surface treatment can enhance ulnar component stability but is dependent on substrate material. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Thermophysical properties of plasma sprayed coatings
NASA Technical Reports Server (NTRS)
Wilkes, K. E.; Lagedrost, J. F.
1973-01-01
Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.
Plasma spray processing of TiC-based coatings for sliding wear resistance
NASA Astrophysics Data System (ADS)
Mohanty, Mahesh
Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.
NASA Astrophysics Data System (ADS)
Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel
2017-04-01
This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.
Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S
2013-02-12
A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.
Asymmetrical bonding in cold spraying of dissimilar materials
NASA Astrophysics Data System (ADS)
Nikbakht, R.; Seyedein, S. H.; Kheirandish, S.; Assadi, H.; Jodoin, B.
2018-06-01
Characteristics of particle bonding, especially for dissimilar materials, remains a key question in cold spray deposition. There are limited reports in direct correlation to particle/substrate bonding and peripheral shear zones. Cold spraying experiments and numerical simulations are conducted to characterise and analyse the correlation between bonding and peripheral shear zones for asymmetric particle/substrate pairs of intermetallic-forming elements of nickel and titanium. The correlation between metallic bonding and highly strained areas is explored in view of the growth of the intermetallic phase at the particle/substrate interface during subsequent heat treatments. Characterisation of the as-sprayed samples reveal that for the Ni(particle)/Ti(substrate) pair, plastic deformation of the particle is dominating over substrate deformation. However, for the Ti(particle)/Ni(substrate) pair, it is observed that the substrate and particle deform to similar extents. Characterisation of the samples after a brief heat treatment at 700 °C indicate that intermetallic formation, and hence metallurgical bonding of the pairs is more likely to occur at the particle peripheries where the interface areas are highly strained, and rarely achieved at the particle base. Results also reveal that bonding extends from peripheries toward the central part of the interfaces with increasing the impact velocity. The kinetics of interfacial intermetallic formation at peripheral areas and its correlation to particle bonding is discussed in view of deformation-enhanced interdiffusion.
NASA Technical Reports Server (NTRS)
Hotaling, S. P.
1993-01-01
Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.
NASA Astrophysics Data System (ADS)
Manicke, Nicholas E.; Belford, Michael
2015-05-01
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2017-12-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2018-01-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-08-23
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos; Van Berkel, Gary J
2013-07-30
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
McClory, Phillip J; Håkansson, Kristina
2017-10-03
Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.
NASA Astrophysics Data System (ADS)
Kumaravel, R.; Ramamurthi, K.; Sulania, Indra; Asokan, K.; Kanjilal, D.; Avasti, D. K.; Kulria, P. K.
2011-03-01
Thin films of cadmium oxide have been deposited on glass substrate using the spray pyrolysis technique. The prepared films are irradiated with 120 MeV swift Ag 9+ ions for fluence in the range of 1×10 12-1×10 13 ions cm -2 and their structural properties are studied by glancing angle X-ray diffraction. The films exhibit cubic crystal structure. It is observed that the irradiated films are amorphized at higher fluence of 1×10 13 ions cm -2. Surface morphology studies by atomic force microscopy show that the pristine film has a surface roughness of 39.80 nm and it decreases with increase in ion fluence. The optical transmittance spectra show a decrease in transmittance with increase in fluence and the band gap value also decreases due to irradiation.
Coupling of Ultrafast LC with Mass Spectrometry by DESI
NASA Astrophysics Data System (ADS)
Cai, Yi; Liu, Yong; Helmy, Roy; Chen, Hao
2014-10-01
Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [ J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing "near real-time" MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize "wrong-way around" ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.
Sequential cryogen spraying for heat flux control at the skin surface
NASA Astrophysics Data System (ADS)
Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart
2001-05-01
Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Gas Sensors Based on Coated and Doped Carbon Nanotubes; Tactile Robotic Topographical Mapping Without Force or Contact Sensors; Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids; Progress in Development of Improved Ion-Channel Biosensors; Simulating Operation of a Complex Sensor Network; Using Transponders on the Moon to Increase Accuracy of GPS; Controller for Driving a Piezoelectric Actuator at Resonance; Coaxial Electric Heaters; Dual-Input AND Gate From Single-Channel Thin-Film FET; High-Density, High-Bandwidth, Multilevel Holographic Memory; Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters; Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass; Photochemically Synthesized Polyimides; Optimized Carbonate and Ester-Based Li-Ion Electrolytes; Compact 6-DOF Stage for Optical Adjustments; Ultrasonic/Sonic Impacting Penetrators; Miniature, Lightweight, One-Time-Opening Valve; Supplier Management System; Improved CLARAty Functional-Layer/Decision-Layer Interface; JAVA Stereo Display Toolkit; Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool; PyPele Rewritten To Use MPI; Data Assimilation Cycling for Weather Analysis; Hydrocyclone/Filter for Concentrating Biomarkers from Soil; Activating STAT3 Alpha for Promoting Healing of Neurons; and Probing a Spray Using Frequency-Analyzed Light Scattering.
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.
Gledhill, H C; Turner, I G; Doyle, C
2001-06-01
The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.
Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.
Falcone, Caitlin E; Cooks, R Graham
2016-06-15
The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Low pressure electrospray ionization system and process for effective transmission of ions
Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [Wet Richland, WA; Smith, Richard D [Richland, WA
2010-03-02
A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.
Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A
2018-04-15
Paper spray ionization (PSI) is an attractive ambient ionization source for mass spectrometry (MS) since it allows the combination of surface sampling and ionization. The minimal sample preparation inherent in this approach greatly reduces the time needed for analysis. However, the ions generated from interfering compounds in the sample and the paper substrate may interfere with the analyte ions. Therefore, the integration of PSI with high-field asymmetric ion mobility spectrometry (FAIMS) is of significant interest since it should reduce the background ions entering the mass analyzer without complicating the analysis or increasing analysis time. Here we demonstrate the integration of PSI with FAIMS/MS and its potential for analysis of samples of forensic interest. In this work, the parameters that can influence the integration, including sampling and ionization by paper spray, the FAIMS separation of analytes from each other and background interferences, and the length of time that a usable signal can be observed for explosives on paper, were evaluated with the integrated system. In the negative ion analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), amounts as low as 1 ng on paper were readily observed. The successful positive ion separation of a set of illicit drugs including heroin, methamphetamine, and cocaine was also achieved. In addition, the positive ion analysis of the chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) was evaluated. The integration of PSI-FAIMS/MS was demonstrated for the analyses of explosives in negative ion mode and for illicit drugs and CW simulants in positive mode. Paper background ions that could interfere with these analyses were separated by FAIMS. The compensation voltage of an ion obtained by FAIMS provided an additional identification parameter to be combined with the mass spectrum for each analyte. Copyright © 2018 John Wiley & Sons, Ltd.
Cassada, D A; Monson, S J; Snow, D D; Spalding, R F
1999-06-04
Recent improvements in the LC-MS interface have increased the sensitivity and selectivity of this instrument in the analysis of polar and thermally-labile aqueous constituents. Determination of RDX, nitroso-RDX metabolites, and other munitions was enhanced using LC-MS with solid-phase extraction, 15N3-RDX internal standard, and electrospray ionization (ESI) in negative ion mode. ESI produced a five-fold increase in detector response over atmospheric pressure chemical ionization (APCI) for the nitramine compounds, while the more energetic APCI produced more than twenty times the ESI response for nitroaromatics. Method detection limits in ESI for nitramines varied from 0.03 microgram l-1 for MNX to 0.05 microgram l-1 for RDX.
NASA Astrophysics Data System (ADS)
Park, Gi Dae; Lee, Jong-Heun; Kang, Yun Chan
2016-06-01
SnSe nanoplates with thin and uniform morphology are prepared by one-pot spray pyrolysis, and are examined as anode materials for Na-ion batteries. During the spray pyrolysis process, metallic Se and Sn are prepared from SeO2 and SnO2, respectively, under a reducing atmosphere. Metallic Sn and metalloid Se, with melting points of 232 and 221 °C, respectively, form a melted Sn-Se mixture, which reacts exothermally to form SnSe nanocrystals. Several of these nanocrystals are grown simultaneously forming a micron-sized powder. Complete elimination of the excess amount of metalloid Se, by forming H2Se gas, results in aggregation-free SnSe nanoplates. The aspect ratio of these nanoplates is as high as 11.3. The discharge capacities for the SnSe nanoplates, prepared from spray solutions containing 100, 400, and 800% of the stoichiometric SeO2 content needed to form SnSe, are 407, 558, and 211 mA h g-1, respectively, after 50 cycles at a constant current density of 0.3 A g-1 their capacity retentions calculated from the second cycle onwards are 77, 100, and 60%, respectively. The phase pure SnSe nanoplates with a high aspect ratio show good cycling and rate performances for Na-ion storage.SnSe nanoplates with thin and uniform morphology are prepared by one-pot spray pyrolysis, and are examined as anode materials for Na-ion batteries. During the spray pyrolysis process, metallic Se and Sn are prepared from SeO2 and SnO2, respectively, under a reducing atmosphere. Metallic Sn and metalloid Se, with melting points of 232 and 221 °C, respectively, form a melted Sn-Se mixture, which reacts exothermally to form SnSe nanocrystals. Several of these nanocrystals are grown simultaneously forming a micron-sized powder. Complete elimination of the excess amount of metalloid Se, by forming H2Se gas, results in aggregation-free SnSe nanoplates. The aspect ratio of these nanoplates is as high as 11.3. The discharge capacities for the SnSe nanoplates, prepared from spray solutions containing 100, 400, and 800% of the stoichiometric SeO2 content needed to form SnSe, are 407, 558, and 211 mA h g-1, respectively, after 50 cycles at a constant current density of 0.3 A g-1 their capacity retentions calculated from the second cycle onwards are 77, 100, and 60%, respectively. The phase pure SnSe nanoplates with a high aspect ratio show good cycling and rate performances for Na-ion storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02983c
Prasad, Satendra; Wouters, Eloy R; Dunyach, Jean-Jacques
2015-08-18
Ion sampling from an electrospray ionization (ESI) source was improved by increasing gas conductance of the MS inlet by 4.3-fold. Converting the gas throughput (Q) into sensitivity improvement was dependent on ion desolvation and handling of the gas load. Desolvation was addressed by using a novel slot shaped inlet that exhibited desolvation properties identical to the 0.58 mm i.d capillary. An assay tailored for "small molecules" at high chromatographic flow rate (500 μL/min) yielded a compound dependent 6.5 to 14-fold signal gain while analysis at nano chromatographic flow rate (300 nL/min) showed 2 to 3.5-fold improvement for doubly charged peptides. Improvement exceeding the Q (4.3-fold) at high chromatographic flow rate was explained by superior sampling of the spatially dispersed ion spray when using the slot shaped capillary. Sensitivity improvement across a wide range of chromatographic flow rate confirmed no compromise in ion desolvation with the increase in Q. Another improvement included less overflow of gas into the mass analyzer from the foreline region owing to the slot shape of the capillary. By doubling the roughing pump capacity and operating the electrodynamic ion funnel (EDIF) at ∼4 Torr, a single pumping stage was sufficient to handle the gas load. The transport of solvent clusters from the LC effluent into the mass analyzer was prevented by a "wavy shaped" transfer quadrupole and was compared with a benchmark approach that delivered ions orthogonally into a differentially pumped dual EDIF at comparable gas Q.
The effect of handpiece spray patterns on cutting efficiency.
Siegel, Sharon C; von Fraunhofer, J Anthony
2002-02-01
High-speed handpieces' spray ports direct coolant at the cutting interface. The authors evaluated the effect of the number of ports and their positions on cutting rates, or CRs. The authors performed cutting studies on a machinable ceramic block using an established testing regimen. One-port, three-port and four-port handpieces from one manufacturer were operated at maximum torque and rotation speed under a water flow of 25 milliliters per minute. The authors made 6-millimeter long edge and groove cuts in 13-mm cross-section blocks using six medium-grit diamond burs for each handpiece. Each bur cut a total of 78 mm. The authors determined CR as the time to transect the block and analyzed the data by two-way analysis of variance with post hoc Scheffé tests. CRs varied by the type of cut and the number of spray ports. No differences were found in CRs for the three handpieces during edge cutting. The one-port handpiece cut significantly slower (P < .001) than did the three- and four-port handpieces during groove cutting. The data indicate that the number of handpiece spray ports, and their positioning relative to the bur affect water supply to the cutting interface and, consequently, the CR under these study conditions. Optimal cutting efficiency requires good coolant access, especially within restricted areas. A multiple-port handpiece may be advantageous when preparing the interproximal region for a crown or a proximal box, owing to the better water spray pattern. Dentists should consider the influence of the number of spray ports when selecting handpieces for cutting procedures.
Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo
2014-12-05
Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.
Gergov, M; Ojanperä, I; Vuori, E
2003-09-25
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method is presented for the qualitative screening for 238 drugs in blood samples, which is considerably more than in previous methods. After a two-step liquid-liquid extraction and C(18) chromatography, the compounds were introduced into a triple quadrupole mass spectrometer equipped with a turbo ion spray ion source operating in the positive ionization mode. Identification was based on the compound's absolute retention time, protonated molecular ion, and one representative fragment ion obtained by multiple reaction monitoring (MRM) at an individually selected collision energy of 20, 35, or 50 eV. The limit of detection (LOD) for the majority of the compounds (80%) was < or = 0.05 mg/l, ranging from 0.002 mg/l (e.g., antihistamines) to 5 mg/l (acidic compounds), and for malathion it was 10 mg/l. The LOD values were sufficiently low to allow the majority of compounds to be detected at therapeutic concentrations in the blood.
NASA Astrophysics Data System (ADS)
Liang, Y. L.; Wang, Z. B.; Zhang, J. B.; Lu, K.
2015-06-01
By means of cold spray, a Zn-Al coating was successfully deposited on an interstitial-free (IF) steel sheet. The formation of interfacial compounds between the coating and the IF steel was studied during diffusion annealing at 400 °C. And its correlations with the stripping behaviors of the coating were investigated by using a three-point bending method. The results showed that Fe-Zn and Fe-Al-Zn compounds begin to form at the coating/substrate interface after an annealing duration of 60 min, and the stripping resistance increases slightly before that duration and then decreases significantly by further increasing annealing duration. The enhanced stripping resistance at the earlier stage might be due to the modifications of microstructure and deformation compatibility of the sprayed coating, while the decreased stripping resistance at the later stage is related to the high stress concentration at the interface of the formed brittle Fe-Al-Zn phase and the Zn-Al coating.
Simulation of fundamental atomization mechanisms in fuel sprays
NASA Technical Reports Server (NTRS)
Childs, Robert, E.; Mansour, Nagi N.
1988-01-01
Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.
Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating
NASA Astrophysics Data System (ADS)
Weng, Rui; Zhang, Haifeng; Liu, Xiaowei
2014-03-01
In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.
Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide.
Dang, Liem X; Schenter, Gregory K
2018-06-14
Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.
Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide
NASA Astrophysics Data System (ADS)
Dang, Liem X.; Schenter, Gregory K.
2018-06-01
Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.
2014-09-30
It is well known that the achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. In this report we systematically study the ion transmission and ionization efficiencies in different ESI-MS interface configurations. The configurations under investigation include a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interfaces with a single emitter and an emitter array, respectively. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuringmore » the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Our experimental results suggest that the overall ion utilization efficiency in the SPIN-MS interface configurations is better than that in the inlet capillary based ESI-MS interface configurations.« less
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.; Tang, Keqi
2014-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations. PMID:25267087
On the ionization and ion transmission efficiencies of different ESI-MS interfaces.
Cox, Jonathan T; Marginean, Ioan; Smith, Richard D; Tang, Keqi
2015-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas-phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method, we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations.
Qiu, Bo; Luo, Hai
2009-05-01
Desorption electrospray ionization (DESI) mass spectrometry has been implemented on a commercial ion-trap mass spectrometer and used to optimize mass spectrometric conditions for DNA nucleobases: adenine, cytosine, thymine, and guanine. Experimental parameters including spray voltage, distance between mass spectrometer inlet and the sampled spot, and nebulizing gas inlet pressure were optimized. Cluster ions including some magic number clusters of nucleobases were observed for the first time using DESI mass spectrometry. The formation of the cluster species was found to vary with the nucleobases, acidification of the spray solvent, and the deposited sample amount. All the experimental results can be explained well using a liquid film model based on the two-step droplet pick-up mechanism. It is further suggested that solubility of the analytes in the spray solvent is an important factor to consider for their studies by using DESI. 2009 John Wiley & Sons, Ltd.
A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...
Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing
NASA Astrophysics Data System (ADS)
Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel
2017-10-01
Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.
Cold Spray Repair of Martensitic Stainless Steel Components
NASA Astrophysics Data System (ADS)
Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.
2014-12-01
The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.
Low pressure electrospray ionization system and process for effective transmission of ions
Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [West Richland, WA; Smith, Richard D [Richland, WA
2012-05-08
Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.
NASA Astrophysics Data System (ADS)
Tamura, Hideki; Itaya, Masanobu
2000-09-01
Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.
NASA Technical Reports Server (NTRS)
Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.
1980-01-01
A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.
Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-06-17
There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.
2014-01-01
This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.
Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S
2015-09-15
Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.
Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.
McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J
2017-12-19
The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.
Interaction of a sodium ion with the water liquid-vapor interface
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)
1989-01-01
Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.
Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying
NASA Astrophysics Data System (ADS)
Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun
2018-06-01
FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.
Lucentini, Luca; Ferretti, Emanuele; Veschetti, Enrico; Achene, Laura; Turrio-Baldassarri, Luigi; Ottaviani, Massimo; Bogialli, Sara
2009-01-01
A simple and sensitive liquid chromatographic-tandem mass spectrometric (LC/MS/MS) method has been developed and validated to confirm and quantify acrylamide monomer (AA) in drinking water using [13C3] acrylamide as internal standard (IS). After a preconcentration by solid-phase extraction with spherical activated carbon, analytes were chromatographed on IonPac ICE-AS1 column (9 x 250 mm) under isocratic conditions using acetonitrile-water-0.1 M formic acid (43 + 52 + 5, v/v/v) as the mobile phase. Analysis was achieved using a triple-quadrupole mass analyzer equipped with a turbo ion spray interface. For confirmation and quantification of the analytes, MS data acquisition was performed in the multireaction monitoring mode, selecting 2 precursor ion to product ion transitions for both AA and IS. The method was validated for linearity, sensitivity, accuracy, precision, extraction efficiency, and matrix effect. Linearity in tap water was observed over the concentration range 0.1-2.0 microg/L. Limits of detection and quantification were 0.02 and 0.1 microg/L, respectively. Interday and intraday assays were performed across 3 validation levels (0.1, 0.5, and 1.5 microg/L). Accuracy (as mean recovery) ranged from 89.3 to 96.2% with relative standard deviation <7.98%. Performance characteristics of this LC/MS/MS method make it suitable for regulatory confirmatory analysis of AA in drinking water in compliance with European Union and U.S. Environmental Protection Agency standards.
Park, Gi Dae; Kang, Yun Chan
2016-03-14
A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of plasma sprayed and explosively consolidated simulated lunar soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, S.J.; Inal, O.T.; Smith, M.F.
1997-06-01
Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibitedmore » good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.« less
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.
2016-04-01
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.
Immobilized aptamer paper spray ionization source for ion mobility spectrometry.
Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T
2017-01-05
A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
The Substitution of Ion Vapor Deposited (IVD) Aluminum for Cadmium
1990-05-25
Coating Spray 1 0.0030 15 nin a 250TF Epoxy Powder Coating Spray 1 0.0030 15 nln @ 250OF Zinc Phosphate Tank Immersion 1 0.0002 Not Required Whitford: P...1candidate protection systems. MCAIR includ ed barrier-type coatings in the corrosion inhibitors ý;iich wMY be controlled by a~r-to-ic regulations that are
Dual mode ion mobility spectrometer and method for ion mobility spectrometry
Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID
2007-08-21
Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Pohorille, Andrew
1991-01-01
Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.
NASA Astrophysics Data System (ADS)
Lüttgens, U.; Dülcks, Th.; Röllgen, F. W.
1992-04-01
The ion formation in both electrohydrodynamic (EH) and electrospray (ES) mass spectrometry (MS) is based on the electrohydrodynamic disintegration of sample solutions which are passed through a capillary biased at high potential. Vacuum is applied in EH and atmospheric pressure in ES MS. For glycerol applied as solvent in EH MS optical studies of its disintegration behavior revealed a change from axial spray modes to a rim emission mode in vacuum and a change from axial spray modes to a droplet ejection mode at atmospheric pressure conditions with increasing potential. EH MS investigations of the ion emission from only one or a few emission sites at the rim of the capillary showed a pulsed ion emission whose frequency increased with applied potential. The pulsed ion emission is attributed to an imbalance between the supply and loss of liquid at an emission site. By lowering the surface tension of glycerol with dodecyl sulfate sodium salt an increase of mass spectral ion intensity by more than one order of magnitude could be observed.
Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-01-01
There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634
Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto
2006-01-01
The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.
A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing.
Tsao, Chia-Wen; Lei, I-Chao; Chen, Pi-Yu; Yang, Yu-Liang
2018-02-12
Mass spectrometry (MS) interfacing technology provides the means for incorporating microfluidic processing with post MS analysis. In this study, we propose a simple piezo-ring-on-chip microfluidic device for the controlled spraying of MALDI-MS targets. This device uses a low-cost, commercially-available ring-shaped piezoelectric acoustic atomizer (piezo-ring) directly integrated into a polydimethylsiloxane microfluidic device to spray the sample onto the MS target substrate. The piezo-ring-on-chip microfluidic device's design, fabrication, and actuation, and its pulsatile pumping effects were evaluated. The spraying performance was examined by depositing organic matrix samples onto the MS target substrate by using both an automatic linear motion motor, and manual deposition. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was performed to analyze the peptide samples on the MALDI target substrates. Using our technique, model peptides with 10 -6 M concentration can be successfully detected. The results also indicate that the piezo-ring-on-chip approach forms finer matrix crystals and presents better MS signal uniformity with little sample consumption compared to the conventional pipetting method.
NASA Astrophysics Data System (ADS)
Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent
2017-06-01
We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Zamarbide, Marta; Manzini, M. Chiara; Nemes, Peter
2017-04-01
Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in <15 min using readily available components, facilitating broad adaptation. Tapered-tip CE-nanoESI generates stable electrospray by reproducibly anchoring the Taylor cone, minimizes sample dilution in the ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in 330,000 theoretical plates and identify 15 amol ( 1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a 3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain.
NASA Astrophysics Data System (ADS)
Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.
2018-02-01
A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.
Martin, Holly J.; Horstemeyer, M. F.; Wang, Paul T.
2010-01-01
The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying.more » The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.« less
Ion sources for electric propulsion
NASA Technical Reports Server (NTRS)
Stuhlinger, E.
1971-01-01
Ion systems, which accelerate ions of Cs, Hg, or colloid particles by electrostatic fields, are furthest advanced and ready for application. Four kinds of ion sources have been developed: The contact ionization source for Cs as propellants, the electron bombardment source for Cs or Hg, the RF ionization source for Hg, and the hollow needle spray nozzle for colloidal glycerol particles. In each case, the ion beam must be neutralized by injection of electrons shortly behind the exit orifice to avoid adverse space charge effects.
Interface characterization of Cu-Mo coating deposited on Ti-Al alloys by arc spraying
NASA Astrophysics Data System (ADS)
Bai, Shengqiang; Li, Fei; Wu, Ting; Yin, Xianglin; Shi, Xun; Chen, Lidong
2015-03-01
Cu-Mo pseudobinary alloys are promising candidates as electrode materials in CoSb3-based skutterudite thermoelectric (TE) devices for TE power generation. In this study, Cu-Mo coatings were deposited onto Ti-Al substrates by applying a dual-wire electric arc spraying coating technique. The microstructure of the surfaces, cross sections and coating interfaces were analyzed by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). Cu-Mo coatings showed a typical banded splat with compact microstructures, and have no coarse pores nor micro-cracks. The thermal shock resistance of the Cu-Mo coating was also investigated to show good combinations with Ti-Al substrates. After 50 thermal shock cycles, there were no cracks observed at the interface. In contrast, the test of the thermal shock resistance of the Cu coating on the Ti-Al substrate was also investigated. Due to a large difference in the thermal expansion coefficients between Cu and Ti-Al alloys, the Cu coating flaked from the Ti-Al substrate completely after 10 thermal shock cycles. The contact resistivity of the Ti-Al/Cu-Mo interface was about 1.6 μΩṡcm2 and this value was unchanged after 50 thermal shock cycles, indicating the low electric resistance and high thermal stability of the Cu-Mo/Ti-Al interface.
Yagasaki, Takuma; Saito, Shinji; Ohmine, Iwao
2010-12-09
The solvation of halide ions at the water/vapor interface is investigated by using molecular dynamics simulations with nonpolarizable molecular mechanical (MM), polarizable MM, and quantum mechanical (QM)/MM methods. The free energy profile of the ion solvation is decomposed into the energy and the entropic contributions along the ion displacement from inside to the surface of water. It is found that the surface affinity of the ion, relative to the bulk value, is determined by a subtle balance between the energetic destabilization and the entropic stabilization with the ion displacement. The amount of energetic destabilization is found to be reduced when nonadditive interactions are included, as in the polarizable MM and QM/MM models. The structure of water around the ion at the interface is also largely modified when the higher order effects are considered. For example, the induced dipole effect enhances the solvation structure around the ion at the interface significantly and thus reduces the amount of entropic stabilization at the interface, relative to in the bulk. It is found that this induced dipole effect causes the slowing in the ion-water hydrogen bond dynamics at the interface. On the other hand, the higher order induced multipole effects in the QM/MM method suppress both the excessive enhancement of the solvation structure and the slowing of the ion-water hydrogen bond dynamics at the interface. The present study demonstrates that not only the induced dipole moment but also the higher order induced multipole moments, which are neglected in standard empirical models, are essential for the correct description of the ion solvation at the water/vapor interface.
NASA Astrophysics Data System (ADS)
Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.
2006-12-01
The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Sovey, J.; Allen, G. P.
1981-01-01
The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.
NASA Astrophysics Data System (ADS)
Ziemian, Constance W.; Wright, Wendelin J.; Cipoletti, David E.
2018-05-01
Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48Mo14Cr15Y2C15B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and adhesion were empirically established. Variability of particle sizes, impact temperatures, and impact velocities resulted in splat morphologies ranging from well-adhered deformed particles to substrate craters formed by rebounded particles and a variety of particle/substrate interface conditions. Transmission electron microscopy studies revealed the presence of a thin oxide layer between well-adhered particles and the substrate, suggesting that bonding is feasible even with an increased oxygen content at the interface. Results indicate that the proper optimization of cold spray process parameters supports the formation of Fe-based metallic glass coatings that successfully retain their amorphous structure, as well as the superior corrosion and wear-resistant properties of the feedstock powder.
NASA Astrophysics Data System (ADS)
Sun, Xiaodong; Zhang, Le
2018-05-01
In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.
Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.
2016-01-01
The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher-pressure regions (e.g., ion source interfaces) of mass spectrometers, thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to-charge ratios. In this study, a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadrupole mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at a pressure of 9–10 Torr. Key factors for the HPIF performance characterized included the effects of RF amplitude, the DC gradient, and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (LC-SRM) analyses of low-abundance peptides spiked into a highly complex mixture was also compared with that obtained using both a commercial S-lens interface and an in-line dual-ion funnel interface. PMID:26107611
Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen
2012-08-15
The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.
Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán
2011-10-15
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society
Electrostatic-spray ionization mass spectrometry sniffing for perfume fingerprinting.
Tobolkina, Elena; Qiao, Liang; Xu, Guobin; Girault, Hubert H
2013-11-15
The perfume market is growing significantly, and it is easy to find imitative fragrances of probably all types of perfume. Such imitative fragrances are usually of lower quality than the authentic ones, creating a possible threat for perfume companies. Therefore, it is important to develop efficient chemical analysis techniques to screen rapidly perfume samples. Electrostatic-spray ionization (ESTASI) was used to analyze directly samples sprayed or deposited on different types of paper. A linear ion trap mass spectrometer was used to detect the ions produced by ESTASI with a modified extended transfer capillary for 'sniffing' ions from the paper. Several commercial perfumes and a model perfume were analyzed by ESTASI-sniffing. The results obtained by paper ESTASI-MS of commercial fragrances were compared with those obtained from ESI-MS. In addition, a commercial fragrance was first nebulized on the hand and then soaked up by blotting paper, which was afterwards placed on an insulating plate for ESTASI-MS analysis. Analysis of peptides and proteins was also performed to show that the paper ESTASI-MS could be used for samples with very different molecular masses. Paper ESTASI-MS yields a rapid fingerprinting characterization of perfume fragrances, avoiding time-consuming sample-preparation steps, and thereby performing a rapid screening in a few seconds. Copyright © 2013 John Wiley & Sons, Ltd.
Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E
2001-01-01
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.
Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; ...
2015-06-24
The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less
Ion dehydration controls adsorption at the micellar interface: hydrotropic ions.
Lima, Filipe S; Andrade, Marcos F C; Mortara, Laura; Gustavo Dias, Luís; Cuccovia, Iolanda M; Chaimovich, Hernan
2017-11-22
The properties of ionic micelles depend on the nature of the counterion, and these effects become more evident as the ion adsorption at the interface increases. Prediction of the relative extent of ion adsorption is required for rational design of ionic micellar aggregates. Unlike the well understood adsorption of monatomic ions, the adsorption of polyatomic ions is not easily predicted. We combined experimental and computational methods to evaluate the affinity of hydrotropic ions, i.e., ions with polar and apolar regions, to the surface of positively charged micelles. We analyzed cationic micelles of dodecyltrimethylammonium and six hydrotropic counterions: methanesulfonate, trifluoromethanesulfonate, benzenesulfonate, acetate, trifluoroacetate and benzoate. Our results demonstrated that the apolar region of hydrotropic ions had the largest influence on micellar properties. The dehydration of the apolar region of hydrotropic ions upon their adsorption at the micellar interface determined the ion adsorption extension, differently to what was expected based on Collins' law of matching affinities. These results may lead to more general models to describe the adsorption of ions, including polyatomic ions, at the micellar interface.
The potential role of sea spray droplets in facilitating air-sea gas transfer
NASA Astrophysics Data System (ADS)
Andreas, E. L.; Vlahos, P.; Monahan, E. C.
2016-05-01
For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings
NASA Astrophysics Data System (ADS)
Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.
2004-08-01
High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.
Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan
2007-12-01
Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.
Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix
2017-10-20
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.
Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.
Effect of layer thickness on the properties of nickel thermal sprayed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id
Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
Petruzziello, Filomena; Grand-Guillaume Perrenoud, Alexandre; Thorimbert, Anita; Fogwill, Michael; Rezzi, Serge
2017-07-18
Analytical solutions enabling the quantification of circulating levels of liposoluble micronutrients such as vitamins and carotenoids are currently limited to either single or a reduced panel of analytes. The requirement to use multiple approaches hampers the investigation of the biological variability on a large number of samples in a time and cost efficient manner. With the goal to develop high-throughput and robust quantitative methods for the profiling of micronutrients in human plasma, we introduce a novel, validated workflow for the determination of 14 fat-soluble vitamins and carotenoids in a single run. Automated supported liquid extraction was optimized and implemented to simultaneously parallelize 48 samples in 1 h, and the analytes were measured using ultrahigh-performance supercritical fluid chromatography coupled to tandem mass spectrometry in less than 8 min. An improved mass spectrometry interface hardware was built up to minimize the post-decompression volume and to allow better control of the chromatographic effluent density on its route toward and into the ion source. In addition, a specific make-up solvent condition was developed to ensure both analytes and matrix constituents solubility after mobile phase decompression. The optimized interface resulted in improved spray plume stability and conserved matrix compounds solubility leading to enhanced hyphenation robustness while ensuring both suitable analytical repeatability and improved the detection sensitivity. The overall developed methodology gives recoveries within 85-115%, as well as within and between-day coefficient of variation of 2 and 14%, respectively.
Ke, Dongxu; Robertson, Samuel F; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita
2017-08-09
Plasma-sprayed hydroxyapatite (HA)-coated titanium implants have been widely used in orthopedic applications due to their inheritance of an excellent mechanical property from titanium and great osteoconductivity from HA. However, the lack of osteoinductivity limits their further applications. In this study, 1 wt % MgO and 0.5 wt % SiO 2 were mixed with HA for making plasma-sprayed coatings on titanium implants. Plasma-sprayed HA- and MgO/SiO 2 -HA-coated titanium implants showed adhesive bond strengths of 25.73 ± 1.92 and 23.44 ± 2.89 MPa, respectively. The presence of MgO and SiO 2 significantly increased the osteogenesis, osseointegration, and bone mineralization of HA-coated titanium implants by the evaluation of their histomorphology after 6, 10, and 14 weeks of implantation in rat distal femoral defects. Implant pushout tests also showed a shear modulus of 149.83 ± 3.69 MPa for MgO/SiO 2 -HA-coated implants after 14 weeks of implantation, compared to 52.68 ± 10.41 MPa for uncoated implants and 83.92 ± 3.68 MPa for pure HA-coated implants; These are differences in the shear modulus of 96% and 56.4%, respectively. This study assesses for the first time the quality of the bone-implant interface of induction plasma-sprayed MgO and SiO 2 binary-doped HA coatings on load-bearing implants compared to bare titanium and pure HA coatings in a quantitative manner. Relating the osseointegration and interface shear modulus to the quality of implant fixation is critical to the advancement and implementation of HA-coated orthopedic implants.
Lubricating system for thermal medium delivery parts in a gas turbine
Mashey, Thomas Charles
2002-01-01
Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.
Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone.
Pillar, Elizabeth A; Guzman, Marcelo I; Rodriguez, Jose M
2013-10-01
Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I(-)) concentration (0.010-100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates and products expected in sea spray for low tropospheric [O3]. The ultrafast oxidation of I(-) by O3 at the air-water interface of microdroplets is evidenced by the appearance of hypoiodous acid (HIO), iodite (IO2(-)), iodate (IO3(-)), triiodide (I3(-)), and molecular iodine (I2). Mass spectrometry measurements reveal an enhancement (up to 28%) in the dissolution of gaseous O3 at the gas-liquid interface when increasing the concentration of NaI or NaBr from 0.010 to 100 μM. The production of iodine species such as HIO and I2 from NaI aerosolized solutions exposed to 50 ppbv O3 can occur at the air-water interface of sea spray, followed by their transfer to the gas-phase, where they contribute to the loss of tropospheric ozone.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahms, Rainer N.
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahms, Rainer N., E-mail: Rndahms@sandia.gov
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less
Dahms, Rainer N.
2016-04-26
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less
Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.
Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.
2017-06-01
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).
Carbon Dioxide Removal by Salty Aerosols
NASA Astrophysics Data System (ADS)
Gokturk, H.
2016-12-01
Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Steered Molecular Dynamics Simulations Predict Conformational Stability of Glutamate Receptors.
Musgaard, Maria; Biggin, Philip C
2016-09-26
The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of dimers. Agonist binding to the LBDs opens the ion channel, and briefly after activation the receptor desensitizes. Several residues at the LBD dimer interface are known to modulate desensitization, and conformational changes around these residues are believed to be involved in the state transition. The general hypothesis is that the interface is disrupted upon desensitization, and structural evidence suggests that the disruption might be substantial. However, when cross-linking the central part of this interface, functional data suggest that the receptor can still undergo desensitization, contradicting the hypothesis of major interface disruption. Here, we illustrate how opening the dimer interface using steered molecular dynamics (SMD) simulations, and analyzing the work values required, provides a quantitative measure for interface stability. For one subtype of glutamate receptors, which is regulated by ion binding to the dimer interface, we show that opening the interface without ions bound requires less work than with ions present, suggesting that ion binding indeed stabilizes the interface. Likewise, for interface mutants with longer-lived active states, the interface is more stable, while the work required to open the interface is reduced for less active mutants. Moreover, a cross-linked mutant can still undergo initial interface opening motions similar to the native receptor and at similar energetic cost. Thus, our results support that interface opening is involved in desensitization. Furthermore, they provide reconciliation of apparently opposing data and demonstrate that SMD simulations can give relevant biological insight into longer time scale processes without the need for expensive calculations.
The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone
NASA Astrophysics Data System (ADS)
Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth
2018-04-01
The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.
Hydrated interfacial ions and electrons.
Abel, Bernd
2013-01-01
Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.
Ozone-mist spray sterilization for pest control in agricultural management
NASA Astrophysics Data System (ADS)
Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun
2013-02-01
We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Characterization and application of droplet spray ionization for real-time reaction monitoring.
Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong
2016-08-01
The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hydrogen permeation properties of plasma-sprayed tungsten*1
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.
1994-09-01
Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.
Spray-applied waterproofing membranes: effective solution for safe and durable tunnel linings?
NASA Astrophysics Data System (ADS)
Pisova, Barbora; Hilar, Matous
2017-09-01
What is the perfect tunnel lining? Cost efficient, easy and fast to build with acceptable environmental impact? How to construct a watertight and safe tunnel lining? Would it be possible to apply a waterproofing system directly onto the rock face just after the tunnel face opening? This might be the system of the future enabling all concrete applied to the rock face to remain permanent. For now though, we would like to focus on an optimisation and examination of currently available technologies and materials, such as tunnel linings with the use of spray-applied waterproofing membranes. In this paper, the failure mechanisms of a tunnel lining with a spray-applied waterproofing membrane are described, the behaviour of spray-applied waterproofing membrane under various conditions (dry, moist, wet) is challenged and the possibilities of interface numerical modelling are presented. Tunnel lining design is mainly dependent on the geological and hydrological conditions in the considered area. The application of tunnel linings with spray-applied waterproofing membrane in both hard rock and soft ground tunnelling, are studied.
Microscopic dynamics of charge separation at the aqueous electrochemical interface.
Kattirtzi, John A; Limmer, David T; Willard, Adam P
2017-12-19
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.
Microscopic dynamics of charge separation at the aqueous electrochemical interface
Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.
2017-01-01
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368
Science of Decision Making: A Data-Modeling Approach
2013-10-01
were separated on a capillary column using the Dionex UltiMate 3000 (Sunnyvale, CA). The resolved peptides were then sprayed into a linear ion trap...database (3–5). These algorithms assign a peptide sequence, along with a matching score of the experimental ion product mass spectrum, to a theoretical ion ...Bacterial Sample Processing Samples were prepared for liquid chromatography (LC) tandem MS (LC– MS/MS) in a similar manner to that previously reported
Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong
2015-05-07
Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (∼70% capacity retention after 250 cycles), good coulombic efficiency (∼98%) and high capacity (∼1500 mA h g(-1)) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.
Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A
2017-10-03
Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.
NASA Astrophysics Data System (ADS)
Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark
2016-06-01
The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.
Liu, Yanhong; Zhang, Weihua; Yang, Yuhui
2008-10-19
A hydrophilic interaction high performance liquid chromatography-tandem mass spectrometric method has been developed and validated for simultaneous quantification of dacarbazine (DTIC) and its terminal metabolite, 5-amino-4-imidazole-carboxamide (AIC) in human plasma. The plasma samples are first extracted by a C8+SCX mixed-mode 96-well plate to extend the extraction stability of DTIC and AIC. The extracted residues are further cleaned by a primary and secondary amine (PSA) adsorbent for minimization of matrix effect. Analyses are done on an Amide-80 HPLC column coupled to a tandem mass spectrometer fitted with an atmospheric pressure turbo ion spray ionization interface in the positive-ion mode. Both DTIC and AIC have reproducible retention times on the Amide-80 HPLC column. This type of column not only has an excellent column life (over 4000 injections), but also has zero carryover effect. The injection volume should be limited at 10 microL or less to avoid the peak splitting. The validated concentration ranges are from 0.5 to 500 ng/mL for DTIC and from 2.0 to 500 ng/mL for AIC. The validated method has been successfully applied to determine the pharmacokinetic profiles for human patients receiving DTIC infusions.
Singh, Bhupinder; Lokhandae, Rama S; Dwivedi, Ashish; Sharma, Sandeep; Dubey, Naveen
2014-04-01
A validated ultra-performance liquid chromatography mass spectrometric method (UPLC-MS/MS) was used for the simultaneous quantitation of candesartan (CN) and hydrochlorothiazide (HCT) in human plasma. The analysis was performed on UPLC-MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM) mode. The analytes were extracted using a liquid-liquid extraction (LLE) method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d 4 and HCT- 13 Cd 2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Phenomenex, Gemini NX (100 mm×4.6 mm, 5 µm) column with organic mixture:buffer solution (80:20, v/v) at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC) and HCT immediate release tablets with reference product in human subjects.
Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-12-27
An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.
NASA Astrophysics Data System (ADS)
Ohta, R.; Fukada, K.; Tashiro, T.; Dougakiuchi, M.; Kambara, M.
2018-03-01
Silicon nanoparticles (Si-NPs) have been produced by plasma spray physical vapor deposition at throughput as high as 1 kg h-1 (17 g min-1) and the effect on the battery performance is investigated. When the Si powder feed-rate is changed from 1 to 17 g min-1, although the average primary particle size increases to 50 nm, the cycle capacity of the batteries using these Si-NPs is improved slightly owing to their less agglomerated structure. In contrast, when Ni is added to Si feedstock, the cycle capacity is improved at 1 g min-1 due to modified Si-NP structure having SiNi2 interface. Whereas, the batteries with the Si-NP produced at 17 g min-1 shows significant decrease in the cycle capacity because of the excess Ni silicide formation that is resulted from the elevated co-condensation point and the increased reaction area at high throughputs despite the constant Ni concentration in the feedstock.
Research and development of plasma sprayed tungsten coating on graphite and copper substrates
NASA Astrophysics Data System (ADS)
Liu, Xiang; Zhang, Fu; Tao, Shunyan; Cao, Yunzhen; Xu, Zengyu; Liu, Yong; Noda, N.
2007-06-01
Vacuum plasma sprayed tungsten coating on graphite and copper substrates has been prepared. VPS-W coated graphite has multilayered silicon and tungsten interface pre-deposited by physical vapor deposition (PVD) and VPS-W coated copper has graded transition interlayer. VPS-W coating was characterized, and then the high heat flux properties of the coating were examined. Experimental results indicated that both VPS-W coated graphite and VPS-W coated copper could endure 1000 cycles without visible failure under a heat flux of approximately 5 MW/m2 absorbed power density and 5 s pulse duration. A comparison between the present VPS-W coated graphite and VPS-W coated carbon fiber composite (CX-2002U) with Re interface made by Plansee Aktiengesllshaft was carried out. Results show that both Re and Si are suitable as intermediate layer for tungsten coating on carbon substrates.
NASA Astrophysics Data System (ADS)
Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.
2003-06-01
Thermal behaviors of tungsten coating of 0.5 mm thick with multi-layers interface of tungsten (W) and rhenium (Re) coated on CFC (CX-2002U) substrate by vacuum plasma spraying (VPS) technique were examined by annealing with an electron beam thermal load facility between 1200 °C and 2000 °C. Change of the microstructure was observed and its chemical composition was analyzed by EDS after annealing. It was observed that remarkable recrystallization of VPS-W occurred above 1400 °C. The structure of the multi-layers of W and Re become obscure by the mutual diffusion of W, Re and C above 1600°C and finally disappeared after annealing at 2000 °C for one hour. Very hard tungsten carbides are formed at the interface above 1600 °C and they were broadening with increasing annealing temperature and time.
Interfacial chemistry of zinc anodes for reinforced concrete structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.
1997-12-01
Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less
Qiao, Lei; Wu, Yuping; Hong, Sheng; Zhang, Jianfeng; Shi, Wei; Zheng, Yugui
2017-11-01
Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of experiments (DOE), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were used to meet the expected objective. It was concluded that the kerosene flow had greater influence on the Rc of the coating and followed by the spray distance and the oxygen flow, respectively. The optimum spray parameters (OSP) were 963L/min for the oxygen flow, 28L/h for the kerosene flow, and 330mm for the spray distance. The Rc of the coating increased with the increase of hardness or the decrease of porosity, and the hardness had a greater influence on Rc than the porosity. The Fe-based coating deposited under the OSP exhibited the best cavitation erosion resistance in distilled water. The cracks initiated at the edge of the pores and the interfaces between the un-melted or half-melted particles, and finally leaded to the delamination of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Spiers Memorial Lecture. Ions at aqueous interfaces.
Jungwirth, Pavel
2009-01-01
Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a local model of interactions of ions with proteins with the aim to rationalize at the molecular level ion-specific Hofmeister effects, e.g. the salting out of proteins.
Skoblin, Michael G; Chudinov, Alexey V; Sulimenkov, Ilia V; Brusov, Vladimir S; Makarov, Alexander A; Wouters, Eloy R; Kozlovskiy, Viacheslav I
2017-08-01
A two-step approach was developed for the study of ion transport in an atmospheric pressure interface. In the first step, the flow in the interface was numerically simulated using the standard gas dynamic package ANSYS CFX 15.0. In the second step, the calculated fields of pressure, temperature, and velocity were imported into a custom-built software application for simulation of ion motion under the influence of both gas dynamic and electrostatic forces. To account for space charge effects in axially symmetric interfaces an analytical expression was used for the Coulomb force. For all other types of interfaces, an iterative approach for the Coulomb force computation was developed. The simulations show that the influence of the space charge is the main contributor to the loss of ion current in the heated capillary. In addition, the maximum ion current which can be transmitted through the heated capillary (0.58 mm inner diameter and 58.5 mm length) is limited to ∼6 nA for ions with m/z = 508 Da and with reduced ion mobility 1.05 cm 2 V -1 s -1 . This limit remains practically constant and independent of the ion current at the entrance of the capillary. For a particular ion type, this limit depends on its m/z ratio and ion mobility.
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
NASA Astrophysics Data System (ADS)
Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong
2015-04-01
Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (~70% capacity retention after 250 cycles), good coulombic efficiency (~98%) and high capacity (~1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (~70% capacity retention after 250 cycles), good coulombic efficiency (~98%) and high capacity (~1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00885a
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese
NASA Astrophysics Data System (ADS)
Grace Victoria, S.; Moses Ezhil Raj, A.
2018-01-01
The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.
NASA Astrophysics Data System (ADS)
Abedi, H. R.; Salehi, M.; Shafyei, A.
2017-10-01
In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.
Ibrahim, Yehia; Tang, Keqi; Tolmachev, Aleksey V.; Shvartsburg, Alexandre A.
2006-01-01
We report on a new electrodynamic ion funnel that operates at a pressure of 30 Torr with no loss of ion transmission. The enhanced performance compared to previous ion funnel designs optimized for pressures of <5 Torr was achieved by reducing the ion funnel capacitance and increasing the RF drive frequency (1.7 MHz) and amplitude (100-170 V peak-to-peak). No degradation of ion transmission was observed for pressures from 2 - 30 Torr. The ability to operate at higher pressure enabled a new tandem ion funnel mass spectrometer (MS) interface design that can accommodate a greater gas load. When combined with a multicapillary inlet, the interface provided more efficient introduction of ions, resulting in a significant enhancement in MS sensitivity and detection limits. PMID:16839773
Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-jun
2018-02-01
In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.
NASA Astrophysics Data System (ADS)
Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.
2018-02-01
The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.
Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.
Morks, M F
2008-01-01
Fused silica powder has been mixed with hydroxyapatite (HA) powder and plasma sprayed by using gas tunnel-type plasma jet. The influence of silica content (10 wt% and 20 wt%) on the microstructure and mechanical properties of HA-silica coatings was investigated. For investigating the microstructure and mechanical properties of HA-silica coatings, SUS 304 stainless steel was used as substrate material. The spraying was carried out on roughened substrate in an atmospheric chamber. Scanning electron microscope micrographs of cross-sectioned HA/SiO(2) coatings showed that the sprayed HA coatings with 10 and 20 wt% SiO(2) have dense structure with low porosity compared to the pure HA coatings. On the other hand, as the amount of silica was increased the coatings became denser, harder and exhibited high abrasive wear resistance. The presence of silica significantly improved the adhesive strength of HA/SiO(2) coatings mainly due to the increase in bonding strength of the coating at the interface.
Effect of 2D WS2 Addition on Cold-Sprayed Aluminum Coating
NASA Astrophysics Data System (ADS)
Loganathan, Archana; Rengifo, Sara; Hernandez, Alexander Franco; Emirov, Yusuf; Zhang, Cheng; Boesl, Benjamin; Karthikeyan, Jeganathan; Agarwal, Arvind
2017-10-01
Tungsten disulfide (WS2) has excellent solid lubrication properties due to its 2D layered structure. This study focuses on depositing Al-2 wt.% WS2 composite coating by cold spray technique. The effect of WS2 addition on the microstructure, mechanical and tribological properties of the composite coatings is examined in the as-deposited and heat-treated conditions. After heat treatment, the coating density increased to 99% with improved intersplat bonding. The microhardness of the heat-treated Al-2 wt.% WS2 coating increased by 56% as compared to the as-sprayed coating. The wear resistance of heat-treated Al-2 wt.% WS2 coating improved by 75% with a synergistic reduction in the coefficient of friction (COF) by 51%. Transmission electron microscopy investigation reveals the presence of layered WS2 within aluminum splats with a strong interface. This study shows that cold spraying can be effectively used to integrate 2D layered WS2 as a solid lubricant in the metallic coatings.
NASA Astrophysics Data System (ADS)
Liang, Y. L.; Wang, Z. B.; Zhang, J.; Zhang, J. B.; Lu, K.
2016-11-01
By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.
Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.
There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Process Research ON Semix Silicon Materials (PROSSM)
NASA Astrophysics Data System (ADS)
Wohlgemuth, J. H.; Warfield, D. B.
1982-02-01
A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.
Process Research ON Semix Silicon Materials (PROSSM)
NASA Technical Reports Server (NTRS)
Wohlgemuth, J. H.; Warfield, D. B.
1982-01-01
A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.
Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.
Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel
2005-04-28
The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.
Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu
2013-01-01
The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441
NASA Astrophysics Data System (ADS)
Elsaß, M.; Frommherz, M.; Oechsner, M.
2018-02-01
In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.
Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings
NASA Astrophysics Data System (ADS)
Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri
2017-12-01
In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.
Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien
2004-11-01
Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of the wet-scrubbers operated in semiconductors manufacturing facilities for inorganic pollutants, this study can be applied to modify the existing wet-scrubbers to enhance the removal efficiencies, especially for low-concentration pollutants.
Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli
2015-01-01
The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.
Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...
2014-08-20
The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less
Numerical modeling of materials processes with fluid-fluid interfaces
NASA Astrophysics Data System (ADS)
Yanke, Jeffrey Michael
A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a preliminary study was conducted to investigate the effects of substrate surface defects and droplet impact angle on the propensity to form columnar porosity.
Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2016-06-01
Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.
NASA Astrophysics Data System (ADS)
Luo, Xiaotao; Smith, Gregory M.; Sampath, Sanjay
2018-02-01
In this two-part study, uniaxial tensile testing was used to evaluate coating/substrate bonding and compared with traditional ASTM C633 bond pull test results for thermal spray (TS) coated steel laminates. In Part I, the rationale, methodology, and applicability of the test to high-velocity TS coatings were demonstrated. In this Part II, the method was investigated for low-velocity TS processes (air plasma spray and arc spray) on equivalent materials. Ni and Ni-5wt.%Al coatings were deposited on steel substrates with three different roughness levels and tested using both uniaxial tensile and ASTM C633 methods. The results indicate the uniaxial tensile approach provides useful information about the nature of the coating/substrate bonding and goes beyond the traditional bond pull test in providing insightful information on the load sharing processes across the interface. Additionally, this proposed methodology alleviates some of the longstanding shortcomings and potentially reduces error associated with the traditional ASTM C633 test. The mechanisms governing the load transfer between the substrate and the coating were investigated, and the influence of Al in the coating material evaluated.
NASA Astrophysics Data System (ADS)
Jakupi, P.; Keech, P. G.; Barker, I.; Ramamurthy, S.; Jacklin, R. L.; Shoesmith, D. W.; Moser, D. E.
2015-11-01
Copper coated steel containers are being developed for the disposal of high level nuclear waste using processes such as cold spray and electrodeposition. Electron Back-Scatter Diffraction has been used to determine the microstructural properties and the quality of the steel-copper coating interface. The influence of the nature of the cold-spray carrier gas as well as its temperature and pressure (velocity) on the coating's plastic strain and recrystallization behaviour have been investigated, and one commercially-produced electrodeposited coating characterized. The quality of the coatings was assessed using the coincident site lattice model to analyse the properties of the grain boundaries. For cold spray coatings the grain size and number of coincident site lattice grain boundaries increased, and plastic strain decreased, with carrier gas velocity. In all cases annealing improved the quality of the coatings by increasing texture and coincidence site-lattices, but also increased the number of physical voids, especially when a low temperature cold spray carrier gas was used. Comparatively, the average grain size and number of coincident site-lattices was considerably larger for the strongly textured electrodeposited coating. Tensile testing showed the electrodeposited coating was much more strongly adherent to the steel substrate.
Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan
2016-01-01
A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088
NASA Astrophysics Data System (ADS)
Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan
2016-04-01
A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g-1, respectively, at a current density of 2 A g-1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.
NASA Astrophysics Data System (ADS)
Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan
2015-06-01
Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.
Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen
2014-01-01
SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions
NASA Astrophysics Data System (ADS)
Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.
2007-05-01
A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.
The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats
NASA Astrophysics Data System (ADS)
Goldbaum, Dina; Shockley, J. Michael; Chromik, Richard R.; Rezaeian, Ahmad; Yue, Stephen; Legoux, Jean-Gabriel; Irissou, Eric
2012-03-01
Cold spray is a complex process where many parameters have to be considered in order to achieve optimized material deposition and properties. In the cold spray process, deposition velocity influences the degree of material deformation and material adhesion. While most materials can be easily deposited at relatively low deposition velocity (<700 m/s), this is not the case for high yield strength materials like Ti and its alloys. In the present study, we evaluate the effects of deposition velocity, powder size, particle position in the gas jet, gas temperature, and substrate temperature on the adhesion strength of cold spayed Ti and Ti6Al4V splats. A micromechanical test technique was used to shear individual splats of Ti or Ti6Al4V and measure their adhesion strength. The splats were deposited onto Ti or Ti6Al4V substrates over a range of deposition conditions with either nitrogen or helium as the propelling gas. The splat adhesion testing coupled with microstructural characterization was used to define the strength, the type and the continuity of the bonded interface between splat and substrate material. The results demonstrated that optimization of spray conditions makes it possible to obtain splats with continuous bonding along the splat/substrate interface and measured adhesion strengths approaching the shear strength of bulk material. The parameters shown to improve the splat adhesion included the increase of the splat deposition velocity well above the critical deposition velocity of the tested material, increase in the temperature of both powder and the substrate material, decrease in the powder size, and optimization of the flow dynamics for the cold spray gun nozzle. Through comparisons to the literature, the adhesion strength of Ti splats measured with the splat adhesion technique correlated well with the cohesion strength of Ti coatings deposited under similar conditions and measured with tubular coating tensile (TCT) test.
NASA Astrophysics Data System (ADS)
Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale
2017-11-01
The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
2008-02-01
reduction in fatigue strength [10]. One common mitigation strategy to the fretting wear/fatigue problem in titanium alloy compressor blades is to...inter-metallic fretting wear between Ti6Al4V ( Titanium , 6% Aluminum, 4% Vanadium) and cold-sprayed, commercially pure nickel coatings. The results...fretting in an aircraft turbine engine is in the compressor section at the blade /disk interface. The blade /disk interface, also known as the
Optimizing Electrospray Interfaces Using Slowly Diverging Conical Duct (ConDuct) Electrodes
Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.
2015-01-01
We demonstrate that the efficiency of ion transmission from atmosphere to vacuum through stainless steel electrodes that contain slowly divergent conical duct (ConDuct) channels can be close to 100%. Here, we explore the properties of 2.5 cm long electrodes with angles of divergence of 0°, 1°, 2°, 3°, 5°, 8°, 13°, and 21°, respectively. The ion transmission efficiency was observed to jump from 10–20% for the 0° (straight) channels to 90–95% for channels with an angle of divergence as small as 1°. Furthermore, the 2–3° ConDuct electrodes produced extraordinarily low divergence ion beams that propagated in a laser-like fashion over long distances in vacuum. To take advantage of these newly discovered properties, we constructed a novel atmosphere-to-vacuum ion interface utilizing a 2° ConDuct as an inlet electrode and compared its ion transmission efficiency with that of the interface used in the commercial (Thermo) Velos Orbitrap and Q Exactive mass spectrometers. We observed that the ConDuct interface transmitted up to 17 times more ions than the commercial reference interface and also yielded improved signal-to-noise mass spectra of peptides. We infer from these results that the performance of many current atmosphere-tovacuum interfaces utilizing metal capillaries can be substantially improved by replacing them with 1° or 2° metal ConDuct electrodes, which should preserve the convenience of supplying ion desolvation energy by heating the electrode while greatly increasing the efficiency of ion transmission into the mass spectrometer. PMID:25667060
Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John
2014-03-01
The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.
DOT National Transportation Integrated Search
2002-12-01
Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Resea...
Szymańska, Emilia; Szekalska, Marta; Czarnomysy, Robert; Lavrič, Zoran; Srčič, Stane; Miltyk, Wojciech; Winnicka, Katarzyna
2016-01-01
Chitosan microparticulate delivery systems containing clotrimazole were prepared by a spray drying technique using glycerol 2-phosphate as an ion cross-linker. The impact of a cross-linking ratio on microparticle characteristics was evaluated. Drug-free and drug-loaded unmodified or ion cross-linked chitosan microparticles were examined for the in vitro cytotoxicity in VK2/E6E7 human vaginal epithelial cells. The presence of glycerol 2-phosphate influenced drug loading and encapsulation efficacy in chitosan microparticles. By increasing the cross-linking ratio, the microparticles with lower diameter, moisture content and smoother surface were observed. Mucoadhesive studies displayed that all formulations possessed mucoadhesive properties. The in vitro release profile of clotrimazole was found to alter considerably by changing the glycerol 2-phosphate/chitosan ratio. Results from cytotoxicity studies showed occurrence of apoptotic cells in the presence of chitosan and ion cross-linked chitosan microparticles, followed by a loss of membrane potential suggesting that cell death might go through the mitochondrial apoptotic pathway. PMID:27690062
NASA Astrophysics Data System (ADS)
Raguette, Lauren Elizabeth
Rechargeable lithium-ion battery technology is providing a revolution in energy storage. However, in order to fully realize this revolution, a better understanding is required of both the bulk properties of battery materials and their interfaces. This work endeavors to use classical molecular dynamics (MD) to investigate the electrochemical interfaces present in lithium-ion batteries to understand the impact of chemical reactions on ion transport. When batteries containing cyclic carbonates and lithium salts are charge cycled, both species can react with the electrodes to form complex solid mixtures at the electrode/electrolyte interface, known as a solid electrolyte interphase (SEI). While decades of experiments have yielded significant insights into the structure of these films and their chemical composition, there remains a lack of connection between the properties of the films and observed ion transport when interfaced with the electrolyte. A combination of MD and enhanced sampling methods will be presented to elucidate the link between the SEI, containing mixtures of dilithium ethylene dicarbonate (Li2EDC), lithium fluoride, and lithium carbonate, and battery performance. By performing extensive free energy calculations, clarity is provided to the impact of ion desolvation on the measured resistance to ion transport within lithium ion batteries.
NASA Astrophysics Data System (ADS)
Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.
2017-09-01
Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.
NASA Astrophysics Data System (ADS)
Tan, Adrian Wei-Yee; Sun, Wen; Phang, Yun Peng; Dai, Minghui; Marinescu, Iulian; Dong, Zhili; Liu, Erjia
2017-10-01
Cold spray has the potential to restore damaged aerospace components made from titanium alloy, Ti6Al4V at low temperature (200-400 °C). Traverse scanning speed during deposition is one of the key factors that affect the quality of the Ti6Al4V coatings as it influences the thermal build-up and coating thickness per pass. As there are fewer reported studies on this, this work investigated the effects of different traverse scanning speeds (100, 300 and 500 mm/s) of cold spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings. The cross-sectional analysis showed coating porosities reduces with slower traverse speed, from 3.2 to 0.5%. In addition, the microhardness of the coatings increased from about 361-385 HV due to strain hardening. However, the adhesion strength of the coatings to the substrates significantly decreased with reduced traverse speed from about 60 MPa (glue failure) at 500 mm/s to 2.5 MPa (interface failure) at 100 mm/s. Therefore, this study revealed that the control of heat build-up and thickness per pass during the cold spray deposition of the Ti6Al4V coatings is crucial to attain the desirable properties of the coatings.
NASA Astrophysics Data System (ADS)
Bakshi, Srinivasa Rao
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K.
2015-10-28
W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayermore » W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.« less
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-03-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-01-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735
Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux
NASA Astrophysics Data System (ADS)
Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda
2003-08-01
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.
NASA Astrophysics Data System (ADS)
Mei, Hui
2012-06-01
The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.
Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.
1984-01-01
ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.
Optimizing Electrospray Interfaces Using Slowly Diverging Conical Duct (ConDuct) Electrodes
NASA Astrophysics Data System (ADS)
Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.
2015-04-01
We demonstrate that the efficiency of ion transmission from atmosphere to vacuum through stainless steel electrodes that contain slowly divergent conical duct (ConDuct) channels can be close to 100%. Here, we explore the properties of 2.5-cm-long electrodes with angles of divergence of 0°, 1°, 2°, 3°, 5°, 8°, 13°, and 21°, respectively. The ion transmission efficiency was observed to jump from 10-20% for the 0° (straight) channels to 90-95% for channels with an angle of divergence as small as 1°. Furthermore, the 2-3° ConDuct electrodes produced extraordinarily low divergence ion beams that propagated in a laser-like fashion over long distances in vacuum. To take advantage of these newly discovered properties, we constructed a novel atmosphere-to-vacuum ion interface utilizing a 2° ConDuct as an inlet electrode and compared its ion transmission efficiency with that of the interface used in the commercial (Thermo Fisher Scientific, San Jose, CA, USA) Velos Orbitrap and Q Exactive mass spectrometers. We observed that the ConDuct interface transmitted up to 17 times more ions than the commercial reference interface and also yielded improved signal-to-noise mass spectra of peptides. We infer from these results that the performance of many current atmosphere-to-vacuum interfaces utilizing metal capillaries can be substantially improved by replacing them with 1° or 2° metal ConDuct electrodes, which should preserve the convenience of supplying ion desolvation energy by heating the electrode while greatly increasing the efficiency of ion transmission into the mass spectrometer.
Carnerup, M A; Akesson, B; Jönsson, B A
2001-09-15
A method for simultaneous determination of 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) was developed. These compounds are metabolites from N-methyl-2-pyrrolidone (NMP), a powerful and widely used organic solvent. 5-HNMP and 2-HMSI were purified from plasma and urine by solid-phase extraction using Isolute ENV+ columns, and analysed by liquid chromatography coupled to a mass spectrometer fitted with an atmospheric pressure turbo ion spray ionisation interface in the positive ion mode. The method was validated for plasma and urine concentrations from 0.12 to 25 microg/ml. The recoveries for 5-HNMP and 2-HMSI in plasma were 99 and 98%, respectively, and in urine 111 and 106%, respectively. For 5-HNMP and 2-HMSI, the within-day precision in plasma was 1-4 and 3-6%, respectively, and in urine 2-12 and 3-10%, respectively. The corresponding data for the between-day precision was 5 and 3-6%, respectively, and 4-6 and 7-8%, respectively. The detection limit for 5-HNMP was 4 ng/ml in plasma and 120 ng/ml in urine. For 2-HMSI, it was 5 ng/ml in plasma and 85 ng/ml in urine. The method is applicable for analysis of plasma and urine samples from workers exposed to NMP.
NASA Astrophysics Data System (ADS)
Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.
1991-12-01
An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).
Simas, Rosineide C; Catharino, Rodrigo R; Cunha, Ildenize B S; Cabral, Elaine C; Barrera-Arellano, Daniel; Eberlin, Marcos N; Alberici, Rosana M
2010-04-01
A fast and reliable method is presented for the analysis of vegetable oils. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to efficiently desorb and ionize the main oil constituents from an inert surface under ambient conditions and to provide comprehensive triacylglyceride (TAG) and free fatty acid (FFA) profiles detected mainly as either [TAG + Na](+) or [FFA-H](-) ions. EASI(+/-)-MS analysis is simple, easily implemented, requires just a tiny droplet of the oil and is performed without any pre-separation or chemical manipulation. It also causes no fragmentation of TAG ions hence diacylglyceride (DAG) and monoacylglyceride (MAG) profiles and contents can also be measured. The EASI(+/-)-MS profiles of TAG and FFA permit authentication and quality control and can be used, for instance, to access levels of adulteration, acidity, oxidation or hydrolysis of vegetable oils in general.
The impact of atomization on the surface composition of spray-dried milk droplets.
Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia
2016-04-01
The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhandarkar, Y. V.; Ghaisas, S. V.; Ogale, S. B.
1988-07-01
Ion-beam mixing at an Fe:metallic glass (Fe67Co18B14Si1) interface is studied by employing the technique of conversion electron Mössbauer spectroscopy (CEMS). A 230-Å-thick overlayer of iron (enriched to 33% in the concentration of 57Fe Mössbauer isotope) was deposited on the shiny surface of metallic glass and such composites were bombarded with 100-keV Kr+ ions at dose values in the range between 1×1015 and 2×1016 ions/cm2. The transformations in the local atomic arrangements across the interface were investigated by monitoring the changes in the hyperfine-interaction parameters. It is shown that mixing leads to significant changes in the composition, in the vicinity of the interface as a function of the ion dose. At low dose (1×1015 ions/cm2) the local atomic coordination is found to be rich in the transition-metal concentration, while at a higher dose (2×1016 ions/cm2) it is observed to be rich in the boron concentration. Interestingly, at an intermediate dose 1×1016 ions/cm2 the composite near the interface region partially crystallizes and this structural state is found to revert back to the amorphous state upon thermal annealing at 300 °C. The observations made on the basis of CEMS are well supported by x-ray diffraction measurements.
Paper Spray Mass Spectrometry for the Forensic Analysis of Black Ballpoint Pen Inks
NASA Astrophysics Data System (ADS)
Amador, Victoria Silva; Pereira, Hebert Vinicius; Sena, Marcelo Martins; Augusti, Rodinei; Piccin, Evandro
2017-09-01
This article describes the use of paper spray mass spectrometry (PS-MS) for the direct analysis of black ink writings made with ballpoint pens. The novel approach was developed in a forensic context by first performing the classification of commercially available ballpoint pens according to their brands. Six of the most commonly worldwide utilized brands (Bic, Paper Mate, Faber Castell, Pentel, Compactor, and Pilot) were differentiated according to their characteristic chemical patterns obtained by PS-MS. MS on the negative ion mode at a mass range of m/ z 100-1000 allowed prompt discrimination just by visual inspection. On the other hand, the concept of relative ion intensity (RII) and the analysis at other mass ranges were necessary for the differentiation using the positive ion mode. PS-MS combined with partial least squares (PLS) was utilized to monitor changes on the ink chemical composition after light exposure (artificial aging studies). The PLS model was optimized by variable selection, which allowed the identification of the most influencing ions on the degradation process. The feasibility of the method on forensic investigations was also demonstrated in three different applications: (1) analysis of overlapped fresh ink lines, (2) analysis of old inks from archived documents, and (3) detection of alterations (simulated forgeries) performed on archived documents. [Figure not available: see fulltext.
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots
2014-01-01
The effect of Sb spray prior to the capping of a GaAs layer on the structure and properties of InAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) is studied by cross-sectional high-resolution transmission electron microscopy (HRTEM). Compared to the typical GaAs-capped InAs/GaAs QDs, Sb-sprayed QDs display a more uniform lens shape with a thickness of about 3 ~ 4 nm rather than the pyramidal shape of the non-Sb-sprayed QDs. Particularly, the dislocations were observed to be passivated in the InAs/GaAs interface region and even be suppressed to a large extent. There are almost no extended dislocations in the immediate vicinity of the QDs. This result is most likely related to the formation of graded GaAsSb immediately adjacent to the InAs QDs that provides strain relief for the dot/capping layer lattice mismatch. PACS 81.05.Ea; 81.07.-b; 81.07.Ta PMID:24948897
NASA Astrophysics Data System (ADS)
Liang, Y. H.
2017-06-01
This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.
2015-01-01
We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term “ConDuct”, uses a conductive plastic pipette tip containing a ≈1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (< 1°) and persisted for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2–3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length. PMID:25588722
Combined electrophoresis-electrospray interface and method
Smith, Richard D. [Richland, WA; Udseth, Harold R. [Richland, WA; Olivares, Jose A. [Los Alamos, NM
1994-10-18
A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.
Combined electrophoresis-electrospray interface and method
Smith, R.D.; Udseth, H.R.; Olivares, J.A.
1994-10-18
A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.
Combined electrophoresis-electrospray interface and method
Smith, R.P.; Udseth, H.R.; Olivares, J.A.
1989-12-05
A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.
Combined electrophoresis-electrospray interface and method
Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.
1989-01-01
A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.
NASA Astrophysics Data System (ADS)
Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady
2018-02-01
Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.
DOT National Transportation Integrated Search
2012-05-01
Since the late 1970s, FDOT : has applied an interlayer : of Asphalt Rubber : Membrane Interlayer : (ARMI) to asphalt roadway : surfaces. ARMI layers are : constructed by spraying : asphalt rubber binder onto : the asphalt, covering the : layer with n...
Jet Simulation in a Diesel Engine
NASA Astrophysics Data System (ADS)
Xu, Zhiliang
2005-03-01
We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. To resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. To simulate the spray formation, we model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. The formation of the cavitation is represented by the dynamic creation of vapor bubbles. On the liquid/vapor interface, a phase transition problem is solved numerically. The phase transition is governed by the compressible Euler equations with heat diffusion. Our solution is a new description for the Riemann problem associated with a phase transition in a fully compressible fluid.
Microstructured Polymer Blend Surfaces Produced by Spraying Functional Copolymers and Their Blends
Vargas-Alfredo, Nelson; Rodríguez Hernández, Juan
2016-01-01
We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene-b-poly(dimethylaminoethyl methacrylate) are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle. PMID:28773555
NASA Astrophysics Data System (ADS)
Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.
2018-05-01
Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.
Fast ion transport at a gas-metal interface
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-11-06
Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less
Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko
2007-04-15
This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.
NASA Astrophysics Data System (ADS)
Gupta, Mohit; Kumara, Chamara; Nylén, Per
2017-08-01
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.
Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix
2016-09-07
One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.
Tsui, Y C; Doyle, C; Clyne, T W
1998-11-01
Heat treatment and the introduction of a Ti bond coat have been applied to hydroxyapatite (HA) coatings sprayed using different plasma powers and gas mixtures. Attempts were made in this way to achieve optimal coating properties for orthopaedic implants. In particular, the effects on the degree of crystallinity, the adhesion, the OH ion content and the purity were evaluated. Heat treatment at 700 C for 1 h in air proved to be effective in increasing the crystallinity, regaining the OH- ion and removing other non-HA compounds, although it caused a significant decrease in the degree of adhesion (interfacial fracture toughness) for those specimens sprayed at high powers. This heat treatment was found to induce significant transformation of amorphous HA to the crystalline form, while not detrimentally changing the properties of the underlying Ti-6Al-4V substrates. Precoating with a 100 microm Ti layer increased the adhesion of the HA coatings on Ti-6Al-4V substrates, primarily by providing a rougher surface and promoting better mechanical interlocking. Changes in coating properties during immersion in biological fluids were also studied and were found to depend critically on the chemical composition of the fluids. Small precipitates formed on the coating surfaces when immersed in Ringers solution. These might account for the apparent drop in the degree of crystallinity when measured using X-ray diffraction. A significant drop in the interfacial adhesion was found for those coatings sprayed at high powers. This could be offset by prior precoating with a titanium bond coat and suitable heat treatment. In summary, the following processing sequence is suggested in order to achieve optimum coating properties: precoating the substrate with a layer of Ti (approximately 100 microm), spraying HA at a sufficiently high-power level (depending on particle size and gas mixture) and heat treatment at 700 degrees C for 1 h in air.
DOT National Transportation Integrated Search
2012-01-01
Since the late 1970s, FDOT : has applied an interlayer : of Asphalt Rubber : Membrane Interlayer : (ARMI) to asphalt roadway : surfaces. ARMI layers are : constructed by spraying : asphalt rubber binder onto : the asphalt, covering the : layer with n...
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
We explore anion-induced interface fluctuations near protein–water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler (J. Phys. Chem. B2010, 114, 1954−195820055377). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein–water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid–vapor interfaces. We find that as in the case of a pure liquid–vapor interface, at the hydrophobic protein–water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid–vapor interfaces, we find that iodide induces larger fluctuations of the protein–water interface than chloride. PMID:24701961
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.
Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.
2014-12-01
Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.
Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A
2013-12-01
The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo
2011-12-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.
2011-01-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653
Electrochemical sensing of ammonium ion at the water/1,6-dichlorohexane interface.
Ribeiro, José A; Silva, F; Pereira, Carlos M
2012-01-15
In this work, ion transfer and facilitated ion transfer of ammonium ion by a lipophilic cyclodextrin is investigated at the water/1,6-dichlorohexane micro-interface, using electrochemical approaches (cyclic voltammetry, differential pulse voltammetry and square wave voltammetry). The association constant has been obtained for the complex between ammonium ion and the cyclodextrin. Experimental conditions for the analytical determination of ammonium ion were established and a detection limit of 0.12 μM was obtained. The amperometric sensor gave a current response proportional to the ammonium ion concentration in the range from 4.2 to 66 μM. Copyright © 2011 Elsevier B.V. All rights reserved.
Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.
Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y
2015-12-03
Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.
NASA Astrophysics Data System (ADS)
Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.
2016-02-01
We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.
Interface magnetism and electronic structure: ZnO(0001)/Co3O4 (111)
NASA Astrophysics Data System (ADS)
Kupchak, I. M.; Serpak, N. F.; Shkrebtii, A.; Hayn, R.
2018-03-01
We have studied the structural, electronic, and magnetic properties of spinel Co3O4 (111) surfaces and their interfaces with ZnO(0001) using density functional theory within the generalized gradient approximation with the on-site Coulomb repulsion term. Two possible forms of spinel surface, containing Co2 + or Co3 + ions and terminated with either cobalt or oxygen ions, were considered, as well as their interface with zinc oxide. Our calculations demonstrate that Co3 + ions attain nonzero magnetic moments at the surface and interface, in contrast to the bulk, where they are not magnetic, leading to the ferromagnetic ordering. Since heavily Co doped ZnO samples can contain a Co3O4 secondary phase, such magnetic ordering at the interface might explain the origin of the magnetism in such diluted magnetic semiconductors.
Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA
2008-03-04
The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.
Focused Ion Beam Methods for Research and Control of HEMT Fabrication
NASA Astrophysics Data System (ADS)
Pevtsov, E. Ph; Bespalov, A. V.; Demenkova, T. A.; Luchnikov, P. A.
2017-04-01
The combination of ion-beam spraying and raster electronic microscopy allows to receive images of sections of defects of the growth nature origin in epitaxial films on GaN basis with nanodimensional permission, to carry out their analysis and classification irrespective of conditions of receiving. Results of application of the specified methods for the analysis of technological operations when forming the microwave transistors are considered: formations of locks, receiving of holes and drawing of contacts.
Stockmann, T Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng
2014-04-22
A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614(+)) and tetrakis(pentafluorophenyl)borate anion (TB(-)) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. (137)Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N'-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6×10(11) at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δ(α), with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δ(α) of 2 and 8.2×10(7), respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass spectra obtained by the direct injection of an emulsified water-organic solvent mixture into an electron spray ionization mass spectrometer. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Katranidis, Vasileios; Gu, Sai; Cox, David C.; Whiting, Mark J.; Kamnis, Spyros
2018-05-01
The thermal dissolution and decarburization of WC-based powders that occur in various spray processes are a widely studied phenomenon, and mechanisms that describe its development have been proposed. However, the exact formation mechanism of decarburization products such as metallic W is not yet established. A WC-17Co coating is sprayed intentionally at an exceedingly long spray distance to exaggerate the decarburization effects. Progressive xenon plasma ion milling of the examined surface has revealed microstructural features that would have been smeared away by conventional polishing. Serial sectioning provided insights on the three-dimensional structure of the decarburization products. Metallic W has been found to form a shell around small splats that did not deform significantly upon impact, suggesting that its crystallization occurs during the in-flight stage of the particles. W2C crystals are more prominent on WC faces that are in close proximity with splat boundaries indicating an accelerated decarburization in such sites. Porosity can be clearly categorized in imperfect intersplat contact and oxidation-generated gases via its shape.
Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung
2012-07-01
A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.
Application of paper spray ionization for explosives analysis.
Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A
2017-10-15
A desired feature in the analysis of explosives is to decrease the time of the entire analysis procedure, including sampling. A recently utilized ambient ionization technique, paper spray ionization (PSI), provides the possibility of combining sampling and ionization. However, an interesting phenomenon that occurs in generating negatively charged ions pose some challenges in applying PSI to explosives analysis. The goal of this work is to investigate the possible solutions for generating explosives ions in negative mode PSI. The analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) was performed. Several solvent systems with different surface tensions and additives were compared to determine their effect on the ionization of explosives. The solvents tested include tert-butanol, isopropanol, methanol, and acetonitrile. The additives tested were carbon tetrachloride and ammonium nitrate. Of the solvents tested, isopropanol yielded the best results. In addition, adding ammonium nitrate to the isopropanol enhanced the analyte signal. Experimentally determined limits of detection (LODs) as low as 0.06 ng for PETN, on paper, were observed with isopropanol and the addition of 0.4 mM ammonium nitrate as the spray solution. In addition, the explosive components of two plastic explosive samples, Composition 4 and Semtex, were successfully analyzed via surface sampling when using the developed method. The analysis of explosives using PSI-MS in negative ion mode was achieved. The addition of ammonium nitrate to isopropanol, in general, enhanced the analyte signal and yielded better ionization stability. Real-world explosive samples were analyzed, which demonstrates one of the potential applications of PSI-MS analysis. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.; ...
2017-11-17
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan
2015-01-01
The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications. PMID:28706626
Yang, Quan; Achenie, Luke E K
2018-04-18
Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.
NASA Astrophysics Data System (ADS)
Karnes, John J.; Benjamin, Ilan
2016-07-01
Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, energetics, and structural fluctuations that accompany the transfer of a small hydrophilic ion (Cl-) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the energetic costs of interfacial deformation and co-transfer of hydration waters during the ion transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the ion transfer.
Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J
2017-11-21
Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.
Atomization of a High Speed Jet
NASA Astrophysics Data System (ADS)
Xu, Zhiliang; Samulyak, Roman; Li, Xiaolin; Tzanos, Constantine
2005-11-01
We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. Many parameters such as the nuzzle shape, the velocity and the turbulence of the jet and the thermodynamic states of liquid and gas could be contributing causes for jet breakup. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. In order to resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. We model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. On the liquid/vapor interface, a phase transition problem is solved numerically.
Assessing sea wave and spray effects on Marine Boundary Layer structure
NASA Astrophysics Data System (ADS)
Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George
2017-04-01
Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.
NASA Astrophysics Data System (ADS)
Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.
2018-02-01
In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
NASA Astrophysics Data System (ADS)
Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.
2017-12-01
Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.
Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung
2018-03-20
A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9 M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.
Unexpected Analyte Oxidation during Desorption Electrospray Ionization - Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasilis, Sofie P; Kertesz, Vilmos; Van Berkel, Gary J
2008-01-01
During the analysis of surface spotted analytes using desorption electrospray ionization mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by desorption electrospray ionization mass spectrometry was studied. Simple exposure of the samples to air and to ambient lighting increased the extent of oxidation. Increased spray voltage lead also to increased analyte oxidation, possibly as a resultmore » of oxidative species formed electrochemically at the emitter electrode or in the gas - phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for analysis of deposited analyte having a relatively low surface concentration. Increasing spray solvent flow rate and addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified and DESI-MS operational recommendations to avoid these unwanted reactions are suggested.« less
Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian
2015-01-01
Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
NASA Astrophysics Data System (ADS)
He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2012-11-01
We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.
String flash-boiling in gasoline direct injection simulations with transient needle motion
Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...
2016-09-06
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less
A deep look into the spray coating process in real-time—the crucial role of x-rays
NASA Astrophysics Data System (ADS)
Roth, Stephan V.
2016-10-01
Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.
String flash-boiling in gasoline direct injection simulations with transient needle motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less
NASA Astrophysics Data System (ADS)
Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua
2013-06-01
The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.
Ion mediated targeting of cells with nanoparticles
NASA Astrophysics Data System (ADS)
Maheshwari, Vivek; Fu, Jinlong
2010-03-01
In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.
Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2011-05-01
A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates.
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-04-21
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.
Spheroidization of glass powders for glass ionomer cements.
Gu, Y W; Yap, A U J; Cheang, P; Kumar, R
2004-08-01
Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wick, Collin D.; Dang, Liem X.
NaCl pairing and dissociation was investigated at the CCl 4-water and 1,2-dichloroethane (DCE)-water interfaces, and compared with dissociation results in the bulk and at the air-water interface utilizing polarizable potentials. The transition path sampling methodology was used to calculate the rate constant for dissociation, while umbrella sampling was used to map out a free energy profile for NaCl dissociation. The results found that ion pairing was weakest at the organic-water interfaces, even weaker than in the water bulk. This is in contrast to what has been observed previously for the air-water interface, in which NaCl ion paring is stronger thanmore » in the bulk [Wick, C.D. J. Phys. Chem. C, 2009, 113, 6356]. The consequence of the weaker binding at the organic-water interfaces was that ion dissociation was faster than in the other systems studied. Interactions of the organic phase with the ions influenced the magnitude of the Cl - dipole moment, and at the organic-water interfaces, the average Cl - dipole was found to be lower than at the air-water interface, weakening interactions with Na +. Work was performed at the Pacific Northwest National Laboratory (PNNL) was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). PNNL is operated by Battelle for the DOE.« less
Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald
2011-12-06
Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation. © 2011 American Chemical Society
A review on methods of regeneration of spent pickling solutions from steel processing.
Regel-Rosocka, Magdalena
2010-05-15
The review presents various techniques of regeneration of spent pickling solutions, including the methods with acid recovery, such as diffusion dialysis, electrodialysis, membrane electrolysis and membrane distillation, evaporation, precipitation and spray roasting as well as those with acid and metal recovery: ion exchange, retardation, crystallization solvent and membrane extraction. Advantages and disadvantages of the techniques are presented, discussed and confronted with the best available techniques requirements. Most of the methods presented meet the BAT requirements. The best available techniques are electrodialysis, diffusion dialysis and crystallization; however, in practice spray roasting and retardation/ion-exchange are applied most frequently for spent pickling solution regeneration. As "waiting for their chance" solvent extraction, non-dispersive solvent extraction and membrane distillation should be indicated because they are well investigated and developed. Environmental and economic benefits of the methods presented in the review depend on the cost of chemicals and wastewater treatment, legislative regulations and cost of modernization of existing technologies or implementation of new ones. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Hooked differential mobility spectrometry apparatus and method therefore
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.
NASA Astrophysics Data System (ADS)
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
NASA Astrophysics Data System (ADS)
Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert
2018-01-01
Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.
Lee, Seung Jong; Kim, Hye Jin; Hwang, Tae Hoon; Choi, Sunghun; Park, Sung Hyeon; Deniz, Erhan; Jung, Dae Soo; Choi, Jang Wook
2017-03-08
Despite the high theoretical capacity, silicon (Si) anodes in lithium-ion batteries have difficulty in meeting the commercial standards in various aspects. In particular, the huge volume change of Si makes it very challenging to simultaneously achieve high initial Coulombic efficiency (ICE) and long-term cycle life. Herein, we report spray pyrolysis to prepare Si-SiO x composite using an aqueous precursor solution containing Si nanoparticles, citric acid, and sodium hydroxide (NaOH). In the precursor solution, Si nanoparticles are etched by NaOH with the production of [SiO 4 ] 4- . During the dynamic course of spray pyrolysis, [SiO 4 ] 4- transforms to SiO x matrix and citric acid decomposes to carbon surface layer with the assistance of NaOH that serves as a decomposition catalyst. As a result, a Si-SiO x composite, in which Si nanodomains are homogeneously embedded in the SiO x matrix with carbon surface layer, is generated by a one-pot process with a residence time of only 3.5 s in a flow reactor. The optimal composite structure in terms of Si domain size and Si-to-O ratio exhibited excellent electrochemical performance, such as reversible capacity of 1561.9 mAh g -1 at 0.06C rate and ICE of 80.2% and 87.9% capacity retention after 100 cycles at 1C rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Wei; Yu, Hao; Luo, Guangming
2014-09-11
Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous–organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance. Although state-of-the-art X-ray scatteringmore » is uniquely capable of probing molecular ordering at a liquid–liquid interface with subnanometer spatial resolution, utilizing this capability to investigate interfacial dynamical processes of short temporal duration remains a challenge. We show that a temperature-driven adsorption transition can be used to turn the extraction on and off by controlling adsorption and desorption of extractants at the oil–water interface. Lowering the temperature through this transition immobilizes a supramolecular ion–extractant complex at the interface during the extraction of rare earth erbium ions. Under the conditions of these experiments, the ion–extractant complexes condense into a two-dimensional inverted bilayer, which is characterized on the molecular scale with synchrotron X-ray reflectivity and fluorescence measurements. Raising the temperature above the transition leads to Er ion extraction as a result of desorption of ion–extractant complexes from the interface into the bulk organic phase. XAFS measurements of the ion–extractant complexes in the bulk organic phase demonstrate that they are similar to the interfacial complexes.« less
Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode
NASA Astrophysics Data System (ADS)
Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong
Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.
Development of a Simple Dipstick Assay for Operational Monitoring of DDT.
Ismail, Hanafy M; Kumar, Vijay; Singh, Rudra P; Williams, Christopher; Shivam, Pushkar; Ghosh, Ayan; Deb, Rinki; Foster, Geraldine M; Hemingway, Janet; Coleman, Michael; Coleman, Marlize; Das, Pradeep; Paine, Mark J I
2016-01-01
Indoor residual spraying (IRS) of DDT is used to control visceral leishmaniasis (VL) in India. However, the quality of spraying is severely compromised by a lack of affordable field assays to monitor target doses of insecticide. Our aim was to develop a simple DDT insecticide quantification kit (IQK) for monitoring DDT levels in an operational setting. DDT quantification was based on the stoichiometric release of chloride from DDT by alkaline hydrolysis and detection of the released ion using Quantab chloride detection strips. The assay was specific for insecticidal p,p`-DDT (LoQ = 0.082 g/m2). Bostik discs were effective in post spray wall sampling, extracting 25-70% of active ingredient depending on surface. Residual DDT was sampled from walls in Bihar state in India using Bostik adhesive discs and DDT concentrations (g p,p`-DDT/m2) were determined using IQK and HPLC (n = 1964 field samples). Analysis of 161 Bostik samples (pooled sample pairs) by IQK and HPLC produced excellent correlation (R2 = 0.96; Bland-Altman bias = -0.0038). IQK analysis of the remaining field samples matched HPLC data in identifying households that had been under sprayed, in range or over sprayed. A simple dipstick assay has been developed for monitoring DDT spraying that gives comparable results to HPLC. By making laboratory-based analysis of DDT dosing accessible to field operatives, routine monitoring of DDT levels can be promoted in low- and middle- income countries to maximise the effectiveness of IRS.
NASA Astrophysics Data System (ADS)
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
Novel Method of Aluminum to Copper Bonding by Cold Spray
NASA Astrophysics Data System (ADS)
Fu, Si-Lin; Li, Cheng-Xin; Wei, Ying-Kang; Luo, Xiao-Tao; Yang, Guan-Jun; Li, Chang-Jiu; Li, Jing-Long
2018-04-01
Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.
NASA Astrophysics Data System (ADS)
Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile
2017-02-01
Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.
Chloride ions induce order-disorder transition at water-oxide interfaces
NASA Astrophysics Data System (ADS)
Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.
2013-12-01
Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
Measuring Sodium Chloride Contents of Aerosols
NASA Technical Reports Server (NTRS)
Sinha, M. P.; Friedlander, S. K.
1986-01-01
Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.
NASA Astrophysics Data System (ADS)
Balani, Kantesh
Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.
Mass Spectrometry in the Home and Garden
NASA Astrophysics Data System (ADS)
Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham
2015-02-01
Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2017-12-01
This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.
Focused analyte spray emission apparatus and process for mass spectrometric analysis
Roach, Patrick J [Kennewick, WA; Laskin, Julia [Richland, WA; Laskin, Alexander [Richland, WA
2012-01-17
An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.
Tracking ion irradiation effects using buried interface devices
NASA Astrophysics Data System (ADS)
Cutshall, D. B.; Kulkarni, D. D.; Miller, A. J.; Harriss, J. E.; Harrell, W. R.; Sosolik, C. E.
2018-05-01
We discuss how a buried interface device, specifically a metal-oxide-semiconductor (MOS) capacitor, can be utilized to track effects of ion irradiation on insulators. We show that the exposure of oxides within unfinished capacitor devices to ions can lead to significant changes in the capacitance of the finished devices. For multicharged ions, these capacitive effects can be traced to defect production within the oxide and ultimately point to a role for charge-dependent energy loss. In particular, we attribute the stretchout of the capacitance-voltage curves of MOS devices that include an irradiated oxide to the ion irradiation. The stretchout shows a power law dependence on the multicharged ion charge state (Q) that is similar to that observed for multicharged ion energy loss in other systems.
Hinoue, Teruo; Ikeda, Eiji; Watariguchi, Shigeru; Kibune, Yasuyuki
2007-01-01
Thermal modulation voltammetry (TMV) with laser heating was successfully performed at an aqueous|nitrobenzene (NB) solution microinterface, by taking advantage of the fact that laser light with a wavelength of 325.0 nm is optically transparent to the aqueous solution but opaque to the NB solution. When the laser beam impinges upon the interface from the aqueous solution side, a temperature is raised around the interface through the thermal diffusion subsequent to the light-to-heat conversion following the optical absorption by the NB solution near the interface. Based on such a principle, we achieved a fluctuating temperature perturbation around the interface for TMV by periodically irradiating the interface with the laser beam. On the other hand, the fluctuating temperature perturbation has influence on currents for transfer of an ion across the interface to produce fluctuating currents synchronized with the perturbation through temperature coefficients of several variables concerning the transfer, such as the standard transfer potential and the diffusion coefficient of the ion. Consequently, TMV has the possibility of providing information about the standard entropy change of transfer corresponding to a temperature coefficient of the standard transfer potential and a temperature coefficient of the diffusion coefficient. In this work, the aqueous|NB solution interface of 30 microm in diameter was irradiated with the laser beam at 10 Hz, and the currents synchronized with the periodical irradiation were recorded as a function of the potential difference across the interface in order to construct a TM voltammogram. TM voltammograms were measured for transfer of tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetra-n-butylammonium ions from the aqueous solution to the NB solution, and the standard entropy change of transfer was determined for each ion, according to an analytical procedure based on a mathematical expression of the TM voltammogram. Comparison of the values obtained in this work with the literature values has proved that TMV with laser heating is available for the determination of the standard entropy change of transfer for an ion.
Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.
2013-04-01
Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advancesmore » in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Adsorbent for metal ions and method of making and using
White, Lloyd R.; Lundquist, Susan H.
1999-01-01
A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.
Adsorbent for metal ions and method of making and using
White, L.R.; Lundquist, S.H.
1999-08-10
A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.
Adsorbent for metal ions and method of making and using
White, Lloyd R.; Lundquist, Susan H.
2000-01-01
A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.
NASA Astrophysics Data System (ADS)
Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun
2017-08-01
In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.
Carbon Nanotube Thermal Interfaces Enhanced with Sprayed on Nanoscale Polymer Coatings
2013-02-20
temperature of the growth stage was lowered to 750 ◦C (a pyrometer measured the actual sample temperature to be approximately 630 ◦C, which is less than the...the heat is absorbed at the sample surface it is conducted both downward through the sample and upward into an acoustic chamber filled with He gas. The
Zhou, Xiaoyu; Ouyang, Zheng
2016-07-19
Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.
NASA Astrophysics Data System (ADS)
Park, Jin-Sung; Cho, Jung Sang; Kang, Yun Chan
2018-03-01
Closely in line with advances in next-generation energy storage materials, anode materials for lithium-ion batteries (LIBs) with high capacity and long cycle life have been widely explored. As part of the current effort, nickel molybdate (NiMoO4) microspheres with empty nanovoids are synthesized via spray drying process and subsequent one-step calcination in air. Dextrin in the atomized droplet is phase segregated during the spray drying process and calcined in air atmosphere, resulting in numerous empty nanovoids well-distributed within a microsphere. The empty nanovoids alleviate volume expansion during cycling, shorten lithium-ion diffusion length, and facilitate contact between electrode and electrolyte materials. Along with the high discharge capacity of NiMoO4 material, as high as 1240 mA h g-1 for the 2nd cycle at a high current density of 1 A g-1, uniquity of the structure enables longer cycle life and higher quality performances. The discharge capacity corresponding to the 500th cycle is 1020 mA h g-1 and the capacity retention calculated from the 2nd cycle is 82%. In addition, a discharge capacity of 413 mA g-1 is obtained at an extremely high current density of 10 A g-1.
Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.
Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F
2010-07-01
Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.
Estimation of the depth resolution of secondary ion mass spectrometry at the interface SiO2/Si
NASA Astrophysics Data System (ADS)
Kocanda, J.; Fesič, V.; Veselý, M.; Breza, J.; Kadlečíková, M.
1995-08-01
Similarities between the processes that occur during sputtering of monocrystalline Si by reactive O2+ primary ions and the interface SiO2/monocrystalline Si by noble gas ions (e.g., by Ar+) have motivated us to utilize the semiempirical model of P. C. Zalm and C. J. Vriezema [Nucl. Instrum. Methods B 67, 495 (1992)], modified later by M. Petravić, B. G. Svensson, and J. S. Williams [Appl. Phys. Lett. 62, 278 (1993)] to calculate the decay length λb, as defined by J. B. Clegg [Surf. Interface Anal. 10, 322 (1987)], at the SiO2/Si interface. The measured and calculated results agree remarkably well. Inconsistency observed to be larger than 100% for glancing incidence angles confirms limitations of this model that were admitted already by its authors.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.
Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior
NASA Astrophysics Data System (ADS)
Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Kim, Hyeri; Kim, Jongsoon; Jeong, Hee-Sung; Kim, Hyungsub; Lee, Hoyeon; Ha, Jae-Min; Choi, Sung-Min; Kim, Tae-Ho; Nah, Yoon-Chae; Shin, Tae Joo; Bang, Joona; Satija, Sushil K; Koo, Jaseung
2018-05-17
We demonstrate that hybrid structures of graphene and single-walled carbon nanotubes (SWNTs) are precisely controlled at the liquid-gas interface. The functionalized SWNT Langmuir monolayers anchor single-layer graphene nanosheets (GNSs) suspended in water via Coulomb interaction at the interface. This GNS/SWNT hybrid multilayer electrode can be a promising anode material for Li-ion batteries, offering high specific capacity, outstanding power capability, and excellent cyclability.
Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions
NASA Astrophysics Data System (ADS)
Noël, Céline; Houssiau, Laurent
2016-05-01
The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha
Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less
Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis
NASA Astrophysics Data System (ADS)
Iping, S.; Lockman, Zainovia; Hutagalung, S. D.; Kamsul, A.; Matsuda, Atsunori
2011-10-01
Smooth, crack free and homogenous CuAlO2 film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO3)2.3H2O and 90 mmol Al(NO3)3.9H2O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO2 can be detected for samples prepared by spraying the precursor mist at temperature of > 550 °C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO2.
Critical Deposition Condition of CoNiCrAlY Cold Spray Based on Particle Deformation Behavior
NASA Astrophysics Data System (ADS)
Ichikawa, Yuji; Ogawa, Kazuhiro
2017-02-01
Previous research has demonstrated deposition of MCrAlY coating via the cold spray process; however, the deposition mechanism of cold spraying has not been clearly explained—only empirically described by impact velocity. The purpose of this study was to elucidate the critical deposit condition. Microscale experimental measurements of individual particle deposit dimensions were incorporated with numerical simulation to investigate particle deformation behavior. Dimensional parameters were determined from scanning electron microscopy analysis of focused ion beam-fabricated cross sections of deposited particles to describe the deposition threshold. From Johnson-Cook finite element method simulation results, there is a direct correlation between the dimensional parameters and the impact velocity. Therefore, the critical velocity can describe the deposition threshold. Moreover, the maximum equivalent plastic strain is also strongly dependent on the impact velocity. Thus, the threshold condition required for particle deposition can instead be represented by the equivalent plastic strain of the particle and substrate. For particle-substrate combinations of similar materials, the substrate is more difficult to deform. Thus, this study establishes that the dominant factor of particle deposition in the cold spray process is the maximum equivalent plastic strain of the substrate, which occurs during impact and deformation.
Numerical simulation of cavitation and atomization using a fully compressible three-phase model
NASA Astrophysics Data System (ADS)
Mithun, Murali-Girija; Koukouvinis, Phoevos; Gavaises, Manolis
2018-06-01
The aim of this paper is to present a fully compressible three-phase (liquid, vapor, and air) model and its application to the simulation of in-nozzle cavitation effects on liquid atomization. The model employs a combination of the homogeneous equilibrium barotropic cavitation model with an implicit sharp interface capturing volume of fluid (VOF) approximation. The numerical predictions are validated against the experimental results obtained for injection of water into the air from a step nozzle, which is designed to produce asymmetric cavitation along its two sides. Simulations are performed for three injection pressures, corresponding to three different cavitation regimes, referred to as cavitation inception, developing cavitation, and hydraulic flip. Model validation is achieved by qualitative comparison of the cavitation, spray pattern, and spray cone angles. The flow turbulence in this study is resolved using the large-eddy simulation approach. The simulation results indicate that the major parameters that influence the primary atomization are cavitation, liquid turbulence, and, to a smaller extent, the Rayleigh-Taylor and Kelvin-Helmholtz aerodynamic instabilities developing on the liquid-air interface. Moreover, the simulations performed indicate that periodic entrainment of air into the nozzle occurs at intermediate cavitation numbers, corresponding to developing cavitation (as opposed to incipient and fully developed cavitation regimes); this transient effect causes a periodic shedding of the cavitation and air clouds and contributes to improved primary atomization. Finally, the cone angle of the spray is found to increase with increased injection pressure but drops drastically when hydraulic flip occurs, in agreement with the relevant experiments.
Adsorption of surfactant ions and binding of their counterions at an air/water interface.
Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki
2009-01-01
An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.
Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore
Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand
2016-01-01
A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures. PMID:27835700
Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore.
Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand
2016-01-01
A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures.
NASA Astrophysics Data System (ADS)
Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2016-02-01
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.
High-power hybrid plasma spraying of large yttria-stabilized zirconia powder
NASA Astrophysics Data System (ADS)
Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu
2006-03-01
To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).
Tuning ice nucleation with counterions on polyelectrolyte brush surfaces.
He, Zhiyuan; Xie, Wen Jun; Liu, Zhenqi; Liu, Guangming; Wang, Zuowei; Gao, Yi Qin; Wang, Jianjun
2016-06-01
Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs, and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN.
Tuning ice nucleation with counterions on polyelectrolyte brush surfaces
He, Zhiyuan; Xie, Wen Jun; Liu, Zhenqi; Liu, Guangming; Wang, Zuowei; Gao, Yi Qin; Wang, Jianjun
2016-01-01
Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs, and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN. PMID:27386581
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.
Kanaki, Katerina; Pergantis, Spiros A
2014-12-15
Sonic-spray ionization (SSI) has been shown to produce gas-phase ions for a wide range of compounds, without the application of voltage or a laser. However, it remains to be shown that it can also provide similar sensitivities to those obtained by electrospray ionization mass spectrometry (ESI-MS). Here we report on an attempt to further improve the sensitivity of SSI-MS, more specifically a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS, by adding a signal-enhancing additive to the sample solution. The additive used is 3-nitrobenzonitrile (3-NBN), which has recently been used with success in a new ionization approach named matrix-assisted ionization vacuum. In order to conduct this study we have analyzed a range of compounds, including peptides, metalloproteins, and some organometalloids. During the V-EASI-MS analyses molecular ion and protonated molecule signal intensities as well as their corresponding signal-to-noise (S/N) ratios, obtained in the presence and absence of the 3-NBN, were compared. The 3-NBN-assisted V-EASI-MS approach developed here provides significant improvement in sensitivity relative to conventional V-EASI-MS for almost all compounds tested. More specifically, for peptides a 1.6- to 4-fold enhancement was realized, for proteins the enhancements were from 2- to 5-fold, and for some metalloid species enhancements reached up to 10-fold. However, optimum additive concentration and ion transfer capillary temperature were found to be compound-dependent and thus require optimization in order for maximum enhancements to be achieved. In most cases the 3-NBN-assisted V-EASI-MS approach provides comparable sensitivities and S/N ratios to ESI-MS on the same ion trap mass spectrometer. The use of 3-NBN with V-EASI-MS gives rise to a novel 3-NBN-assisted MS technique, which has demonstrated considerable signal enhancement for most of the compounds analyzed, thus improving its competitiveness towards the well-established and dominating ESI-MS technique. Copyright © 2014 John Wiley & Sons, Ltd.
Development of a Simple Dipstick Assay for Operational Monitoring of DDT
Ismail, Hanafy M.; Kumar, Vijay; Singh, Rudra P.; Williams, Christopher; Shivam, Pushkar; Ghosh, Ayan; Deb, Rinki; Foster, Geraldine M.; Hemingway, Janet; Coleman, Michael; Coleman, Marlize; Das, Pradeep; Paine, Mark J. I.
2016-01-01
Background Indoor residual spraying (IRS) of DDT is used to control visceral leishmaniasis (VL) in India. However, the quality of spraying is severely compromised by a lack of affordable field assays to monitor target doses of insecticide. Our aim was to develop a simple DDT insecticide quantification kit (IQK) for monitoring DDT levels in an operational setting. Methodology/ principle findings DDT quantification was based on the stoichiometric release of chloride from DDT by alkaline hydrolysis and detection of the released ion using Quantab chloride detection strips. The assay was specific for insecticidal p,p`-DDT (LoQ = 0.082 g/m2). Bostik discs were effective in post spray wall sampling, extracting 25–70% of active ingredient depending on surface. Residual DDT was sampled from walls in Bihar state in India using Bostik adhesive discs and DDT concentrations (g p,p`-DDT/m2) were determined using IQK and HPLC (n = 1964 field samples). Analysis of 161 Bostik samples (pooled sample pairs) by IQK and HPLC produced excellent correlation (R2 = 0.96; Bland-Altman bias = −0.0038). IQK analysis of the remaining field samples matched HPLC data in identifying households that had been under sprayed, in range or over sprayed. Interpretation A simple dipstick assay has been developed for monitoring DDT spraying that gives comparable results to HPLC. By making laboratory-based analysis of DDT dosing accessible to field operatives, routine monitoring of DDT levels can be promoted in low- and middle- income countries to maximise the effectiveness of IRS. PMID:26760773
Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
Gu, Y W; Khor, K A; Cheang, P
2004-08-01
Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
Pereira, Hebert Vinicius; Amador, Victória Silva; Sena, Marcelo Martins; Augusti, Rodinei; Piccin, Evandro
2016-10-12
Paper spray mass spectrometry (PS-MS) combined with partial least squares discriminant analysis (PLS-DA) was applied for the first time in a forensic context to a fast and effective differentiation of beers. Eight different brands of American standard lager beers produced by four different breweries (141 samples from 55 batches) were studied with the aim at performing a differentiation according to their market prices. The three leader brands in the Brazilian beer market, which have been subject to fraud, were modeled as the higher-price class, while the five brands most used for counterfeiting were modeled as the lower-price class. Parameters affecting the paper spray ionization were examined and optimized. The best MS signal stability and intensity was obtained while using the positive ion mode, with PS(+) mass spectra characterized by intense pairs of signals corresponding to sodium and potassium adducts of malto-oligosaccharides. Discrimination was not apparent neither by using visual inspection nor principal component analysis (PCA). However, supervised classification models provided high rates of sensitivity and specificity. A PLS-DA model using full scan mass spectra were improved by variable selection with ordered predictors selection (OPS), providing 100% of reliability rate and reducing the number of variables from 1701 to 60. This model was interpreted by detecting fifteen variables as the most significant VIP (variable importance in projection) scores, which were therefore considered diagnostic ions for this type of beer counterfeit. Copyright © 2016 Elsevier B.V. All rights reserved.
Modifying the release of leuprolide from spray dried OED microparticles.
Alcock, R; Blair, J A; O'Mahony, D J; Raoof, A; Quirk, A V
2002-08-21
A range of oligosaccharide ester derivatives (OEDs) have been designed as drug delivery matrices for controlled release. The synthetic hormone analogue, leuprolide, was encapsulated within these matrices using hydrophobic ion pairing and solvent spray drying. The particles produced modified the release of leuprolide in vitro (dissolution in phosphate buffered saline) and in vivo (subcutaneous and pulmonary delivery in the rat). Release rate was dependent on drug loading and could be manipulated by choice of OED and by combining different OEDs in different ratios. Leuprolide encapsulated in the OEDs retained biological activity as evidenced by elevation in plasma luteinising hormone levels following subcutaneous injection of leuprolide recovered from OED particles in vitro prior to in vivo administration.
NASA Astrophysics Data System (ADS)
Li, Weiqun
The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from glassy electrolyte into the cathode. Parallel molecular dynamic simulation technique was also used for a larger electrolyte/cathode interface system, which include more atoms and more complicated microstructures. Simulation results from larger electrolyte/cathode interface system prove that there is no size effect on simulation of smaller electrolyte/cathode interface system from statistical point of view.
Counting ions and other nucleophiles at surfaces by chemical trapping.
Cuccovia, Iolanda Midea; da Silva Lima, Filipe; Chaimovich, Hernan
2017-10-01
The interfaces of membranes and other aggregates are determined by the polarity, electrical charge, molecular volume, degrees of motional freedom and packing density of the head groups of the amphiphiles. These properties also determine the type of bound ion (ion selectivity) and its local density, i.e. concentration defined by choosing an appropriate volume element at the aggregate interface. Bulk and local ion concentrations can differ by orders of magnitude. The relationships between ion (or other compound) concentrations in the bulk solvent and in the interface are complex but, in some cases, well established. As the local ion concentration, rather than that in the bulk, controls a variety of properties of membranes, micelles, vesicles and other objects of theoretical and applied interests, measurement of local (interfacial, bound) ion concentrations is of relevance for understanding and characterizing such aggregates. Many experimental methods for estimating ion distributions between the bulk solution and the interface provide indirect estimates because they are based on concentration-dependent properties, rather than concentration measurements. Dediazoniation, i.e. the loss of N 2 , of a substituted diazophenyl derivative provides a tool for determining the number of nucleophiles (including neutral or negatively charged ions) surrounding the diazophenyl derivative prior to the dediazoniation event. This reaction, defined as chemical trapping, and the appropriate reference points obtained in bulk solution allow direct measurements of local concentrations of a variety of nucleophiles at the surface of membranes and other aggregates. Here we review our contributions of our research group to the use, and understanding, of this method and applications of chemical trapping to the description of local concentrations of ions and other nucleophiles in micelles, reverse micelles, vesicles and solvent mixtures. Among other results, we have shown that interfacial water determines micellar shape, zwitterionic vesicle-forming amphiphiles display ion selectivity and urea does not accumulate at micellar interfaces. We have also shown that reaction products can be predicted from the composition of the initial state, even in non-ideal solvent mixtures, supporting the usefulness of chemical trapping as a method to determine local concentrations. In addition, we have analysed the mechanism of dediazoniation, both on theoretical and experimental basis, and concluded that the formation of a free phenyl cation is not a necessary part of the reaction pathway.
Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Regino, Karen Gomes; Lehmann, Eraldo Luiz; Arruda, Marco Aurélio Zezzi; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento
2014-12-01
Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing. Copyright © 2014. Published by Elsevier Ireland Ltd.
Gao, Yu; Liu, Yuwen; Chen, Shengli
2016-12-12
Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.
Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, B. J.; Egaas, B.; Velumani, S.
Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGSmore » absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.« less
Oxidation behavior of thermal barrier coating systems with Al interlayer under isothermal loading
NASA Astrophysics Data System (ADS)
Ali, I.; Sokołowski, P.; Grund, T.; Pawłowski, L.; Lampke, T.
2018-06-01
In the present study, the phenomena related to the Thermally Grown Oxides (TGO) in atmospheric plasma sprayed Thermal Barrier Coatings (TBCs) are discussed. CoNiCrAlY bond coatings were sprayed on Inconel 600 substrates. Subsequently, thin Al layers were deposited by DC-Magnetron sputtering. Finally, yttria-stabilized zirconia (YSZ) top coatings were deposited to form a three-layered TBC system. The thus produced aluminum interlayer containing thermal barrier coatings (Al-TBC) were subjected to isothermal exposure with different holding times at 1150 °C and compared with reference TBCs of the same kind, but without Al interlayers (R-TBC). The oxide film formation in the interface between bond coating (BC) and top coating (TC) was investigated by scanning electron microscope (SEM) after 100 and 300 h of high temperature isothermal exposure. The growth of this oxide film as a function of the isothermal exposure time was studied. As a result, the designed Al-TBC system exhibited better oxidation resistance in the BC/TC interface than the two-layered R-TBC system. This was lead back to the Al enrichment, which slows down the formation rate of transition metal oxides during thermal loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, Thomas R.; Peter, William H.
The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spraymore » coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.J.; Du, R.G.; Nguyen, T.
2000-01-01
Combination solid silver-silver chloride (Ag-AgCl) and liquid membrane Cl{sup {minus}} ion-selective microelectrodes were designed and constructed. These microelectrodes, which had a micrometer-sized tip, contained two compartments: one served as the reference electrode and the other as the Cl{sup {minus}} ion-selective electrode. The microelectrodes were used to map in-situ Cl{sup {minus}} ion distribution in several localized corrosion systems. When used with a computerized scanning stage, the microelectrodes provided information on the distribution of Cl{sup {minus}} ions near the metal/electrolyte interface. Cl{sup {minus}} ions were observed migrating toward and accumulating near the anodic region forming a Cl{sup {minus}}ion-rich island on the metalmore » surface. Scanning combination Cl{sup {minus}} ion-selective microelectrodes may provide a useful tool for mechanistic studies of localized corrosion.« less
Aerosol-spray diverse mesoporous metal oxides from metal nitrates
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-01-01
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988
Yang, C Y; Lin, R M; Wang, B C; Lee, T M; Chang, E; Hang, Y S; Chen, P Q
1997-12-05
This study was undertaken to evaluate the effect of coating characteristics on the mechanical strengths of the plasma-sprayed HA-coated Ti-6Al-4V implant system both in vitro and in vivo. Two types of HA coatings (HACs) with quite different microstructures, concentrations of impurity-phases, and indices-of-crystallinity were used. In vitro testings were done by measuring the bonding-strength at the Ti-6Al-4V-HAC interface, with HACs that had and had not been immersed in a pH-buffered, serum-added simulated body fluid (SBF). The shear-strength at the HAC-bone interface was investigated in a canine transcortical femoral model after 12 and 24 weeks of implantation. The results showed a bonding degradation of approximately 32% or higher of the original strength after 4 weeks of immersion in SBF, and this predominantly depended on the constructed microstructure of the HACs. After the push-out measurements, it was demonstrated that the HACs with higher bonding-strength in vitro would correspondingly result in significantly higher shear-strength at each implant period in vivo. Nevertheless, there were no substantial histological variations between the two types of HACs evaluated. The most important point elucidated in this study was that, among coating characteristics, the microstructure was the key factor in influencing the mechanical stability of the HACs both in vitro and in vivo. As a consequence, a denser HAC was needed to ensure mechanical stability at both interfaces.
Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto
2016-01-01
Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.
Eberlin, Livia S; Abdelnur, Patricia V; Passero, Alan; de Sa, Gilberto F; Daroda, Romeu J; de Souza, Vanderlea; Eberlin, Marcos N
2009-08-01
High performance thin layer chromatography (HPTLC) combined with on-spot detection and characterization via easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is applied to the analysis of biodiesel (B100) and biodiesel-petrodiesel blends (BX). HPTLC provides chromatographic resolution of major components whereas EASI-MS allows on-spot characterization performed directly on the HPTLC surface at ambient conditions. Constituents (M) are detected by EASI-MS in a one component-one ion fashion as either [M + Na](+) or [M + H](+). For both B100 and BX samples, typical profiles of fatty acid methyl esters (FAME) detected as [FAME + Na](+) ions allow biodiesel typification. The spectrum of the petrodiesel spot displays a homologous series of protonated alkyl pyridines which are characteristic for petrofuels (natural markers). The spectrum for residual or admixture oil spots is characterized by sodiated triglycerides [TAG + Na](+). The application of HPTLC to analyze B100 and BX samples and its combination with EASI-MS for on-spot characterization and quality control is demonstrated.
Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto
2016-01-01
Abstract Nanocomposite SiOx particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiOx matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH4 promotes reduction in the oxygen content x of SiOx, and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD. PMID:27933114
Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi
2012-11-01
Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.
Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations
Chen, Tsung-Chi; Webb, Ian K.; Prost, Spencer A.; ...
2014-11-19
A recent achievement in Structures for Lossless Ion Manipulations (SLIM) is the ability for near lossless ion focusing, transfer, and trapping in sub-atmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated bymore » ion simulations, fabricated utilizing printed circuit board technology and tested experimentally. The RIF was integrated to a SLIM-TOFMS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range along with greatly improved SLIM operational stability.« less
Chromium silicide formation by ion mixing
NASA Technical Reports Server (NTRS)
Shreter, U.; So, F. C. T.; Nicolet, M.-A.
1984-01-01
The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.
Mayer, Thomas; Borsdorf, Helko
2016-02-15
We optimized an atmospheric pressure ion funnel (APIF) including different interface options (pinhole, capillary, and nozzle) regarding a maximal ion transmission. Previous computer simulations consider the ion funnel itself and do not include the geometry of the following components which can considerably influence the ion transmission into the vacuum stage. Initially, a three-dimensional computer-aided design (CAD) model of our setup was created using Autodesk Inventor. This model was imported to the Autodesk Simulation CFD program where the computational fluid dynamics (CFD) were calculated. The flow field was transferred to SIMION 8.1. Investigations of ion trajectories were carried out using the SDS (statistical diffusion simulation) tool of SIMION, which allowed us to evaluate the flow regime, pressure, and temperature values that we obtained. The simulation-based optimization of different interfaces between an atmospheric pressure ion funnel and the first vacuum stage of a mass spectrometer require the consideration of fluid dynamics. The use of a Venturi nozzle ensures the highest level of transmission efficiency in comparison to capillaries or pinholes. However, the application of radiofrequency (RF) voltage and an appropriate direct current (DC) field leads to process optimization and maximum ion transfer. The nozzle does not hinder the transfer of small ions. Our high-resolution SIMION model (0.01 mm grid unit(-1) ) under consideration of fluid dynamics is generally suitable for predicting the ion transmission through an atmospheric-vacuum system for mass spectrometry and enables the optimization of operational parameters. A Venturi nozzle inserted between the ion funnel and the mass spectrometer permits maximal ion transmission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ion pair particles at the air–water interface
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Francisco, Joseph S.
2017-11-01
Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air–water interface are yet to be examined. In this work, we have performed Born–Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formation from HMSA and (R1)(R2)NH (for NH3, R1 = R2 = H; for CH3NH2, R1 = H and R2 = CH3; and for CH3NH2, R1 = R2 = CH3) at the air–water interface. The results show that, at the air–water interface, HMSA deprotonates within a few picoseconds and results in the formation of methanesulfonate ion (MSA‑)ṡṡH3O+ ion pair. However, this ion pair decomposes immediately, explaining why HMSA and water alone are not sufficient for forming stable particles in atmosphere. Interestingly, the particle formation from the gas-phase hydrogen-bonded complexes of HMSA with (R1)(R2)NH on the water droplet is observed with a few femtoseconds, suggesting a mechanism for the gas to particle conversion in aqueous environments. The reaction involves a direct proton transfer between HMSA and (R1)(R2)NH, and the resulting MSA‑ṡṡ(R1)(R2)NH2+ complex is bound by one to four interfacial water molecules. The mechanistic insights gained from this study may serve as useful leads for understanding about the ion pair particle formation from other precursors in forested and polluted urban environments.
A review of electron bombardment thruster systems/spacecraft field and particle interfaces
NASA Technical Reports Server (NTRS)
Byers, D. C.
1978-01-01
Information on the field and particle interfaces of electron bombardment ion thruster systems was summarized. Major areas discussed were the nonpropellant particles, neutral propellant, ion beam, low energy plasma, and fields. Spacecraft functions and subsystems reviewed were solar arrays, thermal control systems, optical sensors, communications, science, structures and materials, and potential control.
Robust composite-shell microcapsules via pickering emulsification.
Patchan, Marcia W; Fuller, Benedict W; Baird, Lance M; Gong, Paul K; Walter, Erich C; Vidmar, Brendan J; Kyei, Ike; Xia, Zhiyong; Benkoski, Jason J
2015-04-08
Microencapsulation technology has been increasingly applied toward the development of self-healing paints. Added to paint as a dry powder prior to spraying, the microcapsules store a liquid that can repair the protective barrier layer if released into a scratch. However, self-healing will not occur unless the microcapsules can withstand spray-painting, aggressive solvents in the paint, and long-term exposure to the elements. We have therefore developed a one-pot synthesis for the production of Pickering microcapsules with outstanding strength, solvent resistance, and barrier properties. Octadecyltrimethoxysilane-filled (OTS) microcapsules form via standard interfacial polycondensation, except that silica nanopowder (10-20 nm diameter) replaces the conventional surfactant or hydrocolloid emulsifier. Isophorone diisocyanate (IPDI) in the OTS core reacts with diethylenetriamine, polyethylenimine, and water to form a hard polymer shell along the interface. Compared to pure polyurea, the silica-polyurea composite improves the shelf life of the OTS by 10 times. The addition of SiO2 prevents leaching of OTS into xylenes and hexanes for up to 80 days, and the resulting microcapsules survive nebulization through a spray gun at 620 kPa in a 500 cSt fluid.
NASA Astrophysics Data System (ADS)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay
2018-02-01
Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.
NASA Astrophysics Data System (ADS)
Osterday, Kathryn; Aliseda, Alberto; Lasheras, Juan
2009-11-01
The atomization of colloidal suspensions is of particular interest to the manufacturing of tablets and pills used as drug delivery systems by the pharmaceutical industry. At various stages in the manufacturing process, the tablets are coated with a spray of droplets produced by co-axial atomizers. The mechanisms of droplet size and spray formation in these types of atomizers are dominated by Kelvin-Helmholtz and Raleigh-Taylor instabilities for both low[1] and high[2] Ohnesorge numbers. We present detailed phase Doppler measurements of the Sauter Mean Diameter of the droplets produced by co-axial spray atomizers using water-based colloidal suspensions with solid concentrations ranging from fifteen to twenty percent and acetone-based colloidal suspensions with solid concentrations ranging from five to ten percent. Our results compare favorably with predictions by Aliseda's model. This suggests that the final size distribution is mainly determined by the instabilities caused by the sudden acceleration of the liquid interface. [1]Varga, C. M., et al. (2003) J. Fluid Mech. 497:405-434 [2]Aliseda, A. et al. (2008). J. Int. J. Multiphase Flow, 34(2), 161-175.
Corrosion Control at Graphite/Epoxy-Aluminum and Titanium Interfaces
1974-07-01
Exfoliation Salt Spray Showing Corrosion on Back Side of Bond Interface (2x) 18 19 20 23 24 27 31 31 32 32 33 33 34 35 ; vll...25 29 Vlll ’-■"■’"-’—’—’"■ •■■’■■: UtaMMUitaittikHMalMiiakii T= zsm ~ ■ - ■- • ’■ ■ -■■■ ■: ---"• SUMMARY Graphlte/epoxy...joint specimen. Cure M 35 psl and 3a0*F for GO minutes. Apply 0,2-0.4 ml ol BH127 adhesive primer to the bond intiiface areas. Bond 4 mil 1100
Gas-liquid interface of room-temperature ionic liquids.
Santos, Cherry S; Baldelli, Steven
2010-06-01
The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).
Towards bioelectronic logic (Conference Presentation)
NASA Astrophysics Data System (ADS)
Meredith, Paul; Mostert, Bernard; Sheliakina, Margarita; Carrad, Damon J.; Micolich, Adam P.
2016-09-01
One of the critical tasks in realising a bioelectronic interface is the transduction of ion and electron signals at high fidelity, and with appropriate speed, bandwidth and signal-to-noise ratio [1]. This is a challenging task considering ions and electrons (or holes) have drastically different physics. For example, even the lightest ions (protons) have mobilities much smaller than electrons in the best semiconductors, effective masses are quite different, and at the most basic level, ions are `classical' entities and electrons `quantum mechanical'. These considerations dictate materials and device strategies for bioelectronic interfaces alongside practical aspects such as integration and biocompatibility [2]. In my talk I will detail these `differences in physics' that are pertinent to the ion-electron transduction challenge. From this analysis, I will summarise the basic categories of device architecture that are possibilities for transducing elements and give recent examples of their realisation. Ultimately, transducing elements need to be combined to create `bioelectronic logic' capable of signal processing at the interface level. In this regard, I will extend the discussion past the single element concept, and discuss our recent progress in delivering all-solids-state logic circuits based upon transducing interfaces. [1] "Ion bipolar junction transistors", K. Tybrandt, K.C. Larsson, A. Richter-Dahlfors and M. Berggren, Proc. Natl Acad. Sci., 107, 9929 (2010). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013).
NASA Astrophysics Data System (ADS)
Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.
2009-07-01
Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.
Microfabricated polymer injector for direct mass spectrometry coupling.
Gobry, Véronique; van Oostrum, Jan; Martinelli, Marco; Rohner, Tatiana C; Reymond, Frédéric; Rossier, Joël S; Girault, Hubert H
2002-04-01
This paper demonstrates the coupling of a plasma etched polymer microfluidic system with an electrospray mass spectrometer by generation of a nanospray. Taking advantage of the microtechnology processes and polymer properties, high volume production with good reproducibility of hydrophobic interfaces could be obtained. The nanospray was directly produced from the outlet of the plastic microfabricated chip positioned in front of the capillary entrance of the mass spectrometer. No chemical background due to the polymer has been observed under standard nanospray conditions. The performances of the spray as well as its efficiency have been demonstrated by flow measurements, stability establishment and tandem mass spectrometry experiment on angiotensin II. The spray was actuated without additional flow in methanol: water:acetic acid (50:49:1%) solution. A 40 fmol/microL detection limit could be reached.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Ion Structure Near a Core-Shell Dielectric Nanoparticle
NASA Astrophysics Data System (ADS)
Ma, Manman; Gan, Zecheng; Xu, Zhenli
2017-02-01
A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.
Investigating the air oxidation of V(II) ions in a vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Ngamsai, Kittima; Arpornwichanop, Amornchai
2015-11-01
The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.
Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yufan; Yao, Juan; Ding, Yuanzhao
In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid–liquid and liquid–vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecularmore » signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable to use for in situ liquid SIMS to study solid–liquid and liquid–vacuum interfaces.« less
Molina, Ángela; Laborda, Eduardo; Olmos, José Manuel; Millán-Barrios, Enrique
2018-03-06
Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.
Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.
Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua
2016-12-01
In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.
Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.
Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao
2015-01-01
This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.
Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao
2015-01-01
This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715
Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.
Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat
2017-11-01
We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.
Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots
Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng
2011-01-01
Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627
NASA Astrophysics Data System (ADS)
Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.
Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.
NASA Astrophysics Data System (ADS)
Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.
2015-12-01
In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.
Malys, Brian J; Owens, Kevin G
2017-05-15
Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.
2014-07-01
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
Spray Combustion Modeling with VOF and Finite-Rate Chemistry
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See
1996-01-01
A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.
Shah, Dhaval A; Patel, Manan; Murdande, Sharad B; Dave, Rutesh H
2016-11-01
The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried. The SD powders that were obtained were characterized morphologically using scanning electron microscopy (SEM), polarized light microscopy (PLM), and Flowchem. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier transfer infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) for the identification of the crystalline nature of all the SD powders. The powders were characterized for their redispersion tendency in the water and in pH 1.2. Significant differences in redispersion were noted for both the NCs in both dissolution media. The interfacial tension for particle moisture interface was determined by applying the BET (Braunauer-Emmett-Teller) equation to the vapor sorption data. No significant reduction in the interfacial tension was observed between MCs and NCs; however, a significant reduction in the interfacial tension was observed for NCm at both 25 °C and 35 °C temperatures. The difference in interfacial tension and redispersion behavior can be attributed to a difference in the wetting tendency for all the SD powders. The dissolution studies were carried out under sink and under non-sink conditions. The non-sink dissolution approach was found suitable for quantification of the dissolution rate enhancement, and also for providing the rank order to the SD formulations.
Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team
2016-10-01
We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na
2015-02-07
The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.
Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings
NASA Astrophysics Data System (ADS)
Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin
2010-12-01
In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.
Koryta, I; Kozlov, Iu N; Gofmanova, A; Khalil, V; Vanysek, P
1983-11-01
A new electroanalytical method of voltamperometry at the interface of two immiscible electrolyte solutions (ITIES) is based on electrochemical polarization of a liquid/liquid interface. The resulting current voltage characteristics completely resemble those obtained with metallic electrodes. The charge transfer processes are either the direct ion transfer across the ITIES or the transfer facilitated by macrocyclic ionophores. Determination of tetracycline antibiotics is based on the direct transfer of the cationic forms of these substances in acid media. Determination of valinomycin, nonactin and monensin acting as ion carriers is connected with the facilitated alkali metal ion transfer. In general, antibiotic concentrations higher than 0.02-0.05 mmol/l can be determined with this method. Monensin can also be determined in the extracts of Streptomyces cinnamonensis.
NASA Astrophysics Data System (ADS)
McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron
2006-12-01
This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
Direct write of copper-graphene composite using micro-cold spray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dardona, Sameh, E-mail: dardona@utrc.utc.com; She, Ying; Schmidt, Wayde R.
Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP) to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB) and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have goodmore » adhesion to the substrate with ∼65x the copper bulk resistivity.« less
Unraveling the electrolyte properties of Na3SbS4 through computation and experiment
NASA Astrophysics Data System (ADS)
Rush, Larry E.; Hood, Zachary D.; Holzwarth, N. A. W.
2017-12-01
Solid-state sodium electrolytes are expected to improve next-generation batteries on the basis of favorable energy density and reduced cost. Na3SbS4 represents a new solid-state ion conductor with high ionic conductivities in the mS/cm range. Here, we explore the tetragonal phase of Na3SbS4 and its interface with metallic sodium anode using a combination of experiments and first-principles calculations. The computed Na-ion vacancy migration energies of 0.1 eV are smaller than the value inferred from experiment, suggesting that grain boundaries or other factors dominate the experimental systems. Analysis of symmetric cells of the electrolyte—Na/Na 3SbS4/Na —show that a conductive solid electrolyte interphase forms. Computer simulations infer that the interface is likely to be related to Na3SbS3 , involving the conversion of the tetrahedral SbS43 - ions of the bulk electrolyte into trigonal pyramidal SbS33 - ions at the interface.
NASA Astrophysics Data System (ADS)
Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal
2017-12-01
Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
Two possible improvements for mass spectrometry analysis of intact biomolecules.
Raznikov, Valeriy V; Zelenov, Vladislav V; Aparina, Elena V; Pikhtelev, Alexander R; Sulimenkov, Ilia V; Raznikova, Marina O
2017-08-01
The goals of our study were to investigate abilities of two approaches to eliminate possible errors in electrospray mass spectrometry measurements of biomolecules. Passing of a relatively dense supersonic gas jet through ionization region followed by its hitting the spray of the analyzed solution in low vacuum may be effective to keep an initial biomolecule structure in solution. Provided that retention of charge carriers for some sites in the biomolecule cannot be changed noticeably in electrospray ion source, decomposition and separation of charge-state distributions of electrosprayed ions may give additional information about native structure of biomolecules in solution.
Moncada, Marvin; Astete, Carlos; Sabliov, Cristina; Olson, Douglas; Boeneke, Charles; Aryana, Kayanush J
2015-09-01
Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the cheese cracker. We detected significantly lower yeast counts for nano spray-dried salt treatments (1, 1.5, and 2%) at 4mo compared with control (regular) salt (1, 1.5 and 2%). We detected no mold growth in any of the treatments at any time. At 4mo, we found no significant differences in sensory color, aroma, crunchiness, overall liking, or acceptability scores of cheese crackers using 1.5 and 1% nano spray-dried salt compared with control. Therefore, 25 to 50% less salt would be suitable for cheese crackers if the particle size of regular salt was reduced 3 log to form nano spray-dried salt. A 3-log reduction in sodium chloride particle size from regular salt to nano spray-dried salt increased saltiness, but a 1-log reduction in salt size from Microsized salt to nano spray-dried salt did not increase saltiness of surface-salted cheese crackers. The use of salt with reduced particle size by nano spray drying is recommended for use in surface-salted cheese crackers to reduce sodium intake. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cheng, Timothy C; Bandyopadhyay, Biswajit; Mosley, Jonathan D; Duncan, Michael A
2012-08-08
The structure of ions in water at a hydrophobic interface influences important processes throughout chemistry and biology. However, experiments to measure these structures are limited by the distribution of configurations present and the inability to selectively probe the interfacial region. Here, protonated nanoclusters containing benzene and water are produced in the gas phase, size-selected, and investigated with infrared laser spectroscopy. Proton stretch, free OH, and hydrogen-bonding vibrations uniquely define protonation sites and hydrogen-bonding networks. The structures consist of protonated water clusters binding to the hydrophobic interface of neutral benzene via one or more π-hydrogen bonds. Comparison to the spectra of isolated hydronium, zundel, or eigen ions reveals the inductive effects and local ordering induced by the interface. The structures and interactions revealed here represent key features expected for aqueous hydrophobic interfaces.
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Veitzer, Seth
2008-04-01
We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.
NASA Astrophysics Data System (ADS)
Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun
2017-04-01
In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.
Larsson, Karin C; Kjäll, Peter; Richter-Dahlfors, Agneta
2013-09-01
A major challenge when creating interfaces for the nervous system is to translate between the signal carriers of the nervous system (ions and neurotransmitters) and those of conventional electronics (electrons). Organic conjugated polymers represent a unique class of materials that utilizes both electrons and ions as charge carriers. Based on these materials, we have established a series of novel communication interfaces between electronic components and biological systems. The organic electronic ion pump (OEIP) presented in this review is made of the polymer-polyelectrolyte system poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The OEIP translates electronic signals into electrophoretic migration of ions and neurotransmitters. We demonstrate how spatio-temporally controlled delivery of ions and neurotransmitters can be used to modulate intracellular Ca(2+) signaling in neuronal cells in the absence of convective disturbances. The electronic control of delivery enables strict control of dynamic parameters, such as amplitude and frequency of Ca(2+) responses, and can be used to generate temporal patterns mimicking naturally occurring Ca(2+) oscillations. To enable further control of the ionic signals we developed the electrophoretic chemical transistor, an analog of the traditional transistor used to amplify and/or switch electronic signals. Finally, we demonstrate the use of the OEIP in a new "machine-to-brain" interface by modulating brainstem responses in vivo. This review highlights the potential of communication interfaces based on conjugated polymers in generating complex, high-resolution, signal patterns to control cell physiology. We foresee widespread applications for these devices in biomedical research and in future medical devices within multiple therapeutic areas. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Noah-Vanhoucke, Joyce; Geissler, Phillip L.
2009-01-01
Contrary to the expectations from classic theories of ion solvation, spectroscopy and computer simulations of the liquid–vapor interface of aqueous electrolyte solutions suggest that ions little larger than a water molecule can prefer to reside near the liquid's surface. Here we advance the view that such affinity originates in a competition between strong opposing forces, primarily due to volume exclusion and dielectric polarization, that are common to all dense polar liquids. We present evidence for this generic mechanism from computer simulations of (i) water and (ii) a Stockmayer fluid near its triple point. In both cases, we show that strong surface enhancement of small ions, obtained by tuning solutes' size and charge, can be accentuated or suppressed by modest changes in either of those parameters. Statistics of solvent polarization, when the ion is held at and above the Gibbs dividing surface, highlight a basic deficiency in conventional models of dielectric response, namely, the neglect of interfacial flexibility. By distorting the solution's boundary, an ion experiences fluctuations in electrostatic potential and in electric field whose magnitudes attenuate much more gradually (as the ion is removed from the liquid phase) than for a quiescent planar interface. As one consequence, the collective responses that determine free energies of solvation can resolve very differently in nonuniform environments than in bulk. We show that this persistence of electric-field fluctuations additionally shapes the sensitivity of solute distributions to ion polarizability. PMID:19720991
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2001-01-01
Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob
2003-01-01
This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.
Nonlinear optical studies of aqueous interfaces, polymers, and nanowires
NASA Astrophysics Data System (ADS)
Onorato, Robert Michael
Understanding the structure and composition of aqueous interfaces is one of the most important current problems in modern science. Aqueous interfaces are ubiquitous in Nature, ranging from aerosols to cellular structures. Aerosol chemistry is presently the most significant unknown factor in predicting climate change, and an understanding of the chemistry that occurs at aerosol interfaces would significantly improve climate models. Similarly, the nature of aqueous biological interfaces has a profound effect on the structure and function of proteins and other biological structures. Despite the importance of these problems, aqueous interfaces remain incompletely understood due to the challenges of experimentally probing them. Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. In this dissertation, I use an interface-specific technique, UV second harmonic generation (SHG), to further investigate the adsorption of ions to the air/water interface and to extend the study of ion adsorption towards more biologically relevant systems, alcohol/water interfaces. In Chapter 2, I describe resonant UV-SHG studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, at concentrations near and above 4 M, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. Recent experimental and theoretical work has demonstrated that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. In Chapter 3, UV-SHG resonant with the bromide charge-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical properties of KNbO3 nanowires are studied. Using SHG and sum frequency generation, efficient nonlinear optical frequency conversion is demonstrated in single KNbO3 nanowires that act as optical waveguides, yielding a coherent tunable subwavelength light source.
Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming
NASA Astrophysics Data System (ADS)
Laha, Tapas
The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous microstructure and limitation of the test samples geometry. The elastic moduli of nanocomposites were computed using different micromechanics models and compared with experimentally measured values. The elastic moduli of nanocomposites measured by nanoindentation technique, increased gradually with sintering attributed to porosity removal. The experimentally measured values conformed better with theoretically predicted values, particularly in the case of Hashin-Shtrikman bound method.
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.
2011-01-01
A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.
Spray deposition of highly transparent fluorine doped cadmium oxide thin films
NASA Astrophysics Data System (ADS)
Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.
2008-01-01
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.
Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu; Kumar, Revati
2015-07-28
The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is amore » hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.« less
Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop
Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An
2016-01-01
Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546
A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows
NASA Technical Reports Server (NTRS)
Apte, S. V.; Mahesh, K.; Lundgren, T.
2003-01-01
Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.
Automated aray assembly, phase 2
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1979-01-01
A manufacturing process suitable for the large-scale production of silicon solar array modules at a cost of less than $500/peak kW is described. Factors which control the efficiency of ion implanted silicon solar cells, screen-printed thick film metallization, spray-on antireflection coating process, and panel assembly are discussed. Conclusions regarding technological readiness or cost effectiveness of individual process steps are presented.
NASA Astrophysics Data System (ADS)
Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.
2013-12-01
Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.
Huang, Chun; Kim, Ayoung; Chung, Dong Jae; Park, Eunjun; Young, Neil P; Jurkschat, Kerstin; Kim, Hansu; Grant, Patrick S
2018-05-09
Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.
57Fe CEMS study on dilute metal ions codoped SnO2 thin films prepared by spray pyrolysis
NASA Astrophysics Data System (ADS)
Nomura, Kiyoshi; Koike, Yuya; Nakanishi, Akio
2017-11-01
Dilute Mn-Fe, Co-Fe and V-Fe codoped tin oxide films prepared by spray pyrolysis were characterized by 57Fe conversion electron Mössbauer spectrometry (CEMS) at room temperature (RT) and at 20 K. Two kinds of paramagnetic Fe3+ species were detected at RT; one doublet 1 (D1) with IS = 0.36-0.37 mm/s, QS = 0.69-0.75 mm/s and LW = 0.32-0.40 mm/s, and another doublet 2 (D2) with IS = 0.31-0.35 mm/s QS = 1.16-1.25 mm/s and LW = 0.46-0.52 mm/s. CEMS at 20 K provided more distinguished doublets than at RT. It is found that especially D2 with relatively small IS and large QS values are influenced by other metal ions codoped in SnO2 matrix, whereas D1 with relatively large IS and small QS has the parameters close to the models of Fe-VO1 and Fe-2VO1-Fe models (Nomura et al. Phys. Rev. B 75, 184411 2007; Mudarra Navarro et al. J. Phys. Chem. C 119, 5596-5603 2015).
Alonso, R.; Bytnerowicz, A.; Yee, J.L.; Boarman, W.I.
2005-01-01
A study was conducted to determine the effects of salt spray drift from pilot technologies employed by the US Bureau of Reclamation on deposition rates of various air-born ions. An enhanced evaporation system (EES) was tested in the field at the Salton Sea, California. Dry deposition of NO3-, NH4+, SO42-, Cl-, Ca2+, Na+, K+ and Se was assessed by using nylon filters and branches of natural vegetation exposed for one-week long periods. The simultaneous exposure of both lyophilized branches and branches of live plants offered important information highlighting the dynamics of deposited ions on vegetation. The EES significantly increased the deposition rates of Cl-, SO42- and Na+ in an area of about 639-1062 m surrounding the sprayers. Similarly, higher deposition of Ca 2+ and K+ caused by the EES was detected only when deposition was assessed using nylon filters or lyophilized branches. Deposition fluxes of NO3-, NH4+ and Se were not affected by the spraying system. Techniques for measuring dry deposition and calculating landscape-level depositional loads in non-forested systems need further development. ?? 2005 Elsevier Ltd. All rights reserved.
Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.
Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun
2018-01-01
Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M
2012-02-21
Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.
Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells
2016-01-01
We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3−δ (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions. PMID:27346923
Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q
2014-03-01
This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Particle Engulfment and Pushing by Solidifying Interfaces
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Mukherjee, S.; Juretzko, F. R.; Catalina, A. V.; Sen, S.; Curreri, P. A.
2000-01-01
The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites.
NASA Technical Reports Server (NTRS)
Winfree, William P.; Madaras, Eric I.
2005-01-01
The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.
High-quality quantum-dot-based full-color display technology by pulsed spray method
NASA Astrophysics Data System (ADS)
Chen, Kuo-Ju; Chen, Hsin-Chu; Tsai, Kai-An; Lin, Chien-Chung; Tsai, Hsin-Han; Chien, Shih-Hsuan; Cheng, Bo-Siao; Hsu, Yung-Jung; Shih, Min-Hsiung; Kuo, Hao-Chung
2013-03-01
We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology.
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...
2018-01-04
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating
NASA Astrophysics Data System (ADS)
Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.
2014-10-01
6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate
NASA Astrophysics Data System (ADS)
Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran
2018-02-01
In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan
2003-02-01
Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A
2004-12-31
We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.
Mistri, Hiren N; Jangid, Arvind G; Pudage, Ashutosh; Shrivastav, Pranav
2008-03-15
A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.
After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...
Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.
NASA Astrophysics Data System (ADS)
Wong, Justin Wai-Chow
1987-09-01
Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.
Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J
2012-02-07
A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society
Plasma Spray Synthesis Of Nanostructured V2O5 Films For Electrical Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Jagjit
We demonstrate for the first time, the synthesis of nanostructured vanadium pentoxide (V2O5) films and coatings using plasma spray technique. V2O5 has been used in several applications such as catalysts, super-capacitors and also as an electrode material in lithium ion batteries. In the present studies, V2O5 films were synthesized using liquid precursors (vanadium oxychloride and ammonium metavanadate) and powder suspension. In our approach, the precursors were atomized and injected radially into the plasma gun for deposition on the substrates. During the flight towards the substrate, the high temperature of the plasma plume pyrolyzes the precursor particles resulting into the desiredmore » film coatings. These coatings were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Differential Scanning Calorimetry (DSC). Among the precursors, vanadium oxychloride gave the best results in terms of nanocrystalline and monophasic films. Spraying of commercial powder suspension yielded multi-phasic mixture in the films. Our approach enables deposition of large area coatings of high quality nanocrystalline films of V2O5 with controllable particle morphology. This has been optimized by means of control over precursor composition and plasma spray conditions. Initial electrochemical studies of V2O5 film electrodes show potential for energy storage studies.« less
NASA Astrophysics Data System (ADS)
Jayant, Krishna; Auluck, Kshitij; Rodriguez, Sergio; Cao, Yingqiu; Kan, Edwin C.
2014-05-01
We report on factors that affect DNA hybridization detection using ion-sensitive field-effect transistors (ISFETs). Signal generation at the interface between the transistor and immobilized biomolecules is widely ascribed to unscreened molecular charges causing a shift in surface potential and hence the transistor output current. Traditionally, the interaction between DNA and the dielectric or metal sensing interface is modeled by treating the molecular layer as a sheet charge and the ionic profile with a Poisson-Boltzmann distribution. The surface potential under this scenario is described by the Graham equation. This approximation, however, often fails to explain large hybridization signals on the order of tens of mV. More realistic descriptions of the DNA-transistor interface which include factors such as ion permeation, exclusion, and packing constraints have been proposed with little or no corroboration against experimental findings. In this study, we examine such physical models by their assumptions, range of validity, and limitations. We compare simulations against experiments performed on electrolyte-oxide-semiconductor capacitors and foundry-ready floating-gate ISFETs. We find that with weakly charged interfaces (i.e., low intrinsic interface charge), pertinent to the surfaces used in this study, the best agreement between theory and experiment exists when ions are completely excluded from the DNA layer. The influence of various factors such as bulk pH, background salinity, chemical reactivity of surface groups, target molecule concentration, and surface coatings on signal generation is studied. Furthermore, in order to overcome Debye screening limited detection, we suggest two signal enhancement strategies. We first describe frequency domain biosensing, highlighting the ability to sort short DNA strands based on molecular length, and then describe DNA biosensing in multielectrolytes comprising trace amounts of higher-valency salt in a background of monovalent saline. Our study provides guidelines for optimized interface design, signal enhancement, and the interpretation of FET-based biosensor signals.
Structure and functions of water-membrane interfaces and their role in proto-biological evolution
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M.; Macelroy, R. D.
1991-01-01
Among the most important developments in proto-biological evolution was the emergence of membrane-like structures. These are formed by spontaneous association of relatively simple amphiphilic molecules that would have been readily available in the primordial environment. The resulting interfacial regions between water and nonpolar interior of the membrane have several properties which made them uniquely suitable for promoting subsequent evolution. They can (1) selectively attract organic material and mediate its transport, (2) serve as simple catalysts for chemical reactions, and (3) promote the formation of trans-membrane electrical and chemical gradients which could provide energy sources for proto-cells. Understanding the structure of interfaces, their interactions with organic molecules and molecular mechanisms of their functions is an essential step to understanding proto-biological evolution. In our computer simulation studies, we showed that the structure of water at interfaces with nonpolar media is significantly different from that in the bulk. In particular, the average surface dipole density points from the vapor to the liquid. As a result, negative ions can approach the interface more easily than positive ions. Amphiphilic molecules composed of hydrocarbon conjugated rings and polar substituents (e.g., phenol) assume at the interface rigid orientations in which polar groups are buried in water while hydrocarbon parts are located in the nonpolar environment. These orientational differences are of special interest in connection with the ability of some of these molecules to efficiently absorb photons. Flexible molecules with polar substituents often adopt at interfaces conformations different from those in the bulk aquaeous solution and in the gas phase. As a result, in many instances both specificity and kinetics of chemical reactions in which these molecules can participate is modified by the presence of surfaces. Of special interest is the mechanism by which polar molecules are transferred across interface between water and a nonpolar medium. Our recent study showed that simple ionophores bind ions by the same mechanisms as ion channels and carriers from modern cells.
Method for removing metal ions from solution with titanate sorbents
Lundquist, Susan H.; White, Lloyd R.
1999-01-01
A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.
In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface
Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...
2017-05-12
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less
Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Cheng; Chi, Miaofang
2016-06-08
Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solidmore » electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.« less
Equilibrium structure of the plasma sheet boundary layer-lobe interface
NASA Technical Reports Server (NTRS)
Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.
1990-01-01
Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.
Coating Development for GRCop-84 Liners for Reusable Launch Vehicles Aided by Modeling Studies
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Ghosn, Louis J.
2004-01-01
The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition invented at the NASA Glenn Research Center. Despite its considerable advantage over other copper alloys, it is expected that GRCop-84 will suffer from environmental degradation depending on the type of rocket fuels used and on thermomechanical fatigue. Applying protective coatings on GRCop-84 substrates can minimize or eliminate many of these problems and extend the operational life of the combustion liner. This could increase component reliability, shorten depot maintenance turnaround times, and lower operating costs. Therefore, Glenn is actively pursuing the development of advanced coatings technology for GRCop-84 liners. Technology is being developed in four major areas: (1) new metallic coating compositions, (2) application techniques, (3) test methods, and (4) life prediction design methodology using finite element analysis. The role of finite element analysis in guiding the coating effort is discussed in this report. Thermal analyses were performed at Glenn for different combinations of top- and bondcoat compositions to determine the temperature variation across the coated cross section with the thickness of the top coat. These calculations were conducted for simulated LH2/LO2 booster engine conditions assuming that the bond coat had a constant thickness of 50 m. The preceding graphs show the predicted temperatures at the outer surface of the top coat (hot wall), at the top-coat/bond-coat interface, at the bond-coat/GRCop-84 interface, and at the GRCop-84 cold wall as a function of top-coat thickness for Cu- 26(wt%)Cr top coat (top graph), Ni-17(wt%)Cr-6%Al-0.5%Y top coat and Cu-26%Cr bond coat, and NiAl top coat and Ni bond coat. In all cases, the temperature of the top coat at the hot wall increased with increasing top-coat thickness and with corresponding decreases in the temperatures at the two interfaces and the cold wall. These temperatures are not acutely sensitive to the thermal conductivity of the top coat when it exceeds 25 and 50 W/m/K for low and high heat flux engines. This observation is significant for two reasons. First, several different top-coat compositions can be evaluated as potential protective coatings without loss in the heat-transfer efficiency of the coated system. Second, materials with thermal conductivities less than the critical values of 25 or 50 W/m/K are more likely to act as thermal barrier coatings. The deposition of overlay coatings on GRCop-84 substrates results in the development of residual stresses. The presence of these residual stresses influences the probability of coating spallation, the thermal cycling life, and the fatigue properties of the coated substrate during use. Since it is important to understand how these stresses develop during the vacuum-plasma-spraying coating deposition process, the nature and magnitudes of the cool-down residual stresses were calculated and compared with experimentally determined values across the coated cross section of a disk specimen. The calculations were conducted assuming that the specimen cools down to room temperature from vacuum plasma-spraying temperatures of either 250 or 650 C. The effects of coating the substrate with and without grit blasting were also theoretically examined. The final graph compares the predicted and the experimental results for a GRCop-84 disk coated with about a 50- m-thick Ni bond coat and a 75- to 100- m NiAl top coat, where the curves for NASA-2 assume the presence of a prior residual stress generated by grit blasting under conditions similar to the experimental situation. The predicted cool-down in-plane stresses were compressive in both the NiAl top coat and the Ni bond coat. They were also compressive in the substrate to a depth of about 0.25 mm from the Ni/GRCop-84 interface when the vacuum-plasma-spraying temperature was low. However, using a higher plasma spraying temperaturs likely to leave the substrate under a small tensile stress to counter the compressive stresses in the bond and top coats because of the relaxation of residual stresses generated in the substrate during the grit blasting of its surface prior to spraying. These results suggest that the NiAl and Ni coatings are unlikely to spall after spraying as confirmed by the microstructural observations shown in the following photomicrograph of an as-sprayed specimen. Finally, it is noted that the calculated and experimental results are not in complete agreement, which indicates that both the experimental and modeling techniques need further refinement.
Guipont, Vincent; Jeandin, Michel; Bansard, Sebastien; Khor, Khiam Aik; Nivard, Mariette; Berthe, Laurent; Cuq-Lelandais, Jean-Paul; Boustie, Michel
2010-12-15
An adhesion test procedure applied to plasma-sprayed hydroxyapatite (HA) coatings to measure the "LASAT threshold" (LAser Shock Adhesion test) is described. The good repeatability and minimal discrepancy of the laser-driven adhesion test data were ascertained for conventional plasma sprayed HA coatings. As a further demonstration, the procedure was applied to HA coatings with diverse characteristics on the ceramic/metal interface. Different preheating and grit blasting conditions and the presence of a thick plasma-sprayed Ti sublayer or a thin TiO(2) layer prepared by oxidation were investigated through LASAT. It was assessed that a rough surface can significantly improve the coating's bond strength. However, it was also demonstrated that a thin TiO(2) layer on a smooth Ti-6Al-4V substrate can have a major influence on adhesion as well. Preheating up to 270°C just prior to the first HA spraying pass had no effect on the adhesion strength. Further development of the procedure was done to achieve an in situ LASAT with in vitro conditions applied on HA coatings. To that end, different crystalline HA contents were soaked in simulated body fluid (SBF). Beyond the demonstration of the capability of this laser-driven adhesion test devoted to HA coatings in dry or liquid environment, the present study provided empirical information on pertinent processing characteristics that could strengthen or weaken the HA/Ti-6Al-4V bond. Copyright © 2010 Wiley Periodicals, Inc.
Structure of a bimetallic strip produced by plasma spraying of a TiAl powder on a niobium sheet
NASA Astrophysics Data System (ADS)
Povarova, K. B.; Antonova, A. V.; Burmistrov, V. I.; Safronov, B. V.; Perfilov, L. S.; Chukanov, A. P.
2007-10-01
Ti-48 at % Al alloy granules produced by centrifugal spraying are milled into a powder with a particle size of 40 100 μm, and are applied onto a niobium foil using plasma spraying in an argon atmosphere. The fabricated TiAl/Nb bimetallic strip consists of a 100-μm-thick niobium layer and a porous 300-to 400-μm-thick TiAl layer formed by flattened particles. Directly after the preparation of the bimetallic strip, the surface of the TiAl porous layer is rough. Vacuum annealing at 1000, 1100, and 1200°C for 0.5 1.5 h leads to intense pore healing. After deposition and annealing, the interlayer adhesion is strong. The preparation of TiAl granules and spraying of the powder is accompanied by aluminum depletion of the Ti-48 at % Al alloy to 42 45 at % and an increase in the fraction of the α2-Ti3Al phase in the deposited layer. The prepared material has a duplex structure. An intermediate diffuse layer characterized by a variable composition and thickness is formed at the interface. This layer consists of two solid solutions; one of them, which is formed at the TiAl layer, is an α2-Ti3Al-based solid solution of niobium and the other, which is formed at the niobium foil, is a niobium-based solid solution of titanium and aluminum.
Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Kim, Hyosim; Gigax, Jonathan G.; Chen, Di; Wei, Chao-Chen; Garner, F. A.; Shao, Lin
2017-10-01
We studied the radiation-induced microstructural evolution of an oxide-dispersion-strengthened (ODS) ferritic alloy, MA956, to 180 dpa using 3.5 MeV Fe2+ ions. Post-irradiation examination showed that voids formed rather early and almost exclusively at the particle-matrix interfaces. Surprisingly, voids formed even in the injected interstitial zone. Comparisons with studies on other ODS alloys with smaller and largely coherent dispersoids irradiated at similar conditions revealed that the larger and not completely coherent oxide particles in MA956 serve as defect collectors which promote nucleation of voids at their interface. The interface configuration, which is related to particle type, crystal structure and size, is one of the important factors determining the defect-sink properties of particle-matrix interfaces.
An approach to tune the amplitude of surface ripple patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Tanuj; Kanjilal, D.; Kumar, Ashish
An approach is presented to tune the amplitude of ripple patterns using ion beam. By varying the depth location of amorphous/crystalline interface, ripple patterns of different amplitude with similar wavelength were grown on the surface of Si (100) using 50 keV Ar{sup +} beam irradiation. Atomic force microscopy study demonstrates the tuning of amplitude of ripples patterns for wide range. Rutherford backscattering channeling measurement was performed to measure the depth location of amorphous/crystalline interface. It is postulated that the ion beam stimulated solid flow inside the amorphous layer controls the wavelength, whereas mass rearrangement at amorphous/crystalline interface controls the amplitude.
Advanced Characterization Techniques for Sodium-Ion Battery Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
Advanced Characterization Techniques for Sodium-Ion Battery Studies
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning; ...
2018-02-19
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
XPS and SIMS study of the surface and interface of aged C + implanted uranium
Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.
2016-09-08
X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less
Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel
2018-02-06
A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.
NASA Technical Reports Server (NTRS)
Coad, J. P.; Restall, J. E.
1982-01-01
Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.
What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?
Haber, Shira; Leskes, Michal
2018-06-11
Rechargeable battery cells are composed of two electrodes separated by an ion-conducting electrolyte. While the energy density of the cell is mostly determined by the redox potential of the electrodes and amount of charge they can store, the processes at the electrode-electrolyte interface govern the battery's lifetime and performance. Viable battery cells rely on unimpeded ion transport across this interface, which depends on its composition and structure. These properties are challenging to determine as interfacial phases are thin, disordered, heterogeneous, and can be very reactive. The recent developments and applications of solid state NMR spectroscopy in the study of interfacial phenomena in rechargeable batteries based on lithium and sodium chemistries are reviewed. The different NMR interactions are surveyed and how these are used to shed light on the chemical composition and architecture of interfacial phases as well as directly probe ion transport across them is described. By combining new methods in solid state NMR spectroscopy with other analytical tools, a holistic description of the electrode-electrolyte interface can be obtained. This will enable the design of improved interfaces for developing battery cells with high energy, high power, and longer lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dos Santos, Alexandre P; Levin, Yan
2018-06-14
We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient. Kosmotropes stay hydrated and do not enter into the oil phase, while chaotropes can adsorb to the oil-water interface. The effective interaction potentials between ions and oil-water interface are parametrized so as to accurately account for the excess interfacial tension.
NASA Astrophysics Data System (ADS)
dos Santos, Alexandre P.; Levin, Yan
2018-06-01
We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient. Kosmotropes stay hydrated and do not enter into the oil phase, while chaotropes can adsorb to the oil-water interface. The effective interaction potentials between ions and oil-water interface are parametrized so as to accurately account for the excess interfacial tension.
Batzer, Thomas H.; Call, Wayne R.
1985-01-01
An improved cryopumping apparatus which comprises a cryopumping space which may be alternately opened and closed from the surrounding area by moveable panels, trubular cryopanels within said cryopumping space through which a coolant such as liquid helium may be passed, and an apparatus for spraying liquid argon onto said cylindrical cryopanels in order to enhance the cryogenic entrapment of such low-z ions, atoms, and molecules as hydrogen and helium.
Process for thin film deposition of cadmium sulfide
Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.
1982-01-01
The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.
Maurer, Hans H
2018-04-30
This paper reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.
NASA Astrophysics Data System (ADS)
Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
Antonakis, Manolis M; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J; Pergantis, Spiros A
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [Cu(II) 6Ln(III)] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
Lubin, Arnaud; Geerinckx, Suzy; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip; Vreeken, Rob J
2016-04-01
Eicosanoids, including prostaglandins and thromboxanes are lipid mediators synthetized from polyunsaturated fatty acids. They play an important role in cell signaling and are often reported as inflammatory markers. LC-MS/MS is the technique of choice for the analysis of these compounds, often in combination with advanced sample preparation techniques. Here we report a head to head comparison between an electrospray ionization source (ESI) and a new atmospheric pressure ionization source (UniSpray). The performance of both interfaces was evaluated in various matrices such as human plasma, pig colon and mouse colon. The UniSpray source shows an increase in method sensitivity up to a factor 5. Equivalent to better linearity and repeatability on various matrices as well as an increase in signal intensity were observed in comparison to ESI. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng
2015-01-01
High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.
Strain isolated ceramic coatings
NASA Technical Reports Server (NTRS)
Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.
1985-01-01
Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.
NASA Astrophysics Data System (ADS)
Troitskaya, Yu. I.; Ermakova, O. S.; Kandaurov, A. A.; Kozlov, D. S.; Sergeev, D. A.; Zilitinkevich, S. S.
2017-11-01
Influence of the spray generation due to the fragmentation of the "bag-breakup" type on momentum exchange in the atmospheric boundary layer above the sea surface at hurricane winds was investigated on the basis of the analysis of the results of laboratory experiments. It was shown that aerodynamic drag is determined by the contribution of three factors: first, the drag of the "bag-breakup" canopies as obstacles; second, acceleration of the spray formed during fragmentation by the air flow; and the third factor is related to the stratification of the near-water atmospheric layer due to the presence of levitated water droplets. Combination of all three factors leads to a non-monotonous dependence of the aerodynamic drag coefficient on wind speed, which confirms the results of the field and laboratory measurements.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1985-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
NASA Astrophysics Data System (ADS)
van Every, Kent J.
The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs. The different thermal conduction behaviors were linked to the porosity and compositional properties of the coatings using immersion density, SEM, and synchrotron radiation characterization techniques.
Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids
NASA Astrophysics Data System (ADS)
Malkawi, Ghazi
An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new method suitable for variety of combustion applications.
Peuchen, Elizabeth H; Zhu, Guije; Sun, Liangliang; Dovichi, Norman J
2017-03-01
Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.
Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...
2015-07-20
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less
NASA Astrophysics Data System (ADS)
Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.
2013-12-01
High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.
NASA Astrophysics Data System (ADS)
Bhushan, K. G.; Rao, K. C.; Sule, U.; Reddy, P.; Rodrigues, S. M.; Gaikwad, D. T.; Mukundhan, R.; Gupta, S. K.
2016-04-01
An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500-5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (~ 1500 amu) solution with the ion funnel operating in the 500-900 kHz frequency range, amplitude of 70 Vp-p, under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented.
NASA Astrophysics Data System (ADS)
Choi, Seung Ho; Kang, Yun Chan
2016-02-01
Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g-1, respectively, at a high current density of 1.0 A g-1, and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10th discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g-1 at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls.Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g-1, respectively, at a high current density of 1.0 A g-1, and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10th discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g-1 at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07733h
Reaction Dynamics at Liquid Interfaces
NASA Astrophysics Data System (ADS)
Benjamin, Ilan
2015-04-01
The liquid interface is a narrow, highly anisotropic region, characterized by rapidly varying density, polarity, and molecular structure. I review several aspects of interfacial solvation and show how these affect reactivity at liquid/liquid interfaces. I specifically consider ion transfer, electron transfer, and SN2 reactions, showing that solvent effects on these reactions can be understood by examining the unique structure and dynamics of the liquid interface region.
PREFACE: Functionalized Liquid Liquid Interfaces
NASA Astrophysics Data System (ADS)
Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael
2007-09-01
Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions across it. Thus the interface can sustain fields of the order of 106 V/cm, which are localized in a nanoscopic layer near the interface. This gives many new options for building various kinds of electrically tunable self assembled moloecular devices. Through the years, ITIES have been considered by electrochemists as a popular biomimetic model system, or for studies of interfacial reaction kinetics; ITIES were also used in industrial phase-transfer catalysis. Recently, this system has opened up new options for nano-scale engineering of functional assemblies (for dense information storage, efficient energy conversion, light-harvesting, and miniaturized sensors), which justifies its presentation in this issue.
Ion distributions in electrolyte confined by multiple dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica
2014-03-01
The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.
Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A.
2015-01-01
We examined the effect of conformational change at the β7 I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin α4β7. An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the α4β7 headpiece. Wild-type α4β7 mediates rolling adhesion in Ca2+ and Ca2+/Mg2+ but firm adhesion in Mg2+ and Mn2+. Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn2+, confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn2+. Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion. PMID:15448154
Van Meerbeek, B; Conn, L J; Duke, E S; Schraub, D; Ghafghaichi, F
1995-03-01
focused ion-beam (FIB) etching, commonly used as a cross-sectioning technique for failure analysis of semiconductor devices, has recently been applied to biological tissues to expose their ultrastructure for examination. It was the aim of this investigation to determine the practical utility of FIB to cross-section resin-dentin interfaces in order to morphologically evaluate the completeness of resin penetration into the exposed collagen scaffold at the resin-dentin bond interface. Two representative commercially available dentin adhesive systems were bonded to mid-coronal dentin. After appropriate fixation and dehydration of the resin-bonded dentin samples, a scanned focused ion-beam of a few tens of nano-meters in diameter was used to cross=section the resin-dentin interface. Examination of the interfacial ultrastructure was accomplished using a field-emission SEM. Results indicate possible artifact production at the cross-sectioned interface, hiding its actual ultrastructure, probably due to a heat-effect with possible recrystallization. Further studies of FIB are needed to optimize its usefulness for resin-dentin interface examinations and other biological tissue applications. Complete resin saturation of the demineralized dentin surface-layer has been claimed to be the key factor for a long-lasting resin-dentin bond. A "clean" artifact-free micro-cross-sectioning technique may provide indisputable ultra-structural information about the depth of resin penetration into the demineralized zone. Such a test would be useful in the development of dentin adhesive systems.
NASA Astrophysics Data System (ADS)
Tokunaga, K.; Matsubara, T.; Miyamoto, Y.; Takao, Y.; Yoshida, N.; Noda, N.; Kubota, Y.; Sogabe, T.; Kato, T.; Plöchl, L.
2000-12-01
Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300°C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800°C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage.
Technologies for Trapped-Ion Quantum Information Systems
2016-03-21
mate- rials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and...trapping techniques. Keywords ion traps · quantum computation · quantum information · trapped ions · ion-photon interface · graphene · indium tin oxide...displays are typically made of indium tin oxide (ITO), a material that is both an elec- trical and an optical conductor. However, using ITO electrodes
Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng
2016-03-17
Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Real-time observations of interface formation for barium strontium titanate films on silicon
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.
2002-05-01
Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.
Calcium phosphate coating on titanium using laser and plasma spray
NASA Astrophysics Data System (ADS)
Roy, Mangal
Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.
Cooling Performance of a Partially-Confined FC-72 Spray: The Effect of Dissolved Air (Postprint)
2007-01-01
plate FC = FC-72 fluid htr = heater conductive layer int = interface between heater substrate and insulating support post m = measured s = heater... microporous enhanced surface and a plain reference surface, and developed correlations for nucleate boiling and CHF. The results of the experiment...8Rainey, K. N., You, S. M., and Lee, S., “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces
NASA Astrophysics Data System (ADS)
Annapureddy, Harsha V. R.; Dang, Liem X.
2012-12-01
To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...
2017-09-07
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
Gohain, Biren; Dutta, Robin K
2008-07-15
The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.
Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young
2015-08-01
This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs.
High performance Li-ion sulfur batteries enabled by intercalation chemistry.
Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie
2015-09-11
The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte.
Enhancement of Radiation Tolerance by Interfaces in Nanostructured Metallic Materials
2013-06-05
MeV Ar+ ions, respectively [14],[15]. Chimi et al. measured the electrical resistivity of irradiated nc gold and found that enlarged defect...2011.10.052 07/28/2011 1.00 Nan Li, M. S. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, X. Zhang. He ion irradiation damage in Al? Nb ...climb at interfaces in nanolayered Al/ Nb composites, Scripta Materialia, (08 2010): 363. doi: 10.1016/j.scriptamat.2010.04.005 07/28/2011 5.00 E.G. Fu
Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi
2017-08-04
A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface
NASA Astrophysics Data System (ADS)
Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.
2018-01-01
Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.
HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface
NASA Astrophysics Data System (ADS)
Wu, A.; Ribis, J.; Brachet, J.-C.; Clouet, E.; Leprêtre, F.; Bordas, E.; Arnal, B.
2018-06-01
Chromium-coated zirconium alloys are being studied as Enhanced Accident Tolerant Fuel Cladding for Light Water Reactors (LWRs). Those materials are especially studied to improve the oxidation resistance of LWRs current fuel claddings in nominal and at High Temperature (HT) for hypothetical accidental conditions such as LOss of Coolant Accident. Beyond their HT behavior, it is essential to assess the materials behavior under irradiation. A first generation chromium/Zircaloy-4 interface was thus irradiated with 20 MeV Kr8+ ions at 400 °C up to 10 dpa. High-Resolution Transmission Electron Microscopy and chemical analysis (EDS) were conducted at the Cr/Zr interface. The atomic structure of the interface reveals the presence of Zr(Fe, Cr)2 Laves phase, displaying both C14 and C15 structure. After irradiation, only the C14 structure was observed and atomic row matching was preserved across the different interfaces, thus ensuring a good adhesion of the coating after irradiation.
Potential-specific structure at the hematite-electrolyte interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter
The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less
Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)
Shao, Lin; Chen, Di; Wei, Chaochen; ...
2014-10-01
We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
1995-01-01
Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.
NASA Astrophysics Data System (ADS)
Aghandeh, Hadi; Sedigh Ziabari, Seyed Ali
2017-11-01
This study investigates a junctionless tunnel field-effect transistor with a dual material gate and a heterostructure channel/source interface (DMG-H-JLTFET). We find that using the heterostructure interface improves device behavior by reducing the tunneling barrier width at the channel/source interface. Simultaneously, the dual material gate structure decreases ambipolar current by increasing the tunneling barrier width at the drain/channel interface. The performance of the device is analyzed based on the energy band diagram at on, off, and ambipolar states. Numerical simulations demonstrate improvements in ION, IOFF, ION/IOFF, subthreshold slope (SS), transconductance and cut-off frequency and suppressed ambipolar behavior. Next, the workfunction optimization of dual material gate is studied. It is found that if appropriate workfunctions are selected for tunnel and auxiliary gates, the JLTFET exhibits considerably improved performance. We then study the influence of Gaussian doping distribution at the drain and the channel on the ambipolar performance of the device and find that a Gaussian doping profile and a dual material gate structure remarkably reduce ambipolar current. Gaussian doped DMG-H-JLTFET, also exhibits enhanced IOFF, ION/IOFF, SS and a low threshold voltage without degrading IOFF.
Carbon Mineralization Using Phosphate and Silicate Ions
NASA Astrophysics Data System (ADS)
Gokturk, H.
2013-12-01
Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected ions would enhance the absorption of CO2 into the aerosol even more than the singly or doubly charged ions. Ion containing aerosols also help to catalyze reactions between water and CO2. Hydrated phosphate and silicate ions tend to attract hydrogen atoms from neighboring water molecules to reduce the charged state. When there is CO2 in the vicinity of the ion, the remainder of the water molecule which loses the hydrogen(s) reacts with CO2 to form carbonates. (PO4---) + H2O + CO2 -> (HPO3--) + (HCO3-) (SiO4----) + H2O + CO2 -> (HSiO4---) + (HCO3-) (SiO4----) + H2O + CO2 -> (H2SiO4--) + (CO3--) In conclusion, highly charged phosphate and silicate ions dissolved in water and aerosolized into small droplets can facilitate both the capture and the mineralization of CO2. This method would be especially effective in a CO2 rich environment such as the exhaust gas of a combustion process. [1] H. Gokturk, "Geoengineering with Charged Droplets," AGU Fall Meeting, San Francisco 2011 [2] H. Gokturk, "Atomistic Simulation of Sea Spray Particles," AGU Fall Meeting, San Francisco 2012
Gu, Y W; Khor, K A; Pan, D; Cheang, P
2004-07-01
Hydroxyapatite (HA)/yttria stabilized zirconia/Ti-6Al-4V bio-composite coatings deposited onto Ti-6Al-4V substrate through a plasma spray technique were immersed in simulated body fluid (SBF) to investigate their behavior in vitro. Surface morphologies and structural changes in the coatings were analyzed by scanning electron microscopy, thin-film X-ray diffractometer, and X-ray photoelectron spectroscopy. The tensile bond strength of the coatings after immersion was also conducted through the ASTM C-633 standard for thermal sprayed coatings. Results showed that carbonate-containing hydroxyapatite (CHA) layer formed on the surface of composite coatings after 4 weeks immersion in SBF solution, indicating the composite coating possessed excellent bioactivity. The mechanical properties were found to decrease with immersion duration of maximum 56 days. However, minimal variation in mechanical properties was found subsequent to achieving supersaturation of the calcium ions, which was attained with the precipitation of the calcium phosphate layers. The mechanical properties of the composite coating were found to be significantly higher than those of pure HA coatings even after immersion in the SBF solution, indicating the enhanced mechanical properties of the composite coatings.
Radiation Hardened Silicon-on-Insulator Structures with N+ Ion Modified Buried SiO2 Layer
NASA Astrophysics Data System (ADS)
Tyschenko, I. E.; Popov, V. P.
2009-12-01
Radiation-resistant silicon-on-insulator structures were produced by N+ ion implantation into thermally grown SiO2 film and subsequent hydrogen transfer of the Si layer to the nitrogen-implanted substrate under conditions of vacuum wafer bonding. Accumulation of the carriers in the buried SiO2 was investigated as a function of fluence of nitrogen ions in the range (1-6)×1015 cm2 and as a function of total radiation dose ranging from 104 to 107 rad (Si). It was found that the charge generated near the nitrided bonding interface was reduced by a factor of four compared to the thermal SiO2/Si interface.
Coutinho, E; Jarmar, T; Svahn, F; Neves, A A; Verlinden, B; Van Meerbeek, B; Engqvist, H
2009-11-01
Current available techniques for transmission electron microscopy (TEM) of tooth-biomaterial interfaces are mostly ineffective for brittle phases and impair integrated chemical and morphological characterization. The aims of this study were (1) to determine the applicability of new focused ion beam (FIB) and broad ion beam (BIB) techniques for TEM preparation of tooth-biomaterial interfaces; (2) to characterize the interfacial interaction with enamel and dentin of a conventional glass-ionomer (Chemfil Superior, DeTrey Dentsply, Germany), a 2-step self-etch (Clearfil SE, Kuraray, Japan) and a 3-step etch-and-rinse (OptiBond FL, Kerr, USA) adhesives; and (3) to characterize clinically relevant interfaces obtained from actual Class-I cavities. After bonding to freshly extracted human third molars, non-demineralized and non-stained sections were obtained using the FIB/BIB techniques and examined under TEM. The main structures generally disclosed in conventional ultramicrotomy samples were recognized in FIB/BIB-based ones. There were not any major differences between FIB and BIB concerning the resulting ultrastructural morphology. FIB/BIB-sections enabled to clearly resolve sub-micron hydroxyapatite crystals on top of hard tissues and the interface between matrix and filler in all materials, even at nano-scale. Some investigated interfaces disclosed areas with a distinct "fog" or "melted look", which is probably an artifact due to surface damage caused by the high-energy beam. Interfaces with enamel clearly disclosed the distinct "keyhole" shape of enamel rods sectioned at 90 degrees , delimited by a thin electron-lucent layer of inter-rod enamel. At regions where enamel crystals ran parallel with the interface, we observed a lack of interaction and some de-bonding along with interfacial void formation. The FIB/BIB methods are viable and reliable alternatives to conventional ultramicrotomy for preparation of thin sections of brittle and thus difficult to cut biomaterial-hard tissue interfaces. They disclose additional ultrastructural information about both substrates and are more suitable for advanced analytic procedures.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces
Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi
2013-01-01
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed. PMID:24363454
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011