Science.gov

Sample records for ion structure determination

  1. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.

    PubMed

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E; Rashid, Asim J; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W; Iyer, Shrivats M; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L; Malenka, Robert C; Josselyn, Sheena A; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-26

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.

  2. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity

    PubMed Central

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E.; Rashid, Asim J.; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W.; Iyer, Shrivats M.; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L.; Malenka, Robert C.; Josselyn, Sheena A.; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-01

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore. PMID

  3. Determining the structure of X (3872) in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Martínez Torres, A.; Navarra, F. S.; Nielsen, M.

    2016-08-01

    We study the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872). In this evaluation we include diagrams involving the anomalous couplings πD*D̅* and XD̅*D* and also the couplings of the X(3872) with charged D and D* mesons. With these new terms the X(3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  4. Determining the size-dependent structure of ligand-free gold-cluster ions.

    PubMed

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2010-03-28

    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the development of experimental methods that allow characterization of sample sizes comprising only a few thousand mass-selected particles under well-defined collision-free conditions. In this review, we describe the application of these methods to the geometric structural determination of Au(n)(+) and Au(n)(-) with n = 3-20. Geometries were assigned by comparing experimental data, primarily from ion-mobility spectrometry and trapped ion electron diffraction, to structural models from quantum chemical calculations.

  5. Eu[sup 3+] ion luminescence crystal structural determination for lanthanide sesquioxides

    SciTech Connect

    Tanner, P.A.; Rudowicz, C. )

    1993-01-01

    Recently, Chen et al. have suggsted that the Eu[sup 3+] ion luminescence from f-f transitions could be used as an alternative to x-ray diffraction in the determination of crystal structure. From the results of the room-temperature luminescence data for three different host crystals only, the authors claim that this method is easier and can be more quickly performed than the usual powder diffraction technique. However, the spectra have not been convincingly assigned and are utilized as finger-prints of structure types. This literature survey has indicated that all the data have been previously reported in the literature. In this note we critically comment on the paper and correct some errors and misconceptions therein. The main conclusion is that the luminescence crystal structure determination cannot be regarded as an alternative shortcut method to the crystallographic structure determination for several reasons. 20 refs.

  6. Structure of the TRPV1 ion channel determined by electron cryo-microscopy

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function. PMID:24305160

  7. Determination of ion pairing on capping structures of gold nanoparticles by phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Young, Kaylie; Luo, Jin; Zhong, Chuan-Jian

    2015-09-21

    As nanoparticles with different capping structures in solution phases have found widespread applications of wide interest, understanding how the capping structure change influences their presence in phases or solutions is important for gaining full control over both the intended nanoactivity and the unintended nanotoxicity. This report describes a simple and effective phase extraction method for analyzing the degree of ion pairing in the capping molecular structure of nanoparticles. Gold nanoparticles of a few nanometers diameter with a mixed monolayer capping structure consisting of both hydrophobic and hydrophilic and reactive groups were studied as a model system, and a quantitative model was derived based on chemical equilibria in a two-phase system, and used to assess the experimental data for phase extraction by cationic species. In contrast to the traditional perception of 100% ion pairing, only a small fraction (∼20%) of the negatively-charged groups was found to be responsible for the phase extraction. The viability of using this phase extraction method for analyzing the degree of ion-pairing in the capping molecular structure of different nanoparticles is also discussed, which has implications for the control of the nanoactivity and nanotoxicity of molecularly-capped or bio-conjugated nanoparticles.

  8. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  9. Use of ion-assisted techniques for determining the structure of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Renz, Renata P.; Vargas, André L. M.; Hübler, Roberto

    2015-12-01

    In recent years, several researchers have reported obtaining titanium dioxide nanotubes presenting a variety of advanced and functional properties for high-performance applications, e.g., for solar and fuel cells, gas sensor, self-cleaning and biomedical devices. Electrochemical oxidation of titanium has been widely used as a method for fabrication of self-organized titanium oxide nanotubes (TiO2 NTs), since it is a simple and inexpensive process, which allows a great control over the size and configuration of the formed structure. Normally, the morphological and structural characterizations are based on images from scanning or transmission electron microscopy. The use of characterization techniques assisted by energetic ion beams, such as RBS or MEIS, can simultaneously evaluate the composition and structural properties of the nanotubes. In this work, titanium oxide nanotubes were obtained by electrochemical oxidation of commercially pure titanium via constant-voltage experiments varying the growth time and the potential applied in order to access the formation dynamics of the NTs, including inner and outer diameters as function of the length, and the formation of the end lace type porous layer. The characterizations made by RBS were compared by analysis of top and cross-sectional FEG-SEM images demonstrating a good compromise between them.

  10. Evaluation of ion mobility spectroscopy for determining charge-solvated versus salt-bridge structures of protonated trimers.

    PubMed

    Wong, Richard L; Williams, Evan R; Counterman, Anne E; Clemmer, David E

    2005-07-01

    The cross sections of five different protonated trimers consisting of two base molecules and trifluoroacetic acid were measured by using ion mobility spectrometry. The gas-phase basicities of these five base molecules span an 8-kcal/mol range. These cross sections are compared with those determined from candidate low-energy salt-bridge and charge-solvated structures identified by using molecular mechanics calculations using three different force fields: AMBER*, MMFF, and CHARMm. With AMBER*, the charge-solvated structures are all globular and the salt-bridge structures are all linear, whereas with CHARMm, these two forms of the protonated trimers can adopt either shape. Globular structures have smaller cross sections than linear structures. Conclusions about the structure of these protonated trimers are highly dependent on the force field used to generate low-energy candidate structures. With AMBER*, all of the trimers are consistent with salt-bridge structures, whereas with MMFF the measured cross sections are more consistent with charge-solvated structures, although the assignments are ambiguous for two of the protonated trimers. Conclusions based on structures generated by using CHARMm suggest a change in structure from charge-solvated to salt-bridge structures with increasing gas-phase basicity of the constituent bases, a result that is most consistent with structural conclusions based on blackbody infrared radiative dissociation experiments for these protonated trimers and theoretical calculations on the uncharged base-acid pairs.

  11. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  12. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGESBeta

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  13. Effects of Carbon Structure and Surface Oxygen on the Carbon's Performance as the Anode in Lithium-Ion Battery Determined

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2000-01-01

    Four carbon materials (C1, C2, C3, and C4) were tested electrochemically at the NASA Glenn Research Center at Lewis Field to determine their performance in lithium-ion batteries. They were formed as shown in the figure. This process caused very little carbon loss. Products C1 and C3 contained very little oxygen because of the final overnight heating at 540 C. Products C2 and C4, on the other hand, contained small amounts of basic oxide. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) ethylene carbonate (EC) and dimethyl carbonate (DMC)/Li half cell. The cycling test, which is summarized in the table, resulted in three major conclusions. The capacity of the carbon with a basic oxide surface converges to a constant 1. value quickly (within 4 cycles), possibly because the oxide prevents solvent from entering the carbon structure and, therefore, prolongs the carbon s cycle life. Under certain conditions, the disordered carbon can store more lithium than its 2. precursor. These samples and their precursor can intercalate at 200 mA/g and deintercalate at 3. a rate of 2000 mA/g without significant capacity loss.

  14. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    PubMed

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-01

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization. PMID:26287361

  15. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    PubMed

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-01

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization.

  16. Synthesis and determination of the structural and optical characteristics of cBN micropowder with Eu{sup 3+} ions

    SciTech Connect

    Leonchik, S. V. Karotki, A. V.

    2013-10-15

    Cubic boron-nitride micropowder with Eu{sup 3+} ions (cBN:Eu) is synthesized under conditions of high pressures and temperatures. The structural, morphological, chemical, and optical characteristics of the cBN:Eu micropowder are studied using X-ray diffraction, energy-dispersive X-ray spectral microanalysis, photoluminescence, and optical transmission methods. It is found that the cBN:Eu lattice parameter is {approx}3.615 A. The intense red luminescence of the cBN:Eu micropowder (red glow), measured in the visible region of the spectrum in the range from 550 to 750 nm, is attributed to intracenter 4f-electron transitions of the Eu{sup 3+} ions. The possible nature of the cBN:Eu micropowder luminescence is discussed.

  17. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  18. Structure elucidation of cyclic pyoverdins and examination of rearrangement reactions in MS/MS experiments by determination of exact product ion masses.

    PubMed

    Schäfer, Mathias; Fuchs, Regine; Budzikiewicz, Herbert; Springer, Andreas; Meyer, Jean-Marie; Linscheid, Michael

    2006-09-01

    Structure elucidation of naturally occurring linear and cyclic peptidic compounds can be complicated by rearrangement reactions induced upon collision activation (CA) when parts of the molecule migrate, suggesting incorrect substitution patterns. Such complex rearrangements are examined and discussed for two iron complexing compounds produced by the bacterial genus Pseudomonas (so-called pyoverdins). Various MS2- and MS3-product ion experiments were performed using a quadrupole-ion trap (QIT) at low resolution and a FT-ICR at high resolution allowing accurate mass determinations. The results of the multidimensional study confirm the proposed processes. On the basis of the series of tandem-MS experiments the structure of a new pyoverdin from a P. fluorescens strain [PVD(D47)] is deduced. PMID:16888716

  19. X-ray crystallographic and mass spectrometric structure determination and functional characterization of succinylated porin from Rhodobacter capsulatus: implications for ion selectivity and single-channel conductance.

    PubMed Central

    Przybylski, M.; Glocker, M. O.; Nestel, U.; Schnaible, V.; Blüggel, M.; Diederichs, K.; Weckesser, J.; Schad, M.; Schmid, A.; Welte, W.; Benz, R.

    1996-01-01

    The role of charges near the pore mouth has been discussed in theoretical work about ion channels. To introduce new negative charges in a channel protein, amino groups of porin from Rhodobacter capsulatus 37b4 were succinylated with succinic anhydride, and the precise extent and sites of succinylations and structures of the succinylporins determined by mass spectrometry and X-ray crystallography. Molecular weight and peptide mapping analyses using matrix-assisted laser desorption-ionization mass spectrometry identified selective succinylation of three lysine-epsilon-amino groups (Lys-46, Lys-298, Lys-300) and the N-terminal alpha-amino group. The structure of a tetra-succinylated porin (TS-porin) was determined to 2.4 A and was generally found unchanged in comparison to native porin to form a trimeric complex. All succinylated amino groups found in a mono/di-succinylated porin (MS-porin) and a TS-porin are localized at the inner channel surface and are solvent-accessible: Lys-46 is located at the channel constriction site, whereas Lys-298, Lys-300, and the N-terminus are all near the periplasmic entrance of the channel. The Lys-46 residue at the central constriction loop was modeled as succinyl-lysine from the electron density data and shown to bend toward the periplasmic pore mouth. The electrical properties of the MS-and TS-porins were determined by reconstitution into black lipid membranes, and showed a negative charge effect on ion transport and an increased cation selectivity through the porin channel. The properties of a typical general diffusion porin changed to those of a channel that contains point charges near the pore mouth. The single-channel conductance was no longer a linear function of the bulk aqueous salt concentration. The substantially higher cation selectivity of the succinylated porins compared with the native protein is consistent with the increase of negatively charged groups introduced. These results show tertiary structure

  20. Weighted difference of g factors of light Li-like and H-like ions for an improved determination of the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Berseneva, E.; Harman, Z.; Tupitsyn, I. I.; Keitel, C. H.

    2016-08-01

    A weighted difference of the g factors of the Li- and H-like ion of the same element is studied and optimized in order to maximize the cancelation of nuclear effects. To this end, a detailed theoretical investigation is performed for the finite nuclear size correction to the one-electron g factor, the one- and two-photon exchange effects, and the QED effects. The coefficients of the Z α expansion of these corrections are determined, which allows us to set up the optimal definition of the weighted difference. It is demonstrated that, for moderately light elements, such weighted difference is nearly free from uncertainties associated with nuclear effects and can be utilized to extract the fine-structure constant from bound-electron g -factor experiments with an accuracy competitive with or better than its current literature value.

  1. On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis-mass spectrometry.

    PubMed

    Imami, Koshi; Ishihama, Yasushi; Terabe, Shigeru

    2008-06-20

    We describe a new capillary electrophoresis-mass spectrometry (CE-MS)-based technique for analyzing sulfated glycopeptides. The proposed method performs selective enrichment of sulfated glycopeptides from a complex mixture of peptides based on field-enhanced sample injection and ion-pair reaction with a basic ion-pair reagent (Lys-Lys-Lys; KKK) at the exit end of a capillary in a single analysis, which permits successful fragmentation of sulfated glycopeptides in positive-ion mode at the MS/MS stage for comprehensive structural analysis. In this study, the method was verified using a model sulfated monosaccharide, N-acetyl-d-galactosamine 4-sulfate (GalNAc 4S). As an example of an application of this method, sulfated glycopeptides were selectively enriched from the enzymatic digest of thyroid stimulating hormone, affording approximately 500-fold sensitivity enhancement, and structural information was successfully obtained via on-line ion-pair complexation reaction.

  2. Structural Determination of Circulation.

    ERIC Educational Resources Information Center

    Blankenburg, William B.

    1981-01-01

    Analyzes the effects of both structural factors (demographics, economic conditions, and competition) and discretionary factors (content, design, and marketing techniques) and concludes that it is the former that determine a newspaper's circulation. (FL)

  3. Metal ion determinants of conantokin dimerization as revealed in the X-ray crystallographic structure of the Cd(2+)/Mg (2+)-con-T[K7gamma] complex.

    PubMed

    Cnudde, Sara E; Prorok, Mary; Castellino, Francis J; Geiger, James H

    2010-06-01

    Predatory sea snails from the Conus family produce a variety of venomous small helical peptides called conantokins that are rich in gamma-carboxyglutamic acid (Gla) residues. As potent and selective antagonists of the N-methyl-D: -aspartate receptor, these peptides are potential therapeutic agents for a variety of neurological conditions. The two most studied members of this family of peptides are con-G and con-T. Con-G has Gla residues at sequence positions 3, 4, 7, 10, and 14, and requires divalent cation binding to adopt a helical conformation. Although both Ca(2+) and Mg(2+) can fulfill this role, Ca(2+) induces dimerization of con-G, whereas the Mg(2+)-complexed peptide remains monomeric. A variant of con-T, con-T[K7gamma] (gamma is Gla), contains Gla residues at the same five positions as in con-G and behaves very similarly with respect to metal ion binding and dimerization; each peptide binds two Ca(2+) ions and two Mg(2+) ions per helix. To understand the difference in metal ion selectivity, affinity, and the dependence on Ca(2+) for dimer formation, we report here the structure of the monomeric Cd(2+)/Mg(2+)-con-T[K7gamma] complex, and, by comparison with the previously published con-T[K7gamma]/Ca(2+) dimer structure, we suggest explanations for both metal ion binding site specificity and metal-ion-dependent dimerization.

  4. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations.

    PubMed

    Allen, Samuel J; Eaton, Rachel M; Bush, Matthew F

    2016-09-20

    Ion mobility separation of native-like protein and protein complex ions expands the structural information available through native mass spectrometry analysis. Here, we implement Structures for Lossless Ion Manipulations (SLIM) for the analysis of native-like ions. SLIM has been shown previously to operate with near lossless transmission of ions up to 3000 Da in mass. Here for the first time, SLIM was used to separate native-like protein and protein complex ions ranging in mass from 12 to 145 kDa. The resulting arrival-time distributions were monomodal and were used to determine collision cross section values that are within 3% of those determined from radio-frequency-confining drift cell measurements. These results are consistent with the retention of native-like ion structures throughout these experiments. The apparent resolving powers of native-like ions measured using SLIM are as high as 42, which is the highest value reported directly from experimental data for the native-like ion of a protein complex. Interestingly, the apparent resolving power depends strongly on the identity of the analyte, suggesting that the arrival-time distributions of these ions may have contributions from an ensemble of structures in the gas phase that is unique to each analyte. These results suggest that the broad range of emerging SLIM technologies may all be adaptable to the analysis of native-like ions, which will enable future applications in the areas of structural biology, biophysics, and biopharmaceutical characterization.

  5. Ion chromatographic determination of sulfur in fuels

    NASA Technical Reports Server (NTRS)

    Mizisin, C. S.; Kuivinen, D. E.; Otterson, D. A.

    1978-01-01

    The sulfur content of fuels was determined using an ion chromatograph to measure the sulfate produced by a modified Parr bomb oxidation. Standard Reference Materials from the National Bureau of Standards, of approximately 0.2 + or - 0.004% sulfur, were analyzed resulting in a standard deviation no greater than 0.008. The ion chromatographic method can be applied to conventional fuels as well as shale-oil derived fuels. Other acid forming elements, such as fluorine, chlorine and nitrogen could be determined at the same time, provided that these elements have reached a suitable ionic state during the oxidation of the fuel.

  6. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    SciTech Connect

    Tolmachev, Aleksey V.; Webb, Ian K.; Ibrahim, Yehia M.; Garimella, Venkata BS; Zhang, Xinyu; Anderson, Gordon A.; Smith, Richard D.

    2014-08-23

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radio frequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radio frequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards, and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be ‘soft’ in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling ion mobility separations.

  7. Characterization of ion dynamics in structures for lossless ion manipulations.

    PubMed

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations. PMID:25152178

  8. The crystal structure of plant acetohydroxy acid isomeroreductase complexed with NADPH, two magnesium ions and a herbicidal transition state analog determined at 1.65 A resolution.

    PubMed Central

    Biou, V; Dumas, R; Cohen-Addad, C; Douce, R; Job, D; Pebay-Peyroula, E

    1997-01-01

    Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. Because this pathway is absent from animals, the enzymes involved in it are good targets for a systematic search for herbicides. The crystal structure of acetohydroxy acid isomeroreductase complexed with cofactor NADPH, Mg2+ ions and a competitive inhibitor with herbicidal activity, N-hydroxy-N-isopropyloxamate, was solved to 1.65 A resolution and refined to an R factor of 18.7% and an R free of 22.9%. The asymmetric unit shows two functional dimers related by non-crystallographic symmetry. The active site, nested at the interface between the NADPH-binding domain and the all-helical C-terminus domain, shows a situation analogous to the transition state. It contains two Mg2+ ions interacting with the inhibitor molecule and bridged by the carboxylate moiety of an aspartate residue. The inhibitor-binding site is well adjusted to it, with a hydrophobic pocket and a polar region. Only 24 amino acids are conserved among known acetohydroxy acid isomeroreductase sequences and all of these are located around the active site. Finally, a 140 amino acid region, present in plants but absent from other species, was found to make up most of the dimerization domain. PMID:9218783

  9. Determining structural performance

    NASA Technical Reports Server (NTRS)

    Ernst, Michael A.; Kiraly, Louis J.

    1987-01-01

    An overview is given of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems. Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are four disciplines that make up the research program at NASA/Lewis Research Center. The Aeroelasticity program develops analytical and experimental methods to minimize flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods have been developed for applications on the turbofan, turbopump, and advanced turboprop. To improve life and performance, the Vibration Control program conceives, analyzes, develops, and demonstrates new methods to control vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The Dynamic Systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. The Computational Structural Methods program uses computer science to improve solutions of structural problems.

  10. Determining structural performance

    NASA Technical Reports Server (NTRS)

    Ernst, Michael A. (Editor); Brown, Gerald; Dirusso, Eliseo; Fleming, David; Janetzke, David; Kascak, Albert; Kaza, Krishna; Kielb, Robert; Kiraly, Louis J.; Lawrence, Charles

    1990-01-01

    An overview of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems is presented. Aeroelasticity, vibration control, dynamic systems, and computational structural methods are four disciplines that make up the structural dynamic effort at LeRC. The aeroelasticity program develops analytical and experimental methods for minimizing flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods were developed for applications on the turbofan, turbopump, and advanced turboprop. In order to improve life and performance, the vibration control program conceives, analyzes, develops, and demonstrates new methods for controlling vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The dynamic systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. Work in this field involves the analysis and parametric identification of large, nonlinear, damped, stochastic systems. The computational structural methods program exploits modern computer science as an aid to the solutions of structural problems.

  11. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  12. Ab initio simulations for the ion-ion structure factor of warm dense aluminum.

    PubMed

    Rüter, Hannes R; Redmer, Ronald

    2014-04-11

    We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982

  13. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    PubMed

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-01

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  14. Determination of ion temperature by two-probe method.

    PubMed

    Makita, H; Kuriki, K

    1978-03-01

    A simple method is proposed to estimate the ion temperature of collision-free plasma using a cylindrical and a spherical Langmuir probe. This method is based on the difference in the ion-temperature dependence of the ion-current collection between these probes as predicted theoretically by Laframboise. Curves necessary for the ion-temperature determination are given and are applied to a low-density xenon plasma. Agreement of the probe characteristics with Laframboise's theory was also demonstrated.

  15. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  16. Chitosan Hydrogel Structure Modulated by Metal Ions

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources. PMID:27777398

  17. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  18. Solar wind compressible structures at ion scales

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Alexandrova, O.; Rocoto, V.; Pantellini, F. G. E.; Zaslavsky, A.; Maksimovic, M.; Issautier, K.; Mangeney, A.

    2014-12-01

    In the solar wind turbulent cascade, the energy partition between fluid and kinetic degrees of freedom, in the vicinity of plasma characteristic scales, i.e. ion and electron Larmor radius and inertial lengths, is still under debate. In a neighborhood of the ion scales, it has been observed that the spectral shape changes and fluctuations become more compressible. Nowadays, a huge scientific effort is directed to the comprehension of the link between macroscopic and microscopic scales and to disclose the nature of compressive fluctuations, meaning that if space plasma turbulence is a mixture of quasi-linear waves (as whistler or kinetic Alfvèn waves) or if turbulence is strong with formation of coherent structures responsible for dissipation. Here we present an automatic method to identify compressible coherent structures around the ion spectral break, using Morlet wavelet decomposition of magnetic signal from Cluster spacecraft and reconstruction of magnetic fluctuations in a selected scale range. Different kind of coherent structures have been detected: from soliton-like one-dimensional structures to current sheet- or wave-like two-dimensional structures. Using a multi-satellite analysis, in order to characterize 3D geometry and propagation in plasma rest frame, we recover that these structures propagate quasi-perpendicular to the mean magnetic field, with finite velocity. Moreover, without using the Taylor hypothesis, the spatial scales of coherent structures have been estimated. Our observations in the solar wind can provide constraints on theoretical modeling of small scale turbulence and dissipation in collisionless magnetized plasmas.

  19. Electron Backstreaming Determination for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Katz, Ira; Goebel, Dan M.; Anderson, John R.

    2008-01-01

    Electron backstreaming in ion thrusters is caused by the random flux of beam electrons past a potential barrier established by the accel grid. A technique that integrates this flux over the radial extent of the barrier reveals important aspects of electron backstreaming phenomena for individual beamlets, across the thruster beam, and throughout thruster life. For individual beamlets it was found that over 99% of the electron backstreaming occurs in a small annulus at the center of the beamlet that is less than 20% the area of the beamlet at the potential barrier established by the accel grid. For the thruster beam it was found that over 99% of the backstreaming current occurs inside of r = 6 cm for the over 28 cm diameter NSTAR grid. Initial validation against ELT data shows that the technique provides the correct behavior and magnitude of electron backstreaming limit, V(sub ebs). From the sensitivity analyses it is apparent that accel grid chamfering may be the dominant mechanism contributing to the sharp rise in the absolute value of V(sub ebs) observed in the ELT but does not explain the rise in ion transparency. Grid gap change also contributes to the absolute value of V(sub ebs) rise and large rises in ion transparency with thruster life for the center gridlet. Screen grid erosion contributes generally to rises in the absolute value of V(sub ebs) and ion transparency, but for the assumptions used herein, it appears to not have as much of an effect chamfering or grid gap change. Overall, it is apparent that accel grid chamfering, grid gap change, and screen grid erosion are important to the increase in electron backstreaming observed during the ELT.

  20. Crystal structure determination of Efavirenz

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria; Dumitru, Ristoiu

    2015-12-01

    Needle-shaped single crystals of the title compound, C14H9ClF3NO2, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  1. Determining the Bohm criterion in plasmas with two ion species

    SciTech Connect

    Baalrud, S. D.; Hegna, C. C.

    2011-02-15

    A model that uniquely determines the flow speed of each ion species at the sheath edge of two ion species plasmas is developed. In this analysis, ion-ion two-stream instabilities can play an important role because they significantly enhance the friction between ion species. Two-stream instabilities arise when the difference in flow speeds between the ion species exceeds a critical value: V{sub 1}-V{sub 2}{identical_to}{Delta}V{>=}{Delta}V{sub c}. The resultant instability-enhanced friction rapidly becomes so strong that {Delta}V cannot significantly exceed {Delta}V{sub c}. Using the condition provided by {Delta}V={Delta}V{sub c} and the generalized Bohm criterion, the speed of each ion species is uniquely determined as it leaves a quasineutral plasma and enters a sheath. Previous work [S. D. Baalrud et al., Phys. Rev. Lett. 103, 205002 (2009)] considered the cold ion limit (T{sub i}{yields}0), in which case {Delta}V{sub c}{yields}0 and each ion species obtains a common ''system'' sound speed at the sheath edge. Finite ion temperatures are accounted for in this work. The result is that {Delta}V{sub c} depends on the density and thermal speed of each ion species; {Delta}V{sub c} has a minimum when the density ratio of the two ion species is near one, and becomes larger as the density ratio deviates from unity. As {Delta}V{sub c} increases, the speed of each ion species approaches its individual sound speed at the sheath edge.

  2. Determinants and Polynomial Root Structure

    ERIC Educational Resources Information Center

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  3. The structure of the dithionite ion

    NASA Astrophysics Data System (ADS)

    Peter, L.; Meyer, B.

    1982-11-01

    The Raman spectra of aqueous and solid sodium dithionite have been recorded. Differences in the location, intensity, and number of observed bands are attributed to conformational changes in the dithionite ion. The structure of the aqueous ion is non-planar with a C2h symmetry with an SS bond distance estimated to be 0.220-0.226 nm, as opposed to the dithionite structure in the Na 2S 2O 4·2H 2O salt which is known to have C2 ν structure with a bond distance of 0.2389 nm. The Raman spectra of aqueous dithionite are assigned to Ag (SO) = 997 cm -1; Bg (SO) at 912 cm -1, Bg SO 2 twist at 324 cm -1. The remaining bands are a strong Ag, the SO 2 wag, the SO 2 scissor, and the SS stretch at 584, 461, and 232 cm -1, respectively, but due to coupling all three motions are expected to exhibit substantial SS character. The variation of the spectra of the solid and aqueous sodium dithionite indicate strong environmental effect on the structure of the anion.

  4. The structure of the dithionite ion

    NASA Astrophysics Data System (ADS)

    Peter, L.; Meyer, B.

    The Raman spectra of aqueous and solid sodium dithionite have been recorded. Differences in the location, intensity, and number of observed bands are attributed to conformational changes in the dithionite ion. The structure of the aqueous ion is non-planar with a C2h symmetry with an SS bond distance estimated to be 0.220-0.226 nm, as opposed to the dithionite structure in the Na2S2O4·2H2O salt which is known to have C2ν structure with a bond distance of 0.2389 nm. The Raman spectra of aqueous dithionite are assigned to Ag (SO) = 997 cm-1; Bg (SO) at 912 cm-1, Bg SO2 twist at 324 cm-1. The remaining bands are a strong Ag, the SO2 wag, the SO2 scissor, and the SS stretch at 584, 461, and 232 cm-1, respectively, but due to coupling all three motions are expected to exhibit substantial SS character. The variation of the spectra of the solid and aqueous sodium dithionite indicate strong environmental effect on the structure of the anion.

  5. Ion exchange determines iodine-131 concentration in aqueous samples

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1967-01-01

    Inorganic radioiodide in aqueous media is analyzed by separating the radioactive iodine-131 as the iodide ion on a silver chloride column. The activity in the final precipitate may be determined by beta or gamma counting.

  6. Determination of counter-ions in synthetic peptides by ion chromatography, capillary isotachophoresis and capillary electrophoresis.

    PubMed

    Mrozik, Wojciech; Markowska, Aleksandra; Guzik, Lukasz; Kraska, Bartłomiej; Kamysz, Wojciech

    2012-03-01

    The utility of three various analytical techniques [ion chromatography (IC), capillary electrophoresis (CE) and isotachophoresis (ITP)] was tested in the determination of counter-ions in synthetic peptides. The analyzed ions were acetates, trifluoroacetates and chlorides. IC provided the best results; CE, except limit of detection and limit of quantification, exhibited the comparable results. ITP was classified as the less useful because of the problem with the determination of the chloride ions. Nevertheless, all the three techniques were able to analyze trifluoroacetates and acetates ions with satisfactory results. Except analytical methods, three procedures using hydrochloric acid (HCl) (at two different concentrations) and acetic acid as sample solvents processed by lyophilization were tested. It has been found that the lyophilization not only by HCl but also by acetic acid is a simple and cheap procedure for removal of toxic trifluoroacetic counter-ions from peptides on satisfactory levels.

  7. Jet Structure in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter hat q. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the incone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  8. Jet structure in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    2015-10-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter q̂. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  9. Crystal structure determination of Efavirenz

    SciTech Connect

    Popeneciu, Horea Dumitru, Ristoiu; Tripon, Carmen Borodi, Gheorghe Pop, Mihaela Maria

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  10. Novel gene complex structure determination

    SciTech Connect

    Gatewood, J.M.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LORD) project at the Los Alamos National Laboratory. `Operative` chromatin containing exclusively the minor hasten variants was successfully isolated. Linker hasten H1 is quantitatively missing from operative chromatin. One of the aims of this proposal was to determine the proteins responsible for stabilizing operative chromatin. This chromatin is stabilized by microtubule proteins tar and tubulin. Another goal of this project was the structural characterization of operate chromatin nucleosomes. Using solution scattering, nucleosomes containing the minor variants were shown to be structurally distinct from major variant containing nucleosomes. The unusual structure and stabilization of operative chromatin by microtubule proteins provides a possible mechanism for direct interaction of transcription machinery with specific chromatin domains.

  11. A new chemiluminescence method for the determination of nickel ion

    NASA Astrophysics Data System (ADS)

    Li, Li Na; Li, Nian Bing; Luo, Hong Qun

    2006-05-01

    A new chemiluminescence (CL) phenomenon described as the second-chemiluminescence (SCL) was observed and a strong CL signal was detected, when Ni(II) ion was injected into the mixture after the end of the reaction of potassium permanganate with alkaline luminol. The possible CL mechanism is proposed based on the kinetic curve of the CL reaction, CL spectra, UV-vis spectra and some other experiments. A flow-injection analysis for the determination of nickle(II) ion has been developed, based on the catalysis of nickel(II) ion on the CL reaction between potassium manganate produced on-line and luminol under alkaline condition. Under the optimum conditions, the SCL intensity is linear with the concentration of nickel(II) ion in the range of 8.0-200.0 μg l -1 and 0.2-2.0 mg l -1. The R.S.D. was 4.5% for 11 determinations of 250 μg l -1 nickel(II) ion and the detection limit (3 σ) for nickel(II) ion was 0.33 μg l -1. The method was applied to determine nickel(II) ion in synthetic samples with satisfactory results.

  12. Multiply-Charged Positive Ion Polarizabilities from Rydberg Ion Fine Structure

    NASA Astrophysics Data System (ADS)

    Lundeen, Stephen R.; Wright, Laura E.; Snow, Erica L.

    2006-05-01

    Experimental methods originally developed for study of fine structure patterns in high-L Rydberg states of neutral atoms and molecules have recently been extended to allow study of similar states in Rydberg states of multiply-charged ions[1]. Initial studies, carried out in Rydberg states of Si^+ and Si^2+, led to determination of the polarizabilities of Na-like and Mg-like Silicon ions [2,3], but similar studies may be feasible in a wide range of systems. Continued studies are aimed at studying ions with higher charge, such as the closed shell ion Kr^6+, and eventually the Radon-like ions U^6+ and Th^4+. [1] S.R. Lundeen in Advances in Atomic, Molecular and Optical Physics, Vol. 52, edited by P.R. Berman and C.C. Lin, p. 161 [2] R.A. Komara, M.A. Gearba, S.R. Lundeen, C.W. Fehrenbach, Phys. Rev. A 67, 062502 (2003) [3] R.A. Komara, M.A. Gearba, C.W. Fehrenbach, and S.R. Lundeen, J. Phys. B, At. Mol. Opt. Phys. 28, 2787 (2005)

  13. Structure and selectivity in bestrophin ion channels

    DOE PAGESBeta

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  14. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  15. [Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography].

    PubMed

    Lin, Li; Wang, Haibo; Shi, Yali

    2013-03-01

    A procedure for the determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography has been developed. At first the iodide, thiocyanate and perchlorate ions were separated from interfering ions by a column (IonPac AS16, 250 mm x 4 mm). The iodide ion, thiocyanate and perchlorate ions were then enriched with an enrichment column (MAC-200, 80 mm x 0.75 mm). In the 2nd-dimensional chromatography, iodide thiocyanate and perchlorate ions were separated and quantified by a capillary column (IonPac AS20 Capillary, 250 mm x 0.4 mm). The linear ranges were 0.05 -100 pg/L with correlation coefficients of 0. 999 9, and the detection limits were 0. 02 - 0.05 micro gg/L. The spiked recoveries of iodide, thiocyanate and perchlorate ions were in the range of 85.1% to 100.1%. The relative standard deviations of the recoveries were 1.7% to 4.9%.

  16. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  17. Membrane protein structure determination - the next generation.

    PubMed

    Moraes, Isabel; Evans, Gwyndaf; Sanchez-Weatherby, Juan; Newstead, Simon; Stewart, Patrick D Shaw

    2014-01-01

    The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.

  18. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  19. Structure determination of enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-02-20

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  20. Structural determinants of GAD antigenicity.

    PubMed

    Arafat, Yasir; Fenalti, Gustavo; Whisstock, James C; Mackay, Ian R; Garcia de la Banda, Maria; Rowley, Merrill J; Buckle, Ashley M

    2009-12-01

    Our aim was to ascertain structural determinants of autoantigenicity based on the model of the diabetes autoantigen glutamic acid decarboxylase 65 kDa isoform (GAD65) in comparison with that of the non-autoantigenic isoform GAD67. This difference exists despite the two isoforms having the same fold and high sequence identity. Autoantibodies to GAD65 precede the development of type 1 diabetes and are clinical markers of this and certain neural autoimmune diseases. To date, epitope mapping has been based on particular amino acid differences between the two isoforms, and there is no explanation as to why autoantibodies that react with GAD65 only infrequently cross-react with GAD67. To characterize each isoform of the enzyme and gain insights into their contrasting autoantigenic properties, we have used the recently determined crystal structures of GAD65 and GAD67 to compare their structure, hydrophobicity, electrostatics, flexibility and physiochemical properties. The results revealed striking differences which appear almost exclusively at the C-terminal domain of the isoforms. Whereas GAD65 displayed a highly charged and flexible C-terminal domain containing numerous patches of high electrostatic and solvation energies, these characteristics were absent in the GAD67 molecule. Additionally, analysis indicated potential N-terminal and PLP domain binding sites surrounding the C-terminal domain of GAD65, a major region of autoantigenic activity, but not of GAD67. These features agree with good accuracy with published epitope-mapping data. Our analysis suggests that the high flexibility and charge of GAD65 in the C-terminal domain is coupled with the mobility of its catalytic loop, a property that is absolutely required for its enzymatic function. Thus, the structural features that distinguish GAD65 from GAD67 as a B cell autoantigen are related to functional requirements for its enzymatic mechanism. This could well apply to the various other enzyme autoantigens and, if

  1. Electronic Structure Calculations of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Bromley, Steve; Ziolkowski, Marcin; Marler, Joan

    2016-05-01

    Exotic systems like Highly Charged Ions (HCIs) are attracting more attention based on their properties and possible interactions. Abundance of HCIs in the solar wind and their interaction with the upper atmosphere puts them in the attention of astro- and atmospheric physicists. Also, their unique properties originating in the high charge make them an excellent candidate for precision measurements and the next generation of atomic clocks. For a better understanding of the dynamics of processes involving HCIs a combined theoretical and experimental effort is needed to study their basic properties and interactions. Both theory and experiment need to be combined due to the extreme nature of these systems. We present preliminary insight into electronic structure of light HCIs, their interactions with neutral atoms and dynamics of charge transfer processes.

  2. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  3. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  4. Computational and ESR studies of electron attachment to decafluorocyclopentane, octafluorocyclobutane, and hexafluorocyclopropane: electron affinities of the molecules and the structures of their stable negative ions as determined from 13C and 19F hyperfine coupling constants.

    PubMed

    ElSohly, Adel M; Tschumper, Gregory S; Crocombe, Richard A; Wang, Jih Tzong; Williams, Ffrancon

    2005-08-01

    High-resolution ESR spectra of the ground-state negative ions of hexafluorocyclopropane (c-C3F6*-), octafluorocyclobutane (c-C4F8*-), and decafluorocyclopentane (c-C5F10*-) are reported and their isotropic 19F hyperfine coupling constants (hfcc) of 198.6 +/- 0.4 G, 147.6 +/- 0.4 G, and 117.9 +/- 0.4 G, respectively, are in inverse ratio to the total number of fluorine atoms per anion. Together with the small value of 5.2 +/- 0.4 G determined for the isotropic 13C hfcc of c-C4F8*-, these results indicate that in each case the singly occupied molecular orbital (SOMO) is delocalized over the equivalent fluorines and possesses a nodal plane through the carbon atoms of a time-averaged D(nh) structure. A series of quantum chemical computations were carried out to further characterize these anions and their neutral counterparts. Both the B3LYP density functional and second-order Møller-Plesset perturbation theory (MP2) indicate that c-C3F6*- adopts a D(3h) geometry and a (2)A2'' ground electronic state, that c-C4F8*- adopts a D(4h) geometry and a (2)A2u ground electronic state, and that c-C5F10*- adopts a C(s) structure and a (2)A' electronic state. Moreover, the 19F hyperfine coupling constants computed with the MP2 method and a high quality triple-zeta basis set are within 1% of the experimental values. Also, the values computed for the 13C hfcc of c-C4F8*- are consistent with the experimental value of 5.2 G. Therefore, in keeping with the ESR results, these negative ions derived from first-row elements can be characterized as pi* species. In addition, the hypervalency of these perfluorocycloalkane radical anions has been clarified.

  5. Turn-on fluorescent chemosensor for determination of lutetium ion.

    PubMed

    Faridbod, F; Sedaghat, M; Hosseini, M; Ganjali, M R; Khoobi, M; Shafiee, A; Norouzi, P

    2015-02-25

    A turn-on fluorescent chemosensor is introduced for the detection of Lu(3+) ion using N-[3-methyl]-2-[pyridine-2-amido] phenyl] pyridine-2-carboxamide (L) molecule. Fluorescent emission intensity of L enhances after binding to Lu(3+) ions in ethanol-water solution (1:9, v/v). The observed enhancement is the result of a strong covalent binding between Lu(3+) ion and L (the binding constant value is 2.0×10(6) mol(-1) L). The proposed optical chemosensor can be applied for the analysis of Lu(3+) ion in a linear range of 3.3×10(-7) to 1.0×10(-5) mol L(-1). The limit of detection was obtained 8.6×10(-7) mol L(-1). The probe exhibits high selectivity toward Lu(3+) ion in comparison with common metal ions. The proposed fluorescent chemosensor was successfully used in the determination of Lu(3+) ion in some water samples.

  6. State-of-the-art ion chromatographic determination of inorganic ions in food.

    PubMed

    Buldini, P L; Cavalli, S; Trifirò, A

    1997-11-21

    A review of the applications of ion chromatography (IC) to the determination of inorganic ions in food is presented. The most promising sample preparation techniques, such as accelerated solvent extraction, supercritical fluid extraction, solid-phase extraction, UV photolysis, microwave-oven digestion and pyrohydrolysis are discussed. Among the various inorganic anions, nitrogen, sulphur and phosphorus species and halides are widely determined in foods and to a lesser extent only, cyanide, carbonate, arsenic and selenium species are considered. IC determination of inorganic cations deals with ammonium ion, alkali, alkaline-earth, heavy and transition metals particularly and only a small amount of literature is found on the other ones, like aluminium and plantinum. A particular advantage of IC over traditional techniques is the simultaneous determination of several species. PMID:9440294

  7. Ions in water: The microscopic structure of concentrated hydroxide solutions

    NASA Astrophysics Data System (ADS)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  8. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    PubMed

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  9. Linkage determination of linear oligosaccharides by MS(n) (n > 2) collision-induced dissociation of Z₁ ions in the negative ion mode.

    PubMed

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MS(n), n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides (18)O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS(3) CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MS(n) CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  10. Dissociative recombination of interstellar ions: electronic structure calculations for HCO/sup +/

    SciTech Connect

    Kraemer, W.P.; Hazi, A.U.

    1985-07-02

    The present study of the interstellar formyl ion HCO/sup +/ is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO/sup +/ process. Similar calculations for the isoelectronic ions HOC/sup +/ and HN/sub 2//sup +/ are in progress. 60 refs.

  11. Determination of Dusty Particle Charge Taking into Account Ion Drag

    SciTech Connect

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A.; Petrov, O. F.; Antipov, S. N.

    2008-09-07

    This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

  12. Determination of sulphite in wines using suppressed ion chromatography.

    PubMed

    Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio

    2015-05-01

    Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples.

  13. Determination of sulphite in wines using suppressed ion chromatography.

    PubMed

    Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio

    2015-05-01

    Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples. PMID:25529696

  14. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  15. Flow injection determination of bromide ion in a developer using bromide ion-selective electrode detector.

    PubMed

    Masadome, T; Asano, Y; Nakamura, T

    1999-10-01

    A potentiometric flow injection determination method for bromide ion in a developer was proposed, by utilizing a flow-through type bromide ion-selective electrode detector. The sensing membrane of the electrode was Ag(2)S-AgBr membrane. The response of the electrode detector as a peak-shape signal was obtained for injected bromide ion in a developer. A linear relationship was found to exist between peak height and the concentration of the bromide ion in a developer in a concentration range from 1.0x10(-3) to 1.0x10(-2) mol l(-1). The relative standard deviation for 10 injections of a 6x10(-3) mol l(-1) bromide ion in a developer was 1.3% and the sampling rate was ca 17-20 samples h(-1). The present method was free from the interference of an organic reducing reagent, an organic substance in a developer sample solution for the determination of bromide ion in a developer.

  16. Determination of the inner surface of macroporous ion exchange resins.

    PubMed

    Martinola, F; Meyer, A

    1975-12-01

    Study on macroporours IX resins and the pore structure. In addition to ion exchange reactions, macroporous ion exchange resins also show adsorptive properties which are due to the large pores of the resin beads and to the inner surface inside the beads. To measure this surface and the pore radii requires very precise fixation of the condition existing prior to the drying of the water-moist resin beads. Such stabilizing fixation can be achieved by displacing the regain water by isopropyl alcohol and subsequent drying for measuring the pore data. PMID:1223012

  17. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    PubMed

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  18. Determination of Alkali Ions in Biological and Environmental Samples.

    PubMed

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  19. Determination of Alkali Ions in Biological and Environmental Samples.

    PubMed

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope.

  20. Structural modifications of low-energy heavy-ion irradiated germanium

    SciTech Connect

    Steinbach, T.; Wernecke, J.; Wesch, W.; Kluth, P.; Ridgway, M. C.

    2011-09-01

    Heavy-ion irradiation of crystalline germanium (c-Ge) results in the formation of a homogeneous amorphous germanium (a-Ge) layer at the surface. This a-Ge layer undergoes structural modification such as a strong volume expansion accompanied by drastic surface blackening with further ion irradiation. In the present paper we investigate the mechanism of this ion-induced structural modification in a-Ge basically for the irradiation with I ions (3 and 9 MeV) at room and low temperature as a function of ion fluence for the ion incidence angles of {Theta}=7 deg. and {Theta}=45 deg. For comparison, Ag- and Au-ion irradiations were performed at room temperature as a function of the ion fluence. At fluences two orders of magnitude above the amorphization threshold, morphological changes were observed for all irradiation conditions used. Over a wide range of ion fluences we demonstrate that the volume expansion is caused by the formation of voids at the surface and in the depth of the projected ion range. At high ion fluences the amorphous layer transforms into a porous structure as established by cross section and plan view electron microscopy investigations. However, the formation depth of the surface and buried voids as well as the shape and the dimension of the final porous structure depend on the ion fluence, ion species, and irradiation temperature and will be discussed in detail. The rate of the volume expansion (i.e., porous layer formation) depends linearly on the value of {epsilon}{sub n}. This clearly demonstrates that the structural changes are determined solely by the nuclear energy deposited within the amorphous phase. In addition, at high ion fluences all perpendicular ion irradiations lead to a formation of a microstructure at the surface, whereas for nonperpendicular ion irradiations a nonsaturating irreversible plastic deformation (ion hammering) without a microstructure formation is observed. For the irradiation with ion energies of several MeV, the effect

  1. Structure determination of transient transcription complexes.

    PubMed

    Cramer, Patrick

    2016-08-15

    The determination of detailed 3D structures of large and transient multicomponent complexes remains challenging. Here I describe the approaches that were used and developed by our laboratory to achieve structure solution of eukaryotic transcription complexes. I hope this collection serves as a resource for structural biologists seeking solutions for difficult structure determination projects. PMID:27528766

  2. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices.

    PubMed

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-01

    Preparation of Zn(2+) ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn(2+) ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn(2+) ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn(2+) ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.

  3. Determination of selected anions in water by ion chromatography

    USGS Publications Warehouse

    Fishman, Marvin J.; Pyen, Grace

    1979-01-01

    Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rainwater and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram. Minimum detection limits range from 0.01 mg/L for fluoride to 0.20 mg/L for chloride and sulfate. Relative standard deviations were less than 9% for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 mg/L in rainfall samples. Precision for fluoride ranged from 12 to 22%, but is attributed to the low concentrations in these samples. The other anions were not detected. To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103%. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104%. No recovery data were obtained for nitrite. Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography. (USGS).

  4. Determination of chloride in geological samples by ion chromatography

    USGS Publications Warehouse

    Wilson, S.A.; Gent, C.A.

    1983-01-01

    Samples of silicate rocks are prepared by sodium carbonate fusion and then treated by ion chromatography. The method was tested for geological standards with chloride concentration between 0.003 and 3%. Observed chloride concentrations comparedd favorably with literature values. The relative standard deviation and detection limit for the method were 8% and 7 ppm, respectively. Up to 30 determination per 24-hour period were possible. ?? 1983.

  5. Characteristic of Ion loss as determined by hybrid simulations

    NASA Astrophysics Data System (ADS)

    Brecht, Stephen H.; Ledvina, Stephen

    2016-10-01

    One of the major objectives of the MAVEN mission is to determine the loss rate of oxygen ions from the atmosphere of Mars. It is thought that the oxygen ion loss represents a conduit for the loss of water from Mars. However, the actual measurements and estimates of global loss rates are very difficult because one needs an average over many orbits and full coverage of the loss regions of Mars; something that MAVEN will only accomplish with an extended mission. In the meantime global kinetic simulations are an avenue to gain further insight into the loss process and perhaps offer insight into the data analysis that will be performed on the MAVEN data. Hybrid particle codes provide self-consistent simulations of the ion dynamics occurring when the solar wind interacts with Mars.This paper reports the results of HALFSHEL hybrid code simulations of the solar wind interaction with Mars and the subsequent loss of oxygen ions in the form of O+ and O2+. Four simulations were performed representing different orientations of the crustal magnetic fields with the subsolar regions using a solar EUV flux representative of the moderate solar activity experienced by MAVEN. Loss rates will be presented as will evaluations of the distribution functions of the various loss ion species as accumulated at roughly 2 Rm for each of the four simulations. The results will be presented as faces on a box surrounding Mars so that one can evaluate regions such as that of the measured plasma plume. The plume feature has now been measured and is often seen in simulations. Finally, the losses and the subsequent velocity distributions will be compared between the various crustal magnetic field orientations.In summary, results from the HALFSHEL hybrid code will be presented. These results will address characteristics of the oxygen ions lost from Mars as a function of crustal magnetic field orientation. Further, they will be compared with respect to the regions surrounding Mars and the associated

  6. Distortion of Ion Structures by Field Asymmetric Waveform Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Li, Fumin; Tang, Keqi; Smith, Richard D.

    2007-02-15

    Field asymmetric waveform ion mobility spectrometry (FAIMS) is emerging as a major analytical tool, especially in conjunction with mass spectrometry (MS) and/or conventional ion mobility spectrometry (IMS). In particular, FAIMS is used to separate protein or peptide conformers prior to characterization by IMS, MS/MS, or H/D exchange. High electric fields in FAIMS induce ion heating, previously estimated at <10 0C on average and believed too weak to affect ion geometries. Here we use a FAIMS/IMS/MS system to compare the IMS spectra for ESI-generated ubiquitin ions that have and have not passed FAIMS, and find that some unfolding occurs for all charge states. The analysis of those data and their comparison with reported protein unfolding in a Paul trap indicate that at least some structural transitions observed in FAIMS, or previously in an ion trap, are not spontaneous. The observed unfolding is overall similar to that produced by heating of ~40 - 50 0C above room temperature, consistent with the calculated heating of ions at FAIMS waveform peaks. Hence the isomerization in FAIMS likely proceeds in steps during “hot” periods, especially right after ions entering the device. That process distorts ion geometries and causes ion losses by a “self-cleaning” mechanism, and thus should be suppressed as much as possible. We propose achieving that via cooling FAIMS by the amount of ion heating; in most relevant cases cooling by ~75 0C should suffice.

  7. Modeling the multi-ion structure of the solar corona

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Provornikova, Elena; Wang, Tongjiang

    2014-06-01

    The solar corona is typically observed in EUV by SDO/AIA and other instruments using the heavy ion emission lines such as Fe IX, Fe XII, and other ion emission lines. However, the relative (to protons) abundance of the emitting ions is very low and the collisional coupling between the Fe ions and electrons decreases rapidly with height in the low corona, while gravitational settling may become significant in quiescent long-lived magnetic structures, such as streamers. Thus, the structure of the weakly collisional solar corona imaged in Fe IX (and other heavy ions) may differ significantly from the structure of the main electron-proton constituents of the corona. The electron structure is observed by white light coronagraphs, and during solar eclipses in the low corona. I present the results of multi-fluid modeling of coronal streamers and other magnetic structures that demonstrate the effects of weak coupling between the heavy ions and the coronal electron-proton components, and show that the multi-ion coronal structure must be taken into account in interpretation of EUV observations.

  8. Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahryar; Roushani, Mahmoud; Khani, Hossein; Sahraei, Reza; Mansouri, Ghobad

    2015-04-01

    Novel Ni(II) ion-imprinted polymers (Ni-IIP) nanoparticles were prepared by using Ni(II) ion-1,5-diphenyl carbazide (DPC) complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA) and 2,2‧-azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker and the radical initiator, respectively. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type and eluent volume which affects the efficiency of the polymer were studied. The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 100, 1.9%, and 0.002 μg mL-1, respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Ni(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of nickel in tomato and some water samples.

  9. The determination of dopant ion valence distributions in insulating crystals using XANES measurements.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A

    2016-04-01

    Ytterbium-doped wide-bandgap fluoride crystals CaF2, SrF2 and NaMgF3 have been measured using x-ray absorption near edge structure (XANES) on the L3 edge to determine the ratio of trivalent to divalent Yb ions present in the crystals. This study improves upon previous XANES measurements of dopant ion valency by taking into account the x-ray emission transition probabilities for the divalent and trivalent species instead of simply assuming that the relative concentrations may be determined by the ratio of the x-ray excitation band areas. Trivalent to divalent ratios as high as 5 are inferred even at low total dopant ion concentrations of 0.05 mol% Yb. PMID:26941175

  10. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  11. Sheath structure in electronegative plasmas with finite positive ion temperature

    NASA Astrophysics Data System (ADS)

    Palop, J. I. Fernández; Ballesteros, J.; Hernández, M. A.; Crespo, R. Morales; del Pino, S. Borrego

    2004-05-01

    An earlier theoretical work, concerning the sheath structure in electronegative plasmas, is extended to include the effect of the positive ion thermal motion. A significant change is observed in the quantities characterizing the sheath with respect to the cold ion assumption. The sheath is contracted when the positive ion thermal motion is considered causing a decrease in the sheath thickness. The ion saturation current and the floating potential are shown to be distinguished quantities in plasma diagnosis of electronegative plasmas by using plane Langmuir probes.

  12. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  13. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  14. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGESBeta

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; et al

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  15. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  16. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    PubMed

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations. PMID:26510005

  17. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  18. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts. PMID:26161970

  19. Structure Determination of Natural Products by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  20. Structural determinants of hospital closure.

    PubMed

    Longo, D R; Chase, G A

    1984-05-01

    In a retrospective case-control study, structural characteristics of hospitals that closed during the years 1976-1980 were contrasted with three comparison groups: hospitals that were acquired in a merger; hospitals that joined a multihospital system; and hospitals that remained autonomously opened, to investigate these characteristics as predictors of closure. Characteristics investigated included environmental, structural, and process variables. The independent variables were measured 5 years prior to outcome. Findings indicate that closed hospitals resemble hospitals acquired in a merger ("failure"), and likewise autonomous hospitals resemble hospitals that join a multihospital system ("success"). The most important predictors of hospital failure were the physician-to-population ratio, the East North Central and West North Central census regions, the level of diversification, low occupancy rate, location in a standard metropolitan statistical area, the chief executive officer's lack of affiliation in the American College of Hospital Administrators, profit status, bed size of less than 50, and presence in a state with a rate-setting agency. Surprisingly, this study shows the bed-to-population ratio to be unrelated to closure. In addition, the findings strongly support the open-system perspective, which, unlike the closed-system perspective, is concerned with the vulnerability of the organization to the uncontrollable and often unpredictable influences of the environment.

  1. Determination of the lithium ion diffusion coefficient in graphite

    SciTech Connect

    Yu, P.; Popov, B.N.; Ritter, J.A.; White, R.E.

    1999-01-01

    A complex impedance model for spherical particles was used to determine the lithium ion diffusion coefficient in graphite as a function of the state of charge (SOC) and temperature. The values obtained range from 1.12 {times} 10{sup {minus}10} to 6.51 {times} 10{sup {minus}11} cm{sup 2}/s at 25 C for 0 and 30% SOC, respectively, and for 0% SOC, the value at 55 C was 1.35 {times} 10{sup {minus}10} cm{sup 2}/s. The conventional potentiostatic intermittent titration technique (PITT) and Warburg impedance approaches were also evaluated, and the advantages and disadvantages of these techniques were exposed.

  2. Ion chromatographic determination of chloride in mustard sauces.

    PubMed

    López Agüero, E; Bosch Bosch, N; Barrera Vázquez, C; López Ruiz, B

    1999-11-01

    A new, simple, precise, and rapid ion chromatography (IC) method has been developed to determine chloride in mustard sauces using a mixture of phthalic acid, acetone, and water adjusted to pH 5.0 as eluent. Conductometric detection was carried out. The retention time for chloride was 1.5 min. Linearity was obtained up to a concentration level of 100 mg/L NaCl. The method was statistically evaluated for accuracy and precision after being used to assay the chloride from mustard sauces. Within the same samples, the chloride levels obtained by IC were compared with the sodium concentrations quantified by atomic absorption spectrophotometry.

  3. Scaling behavior and local structure of ion aggregates in single-ion conductors.

    PubMed

    Lu, Keran; Rudzinski, Joseph F; Noid, W G; Milner, Scott T; Maranas, Janna K

    2014-02-21

    Single-ion conductors are attractive electrolyte materials because of their inherent safety and ease of processing. Most ions in a sodium-neutralized PEO sulfonated-isophthalate ionomer electrolyte exist as one dimensional chains, restricted in dimensionality by the steric hindrance of the attached polymer. Because the ions are slow to reconfigure, atomistic MD simulations of this material are unable to adequately sample equilibrium ion structures. We apply a novel coarse-graining scheme using a generalized-YBG procedure in which the polymer backbone is completely removed and implicitly represented by the effective potentials of the remaining ions. The ion-only coarse-grained simulation allows for substantial sampling of equilibrium aggregate configurations. We extend the wormlike micelle theory to model ion chain equilibrium. Our aggregates are random walks which become more positively charged with increasing size. Defects occur on the string-like structure in the form of “dust” and “knots,” which form due to cation coordination with open sites along the string. The presence of these defects suggest that cation hopping along open third-coordination sites could be an important mechanism of charge transport using ion aggregates. PMID:24983107

  4. Cryo-focused-ion-beam applications in structural biology.

    PubMed

    Rigort, Alexander; Plitzko, Jürgen M

    2015-09-01

    The ability to precisely control the preparation of biological samples for investigations by electron cryo-microscopy is becoming increasingly important for ultrastructural imaging in biology. Precision machining instruments such as the focused ion beam microscope (FIB) were originally developed for applications in materials science. However, today we witness a growing use of these tools in the life sciences mainly due to their versatility, since they can be used both as manipulation and as imaging devices, when complemented with a scanning electron microscope (SEM). The advent of cryo-preparation equipment and accessories made it possible to pursue work on frozen-hydrated biological specimens with these two beam (FIB/SEM) instruments. In structural biology, the cryo-FIB can be used to site-specifically thin vitrified specimens for transmission electron microscopy (TEM) and tomography. Having control over the specimen thickness is a decisive factor for TEM imaging, as the thickness of the object under scrutiny determines the attainable resolution. Besides its use for TEM preparation, the FIB/SEM microscope can be additionally used to obtain three-dimensional volumetric data from biological specimens. The unique combination of an imaging and precision manipulation tool allows sequentially removing material with the ion beam and imaging the milled block faces by scanning with the electron beam, an approach known as FIB/SEM tomography. This review covers both fields of cryo-FIB applications: specimen preparation for TEM cryo-tomography and volume imaging by cryo-FIB/SEM tomography.

  5. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  6. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    SciTech Connect

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  7. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGESBeta

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  8. Artificially Structured Boundary for a high purity ion trap or ion source

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2014-08-01

    A plasma enclosed by an Artificially Structured Boundary (ASB) is proposed here as an alternative to existing ion source assemblies. In accelerator applications, many ion sources can have a limited lifetime or frequent service intervals due to sputtering and eventual degradation of the ion source assembly. Ions are accelerated towards the exit canal of positive ion sources, whereas, due to the biasing scheme, electrons or negative ions are accelerated towards the back of the ion source assembly. This can either adversely affect the experiment in progress due to sputtered contamination or compromise the integrity of the ion source assembly. Charged particle trajectories in the proximity of an ASB experience electromagnetic fields that are designed to hinder ion-surface interactions. Away from the ASB there is an essentially field free region. The field produced by an ASB is considered to consist of a periodic sequence of electrostatically plugged magnetic field cusps. A classical trajectory Monte Carlo simulation is extended to include electrostatic plugging of magnetic field cusps. The conditions necessary for charged particles to be reflected by the ASB are presented and quantified in terms of normalized parameters.

  9. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    DOE PAGESBeta

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; Garimella, Sandilya V. B.; Zhang, Xing; Hamid, Ahmed M.; Deng, Liulin; Karnesky, William E.; Prost, Spencer A.; Sandoval, Jeremy A.; et al

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  10. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    We report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also shown feasible. The performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design. PMID:25257188

  11. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  12. Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry

    PubMed Central

    Konijnenberg, Albert; Yilmaz, Duygu; Ingólfsson, Helgi I.; Dimitrova, Anna; Marrink, Siewert J.; Li, Zhuolun; Vénien-Bryan, Catherine; Sobott, Frank; Koçer, Armağan

    2014-01-01

    Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility–mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins. PMID:25404294

  13. Surface structure determines dynamic wetting

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro; Wang, Jiayu; Do-Quang, Minh; Cannon, James; Yue, Feng; Suzuki, Yuji; Amberg, Gustav

    2014-11-01

    Dynamic wetting, the spontaneous spreading process after droplet contacts a solid surface, is important in various engineering processes, such as in printing, coating, and lubrication. In the recent years, experiments and numerical simulations have greatly progressed the understanding in the dynamic wetting particularly on ``flat'' substrates. To gain further insight into the governing physics of the dynamic wetting, we perform droplet-wetting experiments on microstructured surfaces, just a few micrometers in size, with complementary numerical simulations, and investigate the dependence of the spreading rate on the microstructure geometries and fluid properties. We reveal that the influence of microstructures can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. The systematic study is also of practical importance since structures and roughness are omnipresent and their influence on spreading rate would give us additional degrees of freedom to control the dynamic wetting. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., J.C., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A.).

  14. Textile-based sampling for potentiometric determination of ions.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Ruzgas, Tautgirdas; Bobacka, Johan

    2015-06-01

    Potentiometric sensing utilizing textile-based micro-volume sampling was applied and evaluated for the determination of clinically (Na(+), K(+), Cl(-)) and environmentally (Cd(2+), Pb(2+) and pH) relevant analytes. In this technological design, calibration solutions and samples were absorbed into textiles while the potentiometric cells (ion-selective electrodes and reference electrode) were pressed against the textile. Once the liquid, by wicking action, reached the place where the potentiometric cell was pressed onto the textile, hence closing the electric circuit, the potentiometric response was obtained. Cotton, polyamide, polyester and their blends with elastane were applied for micro-volume sampling. The textiles were found to influence the determination of pH in environmental samples with pH close to neutral and Pb(2+) at low analyte concentrations. On the other hand, textile-based micro-volume sampling was successfully applied in measurements of Na(+) using solid-contact sodium-selective electrodes utilizing all the investigated textiles for sampling. It was found that in order to extend the application of textile-based sampling toward environmental analysis of ions it will be necessary to tailor the physio-chemical properties of the textile materials. In general, textile-based sampling opens new possibilities for direct chemical analysis of small-volume samples and provide a simple and low-cost method to screen various textiles for their effects on samples to identify which textiles are the most suitable for on-body sensing.

  15. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations

    NASA Astrophysics Data System (ADS)

    Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.

    2015-09-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  16. Structure of the TRPA1 ion channel suggests regulatory mechanisms

    PubMed Central

    Paulsen, Candice E.; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David

    2015-01-01

    The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents. PMID:25855297

  17. Ion track structure probed by plasma desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    U. R. Sundqvist, Bo

    1993-07-01

    Since the discovery of plasma desorption mass spectrometry by Torgerson [D.F. Torgerson, R.P. Skowronski and R.D. Macfarlane, Biophys. Res. Commun., 60(1974) 616], the method has mainly been used in mass spectrometric studies of bioorganic molecules. However, the ejecta in this electronic sputtering process have also been studied with the aim to gain information on the structure of the ion track formed in a solid by the incident fission fragment. In this paper such studies will be described. In particular, the ejection of large whole ionised organic molecules and the synthesis of fullerenes at the impact of a fast heavy ion on an organic solid will be discussed. Those two processes are connected to different parts of the ion track. Also, the ejection of light ions and damage cross sections will be discussed and are shown to give additional information on the time and space evolution of energy deposited in a fast ion track.

  18. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng

    2011-02-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.

  19. Sensitivity of the interpretation of the experimental ion thermal diffusivity to the determination of the ion conductive heat flux

    SciTech Connect

    Stacey, W. M.

    2014-04-15

    A moments equation formalism for the interpretation of the experimental ion thermal diffusivity from experimental data is used to determine the radial ion thermal conduction flux that must be used to interpret the measured data. It is shown that the total ion energy flux must be corrected for thermal and rotational energy convection, for the work done by the flowing plasma against the pressure and viscosity, and for ion orbit loss of particles and energy, and expressions are presented for these corrections. Each of these factors is shown to have a significant effect on the interpreted ion thermal diffusivity in a representative DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharge.

  20. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels

    PubMed Central

    Sauguet, Ludovic; Poitevin, Frédéric; Murail, Samuel; Van Renterghem, Catherine; Moraga-Cid, Gustavo; Malherbe, Laurie; Thompson, Andrew W; Koehl, Patrice; Corringer, Pierre-Jean; Baaden, Marc; Delarue, Marc

    2013-01-01

    To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6′ and Thr2′) that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6′ is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6′ actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed. PMID:23403925

  1. Structural Modification of Nanocrystalline Ceria using Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2011-01-01

    Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~ 25 nm, which is the critical region for controlling size-dependent material property. The unique self-healing response of radiation damage at grain boundaries is applied to control the grain size at nanoscale as a function of ion dose and irradiation temperature. Structural modification by energetic ions is proposed to achieve disirable electronic-ionic conductivity.

  2. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  3. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Ostafiychuk, B. K.; Yaremiy, I. P.; Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-01

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He+ ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  4. Observations on ion track structure in semiconductors : a phenomenological study

    NASA Technical Reports Server (NTRS)

    Selva, L. E.; Wallace, R. E.

    2001-01-01

    An ion track structure model at the nanometer scale is presented. The model is based on electrostatic principles and is supported by observed experimental results conducted on power MOSFETs. The model predicts the existence of a transient induced electric field following the passage of an energetic heavy ion. There are two segments to the field (a radial and an axial component). It is the interaction of this transient electric field with the local environment that can trigger a catastrophic failure.

  5. Atomic structure of highly-charged ions. Final report

    SciTech Connect

    Livingston, A. Eugene

    2002-05-23

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems.

  6. Ion time-of-flight determinations of doubly to singly ionized mercury ion ratios from a mercury electron bombardment discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.

  7. Potentiometric determination of free acidity in presence of hydrolysable ions and a sequential determination of hydrazine.

    PubMed

    Ganesh, S; Khan, Fahmida; Ahmed, M K; Pandey, S K

    2011-08-15

    A simple potentiometric method for the determination of free acidity in presence of hydrolysable ions and sequential determination of hydrazine is developed and described. Both free acid and hydrazine are estimated from the same aliquot. In this method, free acid is titrated with standard sodium carbonate solution after the metal ions in solutions are masked with EDTA. Once the end point for the free acid is determined at pH 3.0, an aliquot of formaldehyde is added to liberate the acid equivalent to hydrazine which is then titrated with the same standard sodium carbonate solution using an automatic titration system. The described method is simple, accurate and reproducible. This method is especially applicable to all ranges of nitric acid and heavy metal ion concentration relevant to Purex process used for nuclear fuel reprocessing. The overall recovery of nitric acid is 98.9% with 1.2% relative standard deviation. Hydrazine content has also been determined in the same aliquot with a recovery of nitric acid is 99% with 2% relative standard deviation. The major advantage of the method is that generation of corrosive analytical wastes containing oxalate or sulphate is avoided. Valuable metals like uranium and plutonium can easily be recovered from analytical waste before final disposal. PMID:21726724

  8. Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography.

    PubMed

    Wang, Hsiaoling; Pampati, Nagarani; McCormick, William M; Bhattacharyya, Lokesh

    2016-06-01

    We report development and validation of a simple, rapid, and accurate method for the quantitation of protein nitrogen, which combines Kjeldahl digestion and ion chromatography with suppressed conductivity detection and requires nanomolar amount of nitrogen in samples (≥10 μg protein). The mechanism of suppressed conductivity detection does not permit analysis of samples containing copper (present in Kjeldahl digestion solution) and aluminum (present in many vaccines as adjuvants) due to precipitation of their hydroxides within the suppressor. We overcame this problem by including 10 μM oxalic acid in Kjeldahl digests and in the eluent (30 mM methanesulfonic acid). The chromatography is performed using an IonPac CS-16 cation exchange column by isocratic elution. The method reduces the digestion time to less than 1 h and eliminates the distillation and titration steps of the Kjeldahl method, thereby reducing the analysis time significantly and improving precision and accuracy. To determine protein nitrogen in samples containing non-protein nitrogen, proteins are precipitated by a mixture of deoxycholate and trichloroacetic acid and the precipitates are analyzed after dissolving in KOH. The method is particularly useful for biological samples that are limited and can also be applied to food, environmental, and other materials.

  9. Urinary thiosulfate determined by suppressed ion chromatography with conductimetric detection.

    PubMed

    Cole, D E; Evrovski, J; Pirone, R

    1995-10-01

    Thiosulfate is a naturally occurring product of sulfur metabolism. Assays of urinary thiosulfate have been based on the reaction with cyanide to form thiocyanate. However, matrix interferences and background variation in endogenous thiocyanate excretion place serious constraints on this method for determination of physiological amounts of thiosulfate in urine. We describe a column-switching ion chromatographic separation for urinary thiosulfate that allows for sensitive and accurate detection by ion conductimetry. In 20 adult volunteers, we found a lower urinary thiosulfate (8.50 +/- 7.39 mumol/24 h, mean +/- S.D.) than others have described, although the upward skew of the results (median, 6.90; range, 0.84-32 mumol/24 h) was similar. However, we have not observed any of the interferences and the sensitivity of our technique (< 0.2 mumol/24 h) allows for detection of thiosulfate in all control samples. This sort of methodological improvement will be essential for any study of physiological thiosulfate metabolism.

  10. A novel ion selective sensor for promethium determination.

    PubMed

    Gupta, Vinod K; Jain, Rajeev; Hamdan, A J; Agarwal, Shilpi; Bharti, Arvind K

    2010-11-29

    This is a first promethium(145) ion-selective sensor based on the comparative study of two Schiff base ligands (X(1) and X(2)) as neutral ionophores. Effect of various plasticizers: 2-nitrophenyloctylether (o-NPOE), dibutyl phosphonate (DBP), dioctylphthalate (DOP), tri-(2-ethylhexyl) phosphate (TEHP), dibutyl butylphosphonate (DBBP), chloronaphthalene (CN) and anion excluders: potassium tetrakis (p-chloropheny1) borate (KTpClPB), sodiumtetraphenylborate (NaTPB) and oleic acid (OA) have been studied. The membrane with a composition of ionophore (X(1)/X(2)):KTpClPB:PVC:o-NPOE (w/w, %) in the ratio of 5:5:30:60 exhibited best performance. The best responsive membrane sensors (8 and 21) exhibited working concentration range of 4.5×10(-7)-1.0×10(-2) M and 3.5×10(-6)-1.0×10(-2) M with a detection limits of 3.2×10(-7) M and 2.3×10(-6) M and Nernstian slopes of 20.0±0.5, 19.5±0.5 mV decade(-1) of activity, respectively. The sensor no. 8 works satisfactorily in partially non-aqueous media up to 10% (v/v) content of methanol, ethanol and acetonitrile. Analytical application of the proposed sensor has been demonstrated in determination of promethium (III) ions in spiked water samples.

  11. Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography.

    PubMed

    Wang, Hsiaoling; Pampati, Nagarani; McCormick, William M; Bhattacharyya, Lokesh

    2016-06-01

    We report development and validation of a simple, rapid, and accurate method for the quantitation of protein nitrogen, which combines Kjeldahl digestion and ion chromatography with suppressed conductivity detection and requires nanomolar amount of nitrogen in samples (≥10 μg protein). The mechanism of suppressed conductivity detection does not permit analysis of samples containing copper (present in Kjeldahl digestion solution) and aluminum (present in many vaccines as adjuvants) due to precipitation of their hydroxides within the suppressor. We overcame this problem by including 10 μM oxalic acid in Kjeldahl digests and in the eluent (30 mM methanesulfonic acid). The chromatography is performed using an IonPac CS-16 cation exchange column by isocratic elution. The method reduces the digestion time to less than 1 h and eliminates the distillation and titration steps of the Kjeldahl method, thereby reducing the analysis time significantly and improving precision and accuracy. To determine protein nitrogen in samples containing non-protein nitrogen, proteins are precipitated by a mixture of deoxycholate and trichloroacetic acid and the precipitates are analyzed after dissolving in KOH. The method is particularly useful for biological samples that are limited and can also be applied to food, environmental, and other materials. PMID:27238484

  12. Mapping the Structure and Conformational Movements of Proteins with Transition Metal Ion FRET

    SciTech Connect

    Taraska, J.; Puljung, M; Olivier, N; Olivier, G; Zagotta, W

    2009-01-01

    Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.

  13. Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    PubMed Central

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-01-01

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex. PMID:20877470

  14. Molecular modeling of mechanosensory ion channel structural and functional features.

    PubMed

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  15. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    SciTech Connect

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  16. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  17. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions

    SciTech Connect

    Liu, Wei; Chun, Eugene; Thompson, Aaron A.; Chubukov, Pavel; Xu, Fei; Katritch, Vsevolod; Han, Gye Won; Roth, Christopher B.; Heitman, Laura H.; IJzerman, Adriaan P.; Cherezov, Vadim; Stevens, Raymond C.

    2012-08-31

    Pharmacological responses of G protein-coupled receptors (GPCRs) can be fine-tuned by allosteric modulators. Structural studies of such effects have been limited due to the medium resolution of GPCR structures. We reengineered the human A{sub 2A} adenosine receptor by replacing its third intracellular loop with apocytochrome b{sub 562}RIL and solved the structure at 1.8 angstrom resolution. The high-resolution structure allowed us to identify 57 ordered water molecules inside the receptor comprising three major clusters. The central cluster harbors a putative sodium ion bound to the highly conserved aspartate residue Asp{sup 2.50}. Additionally, two cholesterols stabilize the conformation of helix VI, and one of 23 ordered lipids intercalates inside the ligand-binding pocket. These high-resolution details shed light on the potential role of structured water molecules, sodium ions, and lipids/cholesterol in GPCR stabilization and function.

  18. Determination of Electron and Ion Energy Distribution Functions in a Plasma Ion Assisted Deposition (PIAD) Process

    NASA Astrophysics Data System (ADS)

    Harhausen, J.; Foest, R.; Ohl, A.

    2011-10-01

    High performance optical coatings are commonly produced by PIAD in order to achieve comparably high deposition rates. Here, the plasma source is a hot cathode direct current discharge with an auxiliary magnetic field (APS). Its design is such to generate a population of fast ions to be released into the deposition chamber. A detailed understanding of the plasma properties in the chamber is mandatory to increase the level of uniformity and reproducibility of the deposition process. In order to determine the electron and ion energy distribution functions (EEDF, IEDF) the concepts of the Langmuir probe, the retarding field energy analyzer and optical emission spectroscopy are employed. Fundamental findings are that the EEDF can be described in the framework of the non-local approximation and that the degree of ionization inside the APS is close to unity. The shape of the IEDF and its evolution along the beam path can be described consistently by considering charge exchange reactions with the background neutral gas and the profile of the plasma potential. High performance optical coatings are commonly produced by PIAD in order to achieve comparably high deposition rates. Here, the plasma source is a hot cathode direct current discharge with an auxiliary magnetic field (APS). Its design is such to generate a population of fast ions to be released into the deposition chamber. A detailed understanding of the plasma properties in the chamber is mandatory to increase the level of uniformity and reproducibility of the deposition process. In order to determine the electron and ion energy distribution functions (EEDF, IEDF) the concepts of the Langmuir probe, the retarding field energy analyzer and optical emission spectroscopy are employed. Fundamental findings are that the EEDF can be described in the framework of the non-local approximation and that the degree of ionization inside the APS is close to unity. The shape of the IEDF and its evolution along the beam path can be

  19. Direct atomic structure determination by the inspection of structural phase.

    PubMed

    Nakashima, Philip N H; Moodie, Alexander F; Etheridge, Joanne

    2013-08-27

    A century has passed since Bragg solved the first atomic structure using diffraction. As with this first structure, all atomic structures to date have been deduced from the measurement of many diffracted intensities using iterative and statistical methods. We show that centrosymmetric atomic structures can be determined without the need to measure or even record a diffracted intensity. Instead, atomic structures can be determined directly and quickly from the observation of crystallographic phases in electron diffraction patterns. Furthermore, only a few phases are required to achieve high resolution. This represents a paradigm shift in structure determination methods, which we demonstrate with the moderately complex α-Al2O3. We show that the observation of just nine phases enables the location of all atoms with a resolution of better than 0.1 Å. This level of certainty previously required the measurement of thousands of diffracted intensities.

  20. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed. PMID:26103632

  1. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.

  2. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  3. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  4. Structure of ceramic surfaces modified by ion-beam techniques

    SciTech Connect

    McHargue, C.J.; Naramoto, H.; White, C.W.; Williams, J.M.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1982-01-01

    A wide variety of structures are produced by ion implantation in ceramics. Random (substitutional and interstitial site occupancy) solid solutions with concentrations of solute that exceed the solubility limit can be produced in Al/sub 2/O/sub 3/. The changes that occur during annealing are complex and sometimes unpredictable. Silicon carbide becomes amorphous in a manner analogous to Si for ion fluences that produce more than 0.2 dpa damage. Light (N) and heavy (Cr) ions produce similar results if the fluence is scaled to damage energy deposited. Because of mass differences in the ions, two damage regions are developed in TiB/sub 2/. The structure remains crystalline to very high damage levels. These structural alterations cause changes in the surface mechanical properties. Since virtually any chemical species can be implanted, one can independently control structural damage and chemical effects. When coupled with selective annealing, this technique has the potential for producing a wide range of surface structures and properties. 8 figures.

  5. Characterization of porous structure through the dynamical properties of ions confined in sulfonated polyimide ionomers films.

    PubMed

    Rollet, A-L; Blachot, J-F; Delville, A; Diat, O; Guillermo, A; Porion, P; Rubatat, L; Gebel, G

    2003-11-01

    The structure of sulfonated PolyImide (sPI) ionomer membrane has been investigated via the transport properties of ions confined inside. Transport coefficients of N(CH(3))(4)(+) and Na(+) ions have been determined by several techniques in order to get a range of time/space scale as wide as possible: a method using radiotracers, conductivity, pulsed field gradient NMR and NMR quadrupolar relaxation rates determination. For N(CH(3))(4)(+), the self-diffusion has been measured in the direction of membrane plan (parallel) and in the perpendicular direction (transverse), whereas for Na(+) only transverse self-diffusion has been measured. The conductivity of both ions has been measured in the transverse direction. The results show a anisotropic and multiscale structure with a separation phase between hydrophilic and hydrophobic domains that is not well-defined.

  6. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  7. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source.

    PubMed

    Spädtke, P; Lang, R; Mäder, J; Maimone, F; Rossbach, J; Tinschert, K

    2012-02-01

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  8. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  9. RNA Secondary Structure Determination by NMR.

    PubMed

    Chen, Jonathan L; Bellaousov, Stanislav; Turner, Douglas H

    2016-01-01

    Dynamic programming methods for predicting RNA secondary structure often use thermodynamics and experimental restraints and/or constraints to limit folding space. Chemical mapping results typically restrain certain nucleotides not to be in AU or GC pairs. Two-dimensional nuclear magnetic resonance (NMR) spectra can reveal the order of AU, GC, and GU pairs in double helixes. This chapter describes a program, NMR-assisted prediction of secondary structure and chemical shifts (NAPSS-CS), that constrains possible secondary structures on the basis of the NMR determined order and 5'-3' direction of AU, GC, and GU pairs in helixes. NAPSS-CS minimally requires input of the order of base pairs as determined from nuclear Overhauser effect spectroscopy (NOESY) of imino protons. The program deduces the 5'-3' direction of the base pairs if certain chemical shifts are also input. Secondary structures predicted by the program provide assignments of input chemical shifts to particular nucleotides in the sequence, thus facilitating an important step for determination of the three dimensional structure by NMR. The method is particularly useful for revealing pseudoknots and an example is provided. The method may also allow determination of secondary structures when a sequence folds into two structures that exchange slowly. PMID:27665599

  10. Simple approach for ranking structure determining residues.

    PubMed

    Luna-Martínez, Oscar D; Vidal-Limón, Abraham; Villalba-Velázquez, Miryam I; Sánchez-Alcalá, Rosalba; Garduño-Juárez, Ramón; Uversky, Vladimir N; Becerril, Baltazar

    2016-01-01

    Mutating residues has been a common task in order to study structural properties of the protein of interest. Here, we propose and validate a simple method that allows the identification of structural determinants; i.e., residues essential for preservation of the stability of global structure, regardless of the protein topology. This method evaluates all of the residues in a 3D structure of a given globular protein by ranking them according to their connectivity and movement restrictions without topology constraints. Our results matched up with sequence-based predictors that look up for intrinsically disordered segments, suggesting that protein disorder can also be described with the proposed methodology.

  11. Simple approach for ranking structure determining residues

    PubMed Central

    Luna-Martínez, Oscar D.; Vidal-Limón, Abraham; Villalba-Velázquez, Miryam I.; Sánchez-Alcalá, Rosalba; Garduño-Juárez, Ramón; Uversky, Vladimir N.

    2016-01-01

    Mutating residues has been a common task in order to study structural properties of the protein of interest. Here, we propose and validate a simple method that allows the identification of structural determinants; i.e., residues essential for preservation of the stability of global structure, regardless of the protein topology. This method evaluates all of the residues in a 3D structure of a given globular protein by ranking them according to their connectivity and movement restrictions without topology constraints. Our results matched up with sequence-based predictors that look up for intrinsically disordered segments, suggesting that protein disorder can also be described with the proposed methodology. PMID:27366642

  12. Ion irradiation induced structural and electrical transition in graphene

    SciTech Connect

    Zhou Yangbo; Wang Yifan; Xu Jun; Fu Qiang; Wu Xiaosong; Yu Dapeng; Liao Zhimin; Duesberg, Georg S.

    2010-12-21

    The relationship between the electrical properties and structure evolution of single layer graphene was studied by gradually introducing the gallium ion irradiation. Raman spectrums show a structural transition from nano-crystalline graphene to amorphous carbon as escalating the degree of disorder of the graphene sample, which is in correspondence with the electrical transition from a Boltzmann diffusion transport to a carrier hopping transport. The results show a controllable method to tune the properties of graphene.

  13. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    SciTech Connect

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R.; Alvarado, S. F.

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  14. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general. PMID:27172256

  15. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general.

  16. Distributed structure determination at the JCSG

    SciTech Connect

    Bedem, Henry van den Wolf, Guenter; Xu, Qingping; Deacon, Ashley M.

    2011-04-01

    The software suite Xsolve semi-exhaustively explores key parameters of the X-ray structure-determination process to compute multiple three-dimensional protein structures independently and in parallel from a set of diffraction images. An optimal consensus model for subsequent manual refinement is computed from these structures. The Joint Center for Structural Genomics (JCSG), one of four large-scale structure-determination centers funded by the US Protein Structure Initiative (PSI) through the National Institute for General Medical Sciences, has been operating an automated distributed structure-solution pipeline, Xsolve, for well over half a decade. During PSI-2, Xsolve solved, traced and partially refined 90% of the JCSG’s nearly 770 MAD/SAD structures at an average resolution of about 2 Å without human intervention. Xsolve executes many well established publicly available crystallography software programs in parallel on a commodity Linux cluster, resulting in multiple traces for any given target. Additional software programs have been developed and integrated into Xsolve to further minimize human effort in structure refinement. ConsensusModeler exploits complementarities in traces from Xsolve to compute a single optimal model for manual refinement. Xpleo is a powerful robotics-inspired algorithm to build missing fragments and qFit automatically identifies and fits alternate conformations.

  17. Determination of traces of hetero-charged ions in nonionogenic surface-active substances by ion chromatography

    SciTech Connect

    Klyuchnikova, N.V.; Denisova, L.V.; Balyatinskaya, L.N.

    1995-07-01

    An ion-chromatographic method for the separation and determination of K, Na, Mg, and Al ions, the sum of heavy-metal ions (Fe, Cu, Pb, Cr, Sn), and chloride, sulfate, and orthophosphate ions present in amounts of 10{sup {minus}6} - 10{sup {minus}5}% in 1% solutions of nonionogenic surface-active substances (NSAS) is proposed. We use 10{sup {minus}3} M HCl and 3 x 10{sup {minus}3}M HNO{sub 3} solutions and a 2 x 10{sup {minus}3}M solution as eluents to determine K{sup +}, Na{sup +}, Mg{sup 2+}, Al{sup 3+} cations and ions of heavy and transition metals, respectively. The method proposed is shown to enable reliable evaluation of the purity of NSAS.

  18. Shock normal determination for multiple-ion shocks

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Coates, A. J.; Motschmann, U.; Neubauer, F. M.

    1994-01-01

    We have adapted the single-ion Vinas and Scudder (1986) solution to the Rankine-Hugoniot (R-H) problem to a multiple-on solution. Using this technique, we can calculate a shock normal direction, shock speed, best estimate of the upstream and downstream magnetic field and plasma asymptotic states, and theta(sub Bn), the angle between the shock normal and the upstream magnetic field. We test the multi-ion solution with a theoretical case but are restricted to a perpendicular shock in order to close the multi-ion Rankine-Hugoniot equations. For this test case both single-ion and multi-ion solutions are equally valid. We examine parameter regimes to look for differences between single-ion and multi-ion solutions of the R-H equations, and we find that the largest differences occur for quasi-parallel shocks, small values of solar wind speed, large values of heavy ion density, and very strong and very weak shocks. For both the inbound and outbound crossing of comet Halley we have a slow solar wind speed, small values of water group ions and fairly weak shocks. We examine both the quasi-perpendicular inbound crossing and the quasi-parallel outbound crossing at comet Halley.

  19. Conductometric investigations of multicharged ion track structure in various polymers

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.

    The radial structure of etchable tracks of multicharged ions in polyethylene terephtalate, polycarbonate, polyarylate, and polypropylene is investigated using conductometric method. The doses of gel formation under irradiation of these polymers by accelerated xenon ions with approximately 1 MeV/nucleon energy are estimated. It is found that the track of highly ionizing particles in a polymer consists of a core where intensive destruction occurs and a halo where, as a rule, the crosslinking of macromolecules predominates. Recombination of the interior radicals provides the crosslinking formation. The radius of the crosslinking region depends on the relation between the hydrogen atom diffusion speed and the rate of their chemical interaction with macromolecules.

  20. A structural determinant required for RNA editing

    PubMed Central

    Tian, Nan; Yang, Yun; Sachsenmaier, Nora; Muggenhumer, Dominik; Bi, Jingpei; Waldsich, Christina; Jantsch, Michael F.; Jin, Yongfeng

    2011-01-01

    RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing. PMID:21427087

  1. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGESBeta

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  2. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  3. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  4. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  5. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  6. Sheared ion flow driven nonlinear coherent structures in inhomogeneous electron-positron-ion quantum magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.

    2012-12-01

    Nonlinear equations governing the dynamics of finite amplitude drift-acoustic-waves are derived by taking into account sheared ion flow perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons, positrons, and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a counter-rotating vortex for a particular choice of the equilibrium profile. The counter rotating vortices are, however, observed to form on very short scales i.e., of the order of ion Larmor radius ρ i in quantum plasmas. It is observed that the scalelengths over which these structures form get modified in the presence of quantum statistical and Bohm potential terms as well as the positron concentration. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  7. Role of structure in ion movement of glasses. Final report, July 1, 1990--December 31, 1995

    SciTech Connect

    Jain, H.

    1996-05-01

    The ion movement in inorganic glasses is key to their optimum use in various applications such as solid electrolytes, durable nuclear waste form, stable insulation in electronic devices etc. The primary objective of this project was to understand ion movement in relation to the physical structure of inorganic glasses. Five different glass forming systems were selected for systematically varying different aspects of the structure and determining their influence on ion dynamics: (1) binary Rb and K germanate glass series; (2) mixed (Rb, Ag) and (Rb, K) germanate glass series (3) high purity quartz amorphized by neutron irradiation (4) sodium triborate glasses with different melt conditions and (5) heavy metal fluoride glasses. A two-pronged research program was developed: on the one hand dc ionic conductivity and ac relaxation were measured for a variety of oxide and fluoride glasses as a function of composition, temperature and frequency to characterize long and short range ion transport phenomena. The ion movement was also observed in terms of nuclear spin relaxation rate at University of Dortmund, Germany. On the other hand, the structure was characterized by high resolution x-ray photoelectron spectroscopy (XPS) at Lehigh, infra-red (IR) and Raman spectroscopy at National Hellenic Research Foundation, Athens, Greece, and extended x-ray absorption fine structure (EXAFS) experiments at National Synchrotron Light Source, Brookhaven National Laboratory. The most significant results of the project are briefly summarized.

  8. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  9. Method for determining trace quantities of chloride in polymeric materials using ion selective electrodes: Final report

    SciTech Connect

    Salary, J.

    1987-02-01

    A method for determining trace quantities of chloride in polymeric materials has been developed. Ion-selective electrodes and the standard addition method were used in all the analyses. The ion-selective electrode method was compared with neutron activation, ion chromatography and chloridometer titration. The ion-selective electrode technique results for chloride were similar to those of neutron activation, which is the acknowledged referee method. This ion-selective electrode method showed the highest standard recovery when compared with the ion chromatography and chloridometer titration methods.

  10. Structural modification of nanocrystalline ceria by ion beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-01-01

    Exceptional size-dependent electronic–ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic–ionic conductivity.

  11. Reduction and structural modification of zirconolite on He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  12. Capturing Ion-Solid Interactions with MOS structures

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Field, D. A.; Chambers, S.; Harrell, W. R.; Sosolik, C. E.

    2011-10-01

    We have fabricated metal-oxide-semiconductor (MOS) devices for a study of implantation rates and damage resulting from low energy ion-solid impacts. Specifically, we seek to capture ion irradiation effects on the oxides. Fabrication of the MOS devices follows a standard procedure where Ohmic contacts are first created on the wafer backside followed by the thermal growth of various thicknesses of SiO2 (from 50 nm to 200 nm) on the wafer frontside. As-grown SiO2 layers are then exposed to various singly-charged alkalis ions with energies in the range of 100 eV to 10 keV in our beamline setup. Following this exposure, the MOS devices are completed in situ with the deposition of a top Al contact. Characterization of the ion-modified devices involves the standard device technique of biased capacitance-voltage (C-V) measurements where a field is applied across the MOS structure at an elevated temperature to move implanted ions resulting in changes in surface charge density that are reflected as shifts in the flatband voltage (VFB). Similarly, a triangular voltage sweep (TVS) test can be utilized to measure the ionic displacement current as it is driven by a slow linear voltage ramp and it should reveal the total ionic space charge in an MOS.

  13. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  14. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  15. Representing Personal Determinants in Causal Structures.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  16. Atomic Data for Nebular Abundance Determinations: Photoionization and Recombination Properties of Xenon Ions

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Kerlin, Austin B.

    2016-01-01

    We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.

  17. Structure property relationships of carbonaceous films grown under ion enhancement

    SciTech Connect

    Weissmantel, C.; Ackermann, E.; Bewilogua, K.; Hecht, G.; Kupfer, H.; Rau, B.

    1986-11-01

    Based on our own results and in comparison with data published by other groups the structure property relationships of carbon and carbon/metal films prepared by sputtering and deposition of partially ionized species are discussed. Films grown by ion beam sputtering are dark brownish and amorphous with a small fraction of microcrystals. However, a transition to transparent and insulating layers can be effected by ion bombardment. C/Me coatings, where Me stands for Ti or Sn, were obtained by magnetron sputtering of composite targets. The films proved to be amorphous up to metal concentrations of more than 10 at. %, but metal and carbide crystals grow upon annealing. Measurements of the hardness, the electrical conductivity, and the contact behavior in dependence on the composition provided interesting information. For carbon films prepared by deposition of partially ionized benzene species it has been found that the properties depend characteristically on the ion energy; typical ''diamondlike'' i-C films are obtained by applying a bias voltage from 1--3 keV. The thermal stability of the amorphous coatings is discussed in conjunction with their electrical conductivity. Summarizing extensive structure investigations, a structure model based on tetrahedrally interlinked carbon rings is proposed. Composites of the type i-C/Me (Me: Al, Ti, Cr), which were prepared by simultaneous metal evaporation, exhibit a wide range of structure property relations.

  18. Low energy electrons and swift ion track structure in PADC

    DOE PAGESBeta

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  19. Correlation of ion dynamics and structure of superionic tellurite glasses

    SciTech Connect

    Dutta, D.; Ghosh, A.

    2008-01-28

    Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.

  20. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect

    Echols, Nathaniel Morshed, Nader; Afonine, Pavel V.; McCoy, Airlie J.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-04-01

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  1. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  2. Method of fan sound mode structure determination

    NASA Technical Reports Server (NTRS)

    Pickett, G. F.; Sofrin, T. G.; Wells, R. W.

    1977-01-01

    A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones.

  3. Evaluation of dry ashing in conjunction with ion chromatographic determination of transition metal ions in pig feed samples.

    PubMed

    Van paemel, Marleen R; De Rycke, Herman; Millet, Sam; Hesta, Myriam; Janssens, Geert P J

    2005-03-23

    The contents of transition metal ions iron, copper, zinc, and manganese were simultaneously determined in pig feed using an ion chromatographic technique (IC) preceded by dry ashing. Employing ion exchange, the ions were separated on an IonPac CS5A column used in combination with a pyridine-2,6-dicarboxylic acid based eluent. The separation was followed by spectrophotometric detection after postcolumn reaction with 4-(2-pyridylazo)resorcinol. Dry ashing parameters were varied to assess their role in potential analyte loss. Quantitative recoveries (>95%) were obtained for all analytes with a dry ashing method that included a moderate temperature-time regime and ash leaching support in the form of sonication and heat treatment. The use of HCl as leaching acid and the presence of alkaline earths in the matrix solution did not interfere with the chromatographic separation. PMID:15769106

  4. Accurate SHAPE-directed RNA structure determination

    PubMed Central

    Deigan, Katherine E.; Li, Tian W.; Mathews, David H.; Weeks, Kevin M.

    2009-01-01

    Almost all RNAs can fold to form extensive base-paired secondary structures. Many of these structures then modulate numerous fundamental elements of gene expression. Deducing these structure–function relationships requires that it be possible to predict RNA secondary structures accurately. However, RNA secondary structure prediction for large RNAs, such that a single predicted structure for a single sequence reliably represents the correct structure, has remained an unsolved problem. Here, we demonstrate that quantitative, nucleotide-resolution information from a SHAPE experiment can be interpreted as a pseudo-free energy change term and used to determine RNA secondary structure with high accuracy. Free energy minimization, by using SHAPE pseudo-free energies, in conjunction with nearest neighbor parameters, predicts the secondary structure of deproteinized Escherichia coli 16S rRNA (>1,300 nt) and a set of smaller RNAs (75–155 nt) with accuracies of up to 96–100%, which are comparable to the best accuracies achievable by comparative sequence analysis. PMID:19109441

  5. Structural Transitions of Ion Strings in Quantum Potentials

    NASA Astrophysics Data System (ADS)

    Cormick, Cecilia; Morigi, Giovanna

    2012-08-01

    We analyze the stability and dynamics of an ion chain confined inside a high-finesse optical resonator. When the dipolar transition of the ions strongly couples to one cavity mode, the mechanical effects of light modify the chain properties close to a structural transition. We focus on the linear chain close to the zigzag instability and show that linear and zigzag arrays are bistable for certain strengths of the laser pumping the cavity. For these regimes the chain is cooled into one of the configurations by cavity-enhanced photon scattering. The excitations of these structures mix photonic and vibrational fluctuations, which can be entangled at steady state. These features are signaled by Fano-like resonances in the spectrum of light at the cavity output.

  6. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  7. Structure determination of molecules of biochemical interest

    NASA Astrophysics Data System (ADS)

    Honzatko, R. B.

    1985-10-01

    In the past year we have established a new laboratory for the determination of macromolecular structure. Currently, facilities are in place for data collection, data processing, molecular modeling and X-ray refinement of structures of up to 100,000 molecular weight in their crystallographic asymmetric unit. In parallel with establishing a new laboratory, we have pursued structure investigations of hemoglobin from the sea lamprey, aspartate carbamoyltransferase from Escherichia coli and p-nitrobenzylidine aminoguanidine, a small molecule which is an acceptor of the adenosine diphosphate ribosyl group in an enzyme mediated reaction. In addition to the structural studies above we have made a theoretical study by techniques of energy minimization of possible modes of aggregation of lamprey hemoglobin and the relationship between aggregate formation and cooperativity expressed in solutions by lamprey hemoglobin.

  8. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  9. Optimization of quasiperiodic structures in a linear resonance ion accelerator

    NASA Astrophysics Data System (ADS)

    Garashchenko, F. G.; Sokolov, L. S.; Tsulaya, A. V.

    1980-06-01

    A method is proposed for optimizing the parameters of a linear ion accelerator with rectangular or trapezoidal shape of the accelerating voltage between the tubes, systematic allowance being made for the quasiperiodicity of their arrangement. Numerical calculations have demonstrated the effectiveness of the method and also the fairly simple structure of its realization. A detailed algorithm is given. An estimate is made of the interval of entrance phases, the maximal value of which exceeds by several percent the limits previously predicted.

  10. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  11. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  12. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  13. Characterization of ion-exchange membrane materials: properties vs structure.

    PubMed

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  14. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  15. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  16. Crystal structure of methane oxidation enzyme determined

    SciTech Connect

    Baum, R.

    1994-01-10

    A team of chemists has determined to 2.2-[angstrom] resolution the crystal structure of the hydroxylase protein of methane monooxygenase, the enzyme system responsible for the biological oxidation of methane. The hydroxylase, at a molecular weight of 251,000 daltons, if by far the largest component of methane monooxygenase. Although the crystal structure of the hydroxylase did not reveal any startling surprises about the enzyme-many features of the hydroxylase had been inferred previously from modeling and spectroscopic studies -- obtaining it is a significant achievement. For one thing, the crystal structure unambiguously confirms aspects of the enzyme structure that been at least somewhat speculative. The three-dimensional structure of the enzyme, the chemist say, also provides important insight into biological methane oxidation, including how methane, a relatively inert gas, might diffuse to and bind near the active site of the enzyme. The structure points to particular amino acid residues that are likely to participate in catalysis, and clarifies the structure of the dinuclear iron core of the enzyme.

  17. Structure, Dynamics, and Ion Conductance of the Phospholamban Pentamer

    PubMed Central

    Maffeo, Christopher; Aksimentiev, Aleksei

    2009-01-01

    Abstract A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5′-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 Å in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel. PMID:19527644

  18. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  19. Dynamics of lithium ions in borotellurite mixed former glasses: Correlation between the characteristic length scales of mobile ions and glass network structural units

    SciTech Connect

    Shaw, A.; Ghosh, A.

    2014-10-28

    We have studied the mixed network former effect on the dynamics of lithium ions in borotellurite glasses in wide composition and temperature ranges. The length scales of ion dynamics, such as characteristic mean square displacement and spatial extent of sub-diffusive motion of lithium ions have been determined from the ac conductivity and dielectric spectra, respectively, in the framework of linear response theory. The relative concentrations of different network structural units have been determined from the deconvolution of the FTIR spectra. A direct correlation between the ion dynamics and the characteristic length scales and the relative concentration of BO{sub 4} units has been established for different compositions of the borotellurite glasses.

  20. Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Du, Li-Jun; Song, Hong-Fang; Li, Hai-Xia; Chen, Shao-Long; Chen, Ting; Sun, Huan-Yao; Huang, Yao; Tong, Xin; Guan, Hua; Gao, Ke-Lin

    2015-11-01

    In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821301 and 2010CB832803), the National Natural Science Foundation of China (Grant Nos. 11004222 and 91121016), and the Chinese Academy of Sciences.

  1. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  2. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor.

  3. Structure of DPPC-hyaluronan interfacial layers - effects of molecular weight and ion composition.

    PubMed

    Wieland, D C Florian; Degen, Patrick; Zander, Thomas; Gayer, Sören; Raj, Akanksha; An, Junxue; Dėdinaitė, Andra; Claesson, Per; Willumeit-Römer, Regine

    2016-01-21

    Hyaluronan and phospholipids play an important role in lubrication in articular joints and provide in combination with glycoproteins exceptionally low friction coefficients. We have investigated the structural organization of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) Langmuir layers at the solution-air interface at different length scales with respect to the adsorption of hyaluronan (HA). This allows us to assemble a comprehensive picture of the adsorption and the resulting structures, and how they are affected by the molecular weight of HA and the presence of calcium ions. Brewster angle microscopy and grazing incident diffraction were used to determine the lateral structure at the micro- and macro scale. The data reveals an influence of HA on both the macro and micro structure of the DPPC Langmuir layer, and that the strength of this effect increases with decreasing molecular weight of HA and in presence of calcium ions. Furthermore, from X-ray reflectivity measurements we conclude that HA adsorbs to the hydrophilic part of DPPC, but data also suggest that two types of interfacial structures are formed at the interface. We argue that hydrophobic forces and electrostatic interactions play important rules for the association between DPPC and HA. Surface pressure area isotherms were used to determine the influence of HA on the phase behavior of DPPC while electrophoretic mobility measurements were used to gain insight into the binding of calcium ions to DPPC vesicles and hyaluronan.

  4. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  5. Structural determinants of proton blockage in aquaporins.

    PubMed

    Chakrabarti, Nilmadhab; Roux, Benoît; Pomès, Régis

    2004-10-15

    Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could

  6. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  7. Ion chromatography for the separation of heparin and structurally related glycoaminoglycans: A review.

    PubMed

    Fasciano, Jennifer M; Danielson, Neil D

    2016-03-01

    The global crisis resulting from adulterated heparin in late 2007 and early 2008 revived the importance of analytical techniques for the purity analysis of heparin products. The utilization of ion chromatography techniques for the separation, detection, and structural determination of heparin and structurally related glycoaminoglycans, including their corresponding oligosaccharides, has become increasingly important. This review summarizes the primary HPLC approaches, particularly strong anion exchange, weak ion exchange, and reversed-phase ion-pair, used for heparin purity analysis as well as structural characterization. Strong anion exchange HPLC has been studied most extensively and currently offers the best separation of crude heparin and heparin-like compounds. Weak anion exchange HPLC has been shown to provide shorter analysis times with lower salt concentrations in the mobile phase but is not as widely developed for the separation of all glycoaminoglycans of interest. Reversed-phase ion-pair HPLC offers fast and effective separations of oligosaccharides derived from glycoaminoglycans that can be coupled to mass spectrometry for structural analysis. However, this method generally does not provide sufficient retention of intact glycoaminoglycans.

  8. Temperature dependence of ion-beam mixing in crystalline and amorphous germanium isotope multilayer structures

    SciTech Connect

    Radek, M.; Bracht, H.; Posselt, M.; Liedke, B.; Schmidt, B.; Bougeard, D.

    2014-01-14

    Self-atom mixing induced by 310 keV gallium (Ga) ion implantation in crystalline and preamorphized germanium (Ge) at temperatures between 164 K and 623 K and a dose of 1 × 10{sup 15} cm{sup −2} is investigated using isotopic multilayer structures of alternating {sup 70}Ge and {sup nat}Ge layers grown by molecular beam epitaxy. The distribution of the implanted Ga atoms and the ion-beam induced depth-dependent self-atom mixing was determined by means of secondary ion mass spectrometry. Three different temperature regimes of self-atom mixing, i.e., low-, intermediate-, and high-temperature regimes are observed. At temperatures up to 423 K, the mixing is independent of the initial structure, whereas at 523 K, the intermixing of the preamorphized Ge structure is about twice as high as that of crystalline Ge. At 623 K, the intermixing of the initially amorphous Ge structure is strongly reduced and approaches the mixing of the crystalline material. The temperature dependence of ion-beam mixing is described by competitive amorphization and recrystallization processes.

  9. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  10. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  11. Solution structure of copper ion-induced molecular aggregates of tyrosine melanin.

    PubMed

    Gallas, J M; Littrell, K C; Seifert, S; Zajac, G W; Thiyagarajan, P

    1999-08-01

    Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.

  12. Ion-cage interpretation for the structural and dynamic changes of ionic liquids under an external electric field.

    PubMed

    Shi, Rui; Wang, Yanting

    2013-05-01

    In many applications, ionic liquids (ILs) work in a nonequilibrium steady state driven by an external electric field. However, how the electric field changes the structure and dynamics of ILs and its underlying mechanism still remain poorly understood. In this paper, coarse-grained molecular dynamics simulations were performed to investigate the structure and dynamics of 1-ethyl-3-methylimidazolium nitrate ([EMIm][NO3]) under a static electric field. The ion cage structure was found to play an essential role in determining the structural and dynamic properties of the IL system. With a weak or moderate electric field (0-10(7) V/m), the external electric field is too weak to modify the ion cage structure in an influential way and thus the changes of structural and dynamic properties are negligible. With a strong electric field (10(7)-10(9) V/m) applied, ion cages expand and deform apparently, leading to the increase of ion mobility and self-diffusion coefficient with electric field, and the self-diffusion of ions along the electric field becomes faster than the other two directions due to the anisotropic deformation of ion cages. In addition, the Einstein relation connecting diffusion and mobility breaks down at strong electric fields, and it also breaks down for a single ion species even at moderate electric fields (linear-response region).

  13. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  14. Lithium Ion Materials for Energy Applications: Structural Properties from Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Catti, Michele

    Cathode materials and solid electrolytes to be used in lithium batteries require a high ionic mobility of Li^+ species in their crystal structures. This in turn depends on the order-disorder state of lithium and on its bonding environment. Neutron diffraction is the choice technique to study the structural features of polycrystalline lithium materials that control their performance in ion transport processes. The basic principles of ionic mobility in solids and of the Rietveld refinement methods for neutron diffraction data are briefly reviewed. Then two important families of lithium conductors are selected from the literature and thoroughly discussed: the LLTO perovskite-type Li_xLa_{2/3-x/3}TiO_3 system and the Li_{1+x}Me_2(PO_4)_3 Nasicon phases. Accurate neutron diffraction determinations of the corresponding crystal structures have been shown to provide a considerable insight into the mechanisms of Li^+ ion transfer in such materials.

  15. Structural characterization, electrochemical, photoluminescence and thermal properties of potassium ion-mediated coordination polymer.

    PubMed

    Ceyhan, Gökhan; Köse, Muhammet; Tümer, Mehmet; Dal, Hakan

    2015-05-01

    A polymeric potassium complex of p-nitrophenol was synthesized and characterized by analytical and spectroscopic techniques. Molecular structure of the complex was determined by single crystal X-ray diffraction study. X-ray structural data show that crystals contain polymeric K(+) complex of p-nitrophenol. Asymmetric unit consists of one p-nitrophenolate, one K(+) ion and one water molecule. All bond lengths and angles in the phenyl rings have normal Csp2-Csp2 values and are in the expected ranges. The p-nitrophenolate is close to planar with small distortions by some atoms. Each potassium ion in the polymeric structure is identical and eight-coordinate, bonded to four nitro, two phenolate oxygen atoms from five p-nitrophenolate ligands and two oxygen atoms from two water molecules. Electronic, electrochemical, photoluminescence and thermal properties of the complex were also investigated.

  16. Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with Charged Solvatochromic Dyes.

    PubMed

    Xie, Xiaojiang; Bakker, Eric

    2015-11-17

    Ionophores are widely used ion carriers in ion selective sensors. The effective stability constant (β) is a key physical parameter providing valuable guidelines to the design of ionophores and carrier-based ion selective sensors. The β value of ion-carrier complex in plasticized poly(vinyl chloride) (PVC) membranes and solutions have been determined in the past by various techniques, but most of them are difficult to implement at the nanoscale owing to the ultrasmall sample volume. A new methodology based on charged solvatochromic dyes is introduced here for the first time to determine β values directly within ion selective nanospheres. Four ionophores with different selectivities toward Na(+), K(+), Ca(2+), and H(+), respectively, are successfully characterized in nanospheres composed of triblock copolymer Pluronic F-127 and bis(2-ethylhexyl) sebacate. The values determined in the nanospheres are smaller compared with those in plasticized PVC membranes, indicating a more polar nanosphere microenvironment and possible uneven distribution of the sensing components in the interfacial region. PMID:26502342

  17. Frictional and structural characterization of ion-nitrided low and high chromium steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.

  18. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  19. Dynamical Structures in Phase-Separated Films Deposited under Ion Bombardment

    SciTech Connect

    He, J. H.; Carosella, C. A.; Hubler, G. K.; Knies, D. L.; Qadri, S. B.; Grabowski, K. S.

    2009-03-10

    We report our experimental observation of ion bombardment effect on the film structures generated by co-evaporation of Au and silica. Three states are identified depending on the incident ion energy and beam current. Moderate ion bombardment creates nanoscale compositional modulations along the film growth direction. Strong ion bombardment induces disappearance of the compositional modulations. At still higher energy and flux, energetic ions sputter away all deposited atoms. The observed phenomena reflect synergistic effects of ion bombardment on the film growth in phase separated systems. Our observations suggest that ion beams can be employed to control the film structures in the deposition of phase-separated films.

  20. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  1. Radii of atomic ions determined from diatomic ion-He bond lengths.

    PubMed

    Wright, Timothy G; Breckenridge, W H

    2010-03-11

    We propose a new definition of the effective radius of an atomic ion: the bond distance (R(e)) of the ion/He diatomic complex minus the van der Waals radius of the helium atom. Our rationale is that He is the most chemically inert and least polarizable atom, so that its interaction with the outer portions of the electron cloud causes the smallest perturbation of it. We show that such radii, which we denote R(XHe), make good qualitative sense. We also compare our R(XHe) values to more traditional ionic radii from solid crystal X-ray measurements, as well as estimates of such radii from "ionic" gas-phase MF, MOM, MF(+), and MO molecules, where M is a metal atom. Such comparisons lead to interesting conclusions about bonding in ionic crystals and in simple gas-phase oxide and fluoride molecules. The definition is shown to be reasonable for -1, +1, and even for many of the larger +2 atomic ions. Another advantage of the R(XHe) definition is that it is also consistently valid for ground states and excited states of both neutral atoms and atomic ions, even for open-shell np and nd cases where the electron clouds of the ions are not spherically symmetric and R(XHe) thus depends on the "approach" direction of the He atom. Finally, we note that when there is a contribution from covalent bonding with the He atom, and/or in cases where the ion is small and has a very high charge, so that there is distortion even of the He 1s electrons, R(XHe) is not expected to be representative of the size of the ion. We then suggest that in these cases small, and sometimes unphysical, values of R(XHe) are diagnostic of the fact that simple "physical" interactions have been supplemented by a "chemical" component. PMID:20055395

  2. Radii of atomic ions determined from diatomic ion-He bond lengths.

    PubMed

    Wright, Timothy G; Breckenridge, W H

    2010-03-11

    We propose a new definition of the effective radius of an atomic ion: the bond distance (R(e)) of the ion/He diatomic complex minus the van der Waals radius of the helium atom. Our rationale is that He is the most chemically inert and least polarizable atom, so that its interaction with the outer portions of the electron cloud causes the smallest perturbation of it. We show that such radii, which we denote R(XHe), make good qualitative sense. We also compare our R(XHe) values to more traditional ionic radii from solid crystal X-ray measurements, as well as estimates of such radii from "ionic" gas-phase MF, MOM, MF(+), and MO molecules, where M is a metal atom. Such comparisons lead to interesting conclusions about bonding in ionic crystals and in simple gas-phase oxide and fluoride molecules. The definition is shown to be reasonable for -1, +1, and even for many of the larger +2 atomic ions. Another advantage of the R(XHe) definition is that it is also consistently valid for ground states and excited states of both neutral atoms and atomic ions, even for open-shell np and nd cases where the electron clouds of the ions are not spherically symmetric and R(XHe) thus depends on the "approach" direction of the He atom. Finally, we note that when there is a contribution from covalent bonding with the He atom, and/or in cases where the ion is small and has a very high charge, so that there is distortion even of the He 1s electrons, R(XHe) is not expected to be representative of the size of the ion. We then suggest that in these cases small, and sometimes unphysical, values of R(XHe) are diagnostic of the fact that simple "physical" interactions have been supplemented by a "chemical" component.

  3. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2′ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    SciTech Connect

    Mudsainiyan, R.K. Jassal, Amanpreet Kaur; Chawla, S.K.

    2015-05-15

    The 1-D polymeric complex (I) is having formula [Mn(2,2′-BP).(N{sub 3}){sub 2}]{sub n}, which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn–azide–Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J{sub 1}=64.3 K (45.3 cm{sup −1}), and J{sub 2}=−75.7 K (−53.3 cm{sup −1}). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L–L)(N{sub 3}){sub 2}]{sub n} type. - - Highlights: • Synthesized 1-D polymeric complex of Mn (II) ions with 2, 2′ bipyridyl and azide group. • X-ray data of complex (I) is in a good agreement with TGA and other spectroscopic techniques. • DFT calculations were done and compared with the parameter of experimental and theoretical data. • Intermolecular interactions calculated by Hirshfeld surface analysis

  4. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    SciTech Connect

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was also evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.

  5. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    DOE PAGESBeta

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was alsomore » evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.« less

  6. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2‧ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Mudsainiyan, R. K.; Jassal, Amanpreet Kaur; Chawla, S. K.

    2015-05-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2‧-BP).(N3)2]n, which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn-azide-Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J1=64.3 K (45.3 cm-1), and J2=-75.7 K (-53.3 cm-1). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L-L)(N3)2]n type.

  7. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  8. The molecular structure of the isopoly complex ion, decavanadate (V10O286-)

    USGS Publications Warehouse

    Evans, H.T.

    1966-01-01

    The structure of the decavanadate ion V10O286- has been found by a determination of the crystal structure of K2Zn2V10O28?? 16H2O. The soluble, orange crystals are triclinic with space group P1 and have a unit cell with a = 10.778 A, b = 11.146 A, c = 8.774 A, ?? = 104?? 57???, ?? = 109?? 3???', and ?? = 65?? 0??? (Z = 1). The structure was solved from a three-dimensional Patterson map based on 5143 Weissenberg-film data. The full-matrix, least-squares refinement gave R = 0.094 and ?? for V-O bond lengths of 0.008 A. The unit cell contains one V10O286- unit, two Zn(H2O)62+ groups, two K+ ions, and four additional water molecules. The decavanadate ion is an isolated group of ten condensed VO6 octahedra, six in a rectangular 2 x 3 array sharing edges, and four more, two fitted in above and two below by sharing sloping edges. The structure, which is based on a sodium-chloride-like arrangement of V and O atoms, has a close relationship to other isopoly complex molybdates, niobates, and tantalates. Strong distortions in the VO6 octahedra are analogous to square-pyramid and other special coordination features known in other vanadate structures.

  9. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  10. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions. PMID:26358093

  11. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions.

  12. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    SciTech Connect

    Korobova, N. Timoshenkov, S.; Almasov, N.; Prikhodko, O.; Tsendin, K.

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  13. Exploiting Microbeams for Membrane Protein Structure Determination.

    PubMed

    Warren, Anna J; Axford, Danny; Paterson, Neil G; Owen, Robin L

    2016-01-01

    A reproducible, and sample independent means of predictably obtaining large, well-ordered crystals has proven elusive in macromolecular crystallography. In the structure determination pipeline, crystallisation often proves to be a rate-limiting step, and the process of obtaining even small or badly ordered crystals can prove time-consuming and laborious. This is particularly true in the field of membrane protein crystallography and this is reflected in the limited number of unique membrane protein structures deposited in the protein data bank (less than 650 by June 2016 - http://blanco.biomol.uci.edu/mpstruc ). Over recent years the requirement for, and time and cost associated with obtaining, large crystals has been partially alleviated through the development of beamline instrumentation allowing data collection, and structure solution, from ever-smaller crystals. Advances in several areas have led to a step change in what might be considered achievable during a synchrotron trip over the last decade. This chapter will briefly review the current status of the field, the tools available to ease data collection and processing, and give some examples of exploitation of these for membrane protein microfocus macromolecular crystallography. PMID:27553238

  14. Mass determination of light ions in a Penning trap by time-of-flight detection of ion resonances

    NASA Astrophysics Data System (ADS)

    Kern, J.; Engel, T.; Hagena, D.; Werth, G.

    1992-12-01

    We describe an experimental setup to determine the cyclotron frequencies of ions confined in a Penning trap by resonant excitation of the ions eigenfrequencies and a time-of-flight detection of the resonances. Systematic shifts from trap- and B-field imperfections are discussed and methods to minimize those effects in our experiment are presented. Results on the mass ratio for 4He/D2 and 3He/H2 demonstrate the experimentally obtained precision in the ppb range, which might be further improved by modification of our apparatus.

  15. Electric field effects on resonance structures in negative ion photodetachment

    NASA Astrophysics Data System (ADS)

    Slonim, V. Z.; Greene, C. H.

    1991-12-01

    The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.

  16. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  17. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  18. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets.

    PubMed

    Han, Linjie; Ruotolo, Brandon T

    2015-07-01

    Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.

  19. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    PubMed

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  20. Track Structure in DNA Irradiated with Heavy Ions

    SciTech Connect

    Bowman, Michael K.; Becker, David; Sevilla, Michael D.; Zimbrick, John D.

    2005-04-01

    The spatial properties of trapped radicals produced in heavy ion-irradiated solid DNA at 77 K have been probed using pulsed Electron Paramagnetic Double Resonance (PELDOR or DEER) techniques. Salmon testes DNA hydrated to twelve water molecules per nucleotide was irradiated with 40Ar ions of energy 100 MeV/nucleon and LET ranging from 300 to 400 keV/?. Irradiated samples were maintained at cryogenic temperature at all times. PELDOR measurements were made using a refocused echo detection sequence that allows dipolar interaction between trapped radicals to be observed. The EPR spectrum is attributed to electron loss/gain DNA base radicals and neutral carbon-centered radicals that likely arise from sugar damage. We find a radical concentration of 13.5*1018 cm-3 in the tracks and a track radius of 6.79 nm. The cross section of these tracks is 144 nm2 yielding a lineal radical density of 2.6 radicals/nm. Based upon the yields previously determined for particles having calculated LET values of 300-400 keV/mm and our measured lineal density, we obtain an LET of 270 keV/mm, which is in good agreement with the calculated range of values. These measurements of radical density and spatial extent provide the first direct experimental determination of track characteristics in irradiated DNA.

  1. Structural Determinants of Misfolding in Multidomain Proteins

    PubMed Central

    Tian, Pengfei; Best, Robert B.

    2016-01-01

    Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins. PMID:27163669

  2. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics.

    PubMed

    Howard, Rebecca J; Trudell, James R; Harris, R Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.

  3. DEVELOPMENT AND VALIDATION OF AN ION CHROMATOGRAPHIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    A method has been developed for the determination of perchlorate in fertilizers. Materials are leached with deionized water to dissolve any soluble perchlorate compounds. Ion chromatographic separation is followed by suppressed conductivity for detection. Perchlorate is retained ...

  4. Ion-chromatographic determination of L-tartrate in urine samples.

    PubMed

    Petrarulo, M; Marangella, M; Bianco, O; Linari, F

    1991-01-01

    We propose using ion chromatography to determine tartrate concentration in urine. A 100-microL sample of urine is diluted and injected into the chromatograph. Tartrate is eluted within 11.5 min as a distinct and well-resolved peak. The sensitivity of the standard procedure (signal-to-noise ratio, 3/1) is 30 mumol/L. The intra-run and interrun coefficients of variation are 2.5% and 4.1%, respectively. Mean analytical recovery of known amounts of added tartrate ranges between 94.2% and 104.0%. We investigated the specificity of the procedure by analyzing urine containing added dicarboxylic acids structurally related to tartrate. The reliability of the procedure makes it suitable for investigating tartrate metabolism, e.g., the potential role of tartrate as an inhibitor of crystallization in calcium nephrolithiasis.

  5. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.

    PubMed

    Banci, Lucia; Bertini, Ivano; Mangani, Stefano

    2005-01-01

    Nuclear magnetic resonance (NMR) is a powerful technique for protein structure determination in solution. However, when dealing with metalloproteins, NMR methods are unable to directly determine the structure of the metal site and its coordination geometry. The capability of X-ray absorption spectroscopy (XAS) to provide the structure of a metal ion bound to a protein is then perfectly suited to complement the process of the structure determination. This aspect is particularly relevant in structural genomic projects where high throughput of structural results is the main goal. The synergism of the two techniques has been exploited in the structure determination of bacterial copper transport proteins.

  6. Determination of thiocyanate (biomarkers of ETS) and other inorganic ions in human nasal discharge samples using ion chromatography.

    PubMed

    Narkowicz, Sylwia; Polkowska, Żaneta; Marć, Mariusz; Simeonov, Vasil; Namieśnik, Jacek

    2013-10-01

    Environmental tobacco smoke (ETS) is a mixture of air and tobacco smoke containing more than 4000 chemical substances. In view of the health risks of many of these substances, studies are needed to determine biomarkers of exposure to ETS constituents in people who actively or passively are exposed to the toxic compounds. The methodologies for determining most biomarkers from saliva, urine and blood samples are known, but methods for analyzing these compounds in nasal discharges are not available. The objective of this work was to develop an analytical procedure for the determination of thiocyanate and other biomarker compounds in samples of nasal discharge using ion chromatography.

  7. Ion chromatographic determination of transition metals in irradiated nuclear reactor surveillance samples.

    PubMed

    Louw, I

    1996-02-01

    The determination of transition metal ions in radioactive (+/-25 microCi/g) low-alloy steels (nuclear reactor surveillance samples) by ion chromatography (IC) is described. The analysis has been done directly without prior separation of the iron matrix. The eluted metal ions have been detected with a UV-visible spectrophotometric detector after post-column complexation with 4-(2-pyridylazo)resorcinol. The results are in a good agreement with the certified values for the standard reference material used. The method was applied to nuclear reactor surveillance samples for the determination of Cu, Mn, Co and Ni.

  8. UV spectroscopy determination of aqueous lead and copper ions in water

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Moo, Y. C.; Mat Jafri, M. Z.; Lim, H. S.

    2014-05-01

    Lead (Pb2+) and copper (Cu2+) ions are very common pollutants in water which have dangerous potential causing serious disease and health problems to human. The aim of this paper is to determine lead and copper ions in aqueous solution using direct UV detection without chemical reagent waste. This technique allow the determination of lead and copper ions from range 0.2 mg/L to 10 mg/L using UV wavelength from 205 nm to 225 nm. The method was successfully applied to synthetic sample with high performance.

  9. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  10. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants.

    PubMed

    Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R

    2004-07-01

    The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.

  11. Ion induced changes in the structure of bordered pit membranes.

    PubMed

    Lee, Jinkee; Holbrook, N Michele; Zwieniecki, Maciej A

    2012-01-01

    Ion-mediated changes in xylem hydraulic resistance are hypothesized to result from hydrogel like properties of pectins located in the bordered pit membranes separating adjacent xylem vessels. Although the kinetics of the ion-mediated changes in hydraulic resistance are consistent with the swelling/deswelling behavior of pectins, there is no direct evidence of this activity. In this report we use atomic force microscopy (AFM) to investigate structural changes in bordered pit membranes associated with changes in the ionic concentration of the surrounding solution. When submerged in de-ionized water, AFM revealed bordered pit membranes as relatively smooth, soft, and lacking any sharp edges surface, in contrast to pictures from scanning electron microscope (SEM) or AFM performed on air-dry material. Exposure of the bordered pit membranes to 50 mM KCl solution resulted in significant changes in both surface physical properties and elevation features. Specifically, bordered pit membranes became harder and the fiber edges were clearly visible. In addition, the membrane contracted and appeared much rougher due to exposed microfibers. In neither solution was there any evidence of discrete pores through the membrane whose dimensions were altered in response to the ionic composition of the surrounding solution. Instead the variable hydraulic resistance appears to involve changes in the both the permeability and the thickness of the pit membrane.

  12. Crystal Structure of a Potassium Ion Transporter TrkH

    SciTech Connect

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  13. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  14. The importance of dehydration in determining ion transport in narrow pores.

    PubMed

    Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben

    2012-06-11

    The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels.

  15. Determination of cyanogenic compounds in edible plants by ion chromatography.

    PubMed

    Cho, Hye-Jeon; Do, Byung-Kyung; Shim, Soon-Mi; Kwon, Hoonjeong; Lee, Dong-Ha; Nah, Ahn-Hee; Choi, Youn-Ju; Lee, Sook-Yeon

    2013-06-01

    Cyanogenic glycosides are HCN-producing phytotoxins; HCN is a powerful and a rapidly acting poison. It is not difficult to find plants containing these compounds in the food supply and/or in medicinal herb collections. The objective of this study was to investigate the distribution of total cyanide in nine genera (Dolichos, Ginkgo, Hordeum, Linum, Phaseolus, Prunus, Phyllostachys, Phytolacca, and Portulaca) of edible plants and the effect of the processing on cyanide concentration. Total cyanide content was measured by ion chromatography following acid hydrolysis and distillation. Kernels of Prunus genus are used medicinally, but they possess the highest level of total cyanide of up to 2259.81 CN(-)/g dry weight. Trace amounts of cyanogenic compounds were detected in foodstuffs such as mungbeans and bamboo shoots. Currently, except for the WHO guideline for cassava, there is no global standard for the allowed amount of cyanogenic compounds in foodstuffs. However, our data emphasize the need for the guidelines if plants containing cyanogenic glycosidesare to be developed as dietary supplements.

  16. Determination of Cyanogenic Compounds in Edible Plants by Ion Chromatography

    PubMed Central

    Cho, Hye-Jeon; Do, Byung-Kyung; Shim, Soon-Mi; Lee, Dong-Ha; Nah, Ahn-Hee; Choi, Youn-Ju; Lee, Sook-Yeon

    2013-01-01

    Cyanogenic glycosides are HCN-producing phytotoxins; HCN is a powerful and a rapidly acting poison. It is not difficult to find plants containing these compounds in the food supply and/or in medicinal herb collections. The objective of this study was to investigate the distribution of total cyanide in nine genera (Dolichos, Ginkgo, Hordeum, Linum, Phaseolus, Prunus, Phyllostachys, Phytolacca, and Portulaca) of edible plants and the effect of the processing on cyanide concentration. Total cyanide content was measured by ion chromatography following acid hydrolysis and distillation. Kernels of Prunus genus are used medicinally, but they possess the highest level of total cyanide of up to 2259.81 CN−/g dry weight. Trace amounts of cyanogenic compounds were detected in foodstuffs such as mungbeans and bamboo shoots. Currently, except for the WHO guideline for cassava, there is no global standard for the allowed amount of cyanogenic compounds in foodstuffs. However, our data emphasize the need for the guidelines if plants containing cyanogenic glycosidesare to be developed as dietary supplements. PMID:24278641

  17. Status of structural analysis of 30 cm diameter ion optics

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Hering, Gary T.

    1990-01-01

    Three structural finite element programs are compared with theory, experimental data, and each other to evaluate their usefulness for modeling the thermomechanical deflection of ion engine electrodes. Two programs, NASTRAN and MARC, used a Cray XMP and the third, Algor, used an IBM compatible personal computer. The shape of the applied temperature gradient greatly affects off-axis displacement, implying that an accurate temperature distribution is required to analyze new designs. The use of bulk material constants to model the perforated electrodes was investigated. The stress and displacement predictions are shown to be sensitive to the temperature gradient and the Young's modulus, and insensitive to number of nodes, above some minimum value, and the Poisson ratio used. The models are shown to be useful tools for evaluating designs. Experimental measurements of temperatures and displacements was identified as the most critical area.

  18. Determination of amines used in the oil and gas industry (upstream section) by ion chromatography.

    PubMed

    Kadnar, R

    1999-07-30

    During production and purification of crude oil and natural gas several different amines are used as chemicals or operating materials, e.g. film forming long chain amines as corrosion inhibitors, steam volatile amines for pH correction and corrosion protection, alkanolamines as absorbents in sour gas treatment plants, etc. For analytical checks, e.g. determination of corrosion inhibitor concentration in produced media, classical chemical methods are used predominantly, because most of them can be performed in small field laboratories. Some amines, especially the small molecular aliphatic and heterocyclic amines can also be determined by ion chromatography. In our laboratory two types of separation columns (IonPac CS10 and CS12A) were available for ion chromatographic separation. The analysis of the amines in low-salt-containing water, soft water or steam condensate can be performed without problems. The presence of alkali and/or alkaline earth ions in the sample can lead to coelution with these ions, to poor peak resolution or enhanced analysis times, depending on the chromatographic conditions. This work shows some examples of ion chromatography applications for the determination of low-molecular-mass ethanolamines, morpholine and piperazine and discusses the possible interferences and troubles caused by alkali and alkaline earth ions in the matrix.

  19. ION MANIPULATIONS IN STRUCTURES FOR LOSSLESS ION MANIPULATIONS (SLIM): COMPUTATIONAL EVALUATION OF A 90° TURN AND A SWITCH

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia. M; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-01-01

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ~10 V. The ion plume width in these conditions is ~1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs. PMID:26289106

  20. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  1. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-01

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm.

  2. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms. PMID:27250314

  3. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  4. Spectroscopic investigations of the electronic structure of neptunyl ions.

    SciTech Connect

    Wilkerson, M. P.; Berg, J. M.; Dewey, H. J.

    2003-01-01

    Molecular electronic structures are innately sensitive to the geometric and chemical environments around the metal center of coordination compounds . However, the interrelationships between the electronic structures and molecular geometries of actinide species, which often contain more than one electron in the Sf valence shell, are quite complex due to the large numbers of possible electronic states and high densities of vibronically enabled transitions .1'2 Investigations of the optical signatures of simple, well-defined molecular systems should provide the most straightforward approach for unharnessing these fundamental relationships, and in particular, systems with a single electron in the valence Sf shell, such as the neptunyl ion (Np0 22+), should provide the most viable means for characte rizing actinide electronic structure. Furthermore, Sf orbital-occupied actinide systems exhibit not only visible and ultraviolet ligand-to-metal charge-transfer spectral bands, but also near-infrared Sf-Sf transitions resulting from promotion of a Sf electron to an orbital of primarily Sf character .

  5. A 1.3-Å resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation

    PubMed Central

    Ippolito, Joseph A.; Steitz, Thomas A.

    1998-01-01

    The crystal structure of an HIV-1 trans-activation response region (TAR) RNA fragment containing the binding site for the trans-activation protein Tat has been determined to 1.3-Å resolution. In this crystal structure, the characteristic UCU bulge of TAR adopts a conformation that is stabilized by three divalent calcium ions and differs from those determined previously by solution NMR. One metal ion, crucial to the loop conformation, binds directly to three phosphates in the loop region. The structure emphasizes the influence of metal ion binding on RNA structure and, given the abundance of divalent metal ion in the cell, raises the question of whether metal ions play a role in the conformation of TAR RNA and the interaction of TAR with Tat and cyclin T in vivo. PMID:9707559

  6. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    DOE PAGESBeta

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less

  7. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of molecules to be determined in the absence of electrolyte in an environment of low dielectric constant.

  8. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections.

    PubMed

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-01

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, (1)H, (13)C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na(+), Mg(2+), Al(3+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). Upon addition of Al(3+) ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665nm upon excitation at 560nm. Addition of metal ions Na(+), Mg(2+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+) (1:1M ratio) cause fluorescence quenching, however addition of Al(+3) resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al(3+) in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al(3+) ions in the presence of the other metal ions studied.

  9. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-01

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, 1H, 13C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na+, Mg2+, Al3+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+. Upon addition of Al3+ ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665 nm upon excitation at 560 nm. Addition of metal ions Na+, Mg2+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ (1:1 M ratio) cause fluorescence quenching, however addition of Al+3 resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al3+ in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al3+ ions in the presence of the other metal ions studied.

  10. Compositions and Structures of Vanadium Oxide Cluster Ions VmOn(±) (m = 2-20) Investigated by Ion Mobility Mass Spectrometry.

    PubMed

    Wu, Jenna W J; Moriyama, Ryoichi; Tahara, Hiroshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2016-06-01

    Stable compositions and geometrical structures of vanadium oxide cluster ions, VmOn(±), were investigated by ion mobility mass spectrometry (IM-MS). The most stable compositions of vanadium oxide cluster cations were (V2O4)(V2O5)(m-2)/2(+) and (VO2)(V2O5)(m-1)/2(+), depending on the clusters with even and odd numbers of vanadium atoms. Compositions one-oxygen richer than the cations, such as (V2O5)m/2(-) and (VO3)(V2O5)(m-1)/2(-), were predominantly observed for cluster anions. Assignments of these stable cluster ion compositions, which were determined as a result of collision-induced dissociations in IM-MS, can partly be explained with consideration of spin density distribution. By comparing the experimental collision cross sections (CCSs) obtained from ion mobility measurement with CCSs of the theoretically calculated structures, we confirmed the patterned growth of geometrical structures partially discussed in previous theoretical and spectroscopic studies. We showed that even sized (V2O5)m/2(±) where m = 6-12 had right polygonal prism structures except for the anionic V12O30(-), and for the clusters of odd numbers of vanadium m, cations and anions can either have bridged or pyramid structures. Both of the odd sized structures proposed were derivatives from the even sized right polygonal prism structures. The exception, V12O30(-), which had a CCS almost equal to that of the neighboring smaller V11O28(-), should have a structure of higher density than the right hexagonal prism, in which it was proposed to be a captured pyramid structure, derived from V11O28(-).

  11. Compositions and Structures of Vanadium Oxide Cluster Ions VmOn(±) (m = 2-20) Investigated by Ion Mobility Mass Spectrometry.

    PubMed

    Wu, Jenna W J; Moriyama, Ryoichi; Tahara, Hiroshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2016-06-01

    Stable compositions and geometrical structures of vanadium oxide cluster ions, VmOn(±), were investigated by ion mobility mass spectrometry (IM-MS). The most stable compositions of vanadium oxide cluster cations were (V2O4)(V2O5)(m-2)/2(+) and (VO2)(V2O5)(m-1)/2(+), depending on the clusters with even and odd numbers of vanadium atoms. Compositions one-oxygen richer than the cations, such as (V2O5)m/2(-) and (VO3)(V2O5)(m-1)/2(-), were predominantly observed for cluster anions. Assignments of these stable cluster ion compositions, which were determined as a result of collision-induced dissociations in IM-MS, can partly be explained with consideration of spin density distribution. By comparing the experimental collision cross sections (CCSs) obtained from ion mobility measurement with CCSs of the theoretically calculated structures, we confirmed the patterned growth of geometrical structures partially discussed in previous theoretical and spectroscopic studies. We showed that even sized (V2O5)m/2(±) where m = 6-12 had right polygonal prism structures except for the anionic V12O30(-), and for the clusters of odd numbers of vanadium m, cations and anions can either have bridged or pyramid structures. Both of the odd sized structures proposed were derivatives from the even sized right polygonal prism structures. The exception, V12O30(-), which had a CCS almost equal to that of the neighboring smaller V11O28(-), should have a structure of higher density than the right hexagonal prism, in which it was proposed to be a captured pyramid structure, derived from V11O28(-). PMID:27172006

  12. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGESBeta

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  13. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  14. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  16. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  17. Determination of optimum voltages of ion focusing devices using computer techniques

    NASA Technical Reports Server (NTRS)

    Eckstein, B. A.

    1980-01-01

    Electric potentials for two dimensional cross sections of ion focusing devices used in a mass spectrometer are calculated via a series of computer programs designed to compute potentials between areas of fixed voltages. Ion trajectories within these devices may be determined by computer and a histogram obtained which plots ion density against ion position along a plate of the focusing device. For each lens system, a plate voltage may be changed, the electric potentials recalculated, and a new histogram calculated in order to determine if the new voltage configuration has increased the device's efficiency. This process may be repeated until the optimum voltage values have been found for maximum particle transmission in each focusing device.

  18. Determination of aspartame by ion chromatography with electrochemical integrated amperometric detection.

    PubMed

    Qu, F; Qi, Z H; Liu, K N; Mou, S F

    1999-07-30

    In this paper, the separation and determination of the sweetener aspartame by ion chromatography coupled with electrochemical amperometric detection is reported. Sodium saccharin, acesulfame-K and aspartame were separated using 27.5 mmol/l NaOH isocratic elution on a Dionex IonPac AS4A-SC separation column. Aspartame can be determined by integrated amperometric detection without interference from the other two sweeteners. The method can be applied to the determination of aspartame in powered tabletop, fruit juice and carbonated beverage samples, and the results obtained by integrated amperometry were in agreement with those obtained using a UV detection method. A method for determining analytes with an NH2 group by ion chromatography with integrated amperometry was developed.

  19. Biochemical and Structural Properties of a Thermostable Mercuric Ion Reductase from Metallosphaera sedula

    PubMed Central

    Artz, Jacob H.; White, Spencer N.; Zadvornyy, Oleg A.; Fugate, Corey J.; Hicks, Danny; Gauss, George H.; Posewitz, Matthew C.; Boyd, Eric S.; Peters, John W.

    2015-01-01

    Mercuric ion reductase (MerA), a mercury detoxification enzyme, has been tuned by evolution to have high specificity for mercuric ions (Hg2+) and to catalyze their reduction to a more volatile, less toxic elemental form. Here, we present a biochemical and structural characterization of MerA from the thermophilic crenarchaeon Metallosphaera sedula. MerA from M. sedula is a thermostable enzyme, and remains active after extended incubation at 97°C. At 37°C, the NADPH oxidation-linked Hg2+ reduction specific activity was found to be 1.9 μmol/min⋅mg, increasing to 3.1 μmol/min⋅mg at 70°C. M. sedula MerA crystals were obtained and the structure was solved to 1.6 Å, representing the first solved crystal structure of a thermophilic MerA. Comparison of both the crystal structure and amino acid sequence of MerA from M. sedula to mesophillic counterparts provides new insights into the structural determinants that underpin the thermal stability of the enzyme. PMID:26217660

  20. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  1. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    PubMed Central

    2015-01-01

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations. PMID:25222548

  2. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  3. Determination of the copper diffusion coefficient in silicon from transient ion-drift

    NASA Astrophysics Data System (ADS)

    Heiser, T.; Mesli, A.

    1993-10-01

    We use the transient ion drift in a depletion region of a Schottky barrier to determine ion diffusivities at moderate temperatures. The pulsed reverse bias leads to temperature dependent capacitance transients similar to deep level carrier emission transients. A simple theoretical model together with classical transient signal analysis provide the means to extract the ion diffusion constant. When applied to copper in silicon, diffusion data are obtained in a not yet investigated temperature range (280 400 K) which agree well with both low and high temperature diffusion data.

  4. Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi

    2003-05-16

    This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system.

  5. Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry.

    PubMed

    Muftakhov; Vasil'ev; Mazunov

    1999-06-01

    Appearance energies of [M-H](-) ions from carbonyl compounds R-CO-R' (R,R' = H, CH(3), NH(2), OH) have been measured by means of negative ion mass spectrometry in resonant electron capture mode. Values of electron affinity of the corresponding radicals, CH(2)&dbond;C(X)O, NH&dbond;C(X)O and O&dbond;C(X)O, have been determined. Copyright 1999 John Wiley & Sons, Ltd. PMID:10407285

  6. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  7. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  8. Ion-scale structure in Mercury's magnetopause reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-06-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3-3 mV/m reconnection electric fields separated by ~5-10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  9. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  10. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  11. Characterization of Cross-Linked Cellulosic Ion-Exchange Adsorbents: 1. Structural Properties

    PubMed Central

    Angelo, James M.; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M.

    2014-01-01

    The structural characteristics of the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) were assessed using methods to gauge the pore dimensions and the effect of ionic strength on intraparticle architecture. Inverse size exclusion chromatography (ISEC) was applied to the S and STAR AX HyperCel derivatives. The theoretical analysis yielded an average pore radius for each material of about 5 nm, with a particularly narrow pore-size distribution. Electron microscopy techniques were used to visualize the particle structure and relate it to macroscopic experimental data. Microscopy of Q and STAR AX HyperCel anion exchangers presented some qualitative differences in pore structure that can be attributed to the derivatization using conventional quaternary ammonium and salt-tolerant ligands, respectively. Finally, the effect of ionic strength was studied through the use of salt breakthrough experiments to determine to what extent Donnan exclusion plays a role in restricting the accessible pore volume for small ions. It was determined that Donnan effects were prevalent at total ionic strengths (TIS) less than 150 mM, suggesting the presence of a ligand-containing partitioning volume within the pore space. PMID:24188996

  12. Compressive Coherent Structures at Ion Scales in the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Alexandrova, O.; Mangeney, A.; Maksimovic, M.; Lacombe, C.; Rakoto, V.; Kasper, J. C.; Jovanovic, D.

    2016-08-01

    We present a study of magnetic field fluctuations in a slow solar wind stream, close to ion scales, where an increase of the level of magnetic compressibility is observed. Here, the nature of these compressive fluctuations is found to be characterized by coherent structures. Although previous studies have shown that current sheets can be considered the principal cause of intermittency at ion scales, here we show for the first time that, in the case of the slow solar wind, a large variety of coherent structures contributes to intermittency at proton scales, and current sheets are not the most common. Specifically, we find compressive (δ {b}\\parallel \\gg δ {b}\\perp ), linearly polarized structures in the form of magnetic holes, solitons, and shock waves. Examples of Alfvénic structures (δ {b}\\perp \\gt δ {b}\\parallel ) are identified as current sheets and vortex-like structures. Some of these vortices have δ {b}\\perp \\gg δ {b}\\parallel , as in the case of Alfvén vortices, but the majority of them are characterized by δ {b}\\perp ≳ δ {b}\\parallel . Thanks to multi-point measurements by the Cluster spacecraft, for about 100 structures we could determine the normal, the propagation velocity, and the spatial scale along this normal. Independently of the nature of the structures, the normal is always perpendicular to the local magnetic field, meaning that k ⊥ ≫ k ∥. The spatial scales of the studied structures are found to be between two and eight times the proton gyroradius. Most of them are simply convected by the wind, but 25% propagate in the plasma frame. Possible interpretations of the observed structures and the connection with plasma heating are discussed.

  13. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions.

    PubMed

    Ansell, S; Barnes, A C; Mason, P E; Neilson, G W; Ramos, S

    2006-12-01

    The presence of ions in water provides a rich and varied environment in which many natural processes occur with important consequences in biology, geology and chemistry. This article will focus on the structural properties of ions in water and it will be shown how the 'difference' methods of neutron diffraction with isotopic substitution (NDIS) and anomalous X-ray diffraction (AXD) can be used to obtain direct information regarding the radial pair distribution functions of many cations and anions in solution. This information can subsequently be used to calculate coordination numbers and to determine ion-water conformation in great detail. As well as enabling comparisons to be made amongst ions in particular groups in the periodic table, such information can also be contrasted with results provided by molecular dynamics (MD) simulation techniques. To illustrate the power of these 'difference' methods, reference will be made to the alkali group of ions, all of which have been successfully investigated by the above methods, with the exception of the radioactive element francium. Additional comments will be made on how NDIS measurements are currently being combined with MD simulations to determine the structure around complex ions and molecules, many of which are common in biological systems. PMID:16815625

  14. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  15. Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions?

    PubMed

    Fajardo, O Y; Bresme, Fernando; Kornyshev, Alexei A; Urbakh, Michael

    2015-10-15

    Using nonequilibrium molecular dynamics simulations and a coarse-grained model of ionic liquids, we have investigated the impact that the shape and the intramolecular charge distribution of the ions have on the electrotunable friction with ionic liquid nanoscale films. We show that the electric field induces significant structural changes in the film, leading to dramatic modifications of the friction force. Comparison of the present work with previous studies using different models of ionic liquids indicate that the phenomenology presented here applies to a wide range of ionic liquids. In particular, the electric-field-induced shift of the slippage plane from the solid-liquid interface to the interior of the film and the nonmonotonic variation of the friction force are common features of ionic lubricants under strong confinement. We also demonstrate that the molecular structure of the ions plays an important role in determining the electrostriction and electroswelling of the confined film, hence showing the importance of ion-specific effects in electrotunable friction. PMID:26722768

  16. Ion trap array mass analyzer: structure and performance.

    PubMed

    Li, Xiaoxu; Jiang, Gongyu; Luo, Chan; Xu, Fuxing; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2009-06-15

    An ion trap array (ITA) mass analyzer--a novel ion trap mass analyzer with multiple ion trapping and analyzing channels--was designed and constructed. Its property and performance were investigated and reported in this paper. The ITA was built with several planar electrodes including two parallel printed circuit board (PCB) plates. Each PCB plate was fabricated to several identical rectangular electric strips based on normal PCB fabrication technology and was placed symmetrically to those on the opposite plate. There is no electrode between any two adjacent strips. Every strip was supplied with an rf voltage while the polarity of the voltage applied to the adjacent two strips was opposite. So the electric potential at the central plane between two adjacent strips is zero. Multiple identical electric field regions that contain the dominant quadrupole plus some other high-order fields were produced between the two PCB plates. The multiple identical electric field regions will have the property of ion trapping, ion storage, and mass analysis functions. So an ITA could work as multiple ion trap mass analyzers. It could perform multiple sample ion storage, mass-selected ion isolation, ion ejection, and mass analysis simultaneously. The ITA was operated at both "digital ion trap mode" and "conventional rf mode" experimentally. A preliminary mass spectrum has been carried out in one of the ion trap channels, and it shows a mass resolution of over 1000. Additional functions such as mass-selected ion isolation and mass-selected ion ejection have also been tested. Furthermore, the ITA has a small size and very low cost. An ITA with four channels is less than 30 cm(3) in total volume, and it shows a great promise for the miniaturization of the whole mass spectrometer instrument and high-throughput mass analysis. PMID:19441854

  17. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution.

    PubMed

    Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj

    2016-10-01

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values.

  18. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution.

    PubMed

    Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj

    2016-10-01

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. PMID:27639144

  19. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    SciTech Connect

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-ray absorption fine structure measurements.

  20. HPLC method for the determination of phytochelatin synthase activity specific for soft metal ion chelators.

    PubMed

    Ogawa, Shinya; Yoshidomi, Takahiro; Shirabe, Tomoo; Yoshimura, Etsuro

    2010-04-01

    Phytochelatins (PCs) are nonprotein peptides with the general structure (gamma-Glu-Cys)(n)-Gly (PC(n)), where n is greater than or equal to 2. They are synthesized through a reaction catalyzed by phytochelatin synthase (PCS) in the presence of metal cations and using the tripeptide glutathione (gamma-Glu-Cys-Gly) and/or previously synthesized PC(n) as the substrate. Here, a highly sensitive assay for PCS activity was devised, in which the dequenching of Cu(I)-bathocuproinedisulfonate complexes was used in the detection system of a reversed-phase high-performance liquid chromatograph. Using recombinant PCS from the higher plant Arabidopsis thaliana (rAtPCS1), this assay system was capable of determining PCS activity based on an amount of the enzyme preparation that was 100-fold less than that required for the 5,5'-dithiobis(2-nitrobenzoic acid) assay method. Although adsorption of the enzyme onto the reaction vessel hindered accurate activity determination, the inclusion of bovine serum albumin successfully resolved this issue. This method is a powerful tool for investigating PCS enzyme mechanisms with respect to the roles of metal ions. PMID:20074807

  1. Solvation processes in steam: Ab initio calculations of ion solvent structures and clustering equilibria

    NASA Astrophysics Data System (ADS)

    Lemke, Kono H.; Seward, Terry M.

    2008-07-01

    Reports of the high ion content of steam and low-density supercritical fluids date back to the work of Carlon [Carlon H. R. (1980) Ion content of air humidified by boiling water. J. Appl.Phys.51, 171-173], who invoked ion and neutral-water clustering as mechanism to explain why ions partition into the low-density aqueous phase. Mass spectrometric, vibrational spectroscopic measurements and quantum chemical calculations have refined this concept by proposing strongly bound ion-solvent aggregates and water clusters such as Eigen- and Zundel-type proton clusters H 3O +·(H 2O) m and the more weakly bound water oligomers (H 2O) m. The extent to which these clusters affect fluid chemistry is determined by their abundance, however, little is known regarding the stability of such moieties in natural low-density high-temperature fluids. Here we report results from quantum chemical calculations using chemical-accuracy multi-level G3 (Curtiss-Pople) and CBS-Q theory (Peterson) to address this question. In particular, we have investigated the cluster structures and clustering equilibria for the ions HO·(HO)m(HS)n,NH4+·(HO)m(HS)n and H 3S +·(H 2O) m(H 2S) n, where m ⩽ 6 and n ⩽ 4, at 300-1000 K and 1 bar as well as under vapor-liquid equilibrium conditions between 300 and 646 K. We find that incremental hydration enthalpies and entropies derived from van't Hoff analyses for the attachment of H 2O and H 2S onto H 3O +, NH4+ and H 3S + are in excellent agreement with experimental values and that the addition of water to all three ions is energetically more favorable than solvation by H 2S. As clusters grow in size, the energetic trends of cluster hydration begin to reflect those for bulk H 2O liquids, i.e. calculated hydration enthalpies and entropies approach values characteristic of the condensation of bulk water (Δ Ho = -44.0 kJ mol -1, Δ So = -118.8 J K mol -1). Water and hydrogen sulfide cluster calculations at higher temperatures indicate that a significant

  2. Thermal structure of ions and electrons in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1993-06-01

    A theoretical model of thermal ion and electron temperatures in Saturn's inner magnetospheres is presented which is based on a fast model of radial diffusive plasma transport. It is shown that the ion and electron temperatures and the latitudinal behavior of temperatures are consistent with the fast diffusion hypothesis, assuming that O(+) is the dominant ion and that its source is the Dione-Tethys plasma torus. The present results reinforce the conclusions of Barbosa (1990).

  3. Capturing Ion-Solid Interactions with MOS structures

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Harrell, W. R.; Harriss, J. E.; Sosolik, C. E.

    2012-02-01

    We have fabricated metal-oxide-semiconductor (MOS) devices for a study of implantation rates and damage resulting from low energy ion-solid impacts. Specifically, we seek to capture ion irradiation effects on oxides by exposing as-grown SiO2 layers (50 nm to 200 nm) to incident beams of alkali ions with energies in the range of 100 eV to 10 keV. The oxide is analyzed post exposure by encapsulating the irradiated region under a top metallic contact or within a finished MOS device. Characterization of the resulting ion-modified MOS device involves the standard techniques of room temperature and bias-dependent capacitance-voltage (C-V) measurements. The C-V results reveal alkali ion-induced changes in the flatband voltage of irradiated devices which can be used to extract both the range and implantation probabilities of the ions. Biased C-V measurements are utilized to confirm the concentration or dosage of ions in the oxide. A triangular voltage sweep (TVS) measurement at elevated temperatures also reveals the total ionic space charge in the oxide and can be used to extract a mobility for the ions as they pass through the damaged oxide. Comparisons of these measurements to standard device models as well as to ion range calculations in the oxide are presented.

  4. Determination of bromate ion in drinking water by capillary zone electrophoresis with direct photometric detection.

    PubMed

    Takayanagi, Toshio; Ishida, Makoto; Mbuna, Julius; Driouich, Rim; Motomizu, Shoji

    2006-09-22

    Bromate ion in drinking water was determined by capillary zone electrophoresis (CZE) with direct photometric detection. Bromate ion in the sample solution was introduced and concentrated into the capillary by electrokinetic injection for 50s at -10 kV. Electrophoretic separation was made at an applied voltage of -25 kV and bromate ion was detected at wavelength 193 nm, at which the baseline was stabilized with less UV-absorbing acidic phosphate buffer. Bromate ion was detected within 5 min in the electropherogram. By increasing the electric conductivity in the migrating solution with 10 mM Na2SO4, a limit of detection (LOD) of 9 x 10(-10)M (0.1 microg/L BrO3-) was achieved. The proposed method was applied to the analysis of tap water and river water samples, but bromate ion was not detected. Because the practical samples contain relatively large amount of foreign ionic substances, the tap water sample was diluted to avoid the matrix ions. Bromate ion added in a tap water at the concentration of 8 x 10(-8)M was quantitatively recovered by diluting it 1/10.

  5. Determination of nitrite ion and sulfanilic and orthanilic acids by differential pulse polarography

    SciTech Connect

    Sulaiman, S.T.

    1984-11-01

    The nitrite ion can be determined with a high degree of accuracy and sensitivity by differential pulse polarography utilizing the rapid and quantitative reaction between the nitrite ion and sulfanilic acid or orthanilic acid at pH 1.5. The experimental detection limit is shown to be 8.6 X 10/sup -8/ M (as NO/sub 2//sup -/) in simple aqueous solution. The method is further used to determine concentrations of sulfanilic acid down to 4 X 10/sup -7/ M and orthanilic acid down to 1.6 X 10/sup -6/ M under optimum conditions.

  6. Determination of interfering triazine degradation products by gas chromatography-ion trap mass spectrometry.

    PubMed

    Magnuson, M L; Speth, T F; Kelty, C A

    2000-01-28

    Deethylatrazine (DEA), an atrazine degradation product, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic analysis, DEA can coelute with deisopropylatrazine (DIA), another degradation product. The present work demonstrates that the coelution of DEA and DIA can induce a significant (up to approximately 50%) positive bias in the DEA determination, when using an ion-trap mass spectrometer as the detector. The DIA determination is unaffected by the coelution within experimental error. This may be explained in terms of gas-phase ion fragment populations. A correction factor to the observed DEA concentration may be developed based on the measured DIA concentration.

  7. A novel method to determine the diffusion coefficient of hydrogen ion in ruthenium oxide films

    NASA Astrophysics Data System (ADS)

    Yu, George T.; Yen, S. K.

    2002-10-01

    Hydrogen ion diffusion in ruthenium oxide film is of significant interest because of its importance in capacitor, sensor and catalyst applications. In this study, a method based on potential-pH response measurement was used to determine hydrogen ion diffusion in ruthenium oxide films. The drift in the potential-pH response is believed to be due to the hydrated layer, which affects hydrogen ion diffusion onto the oxide film of the pH sensor. Hydrogen ion diffusion coefficient of ruthenium oxide films obtained from this method was 6×10 -14 cm2/ s. The unique feature of the potential-pH response method is its relatively simple experimental procedure, which eliminates complications arising from surface related effects and/or presence of hydrogen traps in membrane such as those found in the conventional permeation method.

  8. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  9. Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry.

    PubMed

    Schultz, J C; Hack, C A; Benner, W H

    1998-04-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediaminetetraacetic acid buffer, diluted in 50 vol. % acetonitrile, were obtained without cleanup of the sample. A CD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  10. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  11. Determining crystal structures through crowdsourcing and coursework

    NASA Astrophysics Data System (ADS)

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  12. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-09-16

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  13. Determining Probabilities by Examining Underlying Structure.

    ERIC Educational Resources Information Center

    Norton, Robert M.

    2001-01-01

    Discusses how dice games pose fairness issues that appeal to students and examines a structure for three games involving two dice in a way that leads directly to the theoretical probabilities for all possible outcomes. (YDS)

  14. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  15. Determining crystal structures through crowdsourcing and coursework

    PubMed Central

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  16. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    SciTech Connect

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.

  17. Structural phase transitions in low-dimensional ion crystals

    SciTech Connect

    Fishman, Shmuel; Chiara, Gabriele de; Calarco, Tommaso; Morigi, Giovanna

    2008-02-01

    A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente et al. [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

  18. Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry.

    PubMed

    Knapman, Tom W; Morton, Victoria L; Stonehouse, Nicola J; Stockley, Peter G; Ashcroft, Alison E

    2010-10-30

    We have combined ion mobility spectrometry-mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways.

  19. Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Zinner, E.

    1985-01-01

    A new ion probe method for quantitative measurements of the concentrations of all the REE down to the ppm level in 5-20 micron spots is presented. The first application of the method is the determination of REE abundances in meteoritic phosphates. Results are shown to be in good agreement with previous INAA and ion probe determinations. The merrillites in the St. Severin amphoterite are richer in REE than the apatites (the enrichment factors, for various REE, range from 2.3 to 14.2) in contradiction with the results of Ebihara and Honda (1983). Provided good standards for other mineral phases are found or implanted marker ion techniques are used, the method should find a wide range of applications for the study of both terrestrial and extraterrestrial crystals at the microscopic level.

  20. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry.

    PubMed

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-21

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1 (+) cations and TinO2n (-) anions were predominantly observed at high injection energies, in addition to TinO2n (+) for cations and TinO2n+1 (-) for anions. Collision cross sections of TinO2n (+) and TinO2n+1 (-) for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n (+) and TinO2n+1 (-) by collisions were also explained by analysis of spin density distributions.

  1. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-01

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1+ cations and TinO2n- anions were predominantly observed at high injection energies, in addition to TinO2n+ for cations and TinO2n+1- for anions. Collision cross sections of TinO2n+ and TinO2n+1- for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n+ and TinO2n+1- by collisions were also explained by analysis of spin density distributions.

  2. The influence of self-assembling supramolecular structures on the passive membrane transport of ion-paired molecules.

    PubMed

    Benaouda, F; Brown, M B; Shah, B; Martin, G P; Jones, S A

    2012-12-15

    Weak ion-ion interactions, such as those associated with ion-pair formation, are difficult to isolate and characterise in the liquid state, but they have the potential to alter significantly the physicochemical behaviour of molecules in solution. The aim of this work was to gain a better understanding of how ion-ion interactions influenced passive membrane transport. The test system was composed of propylene (PG) glycol, water and diclofenac diethylamine (DDEA). Infrared spectroscopy was employed to determine the nature of the DDEA ion-pair interactions and the drug-vehicle association. Passive transport was assessed using homogeneous synthetic membranes. Solution-state analysis demonstrated that the ion-pair was unperturbed by vehicle composition changes, but the solvent-DDEA interactions were modified. DDEA-PG/water hydrogen bonding influenced the ion-pair solubility (X(dev)) and the solvent interactions slowed transport rate in PG-rich vehicles (0.84±0.05 μg cm(-2) h(-1), at ln(X(dev))=0.57). In water-rich co-solvents, the presence of strong water structuring facilitated a significant increase (p<0.05) in transmembrane penetration rate (e.g. 4.33±0.92 μg cm(-2) h(-1), at ln(X(dev))=-0.13). The data demonstrates that weak ion-ion interactions can result in the embedding of polar entities within a stable solvent complex and spontaneous supramolecular assembly should be considered when interpreting transmembrane transport processes of ionic molecules. PMID:22982163

  3. Counting ion and water molecules in a streaming file through the open-filter structure of the K channel.

    PubMed

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2011-08-24

    The mechanisms underlying the selective permeation of ions through channel molecules are a fundamental issue related to understanding how neurons exert their functions. The "knock-on" mechanism, in which multiple ions in the selectivity filter are hit by an incoming ion, is one of the leading concepts. This mechanism has been supported by crystallographic studies that demonstrated ion distribution in the structure of the Streptomyces lividans (KcsA) potassium channel. These still pictures under equilibrium conditions, however, do not provide a snapshot of the actual, ongoing permeation processes. To understand the dynamics of permeation, we determined the ratio of the ion and water flow [the water-ion coupling ratio (CR(w-i))] through the KcsA channel by measuring the streaming potential (V(stream)) electrophysiologically. The V(stream) value was converted to the CR(w-i) value, which reveals how individual ion and water molecules are queued in the narrow and short filter during permeation. At high K(+) concentrations, the CR(w-i) value was 1.0, indicating that turnover between the alternating ion and water arrays occurs in a single-file manner. At low K(+), the CR(w-i) value was increased to a point over 2.2, suggesting that the filter contained mostly one ion at a time. These average behaviors of permeation were kinetically analyzed for a more detailed understanding of the permeation process. Here, we envisioned the permeation as queues of ion and water molecules and sequential transitions between different patterns of arrays. Under physiological conditions, we predicted that the knock-on mechanism may not be predominant.

  4. Photochemical determination of different DNA structures.

    PubMed

    Xu, Yan; Tashiro, Ryu; Sugiyama, Hiroshi

    2007-01-01

    The various conformations of DNA are thought to have important biological roles. Investigation of the local DNA conformational changes associated with biological events is therefore essential to an understanding of the functions of DNA. We have reported the photoreactivities of 5-halouracil in the five characteristic local DNA structures: the A, B and Z forms, protein-induced DNA kinks and the G-quadruplex form. These studies demonstrate the detailed relationships between the local DNA structures and the photochemical products of photoinduced hydrogen abstraction by the resulting uracil-5-yl radicals, and show that this photochemical method can be used to detect DNA structures. Here, we describe in detail procedures that have been developed in our laboratory for probing DNA conformations by product analysis of photoirradiated 5-halouracil-containing DNA. The protocol includes the preparation of 5-halouracil-containing DNA and the characterization of the photoproducts, and it can be completed in 2 weeks.

  5. Determination of cross sections by overtone mobility spectrometry: evidence for loss of unstable structures at higher overtones.

    PubMed

    Lee, Sunyoung; Ewing, Michael A; Nachtigall, Fabiane M; Kurulugama, Ruwan T; Valentine, Stephen J; Clemmer, David E

    2010-09-30

    Overtone mobility spectrometry (OMS) is examined as a means of determining the collision cross sections for multiply charged ubiquitin and substance P ions, as well as for singly charged rafinose and melezitose ions. Overall, values of collision cross section measured by OMS for stable ion conformations are found to be in agreement with values determined by conventional ion mobility spectrometry (IMS) measurements to within ∼1% relative uncertainty. The OMS spectra for ubiquitin ions appear to favor different conformations at higher overtones. We propose that the changes in the distributions as a function of the overtone region in which they are measured arise from the elimination of ions that undergo structural transitions in the drift regions. Kinetics simulations suggest that structural transitions occurring on the order of a few ms and resulting in an ∼4% change in ion collision cross sections are detected by OMS measurements. The unique method of distinguishing ion mobilities with OMS reveals these structural transitions which are not readily apparent from traditional IMS measurements.

  6. Determination of hair structure and shape.

    PubMed

    Schlake, Thomas

    2007-04-01

    The hair follicle attracted significant attention as a model for the investigation of diverse biological problems. Whereas its morphology and the structure of the hair shaft are known in detail, the molecular biology of this miniorgan is significantly less characterised. Many efforts focussed on the development of the hair follicle and its stem cell reservoir; by contrast, the follicular product, the hair, which is interesting not only in terms of cosmetics was neglected. This review highlights our current knowledge of the control of hair structure and shape with emphasis on mouse hair follicle biology and discusses continuing problems.

  7. Determination of Ion Content and Ion Fluxes in the Halotolerant Alga Dunaliella salina

    PubMed Central

    Pick, Uri; Karni, Leah; Avron, Mordhay

    1986-01-01

    A method to determine intracellular cation contents in Dunaliella by separation on cation-exchange minicolumns is described. The separation efficiency of cells from extracellular cations is over 99.9%; the procedure causes no apparent perturbation to the cells and can be applied to measure both fluxes and internal content of any desired cation. Using this technique it is demonstrated that the intracellular averaged Na+, K+, and Ca2+ concentrations in Dunaliella salina cultured at 1 to 4 molar NaCl, 5 millimolar K+, and 0.3 millimolar Ca2+ are 20 to 100 millimolar, 150 to 250 millimolar, and 1 to 3 millimolar, respectively. The intracellular K+ concentration is maintained constant over a wide range of media K+ concentrations (0.5-10 millimolar), leading to a ratio of K+ in the cells to K+ in the medium of 10 to 1,000. Severe limitation of external K+, induces loss of K+ and increase in Na+ inside the cells. The results suggest that Dunaliella cells possess efficient mechanisms to eliminate Na+ and accumulate K+ and that intracellular Na+ and K+ concentrations are carefully regulated. The contribution of the intracellular Na+ and K+ salts to the total osmotic pressure of cells grown at 1 to 4 molar NaCl, is 5 to 20%. PMID:16664814

  8. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  9. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  10. Determination of plasma-ion velocity distribution via charge-exchange recombination spectroscopy

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Darrow, D. S.; Jaehnig, K. P.

    1984-06-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral-beam atoms is rapidly becoming recognized as a powerful diagnostic for magnetically confined tokamak plasmas. Ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha-particle distributions can all be measured with this technique. In particular, it offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion-temperature measurements have been calculated for the principal Δn=1 transitions of He+, C5+, and O7+ with neutral-beam energies of 5-100 keV/amu. Line intensities and profiles can be affected by atomic fine structure, l-mixing collisions, motional Stark effects, and product ions created in the neutral-beam region which drift into the viewing sightline. General estimates of the importance of these effects for the transitions of interest are provided, along with specific examples calculated for the PDX (Poloidal Divertor Experiment) and TFTR (Tokamak Fusion Test Reactor) tokamaks. A fiber optically coupled spectrometer system has been used on PDX to measure visible He+ radiation excited by charge exchange to illustrate some of these points. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5×107 cm/s were observed.

  11. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion.

    ERIC Educational Resources Information Center

    Marin, Dolores; Mendicuti, Francisco

    1988-01-01

    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)

  12. Ion-association method for the colorimetric determination of neomycin sulphate in pure and dosage forms

    NASA Astrophysics Data System (ADS)

    Amin, A. S.; Issa, Y. M.

    2003-03-01

    A simple, fairly rapid, sensitive and accurate method is described for the colorimetric determination of neomycin sulphate (NMS), based on the measurement of the absorbance of the extracted organic soluble ion-association complex formed between neomycin dictation and a bulky counter anion. Different chromotropic acid azo dyes were examined as counter ions. The effect of pH, the counter ion concentration, sequence of addition and solvents for extraction were also illustrated. The most suitable system is based on reagent VIII (pH 7.5) with chloroform as the extraction solvent. The use of other counter ions, in conjunction with their respective solvents, was found to be less sensitive. The neomycin-reagent VIII system exhibits negligible or no interference when used for the determination of up to 58 μg ml -1 of NMS in the presence of several drug excipiences. The method has been used for the determination of up to 58 μg ml -1 with a good recovery (99.8±1.5%), and the precision is supported by the low relative standard deviation ⩽1.35%. The sensitivity is discussed and the results are compared with the official method. The proposed method was applied successfully to the determination of NMS in pure and dosage forms, with a good precision and accuracy compared to the official one.

  13. Analytical Determination of Fluoride Ion Using Gran's Semi-Antilog Plot.

    ERIC Educational Resources Information Center

    Barnhard, Ralph J.

    1983-01-01

    A quantitative determination for fluoride ion using a commercially available fluoride electrode is described. The procedure referred to as known-addition is employed with the data processed on Gran's Plot Paper. Background information, experimental procedures, and advantages/disadvantages of the method are discussed. (JN)

  14. Electron Diffraction Determination of Nanoscale Structures

    SciTech Connect

    Parks, Joel H

    2013-03-01

    Dominant research results on adsorption on gold clusters are reviewed, including adsorption of H{sub 2}O and O{sub 2} on gold cluster cations and anions, kinetics of CO adsorption to middle sized gold cluster cations, adsorption of CO on Au{sub n}{sup +} with induced changes in structure, and H{sub 2}O enhancement of CO adsorption.

  15. Contemporary Methodology for Protein Structure Determination.

    ERIC Educational Resources Information Center

    Hunkapiller, Michael W.; And Others

    1984-01-01

    Describes the nature and capabilities of methods used to characterize protein and peptide structure, indicating that they have undergone changes which have improved the speed, reliability, and applicability of the process. Also indicates that high-performance liquid chromatography and gel electrophoresis have made purifying proteins and peptides a…

  16. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    NASA Technical Reports Server (NTRS)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  17. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  18. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  19. Structure and mechanism of formation of an important ion in doping control

    NASA Astrophysics Data System (ADS)

    Borges, Chad R.; Taccogno, James; Crouch, Dennis J.; Le, Ly; Truong, Thanh N.

    2005-12-01

    An ion with m/z 143 serves as a biomarker that is often continuously monitored in urine samples undergoing screening by electron ionization gas chromatography/mass spectrometry (EI GC/MS) for banned anabolic agents. The ion is known to arise from trimethylsilyl (TMS)-derivatized synthetic 17-hydroxy, 17-methyl steroids. The purpose of this work was to characterize, in detail, the origin(s), structure(s), and mechanism(s) of formation of such ions with m/z 143. High resolution mass spectrometry (HRMS) data revealed the elemental composition of the D-ring derived m/z 143 ion to be C7H15OSi. Analysis of dihydrotestosterone (DHT) and its 2-methyl substituted analog dromostanolone by HRMS revealed that an elementally equivalent ion of m/z 143 could be derived from the A-ring of TMS-derivatized 3-keto-enol steroids demonstrating that an abnormally intense peak in the m/z 143 extracted ion chromatogram of urine samples undergoing screening for banned anabolic agents does not necessarily indicate the presence of a 17-hydroxy, 17-methyl steroid. To gain information on ion structure, breakdown curves for the most abundant product ions of the m/z 143 ion were generated using both native and perdeutero-TMS derivatives, providing structures for second, third, and fourth generation product ions. An EI-mass spectrum of [16,16,17-2H3]-DHT (DHT-d3) demonstrated that one of the C-16 hydrogen atoms is removed prior to the formation of an ion that is highly analogous to the ion with m/z 143 strongly suggesting, in accord with all other evidence, one particular fragmentation pathway and resulting product: a resonance stabilized 3-(O-trimethylsilyl)but-1-ene ion.

  20. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements

    PubMed Central

    Meisburger, Steve P.; Pabit, Suzette A.; Pollack, Lois

    2015-01-01

    Nucleic acids carry a negative charge, attracting salt ions and water. Interactions with these components of the solvent drive DNA to condense, RNA to fold, and proteins to bind. To understand these biological processes, knowledge of solvent structure around the nucleic acids is critical. Yet, because they are often disordered, ions and water evade detection by x-ray crystallography and other high-resolution methods. Small-angle x-ray scattering (SAXS) is uniquely sensitive to the spatial correlations between solutes and the surrounding solvent. Thus, SAXS provides an experimental constraint to guide or test emerging solvation theories. However, the interpretation of SAXS profiles is nontrivial because of the difficulty in separating the scattering signals of each component: the macromolecule, ions, and hydration water. Here, we demonstrate methods for robustly deconvoluting these signals, facilitating a more straightforward comparison with theory. Using SAXS data collected on an absolute intensity scale for short DNA duplexes in solution with Na+, K+, Rb+, or Cs+ counterions, we mathematically decompose the scattering profiles into components (DNA, water, and ions) and validate the decomposition using anomalous scattering measurements. In addition, we generate a library of physically motivated ion atmosphere models and rank them by agreement with the scattering data. The best-fit models have relatively compact ion atmospheres when compared to predictions from the mean-field Poisson-Boltzmann theory of electrostatics. Thus, the x-ray scattering methods presented here provide a valuable measurement of the global structure of the ion atmosphere that can be used to test electrostatics theories that go beyond the mean-field approximation. PMID:26083928

  1. Determining the isomeric heterogeneity of neutral oligosaccharide-alditols of bovine submaxillary mucin using negative ion traveling wave ion mobility mass spectrometry.

    PubMed

    Li, Hongli; Bendiak, Brad; Siems, William F; Gang, David R; Hill, Herbert H

    2015-02-17

    Negative ions produced by electrospray ionization were used to evaluate the isomeric heterogeneity of neutral oligosaccharide-alditols isolated from bovine submaxillary mucin (BSM). The oligosaccharide-alditol mixture was preseparated on an off-line high-performance liquid chromatography (HPLC) column, and the structural homogeneity of individual LC fractions was investigated using a Synapt G2 traveling wave ion mobility spectrometer coupled between quadupole and time-of-flight mass spectrometers. Mixtures of isomers separated by both chromatography and ion mobility spectrometry were studied. Tandem mass spectrometry (MS/MS) of multiple mobility peaks having the same mass-to-charge ratio (m/z) demonstrated the presence of different structural isomers and not differences in ion conformations due to charge site location. Although the oligosaccharide-alditol mixture was originally separated by HPLC, multiple ion mobility peaks due to structural isomers were observed for a number of oligosaccharide-alditols from single LC fractions. The collision-induced dissociation cells located in front of and after the ion mobility separation device enabled oligosaccharide precursor or product ions to be separated by ion mobility and independent fragmentation spectra to be acquired for isomeric carbohydrate precursor or product ions. MS/MS spectra so obtained for independent mobility peaks at a single m/z demonstrated the presence of structural variants or stereochemical isomers having the same molecular formula. This was observed both for oligosaccharide precursor and product ions. In addition, mobilities of both [M - H](-) and [M + Cl](-) ions, formed by adding NH4OH or NH4Cl to the electrospray solvent, were examined and compared for selected oligosaccharide-alditols. Better separation among structural isomers appeared to be achieved for some [M + Cl](-) anions.

  2. Vascular structure determines pulmonary blood flow distribution.

    PubMed

    Hlastala, M P; Glenny, R W

    1999-10-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  3. Determining Factor Structure in a Multidimensional Inventory.

    ERIC Educational Resources Information Center

    Deeter, Thomas E.; Gill, Diane L.

    A two-step procedure is described and used to revise a multidimensional inventory in its developmental stages. First, the latent factors influencing the observed variables on the inventory are determined and justified using the following five methods: Kaiser's criterion, root staring, examination of difference values, examination of root mean…

  4. Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Srnanek, R.; Kinder, R.; Sciana, B.; Radziewicz, D.; McPhail, D. S.; Littlewood, S. D.; Novotny, I.

    2001-06-01

    A method for determination of doping concentration profiles of GaAs multilayer structures on a bevelled surface by Raman spectroscopy is presented. By scanning the laser beam along the bevel we obtained micro-Raman spectra in different depth positions in the structure. Calculated ITO/ ILO intensities determine the doping concentration in these points for values above 3×10 16 cm -3. The results are compared with electrochemical capacitance-voltage technique and secondary ion mass spectrometry. Some specific problems are discussed.

  5. Popular C82 fullerene cage encapsulating a divalent metal ion Sm(2+): structure and electrochemistry.

    PubMed

    Hu, Ziqi; Hao, Yajuan; Slanina, Zdeněk; Gu, Zhenggen; Shi, Zujin; Uhlík, Filip; Zhao, Yunfeng; Feng, Lai

    2015-03-01

    Two Sm@C82 isomers have been well characterized for the first time by means of (13)C NMR spectroscopy, and their structures were unambiguously determined as Sm@C2v(9)-C82 and Sm@C3v(7)-C82, respectively. A combined study of single crystal X-ray diffraction and theoretical calculations suggest that in Sm@C2v(9)-C82 the preferred Sm(2+) ion position shall be located in a region slightly off the C2 axis of C2v(9)-C82. Moreover, the electrochemical surveys on these Sm@C82 isomers reveal that their redox activities are mainly determined by the properties of their carbon cages.

  6. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  7. Isothermal titration calorimetric procedure to determine protein-metal ion binding parameters in the presence of excess metal ion or chelator.

    PubMed

    Nielsen, Anders D; Fuglsang, Claus C; Westh, Peter

    2003-03-15

    Determination of binding parameters for metal ion binding to proteins usually requires preceding steps to remove protein-bound metal ions. Removal of bound metal ions from protein is often associated with decreased stability and inactivation. We present two simple isothermal titration calorimetric procedures that eliminate separate metal ion removal steps and directly monitor the exchange of metal ions between buffer, protein, and chelator. The concept is to add either excess chelator or metal ion to the protein under investigation and subsequently titrate with metal ion or chelator, respectively. It is thereby possible in the same experimental trial to obtain both chelator-metal ion and protein-metal ion binding parameters due to the different thermodynamic "fingerprints" of chelator and protein. The binding models and regression routines necessary to analyze the corresponding binding isotherms have been constructed. Verifications of the models have been done by titrations of mixtures of calcium chelators (BAPTA, HEDTA, and EGTA) and calcium ions and they were both able to account satisfactorily for the observed binding isotherms. Therefore, it was possible to determine stoichiometric and thermodynamic binding parameters. In addition, the concept has been tested on a recombinant alpha-amylase from Bacillus halmapalus where it proved to be a consistent procedure to obtain calcium binding parameters.

  8. Determination of trace uranyl ion by thermoresponsive porphyrin-terminated polymeric sensor.

    PubMed

    Shu, Xiaowen; Wang, Yingjie; Zhang, Shuang; Huang, Li; Wang, Shuao; Hua, Daoben

    2015-01-01

    Uranyl ion exists at trace levels in the environment and can cause severe adverse effects to human health. Therefore, it is desirable to develop analytical methods that can determine the trace uranyl ion in aqueous medium. We report here a new method using a thermo-responsive polymeric fluorescent sensor. Specifically, 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin terminated poly(N-isopropylacrylamide) (TCPP-PNIPAM) was synthesized by controlled free radical polymerization for the detection of uranyl ion. The maximum fluorescence intensity at ~ 658 nm of TCPP-PNIPAM increases with molecular weights and is also closely related to the temperature. The polymeric sensor is sensitive to pH (1.0 ~ 5.0) with a fast responsive time (~ 3 min). Under optimized experimental conditions, the sensor exhibits a stable response for uranyl ion with high selectivity over a concentration range from 1.0 × 10(-3) to 1.0 × 10(-7)mol/L. For the trace uranyl ion (such as 1.0 × 10(-8) or 10(-9)mol/L), the determination could be successfully achieved after concentrating 100 times by centrifugation above 32°C. The properties enable the polymeric sensor to have great potential for environmental application. PMID:25281093

  9. Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cathell, Matthew David

    Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified

  10. Some structural determinants of melody recall.

    PubMed

    Boltz, M

    1991-05-01

    Sophisticated musicians were asked to recall, using musical notation, a set of unfamiliar folk tunes that varied in rhythmic structure and referents of tonality. The results showed that memory was facilitated by tonic triad members marking phrase endings, but only when their presence was highlighted by a corresponding pattern of temporal accents. Conversely, recall significantly declined when tonal information was either absent or obscured by rhythmic structure. Error analyses further revealed that the retention of overall pitch contour and information at phrase ending points varied as a function of these manipulations. The results are discussed in terms of a framework that links the acts of perceiving and remembering to a common attentional scheme. PMID:1861610

  11. Structural features determining thermal adaptation of esterases.

    PubMed

    Kovacic, Filip; Mandrysch, Agathe; Poojari, Chetan; Strodel, Birgit; Jaeger, Karl-Erich

    2016-02-01

    The adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are still poorly understood at the molecular level. Our analysis of four homologous esterases isolated from bacteria living at temperatures ranging from 10°C to 70°C suggested an adaptation route for the modulation of protein thermal properties through the optimization of local flexibility at the protein surface. While the biochemical properties of the recombinant esterases are conserved, their thermal properties have evolved to resemble those of the respective bacterial habitats. Molecular dynamics simulations at temperatures around the optimal temperatures for enzyme catalysis revealed temperature-dependent flexibility of four surface-exposed loops. While the flexibility of some loops increased with raising the temperature and decreased with lowering the temperature, as expected for those loops contributing to the protein stability, other loops showed an increment of flexibility upon lowering and raising the temperature. Preserved flexibility in these regions seems to be important for proper enzyme function. The structural differences of these four loops, distant from the active site, are substantially larger than for the overall protein structure, indicating that amino acid exchanges within these loops occurred more frequently thereby allowing the bacteria to tune atomic interactions for different temperature requirements without interfering with the overall enzyme function.

  12. The Effect of Thermal Annealing on Structural-phase Changes in the Ni-Ti Alloy Implanted with Krypton Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V. P.; Kislitsin, S. B.; Ghyngazov, S. A.

    2016-06-01

    The influence of thermal annealing within the temperature range 100-300°C on the structural-phase state of a Ni-Ti alloy with shape memory effect (SME) implanted with 84Kr ions at the energies E = 280 keV and 1.75 MeV/nucl and the fluences within 5·1012-1·1020 ion/m2 is investigated. For the samples modified by 84Kr ions at E = 1.75 MeV/nucl up to the fluences 1·1020 and 5·1012 ion/m2, the formation of a martensitic NiTi phase with the B19 ' structure, responsible for the SME, is revealed at the annealing temperatures 100 and 300°C, respectively, in the near-surface region corresponding to the outrange area. This is accompanied by the formation of nanosized NiTi particles in the R-phase. As the implantation fluence increases, the probability of their formation decreases. It is shown that annealing of the implanted structures can increase the strength of the Ni-Ti alloy. The degree of hardening is determined by the value of annealing temperature, and an increase in strength is primarily due to ordering of the radiation-induced defect structures (phases). A correlation between the onset temperature of a forward martensitic transition and the structural-phase state of the thermally annealed Ni-Ti alloy is established.

  13. Structure and properties of solid polymer electrolyte based on chitosan and ZrO2 nanoparticle for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Sudaryanto, Yulianti, Evi; Patimatuzzohrah

    2016-02-01

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO2) nanoparticle and LiClO4 as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO2 and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO2 and LiClO4 disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10-4 S cm-1) was obtained when 4 wt% of ZrO2 nanoparticle and 40 wt% of LiClO4 salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.

  14. Structural Modification of Nanocrystalline Ceria by Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra J.; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-05-25

    Using energetic ions, we have demonstrated effective modification of grain size in nanocrystalline ceria in the critical region for controlling exceptional size-dependent electronicionic conductivity. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale.

  15. Determination of Ammonium Ion Using a Reagentless Amperometric Biosensor Based on Immobilized Alanine Dehydrogenase

    PubMed Central

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH4+) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH4+ ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH4+ was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH4+ ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH4+ ion concentrations between 10–100 mM, with a detection limit of 0.18 mM NH4+ ion. The reproducibility of the amperometrical NH4+ biosensor yielded low relative standard deviations between 1.4–4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH4+ ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH4+ obtained from the biosensor and the Nessler spectrophotometric method. PMID:22163699

  16. Dynamics of High Energy Ions at a Structured Collisionless Shock Front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Dröge, W.; Kartavykh, Y. Y.

    2016-07-01

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  17. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  18. Determining the mobility of ions by transient current measurements at high voltages.

    PubMed

    Kohn, Peter; Schröter, Klaus; Thurn-Albrecht, Thomas

    2007-08-24

    We present polarization and transient current experiments that allow an independent determination of the charge carrier density and the mobility of ions in polymer electrolytes at low charge carrier density. The method relies on a complete depletion of ions in the bulk electrolyte achieved by applying high voltages. Based on a qualitative model for the charge dynamics in this nonlinear regime, the method is exemplarily applied to a system of polymethylmethacrylate doped with small amounts of a lithium salt. The independently obtained values for the ionic mobility, the charge carrier density, and the conductivity are consistent for all salt concentrations studied. Criteria for the applicability of the method are discussed.

  19. [Determination of cations in wines and beverages based on capillary ion chromatography].

    PubMed

    Zhang, Tingting; Ye, Mingli; Hu, Zhongyang; Pan, Guangwen; Liang, Lina; Wu, Shuchao

    2012-04-01

    A new method for the determination of five cations (sodium, ammonium, potassium, magnesium and calcium) in wines and beverages was developed and validated based on capillary ion chromatography. With a capillary ion exchange column (IonPac CS12A, 250 mm x 0.4 mm, 8 microm) and 18 mmol/L methanesulfonic acid (MSA) elution, the five cations can be well separated in 15 min. After suppression with a capillary suppressor (CCES 300), the background was much decreased, and the sensitivities of the cations were greatly improved. For the milky tea, acetonitrile was added into the sample solution to deposit the proteins. With the pretreatment of an OnGuard RP cartridge to remove hydrophobic substances in the sample, the developed method can be applied to the determination of the cations in wines and beverages. The calibration curves of peak area versus concentration gave correlation coefficients more than 0.9997 for these cations. Average recoveries were between 95.2% - 103.3%. The method is suitable for the determination of alkali metals and alkaline-earth metals in wines and beverages. The capillary ion chromatography provides analysis with less solvent consumption and better column efficiency, also possesses the advantages of high sensitivity, good selectivity and environmental friendly.

  20. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents.

  1. Structural transitions in ion coordination driven by changes in competition for ligand binding

    PubMed Central

    Varma, Sameer; Rempe, Susan B.

    2009-01-01

    Transferring Na+ and K+ ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into over-coordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry and temperature, on the stabilities of ion coordination structures are also explored. PMID:18954053

  2. Three Dimensional Structure of the Electron and Ion Scales of Reconnection

    NASA Astrophysics Data System (ADS)

    Ashour-Abdalla, M.; Lapenta, G.; Walker, R. J.; El-Alaoui, M.; Liang, H.; Zhou, M.; Goldstein, M. L.

    2015-12-01

    We have investigated the location and extent of magnetic reconnection in a realistic magnetotail configuration by using a combination of the UCLA global MHD simulation of the solar wind, magnetosphere and ionosphere system and the iPIC3D large scale particle in cell simulation. In this approach we first run a global MHD simulation driven by upstream solar wind observations. Then we use the results from the MHD simulation to set the initial and boundary conditions for the large scale 3D PIC simulation. The evolution of the system is constrained by the initial MHD state but evolves fully kinetically. The electrons and ions are followed in fields determined by using Maxwell's equations. This approach combines both macro-MHD and small-kinetic scales in a single numerical simulation. For many studies the magnetotail can be thought of as invariant in the dawn dusk or Y direction. However, in many other situations the tail is kinked and/or flaps in time and one cannot assume invariance in the Y direction. We report an investigation of a case where the structure of the tail varies significantly in the Y-direction and a PIC simulation in a realistic configuration is necessary. We have found that the reconnection electric field and the ion outflow jet regions expand in Y. But the reconnection region remains localized and is accompanied by a narrow electron jet with a Y-extent comparable to an ion skin depth. This narrow jet does not show any sign of expanding in Y, but remains narrow despite the wider ion scale. Implications for the MMS mission will be discussed.

  3. Magnetic Structure Determinations at NBS/NIST

    PubMed Central

    Lynn, J. W.; Borchers, J. A.; Huang, Q.; Santoro, A.; Erwin, R. W.

    2001-01-01

    Magnetic neutron scattering plays a central role in determining and understanding the microscopic properties of a vast variety of magnetic systems, from the fundamental nature, symmetry, and dynamics of magnetically ordered materials to elucidating the magnetic characteristics essential in technological applications. From the early days of neutron scattering measurements at NBS/NIST, magnetic diffraction studies have been a central theme involving many universities, industrial and government labs from around the United States and worldwide. Such measurements have been used to determine the spatial arrangement and directions of the atomic magnetic moments, the atomic magnetization density of the individual atoms in the material, and the value of the ordered moments as a function of thermodynamic parameters such as temperature, pressure, and applied magnetic field. These types of measurements have been carried out on single crystals, powders, thin films, and artificially grown multilayers, and often the information collected can be obtained by no other experimental technique. This article presents, in an historical perspective, a few examples of work carried out at the NIST Center for Neutron Research (NCNR), and discusses the key role that the Center can expect to play in future magnetism research. PMID:27500056

  4. Determination of relative sensitivity factors during secondary ion sputtering of silicate glasses by Au+, Au2+ and Au3+ ions.

    PubMed

    King, Ashley; Henkel, Torsten; Rost, Detlef; Lyon, Ian C

    2010-01-01

    In recent years, Au-cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au(2)(+) and Au(3)(+), can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au(+), Au(2)(+) and Au(3)(+) primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au(2)(+) and Au(3)(+) ions are enhanced relative to those for Au(+), consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au(2)(+) and Au(3)(+) ions over the use of Au(+) ions. Higher achievable primary ion currents for Au(+) ions than for Au(2)(+) and Au(3)(+) allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au(2)(+) and Au(3)(+) for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity.

  5. Determination of potassium and sodium ions with diaphragm glow discharge plasma in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Yongjun; Sun, Bing; Wang, Lei

    2013-03-01

    In the present work, a new apparatus of diaphragm glow discharge emission spectroscopy was described for the determination of potassium and sodium ions in aqueous solution. The discharge was formed in a pin hole on a dielectric diaphragm interposed between two submerged graphite electrodes. Effects of pH and applied voltage on the determination have been examined. It was found that decreasing the solution pH and increasing the applied voltage were favorable for the determination performance. Limits of detection for Na and K were 0.002 and 0.05 mg L-1 under the optimum conditions, respectively. It demonstrates that the diaphragm glow discharge emission spectroscopy is a promising technique in measurements of metal ions in aqueous solution, because no optical interferences from the electrodes were found.

  6. Determination of ammonium in a buddingtonite sample by ion-chromatography

    USGS Publications Warehouse

    Klock, P.R.; Lamothe, P.J.

    1986-01-01

    An ion-chromatographic method for the direct determination of ammonium, potassium, and sodium in geologic materials is described. Samples are decomposed with a mixture of hydrofluoric and hydrochloric acids in a sealed polycarbonate bottle heated in a microwave oven. The ion-chromatograph separates the cations and determines them by conductivity measurement. The ammonium concentrations thus determined have been verified by use of an ammonia-specific electrode. A total of 32 analyses of ammonium salts by both techniques showed an average error of -4%, with a relative standard deviation (RSD) of 6%. The ammonium concentrations found in a buddingtonite sample had an RSD of 2.2% and their mean agreed with that obtained by the Kjeldahl method. By use of the prescribed dilution of the sample, detection limits of 0.1% can be achieved for all three cations. ?? 1986.

  7. "Trunk-like" heavy ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Wolf, R. A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Niehof, J. T.; MacDonald, E. A.; Friedel, R.; Ferradas, C. P.; Luo, H.

    2015-10-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report "trunk-like" ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6-2.6, magnetic local time (MLT) = 9.1-10.5, and magnetic latitude (MLAT) = -2.4-0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5-0.7 keV, L = 3.6-2.5, MLT = 9.1-10.7, and MLAT = -2.4-0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

  8. Method of determining the x-ray limit of an ion gauge

    DOEpatents

    Edwards, Jr., David; Lanni, Christopher P.

    1981-01-01

    An ion gauge having a reduced "x-ray limit" and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The "x-ray limit" (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: ##EQU1## where: I.sub.x ="x-ray limit", I.sub.l and I.sub.h =the collector current at the lower and higher grid voltage respectively; and, .alpha.=the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  9. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    SciTech Connect

    Colby, Ralph H.; Maranas, Janna K; Mueller, Karl T; Runt, James; Winey, Karen I

    2015-03-05

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li, Na, Cs or polycations that conduct small anions F, OH, Br. We utilize a wide range of complimentary experimental materials charactization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li is -60 C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ~ -75C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  10. Structural modifications in biosynthetic melanins induced by metal ions.

    PubMed

    Palumbo, A; d'Ischia, M; Misuraca, G; Prota, G; Schultz, T M

    1988-02-17

    A number of transition metal ions with a wide distribution in biological systems, e.g., Cu2+, Co2+ and Zn2+, are shown to affect markedly the chemical properties of melanins formed by the tyrosinase-catalysed oxidation of dopa. Acid decarboxylation and permanganate degradation provide evidence that melanins prepared in the presence of metal ions contain a high content of carboxyl groups arising from the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DICA) into the pigment polymer. Naturally occurring melanins from cephalopod ink and B16 mouse melanoma were found to be much more similar to melanins prepared in the presence of metal ions than to standard melanins prepared in the absence of metal ions. These results suggest that the presence of carboxylated indole units in natural melanins is probably due to the intervention in the biochemical pathway of metal ions which, as recently shown, catalyse the formation of DICA versus 5,6-dihydroxyindole in the rearrangement of dopachrome. PMID:3124888

  11. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  12. On the use of pseudocontact shifts in the structure determination of metalloproteins.

    PubMed

    Jensen, Malene Ringkjøbing; Hansen, D Flemming; Ayna, Umit; Dagil, Robert; Hass, Mathias A S; Christensen, Hans E M; Led, Jens J

    2006-03-01

    The utility of pseudocontact shifts in the structure refinement of metalloproteins has been evaluated using a native, paramagnetic Cu(2+) metalloprotein, plastocyanin from Anabaena variabilis (A.v.), as a model protein. First, the possibility of detecting signals of nuclei spatially close to the paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and (1)H-(15)N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus, using both the Cu(+) plastocyanin and Cd(2+)-substituted plastocyanin as the diamagnetic references, it is found that the Cd(2+)-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu(2+) plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the (15)N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained (1)H pseudocontact shifts, as well as the possibility of improving the accuracy of the obtained structure, is demonstrated by incorporating the shifts as restraints in a refinement of the solution structure of A.v. plastocyanin. It is found that incorporation of the pseudocontact shifts enhances the precision of the structure in regions with only few NOE restraints and improves the accuracy of the overall structure.

  13. Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography.

    PubMed

    Han, Chao; Geng, Jinju; Xie, Xianchuan; Wang, Xiaorong; Ren, Hongqiang; Gao, Shixiang

    2012-10-01

    The establishment of a sensitive and specific method for the detection of reduced phosphorus (P) is crucial for understanding P cycle. This paper presents the quantitative evidence of phosphite (P, +3) from the freshwater matrix correspondent to the typically eutrophic Lake Taihu in China. By ion chromatography coupled with gradient elution procedure, efficient separation of micromolar levels of phosphite is possible in the presence of millimolar levels of interfering ions, such as chloride, sulfate, and hydrogen carbonate in freshwater lakes. Optimal suppressed ion chromatography conditions include the use of 500 μL injection volumes and an AS11 HC analytical column heated to 30 °C. The method detection limit of 0.002 μM for phosphite was successfully applied for phosphite determination in natural water samples with recoveries ranging from 90.7 ± 3.2% to 108 ± 1.5%. Phosphite in the freshwater matrix was also verified using a two-dimensional capillary ion chromatography and ion chromatography coupled with mass spectrometry. Results confirmed the presence of phosphite in Lake Taihu ranging from 0.01 ± 0.01 to 0.17 ± 0.01 μM, which correlated to 1-10% of the phosphate. Phosphite is an important component of P and may influence biogeochemical P cycle in lakes.

  14. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  15. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  16. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  17. Determining 3-D motion and structure from image sequences

    NASA Technical Reports Server (NTRS)

    Huang, T. S.

    1982-01-01

    A method of determining three-dimensional motion and structure from two image frames is presented. The method requires eight point correspondences between the two frames, from which motion and structure parameters are determined by solving a set of eight linear equations and a singular value decomposition of a 3x3 matrix. It is shown that the solution thus obtained is unique.

  18. Semi empirical formula for electronic stopping power determination of 24Mg, 27Al and 28Si ions crossing Formvar foil in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Guesmia, A.; Ammi, H.; Mammeri, S.; Dib, A.; Pineda-Vargas, C. A.; Msimanga, M.; Hedibel, M.

    2014-03-01

    We have determined continuous stopping power of heavy ions in thin Formvar foil for 28Si, 27Al and 24Mg ions over an energy range of (0.1-0.5) MeV/nucleon. Heavy Ions Elastic Recoil Detection Analysis (HI-ERDA) technique coupled with time of flight (ToF) spectrometer has been used to measure energy loss of charged particles in this thin absorber. Lindhard, Scharff and Schiott (LSS) theory compared with the corresponding determined stopping values in Formvar, shows significantly large deviations. However, a novel semi empirical expression has been proposed here and tested for better stopping power calculations at low velocity in the ion energy domain of LSS theory for 28Si, 27Al and 24Mg ions crossing thin Formvar foil. The results were compared to the obtained experimental stopping power data, predictions of LSS theory and also to those generated by SRIM-2010 computer code. The obtained results exhibit good agreement with experimental data.

  19. Determining building interior structures using compressive sensing

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  20. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  1. Structural Determinants of Sleeping Beauty Transposase Activity.

    PubMed

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.

  2. Structural Determinants of Sleeping Beauty Transposase Activity.

    PubMed

    Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán

    2016-08-01

    Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold. PMID:27401040

  3. Nanoscale surface structuring during ion bombardment of elemental semiconductors

    NASA Astrophysics Data System (ADS)

    Anzenberg, Eitan

    2013-01-01

    Nano-patterning of surfaces with uniform ion bombardment yields a rich phase-space of topographic patterns. Particle irradiation can cause surface ultra-smoothing or self-organized nanoscale pattern formation in surface topography. Topographic pattern formation has previously been attributed to the effects of the removal of target atoms by sputter erosion. In this thesis, the surface morphology evolution of Si(100) and Ge(100) during low energy ion bombardment of Ar+ and Kr+ ions, respectively, is studied. Our facilities for studies of surface processes at the National Synchrotron Light Source (NSLS) allow in-situ characterization of surface morphology evolution during ion bombardment using grazing incidence small angle x-ray scattering (GISAXS). This technique is used to measure in reciprocal space the kinetics of formation or decay of correlated nanostructures on the surface, effectively measuring the height-height correlations. A linear model is used to characterize the early time kinetic behavior during ion bombardment as a function of ion beam incidence angle. The curvature coefficients predicted by the widely used erosive model of Bradley and Harper are quantitatively negligible and of the wrong sign when compared to the observed effect in both Si and Ge. A mass-redistribution model explains the observed ultra-smoothing at low angles, exhibits an instability at higher angles, and predicts the observed 45° critical angle separating these two regimes in Si. The Ge surface evolution during Kr+ irradiation is qualitatively similar to that observed for Ar+ irradiation of Si at the same ion energy. However, the critical angle for Ge cannot be quantitatively reproduced by the simple mass redistribution model. Crater function theory, as developed by Norris et al., incorporates both mass redistributive and erosive effects, and predicts constraining relationships between curvature coefficients. These constraints are compared to experimental data of both Si and Ge

  4. Large ions: Their vaporization, detection and structural analysis

    SciTech Connect

    Baer, T.; Ng, C.Y.; Powis, I.

    1997-12-31

    This book focuses on some of the fundamental chemistry and physics associated with the behavior of large ions, with the contributors addressing the issues in a quantitative fashion, in order to elucidate clearly some of the key recent advances which have taken place. As such, Large Ions provides an excellent snapshot of current research in this fascinating and important area. The six chapters are written by some of the leading experts in the field, and together they will be of great interest to experts and newcomers, both of whom will benefit from the in-depth discussion of the latest methods and results.

  5. Effects of ion dynamics on kinetic structures of the diffusion region during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Shuster, J. R.; Bessho, N.; Li, G.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Based on results from Particle-in-cell (PIC) simulations, we report how ion dynamics influencethe Hall electric field and electron velocity distributions in the diffusion region of magnetic reconnection.The Hall electric field is due to charge imbalance in the diffusion region. At early times, within a few ion cyclotron oscillations from the peak reconnection,electron orbit dynamics dominate, and the Hall electric field layer assumes the width of the electron current layer.As the pre-existing current sheet ions are accelerated and jetted away, inflowing ions form an ion phase space hole structure.The ion hole structure is self-consistently supported by the Hall electric field. The ion meandering orbit width increasesover the course of about 10 ion cyclotron oscillations from several to approximately 40 electron skin depths (two ion skin depths,where the skin depth is based on the initial current sheet density), and theHall electric field layer widens in the same manner to become much broader than the electron diffusion region.The electron velocity distributions upstream of the electron diffusion region and within the regionof counter streaming ions become fragmented as the ion hole establishes itself.The fragmentation is carried into the electron diffusion region, and through the electron outflow jet, leading to a multitude of arcs in the electron distributions at the end of the jet. The broadening of the Hall electric field layer resolves a longstanding discrepancy concerning whether the narrowest width of the layer is of the electron [Chen et al., 2008] or ion [Mozer et al., 2002] scale. The fragmentation of the electron distributions may be due to an electron-ion instability, and is underinvestigation.

  6. Structure of catalase determined by MicroED

    PubMed Central

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172

  7. Structure of catalase determined by MicroED.

    PubMed

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. PMID:25303172

  8. Language Structure Is Partly Determined by Social Structure

    PubMed Central

    Lupyan, Gary; Dale, Rick

    2010-01-01

    Background Languages differ greatly both in their syntactic and morphological systems and in the social environments in which they exist. We challenge the view that language grammars are unrelated to social environments in which they are learned and used. Methodology/Principal Findings We conducted a statistical analysis of >2,000 languages using a combination of demographic sources and the World Atlas of Language Structures— a database of structural language properties. We found strong relationships between linguistic factors related to morphological complexity, and demographic/socio-historical factors such as the number of language users, geographic spread, and degree of language contact. The analyses suggest that languages spoken by large groups have simpler inflectional morphology than languages spoken by smaller groups as measured on a variety of factors such as case systems and complexity of conjugations. Additionally, languages spoken by large groups are much more likely to use lexical strategies in place of inflectional morphology to encode evidentiality, negation, aspect, and possession. Our findings indicate that just as biological organisms are shaped by ecological niches, language structures appear to adapt to the environment (niche) in which they are being learned and used. As adults learn a language, features that are difficult for them to acquire, are less likely to be passed on to subsequent learners. Languages used for communication in large groups that include adult learners appear to have been subjected to such selection. Conversely, the morphological complexity common to languages used in small groups increases redundancy which may facilitate language learning by infants. Conclusions/Significance We hypothesize that language structures are subjected to different evolutionary pressures in different social environments. Just as biological organisms are shaped by ecological niches, language structures appear to adapt to the environment (niche) in

  9. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    NASA Astrophysics Data System (ADS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.

  10. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  11. Magic angle spinning NMR structure determination of proteins from pseudocontact shifts.

    PubMed

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-06-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure.

  12. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion.

    PubMed

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44×10(-6) to 2.59×10(-5)M with a detection limit of 1.70×10(-7)M at pH11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl(-), Br(-), F(-), I(-), IO3(-), ClO4(-), BrO3(-), CO3(2-), NO2(-), NO3(-), SO4(2-), S2O4(2-), C2O4(2-), SCN(-), N3(-), citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy.

  13. In Situ Perchlorate Determination on Purolite A850 Ion Exchange Resin via Raman Spectroscopy

    SciTech Connect

    Levitskaia, Tatiana G.; Sinkov, Sergei I.; Bryan, Samuel A.

    2007-07-17

    The reported investigation represents a first step toward development of a sensor methodology for in-situ determination of ionic species retained on ion exchange column. Raman spectroscopy was demonstrated as a detection method for determining perchlorate loading on a non-selective ion exchange resin, Purolite A850 acrylic gel. This method has been established using laboratory water (DIW) samples and actual California ground water (CAGW) samples with the complexities of competing ions, dissolved organics, and other potential interfering agents. The detection limit for this method of monitoring perchlorate on resin was measured to be 0.014 meq g-1 for both DIW and CAGW systems. The anion selectivity of the A850 resin was determined via batch contact experiments using CAGW. Linear correlation between resin loading with perchlorate and the intensity of the Raman perchlorate signal was observed and quantitatively described. The obtained relationship was applied for the determination of the perchlorate retained on the A850 resin in the column elution experiments.

  14. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  15. ION-EXCLUSION CHROMATOGRAPHIC DETERMINATION OF CARBOXYLIC ACIDS USED TO SUPPORT THE MICROBIALLY MEDIATED REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...

  16. Structural determinants of Tau aggregation inhibitor potency.

    PubMed

    Schafer, Kelsey N; Cisek, Katryna; Huseby, Carol J; Chang, Edward; Kuret, Jeff

    2013-11-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.

  17. Structural Determinants of Tau Aggregation Inhibitor Potency*

    PubMed Central

    Schafer, Kelsey N.; Cisek, Katryna; Huseby, Carol J.; Chang, Edward; Kuret, Jeff

    2013-01-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers. PMID:24072703

  18. Determining biomolecular structures by time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Rolinski, Olaf J.; Hernandez-Santana, Aaron; Graham, Duncan

    2006-09-01

    We demonstrate a new fluorescence resonance energy transfer (FRET) based approach to determine the donor-acceptor distributions and apply it to two model molecular systems: double stranded DNA labeled with Hoechst 33258 and FAM, and perylene randomly surrounded by cobalt ions in a bulk solution. The approach makes some generic assumptions regarding the FRET kinetics, but no a priori assumptions regarding the distribution function.

  19. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  20. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions

    SciTech Connect

    Khetselius, O. Yu.

    2008-10-22

    The energies and constants of the hyperfine structure, derivatives of the one-electron characteristics on nuclear radius, nuclear electric quadrupole, magnetic dipole moments for some Li-like multicharged ions are calculated.

  1. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  2. 'Trunk-like' ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kistler, L. M.; Spence, H.; Wolf, R.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.; Larsen, B.; Niehof, J. T.; MacDonald, E.; Friedel, R. H.

    2013-12-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. In this study, we report 'trunk-like' ion structures observed in situ by the Van Allen Probes on 2 November 2012. The trunk structures are present in heavy ions but not in H+. For the particular event, ion energies in the He+ trunks, located at L = 3.7-2.6, MLT = 8.8-10.3, and MLAT = -2.0-0.03°, vary monotonically from 3.5 to 0.04 keV. It is suggested that the trunk phenomenon is due to a combination of 1) deeper ion injections from storm activity, 2) the longer charge exchange lifetimes of heavy ions than H+, 3) the separation of a narrow layer of ions around the Alfvén layer from other convecting ions, and 4) the trajectory of the Van Allen Probes (i.e., an orbital effect). Both observation analysis and numerical modeling are utilized in the study.

  3. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  4. Column preconcentration and faas determination of heavy metal ions using Artemisia Siberi as an adsorbent.

    PubMed

    Mousavi, Hassan Zavvar; Derakhshankhah, Jalal

    2014-01-01

    A new column procedure for the determination of trace amounts of cadmium (II), lead (II), nickel (II), zinc (II), and copper (II), which combines flame atomic absorption spectrometry is described. These metals were sorbed on Artemisia siberi herb as an adsorbent at pH 4.0 and eluted with 3 mL of 1.5 M HNO3. The influences of analytical parameters including pH, flow rate, sample volume, type of eluent, and effect of diverse salts and cations on the recoveries of analyte ions were studied. The developed procedure provides preconcentration factors of about 117. LODs were 0.2 (Cd), 0.4 (Cu), 0.2 (Ni), 0.6 (Zn), and 1.4 (Pb) μg/L. The present method was successfully applied to the determination of the above-mentioned ions in water samples from Semnan, Iran. Recoveries greater than 95% and RSDs below 10% were obtained. PMID:25632447

  5. Critical issues in the formation of quantum computer test structures by ion implantation

    SciTech Connect

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  6. Critical issues in the formation of quantum computer test structures by ion implantation

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-08-01

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO 2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb 25+, in SiO 2/Si is also discussed.

  7. Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers

    SciTech Connect

    Steinbach, T.; Schnohr, C. S.; Wesch, W.; Kluth, P.; Giulian, R.; Araujo, L. L.; Sprouster, D. J.; Ridgway, M. C.

    2011-02-01

    Swift heavy-ion (SHI) irradiation of amorphous germanium (a-Ge) layers leads to a strong volume expansion accompanied by a nonsaturating irreversible plastic deformation (ion hammering), which are consequences of the high local electronic energy deposition within the region of the a-Ge layer. We present a detailed study of the influence of SHI irradiation parameters on the effect of plastic deformation and structural modification. Specially prepared a-Ge layers were irradiated using two SHI energies and different angles of incidence, thus resulting in a variation of the electronic energy deposition per depth {epsilon}{sub e} between 14.0 and 38.6 keV nm{sup -1}. For all irradiation parameters used a strong swelling of the irradiated material was observed, which is caused by the formation and growth of randomly distributed voids, leading to a gradual transformation of the amorphous layer into a sponge-like porous structure as established by cross-section scanning electron microscopy investigations. The swelling depends linearly on the ion fluence and on the value of {epsilon}{sub e}, thus clearly demonstrating that the structural changes are determined solely by the electronic energy deposited within the amorphous layer. Plastic deformation shows a superlinear dependence on the ion fluence due to the simultaneous volume expansion. This influence of structural modification on plastic deformation is described by a simple approach, thus allowing estimation of the deformation yield. With these results the threshold values of the electronic energy deposition for the onset of both structural modification and plastic deformation due to SHI irradiation are determined. Furthermore, based on these results, the longstanding question concerning the reason for the structural modification observed in SHI-irradiated crystalline Ge is answered.

  8. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  9. Structural and electronic transitions in G e2S b2T e5 induced by ion irradiation damage

    NASA Astrophysics Data System (ADS)

    Privitera, S. M. S.; Mio, A. M.; Smecca, E.; Alberti, A.; Zhang, W.; Mazzarello, R.; Benke, J.; Persch, C.; La Via, F.; Rimini, E.

    2016-09-01

    G e2S b2T e5 polycrystalline films either in the trigonal stable phase or in the metastable rock-salt structure have been irradiated with 150 keV Ar+ ions. The effects of disorder are studied by electrical, optical, and structural measurements and density functional theory (DFT) simulations. In the metastable structure, the main effect of ion irradiation is a progressive amorphization, with an optical threshold at a fluence of 3 ×1013c m-2 . For the trigonal structure, a metal-insulator transition and a crystalline transition to rock-salt structure occur prior to amorphization, which requires a fluence of 8 ×1013c m-2 . The bonds of Te atoms close to the van der Waals gaps, present in the trigonal phase and identified by Raman spectroscopy, change as a function of the disorder induced by the irradiation. Comparison with DFT simulations shows that ion irradiation leads to the gradual filling of the van der Waals gaps with displaced Ge and Sb lattice atoms, giving rise first to a metal-insulator transition (9 % of displaced atoms) correlated to the modification of the Te bonds and then induces a structural transition to the metastable rock-salt phase (15 % of displaced atoms). The data presented here not only show the possibility to tune the degree of order, and therefore the electrical properties and the structure of phase change materials by ion irradiation, but also underline the importance of the van der Waals gaps in determining the transport mechanisms and the stability of the crystalline structure.

  10. An ion-selective electrode method for determination of chlorine in geological materials

    USGS Publications Warehouse

    Aruscavage, P. J.; Campbell, E.Y.

    1983-01-01

    A method is presented for the determination of chlorine in geological materials, in which a chloride-selective ion electrode is used after decomposition of the sample with hydrofluoric acid and separation of chlorine in a gas-diffusion cell. Data are presented for 30 geological standard materials. The relative standard deviation of the method is estimated to be better than 8% for amounts of chloride of 10 ??g and greater. ?? 1983.

  11. Indirect determination of cations by ion chromatography and anions by atomic emission spectroscopy

    SciTech Connect

    Ervin, A.M.; Panayappan, R.; Cooper, J.C.

    1988-11-01

    A method for the indirect determination of cations by Ion Chromatography (IC) and anions by Atomic Emission Spectroscopy (DCP) is described. The method allows for quantification of suspected impurities in aqueous systems where multiple analyses are desired. The described method is based on the selection of a precipitating agent for the desired analyte. In this study, silver(I) and barium(II) were analyzed indirectly by IC, and chloride and sulfate, by DCP.

  12. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    SciTech Connect

    Verdon, Gregory; Oh, SeCheol; Serio, Ryan N.; Boudker, Olga

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  13. Advances in ion trap mass spectrometry: Photodissociation as a tool for structural elucidation

    SciTech Connect

    Stephenson, J.L. Jr.; Booth, M.M.; Eyler, J.R.; Yost, R.A.

    1995-12-01

    Photo-induced dissociation (PID) is the next most frequently used method (after collisional activation) for activation of Polyatomic ions in tandem mass spectrometry. The range of internal energies present after the photon absorption process are much narrower than those obtained with collisional energy transfer. Therefore, the usefulness of PID for the study of ion structures is greatly enhanced. The long storage times and instrumental configuration of the ion trap mass spectrometer are ideally suited for photodissociation experiments. This presentation will focus on both the fundamental and analytical applications of CO{sub 2} lasers in conjunction with ion trap mass spectrometry. The first portion of this talk will examine the fundamental issues of wavelength dependence, chemical kinetics, photoabsorption cross section, and collisional effects on photodissociation efficiency. The second half of this presentation will look at novel instrumentation for electrospray/ion trap mass spectrometry, with the concurrent development of photodissociation as a tool for structural elucidation of organic compounds and antibiotics.

  14. Cooperation of Hydrophobic Gating, Knock-on Effect, and Ion Binding Determines Ion Selectivity in the p7 Channel.

    PubMed

    Padhi, Siladitya; Priyakumar, U Deva

    2016-05-19

    Ion channels selectively allow certain ions to pass through at much higher rates than others, and thereby modulate ionic concentrations across cell membranes. The current molecular dynamics study elucidates the intricate mechanisms that render ion selectivity to the viral channel p7 by employing free energy calculations. Free energy barriers of 5.4 and 19.4 kcal mol(-1) for K(+) and Ca(2+), respectively, explain the selectivity of the channel reported in experiments. Initially, the permeating ions encounter a hydrophobic barrier followed by stabilization in an ion-binding site. Electrostatic repulsion between the permeating ions propels one of the ions out of the binding site to complete the process of permeation. K(+) and Ca(2+) are seen to exhibit different modes of binding toward a ring of asparagine residues, which serves as the binding site. The findings illustrate how the overall selectivity of a channel can be achieved by a combination of subtle differences. PMID:27111292

  15. [Determination of residual aluminium Ion in Huoxiang Zhengqi pellets by GFAAS with EDTA complexation extraction].

    PubMed

    Wang, Xue-Na; Ran, Cong-Cong; Li, Qing-Lian; Du, Chao-Hui; Jiang, Ye

    2015-06-01

    To establish an EDTA complexation extraction pretreatment combining with GFAAS method for the determination of residual aluminium ion in Huoxiang zhengqi pellets without digestive treatment, systematical investigation was made on sample preparation, and EDTA was used for the complexation extraction of residual aluminium ion in samples. The pH, concentration and volume of extraction solution, the temperature and time of microwave extraction, and graphite furnace temperature program were investigated. The results were compared with the microwave digestion. It was showed that, 0.1 g of sample weight was added in 20 mL 0.05 mol x L(-1) EDTA solution (pH 3.5), followed by heating at 150 degrees C for 10 min in the microwave extraction device. The determination of GFAAS was performed at optimized detection wavelength (257.4 nm) as well as graphite furnace temperature program, the detection limits and quantification limits were 2.37 μg x L(-1) and 7.89 μg x L(-1), respectively. The precision (RSD) was less than 2.3%. The average recovery was 96.9% -101%. The present method is easy, rapid and accurate for the determination of residual aluminium ion in Huoxiang zhengqi pellets.

  16. A molecular-gap device for specific determination of mercury ions

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-11-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

  17. A molecular-gap device for specific determination of mercury ions

    PubMed Central

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-01-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy. PMID:24178058

  18. Automating the determination of 3D protein structure

    SciTech Connect

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  19. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    NASA Astrophysics Data System (ADS)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  20. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  1. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    NASA Astrophysics Data System (ADS)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  2. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    PubMed

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. PMID:25980895

  3. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    PubMed

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11.

  4. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-04-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  5. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  6. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  7. Algorithms for Determining Physical Responses of Structures Under Load

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Ko, William L.

    2012-01-01

    Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.

  8. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.

    PubMed

    O'Hair, Richard A J; Rijs, Nicole J

    2015-02-17

    promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These "unmasked" organometallic ions, [RM(L)n](x), can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acid-base and hydrolysis reactions, along with reactions resulting in C-C bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions.

  9. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.

    PubMed

    O'Hair, Richard A J; Rijs, Nicole J

    2015-02-17

    promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These "unmasked" organometallic ions, [RM(L)n](x), can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acid-base and hydrolysis reactions, along with reactions resulting in C-C bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions. PMID:25594228

  10. Stability of a cometary ionosphere/ionopause determined by ion-neutral friction

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.; McKenzie, J. F.; Axford, W. I.

    1989-09-01

    The linear MHD stability of the magnetic field structure discovered in the ionosphere of Comet Halley during the Giotto mission encounter is analyzed in terms of the hydromagnetic counterpart of the bounce frequency for a stratified atmosphere. The structure resulting from the balance between the Lorentz body force and the ion-neutral friction, as suggested by Cravens (1986) and by Ip and Axford (1982) turns out to be unstable. If, however, effects of the mass-loading (due to photoionization) and dissociative recombination are taken into account, the ionosphere becomes stabilized except for the Halley ionopause and adjacent ionosphere layer (of thickness 100 km) which remain unstable.

  11. Selective pretreatment and determination of phenazopyridine using an imprinted polymer-electrospray ionization ion mobility spectrometry system.

    PubMed

    Rezaei, B; Jafari, M T; Rahmanian, O

    2011-01-15

    In this research, selective separation and determination of phenazopyridine (PAP) is demonstrated using molecular imprinted polymer (MIP) coupled with electrospray ionization ion mobility spectrometry (ESI-IMS). In the non-covalent approach, selective MIP produced using PAP and methacrylic acid (MAA) as a template molecule and monomer, respectively. The created polymer is utilized as a media for solid-phase extraction (SPE), revealing selective binding properties for the analyte from pharmaceutical and serum samples. A coupled MIP-IMS makes it possible to quantitize PAP in the range of 1-100 ng mL(-1) and with a 0.2 ng mL(-1) detection limit. Furthermore, the MIP selectivity is evaluated by application of some substances with analogous and different molecular structures to that of PAP. This method is successfully applied for the determination of PAP in pharmaceutical and serum samples.

  12. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr(2+) Ions.

    PubMed

    Fyfe, Alastair C; Dunten, Pete W; Martick, Monika M; Scott, William G

    2015-06-19

    Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr(2+) ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3' U tetrad, including one that leads to the formation of a hydrated internal cavity.

  13. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr2+ Ions

    PubMed Central

    Fyfe, Alastair C.; Dunten, Pete W.; Martick, Monika M.; Scott, William G.

    2015-01-01

    Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr2+ ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88 Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3′ U tetrad, including one that leads to the formation of a hydrated internal cavity. PMID:25861762

  14. Structure and characteristics of ions in hot plasma

    NASA Astrophysics Data System (ADS)

    Vainshtein, Leonid Abramovich; Shevel'Ko, Viacheslav Petrovich

    Methods for calculating the radiation and collision characteristics of atoms and ions, such as oscillator forces, transition probabilities, and interaction cross sections and velocities, are presented in a systematic manner. The book contains a large amount of reference data that are essential in nuclear physics, laser spectroscopy, astrophysics, and theory of atomic spectra and collisions. A computer program written in FORTRAN for calculating the characteristics of atoms is included.

  15. Comparison of several methods for determining the internal resistance of lithium ion cells.

    PubMed

    Schweiger, Hans-Georg; Obeidi, Ossama; Komesker, Oliver; Raschke, André; Schiemann, Michael; Zehner, Christian; Gehnen, Markus; Keller, Michael; Birke, Peter

    2010-01-01

    The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods. PMID:22219678

  16. Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase

    SciTech Connect

    Hall, R.S.; Swaminathan, S.; Agarwal, R.; Hitchcock, D.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a (gi|44585104) and NYSGXRC-9236b (gi|44611670), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 {angstrom} resolution (Protein Data Bank entry 2PAJ). This protein folds as a distorted ({beta}/{alpha}){sub 8} barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s{sup -1}, 8.0 {micro}M, and 1.3 x 10{sup 5} M{sup -1} s{sup -1} (k{sub cat}, K{sub m}, and k{sub cat}/K{sub m}, respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site

  17. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase .

    PubMed

    Hall, Richard S; Agarwal, Rakhi; Hitchcock, Daniel; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Raushel, Frank M

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes

  18. Fixed-site ion exchanger for liquid chromatographic determination of multifunctional carboxylic acids

    SciTech Connect

    Cassidy, R.M.; Elchuk, S.

    1985-03-01

    Reversed phases coated with a permanently sorbed ion exchanger and indirect UV detection have been investigated for the determination of simple and multifunctional carboxylic acids in chemical cleaning solutions. The advantages of being able to vary both the ion-exchange capacity and the hydrophobic interactions on these types of ion exchangers for the optimization of resolution and detection are illustrated, and the selection of optimum separation conditions is discussed. Dissolved iron interferes with the analysis due to photochemical, redox, and kinetic effects but good recoveries can be obtained after reduction of the iron with hydroxylamine and complexation with 1,2-diaminocyclohexanetetraacetic acid. Detection limits (3 x base line noise) for oxalate, citrate, ethylenediaminetetraacetate, and hydroxyethylenediaminetriacetate are 0.6-20 ..mu..g x mL/sup -1/ for a 20-..mu..L sample, and relative standard deviations are 3 to % in the 75-350 ..mu..g x mL/sup -1/ range. Analysis results for reactor decontamination solutions containing up to 250 ..mu..g x mL/sup -1/ of iron agree with results obtained by other techniques, and it is shown that this technique should also be useful for determination of metal ions in the samples. A determination of the above reagents in the presence of Fe(II) and Ni(II) takes 7 to 12 min after a 5 to 10 min reduction step. Cr(III) forms nonlabile complexes with ethylenediaminetetraacetic acid, and its presence will cause low results for this acid. 17 references, 4 figures, 6 tables.

  19. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study

    PubMed Central

    Hague, Theresa; Petroczi, Andrea; Andrews, Paul LR; Barker, James; Naughton, Declan P

    2008-01-01

    Background Considerable research has been directed towards the roles of metal ions in nutrition with metal ion toxicity attracting particular attention. The aim of this study is to measure the levels of metal ions found in selected beverages (red wine, stout and apple juice) and to determine their potential detrimental effects via calculation of the Target Hazard Quotients (THQ) for 250 mL daily consumption. Results The levels (mean ± SEM) and diversity of metals determined by ICP-MS were highest for red wine samples (30 metals totalling 5620.54 ± 123.86 ppb) followed by apple juice (15 metals totalling 1339.87 ± 10.84 ppb) and stout (14 metals totalling 464.85 ± 46.74 ppb). The combined THQ values were determined based upon levels of V, Cr, Mn, Ni, Cu, Zn and Pb which gave red wine samples the highest value (5100.96 ± 118.93 ppb) followed by apple juice (666.44 ± 7.67 ppb) and stout (328.41 ± 42.36 ppb). The THQ values were as follows: apple juice (male 3.11, female 3.87), stout (male 1.84, female 2.19), red wine (male 126.52, female 157.22) and ultra-filtered red wine (male 110.48, female 137.29). Conclusion This study reports relatively high levels of metal ions in red wine, which give a very high THQ value suggesting potential hazardous exposure over a lifetime for those who consume at least 250 mL daily. In addition to the known hazardous metals (e.g. Pb), many metals (e.g. Rb) have not had their biological effects systematically investigated and hence the impact of sustained ingestion is not known. PMID:18578877

  20. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Bilek, M. M. M.; Kondyurin, A.; Mizuno, K.; McKenzie, D. R.

    2006-06-01

    Plasma immersion ion implantation (PIII), with nitrogen ions of energy 20 keV in the fluence range of 5 × 1014-2 × 1016 ions cm-2, is used to modify 100 nm thin films of polystyrene on silicon wafer substrates. Ellipsometry is used to study changes in thickness with etching and changes in optical constants. Two distinctly different etch rates are observed as the polymer structure is modified. FTIR spectroscopy data reveals the structural changes, including changes in aromatic and aliphatic groups and oxidation and carbonisation processes, occurring in the polystyrene film as a function of the ion fluence. The transformation to a dense amorphous carbon-like material was observed to progress through an intermediate structural form containing a high concentration of Cdbnd C and Cdbnd O bonds.

  1. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-01

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <1 0 0> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C-SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C-SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4 × 10-19 m2/s.

  2. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide

    SciTech Connect

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-01

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state suggests that there are preferred Si <100> interstitial splits. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C-SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C-SiC single crystal at 1573 K has been determined to be 3.8±0.4×10e-19 m2/sec.

  3. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    PubMed

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method.

  4. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    PubMed

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. PMID:27572732

  5. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  6. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGESBeta

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  7. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    PubMed Central

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-01-01

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering. PMID:25945580

  8. Organic toxins as tools to understand ion channel mechanisms and structure.

    PubMed

    Morales-Lázaro, Sara Luz; Hernández-García, Enrique; Serrano-Flores, Barbara; Rosenbaum, Tamara

    2015-01-01

    Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.

  9. Swift heavy ion induced structural and chemical changes in BOPP film

    NASA Astrophysics Data System (ADS)

    Chawla, S.; Ghosh, A. K.; Ahmad, S.; Avasthi, D. K.

    2006-03-01

    Swift heavy ions (SHIs), such as, 80 MeV Si7+ and 120 MeV Ag9+ ions were used to irradiate 15 μm bi-axially oriented polypropylene (BOPP) films. The fluence (Φ) dependence of the structural and chemical changes in BOPP was investigated. The irradiated BOPP films were analyzed ex situ by means of FTIR, UV and DSC. Due to SHI irradiation, the isotactic helical structure of polypropylene (PP) gets reduced. PP undergoes distortion of its crystal lattice in magnitude proportional to the fluence. The scission of C-H bonds and production of unsaturated groups like dienes and trienes occurred after irradiation with Si ions for Φ ⩾ 1012 ions/cm2 and Ag ions for Φ ⩾ 1011 ions/cm2. It was found that Ag ions are better than Si ions for creation of free radical active sites on BOPP. The observed findings are very useful particularly in the selection of optimum experimental conditions for SHI induced graft copolymerization.

  10. Plasma screening effects on the electronic structure of multiply charged Al ions using Debye and ion-sphere models

    NASA Astrophysics Data System (ADS)

    Das, Madhulita; Sahoo, B. K.; Pal, Sourav

    2016-05-01

    We analyze atomic structures of plasma-embedded aluminum (Al) atom and its ions in the weak- and strong-coupling regimes. The plasma screening effects in these atomic systems are accounted for using the Debye and ion-sphere (IS) potentials for the weakly and strongly coupled plasmas, respectively. Within the Debye model, special attention is given to investigate the spherical and nonspherical plasma screening effects considering in the electron-electron interaction potential. The relativistic coupled-cluster (RCC) method has been employed to describe the relativistic and electronic correlation effects in the above atomic systems. The variations in the ionization potentials (IPs) and excitation energies (EEs) of the plasma-embedded Al ions are presented. It is found that the atomic systems exhibit more stability when the exact screening effects are taken into account. It is also shown that in the presence of a strongly coupled plasma environment, the highly ionized Al ions show blueshifts and redshifts in the spectral lines of the transitions between the states with the same and different principal quantum numbers, respectively. Comparison among the results obtained from the Debye and IS models are also carried out considering similar plasma conditions.

  11. Identification of ion-pair structures in solution by vibrational stark effects

    DOE PAGESBeta

    Hack, John; Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  12. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent. PMID:26807492

  13. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  14. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification.

    PubMed

    Zinnel, Nathanael F; Russell, David H

    2014-05-20

    Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.

  15. Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water

    NASA Astrophysics Data System (ADS)

    Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg

    The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.

  16. Sheath structure in plasmas with nonextensively distributed electrons and thermal ions

    SciTech Connect

    Hatami, M. M.

    2015-02-15

    Sheath region of an electropositive plasma consisting of q-nonextensive electrons and singly charged positive ions with finite temperature is modeled. Using Sagdeev's pseudo potential technique to derive the modified sheath formation criterion, it is shown that the velocity of ions at the sheath edge is directly proportional to the ion temperatures and inversely proportional to the degree of nonextensivity of electrons (q-parameter). Using the modified Bohm criterion, effect of degree of nonextensivity of electrons and temperature of positive ions on the characteristics of the sheath region are investigated numerically. It is shown that an increase in the ion temperature gives rise to an increase in the electrostatic potential and the velocity of ions in the sheath regardless of the value of q. Furthermore, it is seen that the sheath width and the density distribution of the charged particles decrease by increasing the temperature of positive ions. In addition, it is found that the positive ion temperature is less effective on the sheath structure for higher values of the q-parameter. Finally, the results obtained for a thermal plasma with nonextensively distributed electrons are compared with the results of a cold plasma with nonextensive electrons and an extensive (Maxwellian) plasma with thermal ions.

  17. Carbohydrate polymers as constituents of exopolymer substances in seawater, their complexing properties towards copper ions, surface and catalytic activity determined by electrochemical methods.

    PubMed

    Plavšić, Marta; Strmečki, Slađana

    2016-01-01

    The goal of this study was to investigate to which extent polysaccharides (PS) contribute to the complexing capacity for copper ion (LT), to determine their property of surface activity and evaluate their capability to cause the catalytic hydrogen evolution wave (peak "H") due to their adsorption and the catalytic groups in their structure. Complexing capacities and apparent stability constants (Kapp) were measured electrochemically for model polysaccharides (PS): carrageenans (κ-, ι- and λ-), chondroitin sulfate, dextran, dextran sulfate, Na-alginate and humic material. Cu-complexing capacities were determined for Na-alginate (logKapp=8.32) and chondroitin sulphate (logKapp=8.14). PS adsorb on different surfaces due to their amphyphylic properties and on that way they could increase the interaction of copper ions with these surfaces by forming the surface complexes with Cu ions. PMID:26453850

  18. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  19. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels.

  20. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  1. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    PubMed

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level. PMID:25308690

  2. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    PubMed

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level.

  3. Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study

    SciTech Connect

    Fischer, D.; Caseri, W.R.; Haehner, G.

    1998-02-15

    Dye molecules are frequently used to determine the specific surface area and the ion exchange capacity of high-surface-area materials such as mica. The organic molecules are often considered to be planar and to adsorb in a flat orientation. In the present study the authors have investigated the orientation and electronic structure of crystal violet (CV) and malachite green (MG) on muscovite mica, prepared by immersing the substrates for extended periods into aqueous solutions of the dyes of various concentrations. The K{sup +} ions of the mica surface are replaced by the organic cations via ion exchange. X-ray photoelectron spectroscopy reveals that only one amino group is involved in the interaction of CV and MG with the muscovite surface, i.e., certain resonance structures are abolished upon adsorption. With near edge X-ray absorption fine structure spectroscopy a significant tilt angle with respect to the surface was found for all investigated species. A flat orientation, as has often been proposed before, can effectively be ruled out. Hence, results are in marked contrast to the often quoted orientation and suggest that the specific surface areas determined with dyes may, in general, be overestimated.

  4. Ambiguity of structure determination from a minimum of diffraction intensities.

    PubMed

    Al-Asadi, Ahmed; Leggas, Dimitri; Tsodikov, Oleg V

    2014-07-01

    Although the ambiguity of the crystal structures determined directly from diffraction intensities has been historically recognized, it is not well understood in quantitative terms. Bernstein's theorem has recently been used to obtain the number of one-dimensional crystal structures of equal point atoms, given a minimum set of diffraction intensities. By a similar approach, the number of two- and three-dimensional crystal structures that can be determined from a minimum intensity data set is estimated herein. The ambiguity of structure determination from the algebraic minimum of data increases at least exponentially fast with the increasing structure size. Substituting lower-resolution intensities by higher-resolution ones in the minimum data set has little or no effect on this ambiguity if the number of such substitutions is relatively small. PMID:25970192

  5. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    PubMed

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.

  6. Electrostatic Propulsion Beam Divergence Effects on Spacecraft Surfaces. Volume 2, Addendum 1: Ion Time-of-flight Determinations of Doubly to Singly Ionized Mercury Ion Ratios from a Mercury Electron Bombardment Discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    The analysis of ion exhaust beam current flow for multiply charged ion species and the application to propellant utilization for the thruster are discussed. The ion engine in use in the experiments is a twenty centimeter diameter electromagnet electron bombardment engine. The experimental technique to determine the multiply charged ion abundance ratios using ion time of flight is described. An analytical treatment of the discharge action in producing various ion species has been carried out.

  7. Structural basis for alcohol modulation of a pentameric ligand-gated ion channel.

    PubMed

    Howard, Rebecca J; Murail, Samuel; Ondricek, Kathryn E; Corringer, Pierre-Jean; Lindahl, Erik; Trudell, James R; Harris, R Adron

    2011-07-19

    Despite its long history of use and abuse in human culture, the molecular basis for alcohol action in the brain is poorly understood. The recent determination of the atomic-scale structure of GLIC, a prokaryotic member of the pentameric ligand-gated ion channel (pLGIC) family, provides a unique opportunity to characterize the structural basis for modulation of these channels, many of which are alcohol targets in brain. We observed that GLIC recapitulates bimodal modulation by n-alcohols, similar to some eukaryotic pLGICs: methanol and ethanol weakly potentiated proton-activated currents in GLIC, whereas n-alcohols larger than ethanol inhibited them. Mapping of residues important to alcohol modulation of ionotropic receptors for glycine, γ-aminobutyric acid, and acetylcholine onto GLIC revealed their proximity to transmembrane cavities that may accommodate one or more alcohol molecules. Site-directed mutations in the pore-lining M2 helix allowed the identification of four residues that influence alcohol potentiation, with the direction of their effects reflecting α-helical structure. At one of the potentiation-enhancing residues, decreased side chain volume converted GLIC into a highly ethanol-sensitive channel, comparable to its eukaryotic relatives. Covalent labeling of M2 positions with an alcohol analog, a methanethiosulfonate reagent, further implicated residues at the extracellular end of the helix in alcohol binding. Molecular dynamics simulations elucidated the structural consequences of a potentiation-enhancing mutation and suggested a structural mechanism for alcohol potentiation via interaction with a transmembrane cavity previously termed the "linking tunnel." These results provide a unique structural model for independent potentiating and inhibitory interactions of n-alcohols with a pLGIC family member.

  8. Why do the Abundances of Ions Generated by MALDI Look Thermally Determined?

    NASA Astrophysics Data System (ADS)

    Bae, Yong Jin; Choe, Joong Chul; Moon, Jeong Hee; Kim, Myung Soo

    2013-11-01

    In a previous study ( J. Mass Spectrom. 48, 299-305, 2013), we observed that the abundance of each ion in a matrix-assisted laser desorption ionization (MALDI) spectrum looked thermally determined. To find out the explanation for the phenomenon, we estimated the ionization efficiency and the reaction quotient (QA) for the autoprotolysis of matrix, M + M → [M + H]+ + [M - H]-, from the temperature-controlled laser desorption ionization spectra of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). We also evaluated the equilibrium constants (KA) for the autoprotolysis at various temperatures by quantum chemical calculation. Primary ion formation via various thermal models followed by autoprotolysis-recombination was compatible with the observations. The upper limit of the effective temperature of the plume where autoprotolysis-recombination occurs was estimated by equating QA with the calculated equilibrium constant. [Figure not available: see fulltext.

  9. Why do the abundances of ions generated by MALDI look thermally determined?

    PubMed

    Bae, Yong Jin; Choe, Joong Chul; Moon, Jeong Hee; Kim, Myung Soo

    2013-11-01

    In a previous study (J. Mass Spectrom. 48, 299-305, 2013), we observed that the abundance of each ion in a matrix-assisted laser desorption ionization (MALDI) spectrum looked thermally determined. To find out the explanation for the phenomenon, we estimated the ionization efficiency and the reaction quotient (QA) for the autoprotolysis of matrix, M + M → [M + H](+) + [M - H](-), from the temperature-controlled laser desorption ionization spectra of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). We also evaluated the equilibrium constants (KA) for the autoprotolysis at various temperatures by quantum chemical calculation. Primary ion formation via various thermal models followed by autoprotolysis-recombination was compatible with the observations. The upper limit of the effective temperature of the plume where autoprotolysis-recombination occurs was estimated by equating QA with the calculated equilibrium constant. Figure ᅟ

  10. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    SciTech Connect

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  11. NMRFAM-SDF: a protein structure determination framework.

    PubMed

    Dashti, Hesam; Lee, Woonghee; Tonelli, Marco; Cornilescu, Claudia C; Cornilescu, Gabriel; Assadi-Porter, Fariba M; Westler, William M; Eghbalnia, Hamid R; Markley, John L

    2015-08-01

    The computationally demanding nature of automated NMR structure determination necessitates a delicate balancing of factors that include the time complexity of data collection, the computational complexity of chemical shift assignments, and selection of proper optimization steps. During the past two decades the computational and algorithmic aspects of several discrete steps of the process have been addressed. Although no single comprehensive solution has emerged, the incorporation of a validation protocol has gained recognition as a necessary step for a robust automated approach. The need for validation becomes even more pronounced in cases of proteins with higher structural complexity, where potentially larger errors generated at each step can propagate and accumulate in the process of structure calculation, thereby significantly degrading the efficacy of any software framework. This paper introduces a complete framework for protein structure determination with NMR--from data acquisition to the structure determination. The aim is twofold: to simplify the structure determination process for non-NMR experts whenever feasible, while maintaining flexibility by providing a set of modules that validate each step, and to enable the assessment of error propagations. This framework, called NMRFAM-SDF (NMRFAM-Structure Determination Framework), and its various components are available for download from the NMRFAM website (http://nmrfam.wisc.edu/software.htm).

  12. [Simultaneous determination of ammonium and six alkylamines in cosmetics by ion chromatography].

    PubMed

    Zhong, Zhixiong; Li, Gongke; Zhu, Binghui; Luo, Zhibin; Wu, Ximei

    2010-07-01

    A method for the simultaneous determination of ammonium and six alkylamines in cosmetic products by ion chromatography (IC) was developed. The sample pretreatment process and the separation resolution of chromatography were investigated. The samples were extracted by 100 mmol/L acetic acid-20% (v/v) acetonitrile solution at room temperature, and then solid phase extraction (SPE) column was used to eliminate the interferences. The influences of pH value, organic solvent and coexisted ions were investigated. The separation was carried out on IonPac CS17 (250 mm x 4 mm)analytical column and IonPac CG17 (50 mm x 4 mm)guard column using 1.5 - 15 mmol/L methanesulfonic acid and 0.5% - 5% (v/v) acetonitrile gradient elution at a flow rate of 1.0 mL/min at 24 degrees C, coupled with suppressed conductivity detector. Under the optimum conditions, a measurement could be completed less than 26 min. The linearity ranged from 0.3 to 15 mg/L, the detection limits and the quantification limits were in the ranges of 2.1 - 7.9 mg/kg and 7 - 26 mg/kg, respectively. The method was successfully employed for the determination of ammonium, methylamine, dimethylamine, trimethylamine, ethylamine, propylamine and butylamine in samples including cleaning, body lotion, skin-bleaching, sun block, marcel, hair dye and pilatory cosmetics with the recoveries of 80.2% - 109.2% and the relative standard deviations (RSDs) of 0.5% - 3.1%. The method offered high selectivity, sensitivity, and gave satisfactory results for real sample analysis.

  13. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics.

    PubMed

    Campbell, J Larry; Baba, Takashi

    2015-06-01

    Although lipids are critical components of many cellular assemblies and biological pathways, accurate descriptions of their molecular structures remain difficult to obtain. Many benchtop characterization methods require arduous and time-consuming procedures, and multiple assays are required whenever a new structural feature is probed. Here, we describe a new mass-spectrometry-based workflow for enhanced structural lipidomics that, in a single experiment, can yield almost complete structural information for a given glycerophospholipid (GPL) species. This includes the lipid's sum (Brutto) composition from the accurate mass measured for the intact lipid ion and the characteristic headgroup fragment, the regioisomer composition from fragment ions unique to the sn-1 and sn-2 positions, and the positions of carbon-carbon double bonds in the lipid acyl chains. Here, lipid ions are fragmented using electron impact excitation of ions from organics (EIEIO)--a technique where the singly charged lipid ions are irradiated by an electron beam, producing diagnostic product ions. We have evaluated this methodology on various lipid standards, as well as on a biological extract, to demonstrate this new method's utility.

  14. Fine Structural Detection of Calcium Ions by Photoconversion

    PubMed Central

    Poletto, V.; Galimberti, V.; Guerra, G.; Rosti, V.; Moccia, F.; Biggiogera, M.

    2016-01-01

    We propose a tool for a rapid high-resolution detection of calcium ions which can be used in parallel with other techniques. We have applied a new approach by photo-oxidation of diaminobenzidine in presence of the emission of an excited fluorochrome specific for calcium detection. This method combines the selectivity of available fluorophores to the high spatial resolution offered by transmission electron microscopy to detect fluorescing molecules even when present in low amounts in membrane-bounded organelles. We show in this paper that Mag-Fura 2 photoconversion via diaminobenzidine oxidation is an efficient way for localizing Ca2+ ions at electron microscopy level, is easily carried out and reproducible, and can be obtained on a good amount of cells, since the exposure in our conditions is not limited to the direct irradiation of the sample via an objective but obtained with a germicide lamp. The end product is sufficiently electron dense to be detected clearly when present in sufficient amount within a membrane boundary. PMID:27734989

  15. Introducing Chemists to X-Ray Structure Determination.

    ERIC Educational Resources Information Center

    Enemark, John H.

    1988-01-01

    Presents the organization of a one-semester graduate course in structural chemistry including lectures and problems. Discusses the coverage of diffraction from real crystals and structure determination. Summarizes experiments on real crystals conducted by students in the X-ray laboratory. (CW)

  16. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  17. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-07-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  18. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization.

    PubMed

    Pepin, Robert; Laszlo, Kenneth J; Marek, Aleš; Peng, Bo; Bush, Matthew F; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ.

  19. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization.

    PubMed

    Pepin, Robert; Laszlo, Kenneth J; Marek, Aleš; Peng, Bo; Bush, Matthew F; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ. PMID:27400696

  20. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    PubMed

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions. PMID:27050261

  1. Labor Market Structure and Salary Determination among Professional Basketball Players.

    ERIC Educational Resources Information Center

    Wallace, Michael

    1988-01-01

    The author investigates the labor market structure and determinants of salaries for professional basketball players. An expanded version of the resource perspective is used. A three-tiered model of labor market segmentation is revealed for professional basketball players, but other variables also are important in salary determination. (Author/CH)

  2. Influence of Kilo-Electron Oxygen Ion Irradiation on Structural, Electrical and Optical Properties of CdTe Thin Films

    NASA Astrophysics Data System (ADS)

    Honey, Shehla; Thema, F. T.; Bhatti, M. T.; Ishaq, A.; Naseem, Shahzad; Maaza, M.

    2016-09-01

    In this paper, effect of oxygen (O+) ion irradiation on the properties of polycrystalline cubic structure CdTe thin films has been investigated. CdTe thin films were irradiated with O+ ions of energy 80keV at different fluence ranging from 1×1015 to 5×1016 ion/cm2 at room temperature. At 1×1015 ion/cm2 O+ ions fluence, the CdTe structure was maintained while XRD peaks of cubic phase were shifted toward lower angles. At 5×1016 ion/cm2 O+ ions fluence, cubic structure of CdTe thin films was transformed into hexagonal structure. In addition, electrical resistivity and optical bandgap were decreased with increasing O+ ion beam irradiation.

  3. Ion chromatography to detect salts in stone structures and to assess salt removal methods

    NASA Astrophysics Data System (ADS)

    Alvarez de Buergo, M.; Lopez-Arce, P.; Fort, R.

    2012-04-01

    Stone - and in general all materials- from built heritage is very often damaged by salt crystallisation processes. Such processes usually derive into a loss of material compactness, as salts - given specific conditions and parameters- crystallize inside the material pores, exerting a pressure against the material pore walls higher than what they can resist - similar to the effect of liquid water when converts to solid water or ice-, thus breaking and disrupting the material by generating fissures and increasing the pore volume ratio, loosing its initial cohesion. When these deterioration processes take place inside a structure, salts - from different sources: material itself, restoration materials, from the ground, etc.- may come up to the stone surface - either temporarily or in permanently-, from beneath it, as efflorescences, depending mainly on the microclimatic conditions of the environment and the salts source. Efflorescences can be analysed and their nature identified (e.g. by means of X ray diffraction, in which the mineralogical composition of the salt is obtained), which can be, general, of aid not only for restoration but for preventive conservation measures. But what we do not know a priori when only characterising salt compounds- is the extent of the damage due to the presence of salts inside a structure (sub- and cryptoefflorescences). In this work we present a procedure in which the depth of the salt content can be measured, and its nature identified, based on the use of the ion chromatography technique. This technique allows identifying the existing ions in a specific sample, both anions and cations. The procedure consists of drilling (with a drilling core ranging from 5 to 8 mm in diameter, therefore causing the minimum damage to the material) in a same point at different depths from the surface and several depths from the bottom. The samples obtained are analysed and the ion content determined, qualitative and quantitatively. By means of a

  4. Controlled deposition of sulphur-containing semiconductor and dielectric nano-structured films on metals in SF{sub 6} ion-ion plasma

    SciTech Connect

    Rafalskyi, Dmytro; Bredin, Jérôme; Aanesland, Ane

    2013-12-07

    In the present paper, the deposition processes and formation of films in SF{sub 6} ion-ion plasma, with positive and negative ion flows accelerated to the surface, are investigated. The PEGASES (acronym for Plasma Propulsion with Electronegative GASES) source is used as an ion-ion plasma source capable of generating almost ideal ion-ion plasma with negative ion to electron density ratio more than 2500. It is shown that film deposition in SF{sub 6} ion-ion plasma is very sensitive to the polarity of the incoming ions. The effect is observed for Cu, W, and Pt materials. The films formed on Cu electrodes during negative and positive ion assisted deposition were analyzed. Scanning electron microscope analysis has shown that both positive and negative ion fluxes influence the copper surface and leads to film formation, but with different structures of the surface: the low-energy positive ion bombardment causes the formation of a nano-pored film transparent for ions, while the negative ion bombardment leads to a continuous smooth insulating film. The transversal size of the pores in the porous film varies in the range 50–500 nm, and further analysis of the film has shown that the film forms a diode together with the substrate preventing positive charge drain, and positive ions are neutralized by passing through the nano-pores. The film obtained with the negative ion bombardment has an insulating surface, but probably with a multi-layer structure: destroying the top surface layer allows to measure similar “diode” IV-characteristics as for the nano-pored film case. Basing on results, practical conclusions for the probes and electrodes cleaning in ion-ion SF{sub 6} plasmas have been made. Different applications are proposed for the discovered features of the controlled deposition from ion-ion plasmas, from Li-sulphur rechargeable batteries manufacturing and nanofluidics issues to the applications for microelectronics, including low-k materials formation.

  5. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  6. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    EPA Science Inventory

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  7. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  8. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  9. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters.

    PubMed

    Coincon, Mathieu; Uzdavinys, Povilas; Nji, Emmanuel; Dotson, David L; Winkelmann, Iven; Abdul-Hussein, Saba; Cameron, Alexander D; Beckstein, Oliver; Drew, David

    2016-03-01

    To fully understand the transport mechanism of Na(+)/H(+) exchangers, it is necessary to clearly establish the global rearrangements required to facilitate ion translocation. Currently, two different transport models have been proposed. Some reports have suggested that structural isomerization is achieved through large elevator-like rearrangements similar to those seen in the structurally unrelated sodium-coupled glutamate-transporter homolog GltPh. Others have proposed that only small domain movements are required for ion exchange, and a conventional rocking-bundle model has been proposed instead. Here, to resolve these differences, we report atomic-resolution structures of the same Na(+)/H(+) antiporter (NapA from Thermus thermophilus) in both outward- and inward-facing conformations. These data combined with cross-linking, molecular dynamics simulations and isothermal calorimetry suggest that Na(+)/H(+) antiporters provide alternating access to the ion-binding site by using elevator-like structural transitions. PMID:26828964

  10. Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Moslem, W. M.

    2011-05-15

    Nonlinear ion-acoustic structures are investigated in an unmagnetized, four-component plasma consisting of warm ions, superthermal electrons and positrons, as well as stationary charged dust impurities. The basic set of fluid equations is reduced to modified Korteweg-de Vries equation. The latter admits both solitary waves and double layers solutions. Numerical calculations indicate that these nonlinear structures cannot exist for all physical parameters. Therefore, the existence regions for both solitary and double layers excitations have been defined precisely. Furthermore, the effects of temperature ratios of ions-to-electrons and electrons-to-positrons, positrons and dust concentrations, as well as superthermal parameters on the profiles of the nonlinear structures are investigated. Also, the acceleration and deceleration of plasma species have been highlight. It is emphasized that the present investigation may be helpful in better understanding of nonlinear structures which propagate in astrophysical environments, such as in interstellar medium.

  11. Determination of submicrogram amounts of gallium by ion-exchanger fluorimetry Determination of gallium in natural waters.

    PubMed

    Capitan, F; Navalon, A; Vilchez, J L; Capitan-Vallvey, L F

    1990-02-01

    A method for microdetermination of gallium at ng/ml level has been developed, based on ion-exchanger fluorimetry. The gallium reacts with salicylidene-o-aminophenol to give a highly fluorescent complex, which is fixed on a dextran-type cationic resin. The fluorescence of the resin, packed in a 1-mm silica cell, is measured directly with a solid-surface attachment. The range of concentration of the method is 2.0-10.0 ng/ml, the RSD 1.3% and the detection limit 0.3 ng/ml. The method has been applied to the determination of gallium in natural waters. The gallium content found in tap water was higher than that in raw water. This is related to the use of commercial aluminium salts in the water-treatment plant. PMID:18964929

  12. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  13. Structural characterization of intramolecular Hg2+ transfer between flexibly-linked domains of mercuric ion reductase

    SciTech Connect

    Johs, Alexander; Harwood, Ian M; Parks, Jerry M; Nauss, Rachel; Smith, Jeremy C; Liang, Liyuan; Miller, Susan M

    2011-01-01

    The enzyme mercuric ion reductase, MerA, is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess a metallochaperone-like N-terminal domain, NmerA, that can transfer Hg2+ to the catalytic core (Core) for reduction to Hg0. These domains are tethered to the homodimeric Core by ~30-residue linkers that are subject to proteolysis, which has limited structural and functional characterization of the interactions of these domains. Here, we report purification of homogeneous full-length MerA using a fusion protein construct and combine small-angle X-ray and neutron scattering with molecular dynamics simulation to characterize the structure of constructs that mimic the system before and during handoff of Hg2+ from NmerA to the Core. The radii of gyration, distance distribution functions and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations resulting from flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg2+ from diverse protein substrates. Using a specific mutant of MerA allowed determination of the position and relative orientation of NmerA to the Core during Hg2+ handoff. The small buried surface area at the site of interaction suggests molecular recognition may be of less importance for the integrity of metal ion transfers between tethered domains than for transfers between separate proteins in metal trafficking pathways.

  14. Determination of chloroacetic acids in drinking water using suppressed ion chromatography with solid-phase extraction.

    PubMed

    Yoshikawa, Kenji; Soda, Yuko; Sakuragawa, Akio

    2009-12-01

    Suppressed ion chromatography with a conductivity detector was developed for the determination of trace amounts of underivatized chloroacetic acids (CAAs). When sodium carbonate and methanol were used as a mobile phase, the simultaneous determination of each CAA took approximately 25 min. The linearity, reproducibility and detection limits were determined for the proposed method. For the solid-phase extraction step, the effects of the pH of the sample solution, sample volume and the eluting agent were tested. Under the optimized extracting conditions, the average recoveries for CAAs spiked in tap water were 83-107%, with an optimal preconcentration factor of 20. The reproducibility of recovery rate for CAAs was 1.2-3.8%, based upon 6 repetitions of the recovery experiments.

  15. Solitary and double-layer structures in quantum bi-ion plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, Mehran; Tribeche, Mouloud

    2016-06-01

    Weak ion-acoustic solitary waves (IASWs) in an unmagnetized quantum plasmas having two-fluid ions and fluid electrons are considered. Using the one-dimensional quantum hydrodynamics model and then the reductive perturbation technique, a generalized form of nonlinear quantum Korteweg-de Vries (KdV) equation governing the dynamics of weak ion acoustic solitary waves is derived. The effects of ion population, warm ion temperature, quantum diffraction, and polarity of ions on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures. Furthermore, formation and characteristics properties of IA double layers in the present bi-ion plasma model are investigated. The results of this work should be useful and applicable in understanding the wide relevance of nonlinear features of localized electro-acoustic structures in laboratory and space plasma, such as in super-dense astrophysical objects [24] and in the Earth's magnetotail region (Parks [43]. The implications of our results in some space plasma situations are discussed.

  16. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.

    PubMed

    Wang, Yudong; Boden, S A; Bagnall, D M; Rutt, H N; de Groot, C H

    2012-10-01

    We have fabricated and measured single domain wall magnetoresistance devices with sub-20 nm gap widths using a novel combination of electron beam lithography and helium ion beam milling. The measurement wires and external profile of the spin valve are fabricated by electron beam lithography and lift-off. The critical bridge structure is created using helium ion beam milling, enabling the formation of a thinner gap (and so a narrower domain wall) than that which is possible with electron beam techniques alone. Four-point probe resistance measurements and scanning electron microscopy are used to characterize the milled structures and optimize the He ion dose. Successful operation of the device as a spin valve is demonstrated, with a 0.2% resistance change as the external magnetic field is cycled. The helium ion beam milling efficiency as extracted from electrical resistance measurements is 0.044 atoms/ion, about half the theoretical value. The gap in the device is limited to a maximum of 20 nm with this technique due to sub-surface swelling caused by injected ions which can induce catastrophic failure in the device. The fine patterning capabilities of the helium ion microscope milling technique indicate that sub-5 nm constriction widths could be possible. PMID:22972003

  17. Metal Ion Induced Pairing of Cytosine Bases: Formation of I-Motif Structures Identified by IR Ion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, J.

    2015-06-01

    While the Watson-Crick structure of DNA is among the most well-known molecular structures of our time, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or presence of cations. Pairing of two cytosine (C) bases induced by the sharing of a single proton (C-H^+-C) gives rise to the so-called i-motif, occurring particularly in the telomeric region of DNA, and particularly at low pH. At physiological pH, silver cations were recently suggested to form cytosine dimers in a C-Ag^+-C structure analogous to the hemiprotonated cytosine dimer, which was later confirmed by IR spectroscopy.^1 Here we investigate whether Ag^+ is unique in this behavior. Using infrared action spectroscopy employing the free-electron laser FELIX and a tandem mass spectrometer in combination with quantum-chemical computations, we investigate a series of C-M^+-C complexes, where M is Cu, Li and Na. The complexes are formed by electrospray ionization (ESI) from a solution of cytosine and the metal chloride salt in acetonitrile/water. The complexes of interest are mass-isolated in the cell of a FT ion cyclotron resonance mass spectrometer, where they are irradiated with the tunable IR radiation from FELIX in the 600 - 1800 wn range. Spectra in the H-stretching range are obtained with a LaserVision OPO. Both experimental spectra as well as theoretical calculations indicate that while Cu behaves as Ag, the alkali metal ions induce a clearly different dimer structure, in which the two cytosine units are parallelly displaced. In addition to coordination to the ring nitrogen atom, the alkali metal ions coordinate to the carbonyl oxygen atoms of both cytosine bases, indicating that the alkali metal ion coordination favorably competes with hydrogen bonding between the two cytosine sub-units of the i-motif like structure. 1. Berdakin, Steinmetz, Maitre, Pino, J. Phys. Chem. A 2014, 118, 3804

  18. Multi-beam RFQ linac structure for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Ishibashi, Takuya; Ito, Taku; Hattori, Toshiyuki

    2009-07-01

    Both the RF linear accelerator (linac) and the linear induction accelerator have been considered as injectors in a driver system for heavy ion fusion (HIF). In order to relax beam defocusing by space charge effect in the low-energy region, the accelerating beams that were merged and had their beam currents increased by the funnel tree system are injected into storage rings. A multi-beam linac that accelerates multiple beams in an accelerator cavity has the advantages of cost reduction and downsizing of the system. We modeled the multi-beam Interdigital-H type radio frequency quadruple (IH-RFQ) cavities with the different beam numbers and evaluated the electromagnetic characteristics by simulation. As a result, the reasonable ranges of their configuration were indicated for a practical use.

  19. A review of nanofibrous structures in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pampal, Esra Serife; Stojanovska, Elena; Simon, Bálint; Kilic, Ali

    2015-12-01

    Materials for harvesting and storing energy have been extensively studied in the last decade. Many inorganic materials have already been developed and utilized in products for electrochemical energy-storage systems. The nature of these complex materials requires further investigation from several approaches in order to improve specific characteristics of batteries, such as storage capacity and environmental impact. Fiber scientists have also introduced original solutions using mostly inorganic novel materials. Nanofibers and nanofibrous materials have found applications in the three battery components of anodes, cathodes, and separators. Many methods produce nanofibers; out of these, electrospinning is seen as the most adaptable technique because of the versatility and scalability of the process. The present review collates recent studies on nanofibers for applications in Li-ion batteries, with a focus on the electrospinning technique. The advantages of the investigated fibrous materials are explored in detail.

  20. Strong ion energization by electromagnetic fluctuations in plasmoid-like magnetic structures.

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena

    2016-04-01

    Numerous studies based on data from many magnetospheric missions reported the observations of energetic ions with energies of hundreds of keV in the Earth magnetotail. The acceleration of charged particles to energies exceeding the potential drop across the tail can be produced by strong inductive electric fields generated in the course of transient processes related to changes of the magnetic field topology: e.g., magnetic reconnection, dipolarization, magnetic turbulence, and so on. The observations of energetic ion flows by Cluster/RAPID instruments in the near-Earth tail show the increase of H+, He+, and O+ fluxes in the energy range ≥130 keV during the periods of the tailward flows. The hardening of ion spectra is observed inside the plasmoid-like magnetic structures propagating tailward through the Cluster spacecraft. Simultaneously, the low-frequency electromagnetic fluctuations were observed in such structures. The analysis of 37 events demonstrated that the following factors are favorable for the ion energization: (1) the spatial scale of a plasmoid should exceed the thermal gyroradius of a given ion component in the plasmoid neutral plane; (2) the Power Spectral Density (PSD) of the magnetic fluctuations near the gyrofrequency of a particular ion component should exceed ~ 50.0 nT2/Hz for oxygen ions; while the energization of He+ and H+ takes place for much lower values of the PSD. The kinetic analysis of ion dynamics in the plasmoid-like magnetic configurations with the superimposed electromagnetic fluctuations similar to the observed ones confirms the importance of ion resonant interactions with the low-frequency electromagnetic fluctuations for ion energization inside plasmoids. The analysis also show that to be strongly accelerated ions do not need to pass a large distance in the duskward direction and the effective energization can be reached even at the localized source. Thus, ion acceleration by the electromagnetic fluctuations may smear the dawn