Science.gov

Sample records for ion track structure

  1. Ion track structure probed by plasma desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    U. R. Sundqvist, Bo

    1993-07-01

    Since the discovery of plasma desorption mass spectrometry by Torgerson [D.F. Torgerson, R.P. Skowronski and R.D. Macfarlane, Biophys. Res. Commun., 60(1974) 616], the method has mainly been used in mass spectrometric studies of bioorganic molecules. However, the ejecta in this electronic sputtering process have also been studied with the aim to gain information on the structure of the ion track formed in a solid by the incident fission fragment. In this paper such studies will be described. In particular, the ejection of large whole ionised organic molecules and the synthesis of fullerenes at the impact of a fast heavy ion on an organic solid will be discussed. Those two processes are connected to different parts of the ion track. Also, the ejection of light ions and damage cross sections will be discussed and are shown to give additional information on the time and space evolution of energy deposited in a fast ion track.

  2. Conductometric investigations of multicharged ion track structure in various polymers

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.

    The radial structure of etchable tracks of multicharged ions in polyethylene terephtalate, polycarbonate, polyarylate, and polypropylene is investigated using conductometric method. The doses of gel formation under irradiation of these polymers by accelerated xenon ions with approximately 1 MeV/nucleon energy are estimated. It is found that the track of highly ionizing particles in a polymer consists of a core where intensive destruction occurs and a halo where, as a rule, the crosslinking of macromolecules predominates. Recombination of the interior radicals provides the crosslinking formation. The radius of the crosslinking region depends on the relation between the hydrogen atom diffusion speed and the rate of their chemical interaction with macromolecules.

  3. Observations on ion track structure in semiconductors : a phenomenological study

    NASA Technical Reports Server (NTRS)

    Selva, L. E.; Wallace, R. E.

    2001-01-01

    An ion track structure model at the nanometer scale is presented. The model is based on electrostatic principles and is supported by observed experimental results conducted on power MOSFETs. The model predicts the existence of a transient induced electric field following the passage of an energetic heavy ion. There are two segments to the field (a radial and an axial component). It is the interaction of this transient electric field with the local environment that can trigger a catastrophic failure.

  4. Low energy electrons and swift ion track structure in PADC

    DOE PAGESBeta

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  5. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  6. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  7. Track Structure in DNA Irradiated with Heavy Ions

    SciTech Connect

    Bowman, Michael K.; Becker, David; Sevilla, Michael D.; Zimbrick, John D.

    2005-04-01

    The spatial properties of trapped radicals produced in heavy ion-irradiated solid DNA at 77 K have been probed using pulsed Electron Paramagnetic Double Resonance (PELDOR or DEER) techniques. Salmon testes DNA hydrated to twelve water molecules per nucleotide was irradiated with 40Ar ions of energy 100 MeV/nucleon and LET ranging from 300 to 400 keV/?. Irradiated samples were maintained at cryogenic temperature at all times. PELDOR measurements were made using a refocused echo detection sequence that allows dipolar interaction between trapped radicals to be observed. The EPR spectrum is attributed to electron loss/gain DNA base radicals and neutral carbon-centered radicals that likely arise from sugar damage. We find a radical concentration of 13.5*1018 cm-3 in the tracks and a track radius of 6.79 nm. The cross section of these tracks is 144 nm2 yielding a lineal radical density of 2.6 radicals/nm. Based upon the yields previously determined for particles having calculated LET values of 300-400 keV/mm and our measured lineal density, we obtain an LET of 270 keV/mm, which is in good agreement with the calculated range of values. These measurements of radical density and spatial extent provide the first direct experimental determination of track characteristics in irradiated DNA.

  8. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations

    NASA Astrophysics Data System (ADS)

    Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.

    2015-09-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  9. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  10. Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation.

    PubMed

    Kase, Yuki; Kanai, Tatsuaki; Matsufuji, Naruhiro; Furusawa, Yoshiya; Elsässer, Thilo; Scholz, Michael

    2008-01-01

    Both the microdosimetric kinetic model (MKM) and the local effect model (LEM) can be used to calculate the surviving fraction of cells irradiated by high-energy ion beams. In this study, amorphous track structure models instead of the stochastic energy deposition are used for the MKM calculation, and it is found that the MKM calculation is useful for predicting the survival curves of the mammalian cells in vitro for (3)He-, (12)C- and (20)Ne-ion beams. The survival curves are also calculated by two different implementations of the LEM, which inherently used an amorphous track structure model. The results calculated in this manner show good agreement with the experimental results especially for the modified LEM. These results are compared to those calculated by the MKM. Comparison of the two models reveals that both models require three basic constituents: target geometry, photon survival curve and track structure, although the implementation of each model is significantly different. In the context of the amorphous track structure model, the difference between the MKM and LEM is primarily the result of different approaches calculating the biological effects of the extremely high local dose in the center of the ion track. PMID:18182686

  11. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  12. SAXS investigation of latent track structure in HDPE irradiated with high energy Fe ions

    NASA Astrophysics Data System (ADS)

    Hai, Yang; Huang, Can; Ma, Mingwang; Liu, Qi; Wang, Yuzhu; Liu, Yi; Tian, Feng; Lin, Jun; Zhu, Zhiyong

    2015-08-01

    Semi-crystalline high density polyethylene (HDPE) samples were irradiated with 1.157 GeV 56Fe ion beams to fluences ranging from 1 × 1011 to 6 × 1012 ions/cm2. The radiation induced changes in nano/microstructure were investigated with small angle X-ray scattering (SAXS) technique. The scattering contributions from HDPE matrix and ion tracks are successfully separated and analyzed through tilted SAXS measurements with respect to the X-ray beam direction. Lorentz correction, one-dimensional correlation function calculation, fractal nature analysis of the isotropic scattering pattern reveal that HDPE long period polymeric structures are damaged and new materials, possibly clusters of carbon-rich materials, are formed inside the ion tracks. Least square curve fitting of the scattering contribution from the ion track reveals that the track is composed of a core of about 5.3 nm in radius, characterized by a significant density deficit compared to the virgin HDPE, surrounded by a shell of about 4.3 nm in thickness with less density reduction.

  13. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGESBeta

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  14. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  16. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  17. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides.

    PubMed

    Wang, Jianwei; Lang, Maik; Ewing, Rodney C; Becker, Udo

    2013-04-01

    Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space. Using the time, space, and energy profile generated from the thermal-spike model, the molecular-dynamics simulations were performed to model the atomic-scale evolution of the tracks. The advantage of the combination of these two methods, which uses the output from the continuum model as an input for the atomistic model, is that it provides a means of simulating the coupling of the electronic and atomic subsystems and provides simultaneously atomic-scale detail of the track structure and morphology. The simulated internal structure of the track consists of an amorphous core and a shell of disordered, but still periodic, domains. For Gd2Ti2O7, the shell region has a disordered pyrochlore with a defect fluorite structure and is relatively thick and heterogeneous with different degrees of disordering. For Gd2TiO5, the disordered region is relatively small as compared with Gd2Ti2O7. In the simulation, 'facets', which are surfaces with definite crystallographic orientations, are apparent around the amorphous core and more evident in Gd2TiO5 along [010] than [001], suggesting an orientational dependence of the radiation response. These results show that track formation is controlled by the coupling of several complex processes, involving different degrees of amorphization, disordering, and dynamic annealing. Each of the processes depends on the mass and energy of the energetic ion, the properties of the material, and its crystallographic orientation with respect to the incident ion beam.

  18. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Lang, Maik; Ewing, Rodney C.; Becker, Udo

    2013-04-01

    Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space. Using the time, space, and energy profile generated from the thermal-spike model, the molecular-dynamics simulations were performed to model the atomic-scale evolution of the tracks. The advantage of the combination of these two methods, which uses the output from the continuum model as an input for the atomistic model, is that it provides a means of simulating the coupling of the electronic and atomic subsystems and provides simultaneously atomic-scale detail of the track structure and morphology. The simulated internal structure of the track consists of an amorphous core and a shell of disordered, but still periodic, domains. For Gd2Ti2O7, the shell region has a disordered pyrochlore with a defect fluorite structure and is relatively thick and heterogeneous with different degrees of disordering. For Gd2TiO5, the disordered region is relatively small as compared with Gd2Ti2O7. In the simulation, ‘facets’, which are surfaces with definite crystallographic orientations, are apparent around the amorphous core and more evident in Gd2TiO5 along [010] than [001], suggesting an orientational dependence of the radiation response. These results show that track formation is controlled by the coupling of several complex processes, involving different degrees of amorphization, disordering, and dynamic annealing. Each of the processes depends on the mass and energy of the energetic ion, the properties of the material, and its crystallographic orientation with respect to the incident ion beam.

  19. Amorphous tracks induced by energetic ions in strongly anisotropic solids with layered structures

    NASA Astrophysics Data System (ADS)

    Szenes, G.

    2006-07-01

    Common features of ion-induced tracks in layered structures are analysed in YBaCuO, BiSrCaCuO and in semiconducting GeS and MoS2 . In all crystals, the conduction is poor along the normal layer. The anisotropic electron properties lead to the formation of an ion-induced broad and a narrow thermal spike in these solids. The contribution of the two spikes to the formation of tracks can be separated in GeS. When the gap energy is low or zero (YBaCuO, BiSrCaCuO, MoS2), only the narrow spike controls the track formation, and the localization of the energy deposition is the same as in insulators. However, the fraction of the deposited energy transferred to the narrow spike is only about one-third of that in insulators. The anisotropic features of tracks show the effect of the energy bands. Good quantitative agreement is found between the experimental data and the predictions of the authors thermal spike model.

  20. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  1. Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions

    SciTech Connect

    Awazu, Koichi; Wang, Xiaomin; Fujimaki, Makoto; Komatsubara, Tetsuo; Ikeda, Takahiro; Ohki, Yoshimichi

    2006-08-15

    The structurally damaged zone in titanium dioxide rutile single crystal induced by MeV-order heavy ions was observed using high resolution electronic microscopy (HREM). Stressed regions as well as amorphous regions were identified in the damaged areas. Both stressed and amorphous regions were etched with hydrofluoric acid. The thermal spike model was used to calculate the track radii variation versus electron stopping power. When the calculated lattice temperature did not exceed the melting point of rutile titanium dioxide (2130 K), no structural change introduced by ions, such as 90 MeV Cl, was observed by HREM. It was found that the radius of the lattice temperature over the melting point corresponded closely to the radius of the stressed region. It was concluded that both stressed and amorphous regions are the result of quenching by molten titanium dioxide.

  2. Radical Formation and Chemical Track Structure in Ion-Beam Irradiated DNA

    NASA Astrophysics Data System (ADS)

    Becker, David; Adhikary, Amitava; Khanduri, Deepti; Sevilla, Michael D.

    2009-12-01

    Ion-beam irradiation of hydrated DNA at 77 K results in formation of at least three base radicals and a variety of radicals on the sugar phosphate backbone that can be observed using Electron Spin Resonance (ESR) spectroscopy. From dose-response curves for these radicals, we have formulated a radiation-chemical model of the track structure for ion-beam irradiated DNA. The model for chemical behavior posits that the base radicals trapped at 77 K are formed almost entirely in the track penumbra. The lower yields observed in ion-beam irradiated samples results from the fact that only a portion of the energy deposited by the ion beam ends up in this γ-like region. The remainder of the energy is deposited in the core in which the proximity of ion-radical formation results in the fast recombination of oppositely charged radicals, so few survive in the core at 77 K. However, a second group of radicals, neutral sugar radicals, are not as susceptible to recombination as are ion radicals, and can survive after formation in the core; these are presumed to form predominantly in the core. They include the sugar radicals, C1'ṡC3'ṡC5'ṡ, formed from oxidative processes, and C3'ṡdephos and phosphorous radicals which are formed after immediate strand breaks. The later species are thought to result from reductive cleavage by low energy electrons (LEE.) The high energy density in the core results in excited state processes that produce additional sugar radicals. The spatial characteristics of the radicals, deduced from PELDOR experiments, indicates that multiply damaged cluster sites (MDS) are formed in the core; these would be biologically significant, if formed in cells.

  3. Controlled Structure of Electrochemically Deposited Pd Nanowires in Ion-Track Templates

    NASA Astrophysics Data System (ADS)

    Duan, Jinglai; Lyu, Shuangbao; Yao, Huijun; Mo, Dan; Chen, Yonghui; Sun, Youmei; Maaz, K.; Maqbool, M.; Liu, Jie

    2015-12-01

    Understanding and controlling structural properties of the materials are crucial in materials research. In this paper, we report that crystallinity and crystallographic orientation of Pd nanowires can be tailored by varying the fabrication conditions during electrochemical deposition in polycarbonate ion-track templates. By changing the deposition temperature during the fabrication process, the nanowires with both single- and poly-crystallinities were obtained. The wires with preferred crystallographic orientations along [111], [100], and [110] directions were achieved via adjusting the applied voltage and temperature during electrochemical deposition.

  4. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  5. Peculiarities of latent track etching in SiO2/Si structures irradiated with Ar, Kr and Xe ions

    NASA Astrophysics Data System (ADS)

    Al'zhanova, A.; Dauletbekova, A.; Komarov, F.; Vlasukova, L.; Yuvchenko, V.; Akilbekov, A.; Zdorovets, M.

    2016-05-01

    The process of latent track etching in SiO2/Si structures irradiated with 40Ar (38 MeV), 84Kr (59 MeV) and 132Xe (133 and 200 MeV) ions has been investigated. The experimental results of SiO2 etching in a hydrofluoric acid solution have been compared with the results of computer simulation based on the thermal spike model. It has been confirmed that the formation of a molten region along the swift ion trajectory with minimum radius of 3 nm can serve as a theoretical criterion for the reproducible latent track etching tracks in SiO2.

  6. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  7. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  8. Coating and functionalization of high density ion track structures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  9. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  10. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation. PMID:11537218

  11. Nanoscale Phase Transitions under Extreme Conditions within an Ion Track

    SciTech Connect

    Zhang, Jiaming; Lang, Maik; Ewing, Rodney C.; Devanathan, R.; Weber, William; Toulemonde, M.

    2011-01-31

    The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd{sub 2}O{sub 3}(TiO{sub 2}){sub x} and Gd{sub 2}Zr{sub 2–x} Ti{sub x} O{sub 7}. Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions.

  12. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  13. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  14. Track-Structure Simulations for Charged Particles

    PubMed Central

    Dingfelder, Michael

    2013-01-01

    Monte-Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as surrogate for soft tissue and is used in most Monte-Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest. PMID:23032889

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    SciTech Connect

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  16. Ion-counting nanodosemeter with particle tracking capabilities.

    PubMed

    Bashkirov, V; Schulte, R; Breskin, A; Chechik, R; Schemelinin, S; Garty, G; Wroe, A; Sadrozinski, H; Grosswendt, B

    2006-01-01

    An ion-counting nanodosemeter (ND) yielding the distribution of radiation-induced ions in a low-pressure gas within a millimetric, wall-less sensitive volume (SV) was equipped with a silicon microstrip telescope that tracks the primary particles, allowing correlation of nanodosimetric data with particle position relative to the SV. The performance of this tracking ND was tested with a broad 250 MeV proton beam at Loma Linda University Medical Center. The high-resolution tracking capability made it possible to map the ion registration efficiency distribution within the SV, for which only calculated data were available before. It was shown that tracking information combined with nanodosimetric data can map the ionisation pattern of track segments within 150 nm-equivalent long SVs with a longitudinal resolution of approximately 5 tissue-equivalent nanometers. Data acquired in this work were compared with results of Monte Carlo track structure simulations. The good agreement between 'tracking nanodosimetry' data acquired with the new system and simulated data supports the application of ion-counting nanodosimetry in experimental track-structure studies.

  17. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  18. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  19. Characterisation of a track structure imaging detector.

    PubMed

    Casiraghi, M; Bashkirov, V A; Hurley, R F; Schulte, R W

    2015-09-01

    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation.

  20. Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes

    NASA Astrophysics Data System (ADS)

    Movsesyan, Liana; Schubert, Ina; Yeranyan, Lilit; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2016-01-01

    This work presents the synthesis and characterization of two different zinc oxide (ZnO) nanowire assemblies: arrays of parallel-oriented cylindrical wires and three-dimensional (3D) networks of highly interconnected wires. Both are synthesized by electrochemical deposition in the pores of etched ion-track polycarbonate membranes. The crystallinity and crystallographic properties of the wires are influenced by the deposition parameters. In particular, we investigate how the diameter of the membrane nanopores and the deposition potential affect crystal orientation and morphology during nanowire growth. X-ray diffraction and energy dispersive x-ray analysis demonstrated that all wires are pure ZnO with a wurtzite hexagonal structure and free of impurities. The unique architecture of the synthesized 3D networks of nanowires with a high aspect ratio and enhanced mechanical stability is discussed.

  1. Industrial applications of ion track technology

    NASA Astrophysics Data System (ADS)

    Hanot, H.; Ferain, E.

    2009-03-01

    It4ip sa is a spin out from the Université Catholique de Louvain (Belgium) dedicated to the development and production of unique templates and membranes based on the combination of ion track technology of polymers. It supplies customers with hi-tech products, state-of-the-art research and product development services with template capability to make high value added membranes. Notably based on results coming from several collaborative R&D projects supported by European and Regional funding, recent improvements of ion track technology open new doors for fast growing applications in niche markets. This paper reviews some of these Hi-Tec applications in different fields such as in healthcare (oncology, drug control release combined to implant and artificial organs etc.), energy (fuel cells and batteries etc.), water de-contamination and electronics (OLED etc.).

  2. Field Emitter Arrays and Displays Produced by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Bernhardt, A F

    2004-12-28

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter ({approx}10nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters ({approx}100nm diameter electron guns) for CTC's ThinCRT{trademark} displays, which have been fabricated to diagonal dimensions > 13. Additional technological applications of ion tracking lithography will be briefly covered.

  3. Atomistic simulation of track formation by energetic ions in zircon

    SciTech Connect

    Moreira, Pedro A.F.P.; Devanathan, Ram; Weber, William J

    2010-01-01

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm{sup -1} and a radius of 3 nm. At a low dE/dx of 2.55 keV nm{sup -1}, the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization.

  4. High-energy ion tracks in thin films.

    SciTech Connect

    Doyle, Barney Lee; Follstaedt, David Martin; McDaniel, Floyd Del; Rossi, Paolo; Norman, Adam K.; Bringa, Eduardo M

    2004-08-01

    High-energy ion tracks (374 MeV Au{sup 26+}) in thin films were examined with transmission electron microscopy to investigate nanopore formation. Tracks in quartz and mica showed diffraction contrast. Tracks in sapphire and mica showed craters formed at the positions of ion incidence and exit, with a lower-density track connecting them. Direct nanopore formation by ions (without chemical etching) would appear to require film thicknesses less than 10 nm.

  5. Oxide thickness dependence of swift heavy ion-induced surface tracks formation in silicon dioxide on silicon structures at grazing incidence

    SciTech Connect

    Carvalho, A. M. J. F.; Touboul, A. D.; Marinoni, M.; Ramonda, M.; Guasch, C.; Saigne, F.; Bonnet, J.; Gasiot, J.

    2007-12-15

    The influence of the oxide thickness in the surface tracks formation in thin silicon dioxide layered-silicon substrate (SiO{sub 2}-Si) irradiated with swift heavy ion is dealt with. In this respect, SiO{sub 2}-Si samples with different oxide thicknesses have been characterized using atomic force microscopy before and after 7.51 MeV/u Xe ion irradiation at a grazing incident angle of 1 deg. relative to the surface plane. Experimental evidence of the existence of a threshold thickness in the formation of swift heavy ion-induced surface tracks has been addressed and discussed according to the thermal spike theory. This experimental upshot can be helpful when assessing metal-oxide-semiconductor ultrathin-gate oxide reliability issues and for growth of silicon-based nanostructures.

  6. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  7. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGESBeta

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.; Zarkadoula, Eva

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd2TixZr(1-x)O7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study shows the diameter variations to be asmore » large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  8. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R G

    2005-10-14

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  9. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R.G.

    2006-06-01

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8} cm{sup -2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nmion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  10. Secondary ionisations in a wall-less ion-counting nanodosimeter: quantitative analysis and the effect on the comparison of measured and simulated track structure parameters in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, Gerhard; Bug, Marion U.; Gargioni, Elisabetta; Rabus, Hans

    2015-10-01

    The object of investigation in nanodosimetry is the physical characteristics of the microscopic structure of ionising particle tracks, i.e. the sequence of the interaction types and interaction sites of a primary particle and all its secondaries, which reflects the stochastic nature of the radiation interaction. In view of the upcoming radiation therapy with protons and carbon ions, the ionisation structure of the ion track is of particular interest. Owing to limitations in current detector technology, the only way to determine the ionisation cluster size distribution in a DNA segment is to simulate the particle track structure in condensed matter. This is done using dedicated computer programs based on Monte Carlo procedures simulating the interaction of the primary ions with the target. Hence, there is a need to benchmark these computer codes using suitable experimental data. Ionisation cluster size distributions produced in the nanodosimeter's sensitive volume by monoenergetic protons and alpha particles (with energies between 0.1 MeV and 20 MeV) were measured at the PTB ion accelerator facilities. C3H8 and N2 were alternately used as the working gas. The measured data were compared with the simulation results obtained with the PTB Monte-Carlo code PTra [B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002); M.U. Bug, E. Gargioni, H. Nettelbeck, W.Y. Baek, G. Hilgers, A.B. Rosenfeld, H. Rabus, Phys. Rev. E 88, 043308 (2013)]. Measured and simulated characteristics of the particle track structure are generally in good agreement for protons over the entire energy range investigated. For alpha particles with energies higher than the Bragg peak energy, a good agreement can also be seen, whereas for energies lower than the Bragg peak energy differences of as much as 25% occur. Significant deviations are only observed for large ionisation cluster sizes. These deviations can be explained by a background consisting of secondary ions. These ions are produced in the

  11. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  12. Track structure model of cell damage in space flight

    NASA Technical Reports Server (NTRS)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  13. Formation of swift heavy ion tracks on a rutile TiO2 (001) surface1

    PubMed Central

    Karlušić, Marko; Bernstorff, Sigrid; Siketić, Zdravko; Šantić, Branko; Bogdanović-Radović, Ivančica; Jakšić, Milko; Schleberger, Marika; Buljan, Maja

    2016-01-01

    Nanostructuring of surfaces and two-dimensional materials using swift heavy ions offers some unique possibilities owing to the deposition of a large amount of energy localized within a nanoscale volume surrounding the ion trajectory. To fully exploit this feature, the morphology of nanostructures formed after ion impact has to be known in detail. In the present work the response of a rutile TiO2 (001) surface to grazing-incidence swift heavy ion irradiation is investigated. Surface ion tracks with the well known intermittent inner structure were successfully produced using 23 MeV I ions. Samples irradiated with different ion fluences were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering. With these two complementary approaches, a detailed description of the swift heavy ion impact sites, i.e. the ion tracks on the surface, can be obtained even for the case of multiple ion track overlap. In addition to the structural investigation of surface ion tracks, the change in stoichiometry of the rutile TiO2 (001) surface during swift heavy ion irradiation was monitored using in situ time-of-flight elastic recoil detection analysis, and a preferential loss of oxygen was found. PMID:27738417

  14. Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.

  15. HIBRA: A computer code for heavy ion binary reaction analysis employing ion track detectors

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Ahmad, Siraj-ul-Islam; Manzoor, Shahid

    2016-01-01

    Collisions of heavy ions many times result in production of only two reaction products. Study of heavy ions using ion track detectors allows experimentalists to observe the track length in the plane of the detector, depth of the tracks in the volume of the detector and angles between the tracks on the detector surface, all known as track parameters. How to convert these into useful physics parameters such as masses, energies, momenta of the reaction products and the Q-values of the reaction? This paper describes the (a) model used to analyze binary reactions in terms of measured etched track parameters of the reaction products recorded in ion track detectors, and (b) the code developed for computing useful physics parameters for fast and accurate analysis of a large number of binary events. A computer code, HIBRA (Heavy Ion Binary Reaction Analysis) has been developed both in C++ and FORTRAN programming languages. It has been tested on the binary reactions from 12.5 MeV/u 84Kr ions incident upon U (natural) target deposited on mica ion track detector. The HIBRA code can be employed with any ion track detector for which range-velocity relation is available including the widely used CR-39 ion track detectors. This paper provides the source code of HIBRA in C++ language along with input and output data to test the program.

  16. A 3D feature point tracking method for ion radiation

    NASA Astrophysics Data System (ADS)

    Kouwenberg, Jasper J. M.; Ulrich, Leonie; Jäkel, Oliver; Greilich, Steffen

    2016-06-01

    A robust and computationally efficient algorithm for automated tracking of high densities of particles travelling in (semi-) straight lines is presented. It extends the implementation of (Sbalzarini and Koumoutsakos 2005) and is intended for use in the analysis of single ion track detectors. By including information of existing tracks in the exclusion criteria and a recursive cost minimization function, the algorithm is robust to variations on the measured particle tracks. A trajectory relinking algorithm was included to resolve the crossing of tracks in high particle density images. Validation of the algorithm was performed using fluorescent nuclear track detectors (FNTD) irradiated with high- and low (heavy) ion fluences and showed less than 1% faulty trajectories in the latter.

  17. Effect Of Auger Recombination In An Ion Track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1993-01-01

    Report presents theoretical calculations of contribution of Auger recombination to depletion of charge carriers from ionization track left by passage of energetic heavy ion through silicon-based electronic device.

  18. Insights on dramatic radial fluctuations in track formation by energetic ions.

    PubMed

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F; Weber, William J

    2016-06-02

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.

  19. Insights on dramatic radial fluctuations in track formation by energetic ions

    NASA Astrophysics Data System (ADS)

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-06-01

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.

  20. Insights on dramatic radial fluctuations in track formation by energetic ions.

    PubMed

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F; Weber, William J

    2016-01-01

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology. PMID:27250764

  1. Insights on dramatic radial fluctuations in track formation by energetic ions

    PubMed Central

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-01-01

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1−x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology. PMID:27250764

  2. Structure, thermal, optical and electrical investigation of the effect of heavy highly energetic ions irradiations in Bayfol DPF 5023 nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Radwan, Y. E.; Elfiky, D.; Abutalib, M. M.; Bahareth, R. A.; Hegazy, T. M.; Fouad, S. S.

    2014-04-01

    The effects of 28 GeV 56Fe ion irradiation on the structural, thermal, optical and electrical properties of Bayfol DPF 5023 have been investigated. Samples from Bayfol sheets have been irradiated using different Fe fluences in the range 1×1012 to 5×1015 ion/cm2. The total energy deposited is between (28×1021 eV and 14×1025 eV). The resultant effect of Fe ion irradiation on the properties of Bayfol has been investigated using FTIR spectroscopy, intrinsic viscosity, Thermogravimetric Analysis TGA, refractive index, color changes, and DC conductivity. The results indicate that the Fe ion irradiation in the fluence range 1012-1015 ion/cm2 led to a more compact structure of Bayfol polymer, which resulted in an improvement in its thermal stability with an increase in activation energy of thermal decomposition and crosslinking. This crosslinking enhanced the intrinsic viscosity of Bayfol from 0.58 to 0.89 at 35 °C, indicating an increase in the average molecular mass. This was accompanied with an increase in refractive index. Further, the transmission of Bayfol samples in the wavelength range of 370-780 nm, as well as any color changes, was studied. The color intensity ΔE was increased with increasing the Fe fluence, and was accompanied by a significant increase in the blue color component.

  3. A simple and rapid method for high-resolution visualization of single-ion tracks

    SciTech Connect

    Omichi, Masaaki; Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu; Tsukuda, Satoshi; Sugimoto, Masaki

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  4. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  5. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    DOE PAGESBeta

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design ofmore » a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.« less

  6. Effect of stress on track formation in amorphous iron boron alloy: ion tracks as elastic inclusions

    PubMed

    Trautmann; Klaumunzer; Trinkaus

    2000-10-23

    In a recently developed model of ion beam induced plastic deformation of amorphous solids, ion tracks are described as cylindrical thermoelastic inclusions formed upon local heating and shear stress relaxation along the ion trajectories. According to this model, track formation can be influenced or even suppressed by an applied stress. This model prediction is tested by studying the influence of stress on the etching of tracks of 2.4 GeV Pb in foil samples of the glassy metal Fe 81B 13.5Si 3.5C (2), where a compressive in-plane stress was built up in limited zones by preirradiation with a high fluence of 200 MeV Xe ions. The variation of the size of the observed etch pits with the local stress is found to be consistent with the model predictions, thus confirming the thermal spike origin of the tracks. PMID:11030972

  7. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  8. Formation of Well-defined Nanocolumns by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Macaulay, J; Contolini, R J; Searson, P C

    2003-04-12

    Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent control of diameter, length, orientation, areal density and composition so that geometry can be directly correlated to the quantum physical property of interest. The precision and control are products of the fabrication technique that we use. The process starts with an ion of sufficient energy to ''track'' a dielectric such as a film applied uniformly onto a substrate. The energy loss of the ion alters chemical bonding in the dielectric along the ion's straight trajectory. A suitable etchant quickly dissolves the latent tracks leaving high aspect ratio holes of small diameter ({approx}10nm) penetrating a film as thick as several microns. These small holes are interesting and useful in their own right and can be made to any desired size by continuing the etching process. Moreover, they serve as molds for electrochemical filling. After this electro-deposition, the mold material can be removed leaving the columns firmly attached to the substrate at the desired orientation. A variety of structures can be envisioned with these techniques. As examples, we have created arrays of Ni and of Pt nanocolumns ({approx}60 nm diameter and {approx}600 nm long) oriented perpendicular to the substrate. The high aspect ratio and small diameter of the columns enables easy observation of quantum behavior, namely efficient electron field emission and Fowler Nordheim behavior.

  9. Strategies towards advanced ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Alfonta, L.; Bukelman, O.; Chandra, A.; Fahrner, W. R.; Fink, D.; Fuks, D.; Golovanov, V.; Hnatowicz, V.; Hoppe, K.; Kiv, A.; Klinkovich, I.; Landau, M.; Morante, J. R.; Tkachenko, N. V.; Vacík, J.; Valden, M.

    Three approaches towards ion track-based biosensors appear to be feasible. The development of the first one began a decade ago [Siwy, Z.; Trofin, L.; Kohl, P.; Baker, L.A.; Martin, C.R.; Trautmann, C. J. Am. Chem. Soc. 2005, 127, 5000-5001; Siwy, Z.S.; Harrell, C.C.; Heins, E.; Martin, C.R.; Schiedt, B.; Trautmann, C.; Trofin, L.; Polman, A. Presented at the 6th International Conference on Swift Heavy Ions in Matter, Aschaffenburg, Germany, May 28-31, 2005] and makes use of the concept that the presence of certain biomolecules within liquids can block the passage through narrow pores if being captured there, thus switching off the pore's electrical conductivity. The second, having been successfully tested half a year ago [Fink, D.; Klinkovich, I.; Bukelman, O.; Marks, R.S.; Fahrner, W.; Kiv, A.; Fuks, D.; Alfonta, L. Biosens. Bioelectron. 2009, 24, 2702-2706], is based on the accumulation of enzymatic reaction products within the confined volume of narrow etched ion tracks which modifies the pore's electrical conductivity. The third and most elegant, at present under development, will exploit the charge transfer from enzymes to semiconductors embedded within etched tracks, enabling the enzymes undergoing specific reactions with the biomolecules to be detected. These strategies can be realized either within carrier-free nanoporous polymeric membranes embedded in the corresponding bioliquids, or within contacted nanoporous insulating layers on semiconducting substrates, the so-called TEMPOS structures [Fink, D.; Petrov, A.; Hoppe, H.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.; Chandra, A.; Biswas, A.; Chadderton, L.T. Nucl. Instrum. Methods B 2004, 218, 355-361]. The latter have the advantage of exhibiting a number of peculiar electronic properties, such as the ability for logic and/or combination of input signals, tunable polarity, negative differential resistances, tunability by external parameters such as light, magnetic fields, etc. and self-pulsations, which

  10. Track-structure investigations: A supplement to microdosimetry

    SciTech Connect

    Conte, V.; Colautti, P.; Grosswendt, B.; Moro, D.; De Nardo, L.

    2013-07-18

    We conceived and developed an experimental apparatus able to measure the track structure (the spatial distribution of the points of ionizing collisions) of light ions, allowing the investigation of the track-core and penumbra regions separately. The device is based on single-electron counting technique, and simulates a target volume V of about 20 nm in diameter that can be moved with respect to a narrow primary particle beam, allowing the measurement of the ionization-cluster-size distribution as a function of the impact parameter. The experimental set up is mounted at the Tandem-Alpi LNL particle accelerator complex. The goal of the experiment is to investigate the formation of ionization-cluster-size distributions caused in a nanometre-sized volume by different light ions of medical interest (protons, lithium ions and carbon ions), when penetrating through or passing by the target volume at a specified distance.

  11. Engineering cell-fluorescent ion track hybrid detectors

    PubMed Central

    2013-01-01

    Background The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). Methods The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u−1). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. Results The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. Conclusions The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy

  12. Dosimetric precision of an ion beam tracking system

    PubMed Central

    2010-01-01

    Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems. PMID:20591160

  13. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  14. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  15. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  16. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  17. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  18. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  19. Polypyrrole Nanowires Generation Using Chemical Synthesis Through Ion Track Membranes

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Chakarvarti, S. K.

    Polypyrrole nanocylinders were produced by non-galvanically (chemically) synthesizing polypyrrole within the pores of nanoporous polycarbonate ion track-etched membranes. The morphology of the nanowires was characterized by scanning electron microscopy. The electrical conductivity of the nanocylinders was calculated by leaving the nanocylinders fixed in the insulating template membrane and evaluating the transmembrane resistance.

  20. Ion track enabled multiple wire microvia interconnects in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Yousef, H.; Lindeberg, M.; Hjort, K.

    2008-04-01

    As the call for higher wiring density in packaging and vertical microvia interconnections (microvias) rapidly evolves, the need for smaller lateral dimensions in printed circuit boards (PCB) microvias must be met. The ion track lithography described in this paper allows for high throughput micromachining of small, deep, vertical microvias in flexible PCB and all-polymer laminates. Ion track lithography makes use of swift heavy ion irradiation to enhance the selectivity and directionality of chemical etching. Within the areas exposed to the ion irradiation, small sub-micron pores (capillaries) are created, one for every ion. If etching is prolonged, the pores become merged. Electrodeposition from a metallic seed layer is used to fill these structures with metal. The lithography masks define either the areas where the ion tracks are developed or where the tracks are metallized. The smallest achievable size of the microvias is only limited by the resolution of the mask; microvias below 10 μm in diameter can also be achieved also in thick polyimide foils. Since each impinging ion forms one track, the foil's porosity can be controlled by adjusting the irradiation dose, as well as by etching the pores to a suitable size. Depending on the porosity and material, the resultant metallized microvia consists of either individual or interlaced wires (like strands in a bundle wire), or is a solid. As an individual sub-micron wire may have an aspect ratio of several hundreds, this allows for the fabrication of truly vertical microvia structures, allowing ultra-high density microvia batch production. Demonstrator microstructures with highly vertical microvias have been fabricated in foils up to 125 μm thickness. Several components integrated in flexible PCB have been presented by us, e.g. magnetoresistive sensors, thermopile IR-sensors and microwave components like inductor elements.

  1. Controlled fabrication of ion track nanowires and channels

    NASA Astrophysics Data System (ADS)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  2. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  3. Ion tracking in an electrostatic potential distribution. Ph.D. Thesis; [photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Ross, D. P.

    1978-01-01

    An ion tracking system utilizing a single detector was designed to resolve two dimensional potential distributions in a vacuum. The ion detector consisted of a continuous dynode electron multiplier tube mounted behind a series of aperture plates. The detector was located on a track below a wedge shaped structure used to produce the desired potential distribution. A 150 volt electron beam aimed at selected regions, ionized the residual gas in the chamber. The ions were ejected from their source points by electrostatic forces causing them to drift downward toward the detector. Measurements of particle energy, detector position, and entry angle of the incoming particle flux were used to initialize a computer trajectory-tracing program. The program assumes a known theoretically calculated potential distribution near the wedge for computation of particle trajectories, providing a basis for evaluating the data. Special attention was given to characterization of the ion detector.

  4. Monte Carlo track structure for radiation biology and space applications

    NASA Technical Reports Server (NTRS)

    Nikjoo, H.; Uehara, S.; Khvostunov, I. G.; Cucinotta, F. A.; Wilson, W. E.; Goodhead, D. T.

    2001-01-01

    Over the past two decades event by event Monte Carlo track structure codes have increasingly been used for biophysical modelling and radiotherapy. Advent of these codes has helped to shed light on many aspects of microdosimetry and mechanism of damage by ionising radiation in the cell. These codes have continuously been modified to include new improved cross sections and computational techniques. This paper provides a summary of input data for ionizations, excitations and elastic scattering cross sections for event by event Monte Carlo track structure simulations for electrons and ions in the form of parametric equations, which makes it easy to reproduce the data. Stopping power and radial distribution of dose are presented for ions and compared with experimental data. A model is described for simulation of full slowing down of proton tracks in water in the range 1 keV to 1 MeV. Modelling and calculations are presented for the response of a TEPC proportional counter irradiated with 5 MeV alpha-particles. Distributions are presented for the wall and wall-less counters. Data shows contribution of indirect effects to the lineal energy distribution for the wall counters responses even at such a low ion energy.

  5. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGESBeta

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  6. Local weighting of nanometric track structure properties in macroscopic voxel geometries for particle beam treatment planning

    NASA Astrophysics Data System (ADS)

    Alexander, F.; Villagrasa, C.; Rabus, H.; Wilkens, J. J.

    2015-12-01

    The research project BioQuaRT within the European Metrology Research Programme aimed at correlating ion track structure characteristics with the biological effects of radiation and developed measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigated methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Here we make use of parameterizations that link the energy of the projectile to the ionization pattern of the track using nanodosimetric ionization cluster size distributions. They were defined with data generated by simulations of ion tracks in liquid water using the Geant4 Monte Carlo toolkit with the Geant4-DNA processes. For the clinical situation with a mixed radiation field, where particles of various energies hit a cell from several directions, we have to find macroscopic relevant mean values. They can be determined by appropriate local weighting functions for the identified parameterization. We show that a stopping power weighted mean value of the mentioned track structure properties can describe the overall track structure in a cell exposed to a mixed radiation field. The parameterization, together with the presented stopping power weighting approach, show how nanometric track structure properties could be integrated into treatment planning systems without the need to perform time consuming simulations on the nanometer level for each individual patient.

  7. Cosmic heavy ion tracks in mesoscopic biological test objects

    NASA Technical Reports Server (NTRS)

    Facius, R.

    1994-01-01

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on 'HZE particle effects in manned spaced flight', it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to 'large' fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too ('The BIOSTACK as an approach to high LET radiation research'), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions' trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series. Since biological investigations and physical measurements of particle tracks had to be performed in laboratories widely separated, the preferred fixed contact between biological test objects and the particle detectors

  8. Magnetic and optical properties of cobalt nanowires fabricated in polycarbonate ion-track templates

    NASA Astrophysics Data System (ADS)

    Duan, J.; Liu, J.; Cornelius, T. W.; Yao, H.; Mo, D.; Chen, Y.; Zhang, L.; Sun, Y.; Hou, M.; Trautmann, C.; Neumann, R.

    2009-08-01

    Cobalt nanowires with diameter 75 nm were synthesized in ion track-etched membranes by electrochemical deposition. Scanning electron microscopy displays cylindrical wires with smooth and homogeneous contours. X-ray diffraction studies indicate that the wires possess a face centered cubic structure and a preferred growth orientation along the [1 1 0] direction. The wires exhibit magnetic anisotropy, which is observed and is ascribed to shape anisotropy. The optical extinction spectrum shows a band which probably originates from a surface plasmon resonance.

  9. Predictive modeling of synergistic effects in nanoscale ion track formation

    SciTech Connect

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  10. Top marine predators track Lagrangian coherent structures

    PubMed Central

    Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique

    2009-01-01

    Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel. PMID:19416811

  11. Formation of energetic heavy ion tracks in polyimide thin films

    NASA Astrophysics Data System (ADS)

    Deslandes, Alec; Murugaraj, Pandiyan; Mainwaring, David E.; Ionescu, Mihail; Cohen, David D.; Siegele, Rainer

    2013-11-01

    Polyimide thin films have been irradiated with a high energy beam of heavy ions to a fluence of approximately 4 × 1013 ions/cm2. Proton backscattering spectroscopy was used to measure the composition of the films, which showed that oxygen was the element that exhibited the most rapid loss from the film. The gases evolved from the film during polymer modification were monitored using a quadrupole mass spectrometer for residual gas analysis (RGA). The fluence dependence of RGA signals were indicative of multi-step processes of gas release, whereby the passage of an ion through a region of pristine film changes the local molecular structure to one that will more readily form volatile species when subsequent ions pass.

  12. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  13. Discontinuous ion tracks on silicon oxide on silicon surfaces after grazing-angle heavy ion irradiation

    SciTech Connect

    Carvalho, A. M. J. F.; Marinoni, M.; Touboul, A. D.; Guasch, C.; Lebius, H.; Ramonda, M.; Bonnet, J.; Saigne, F.

    2007-02-12

    Thin silicon oxide layers on silicon have been characterized by atomic force microscopy before and after swift heavy ion irradiation with 0.63 MeV/u Pb ions at grazing angle of incidence. In this letter, the authors report the observation of extended intermittent tracks at the silicon oxide (SiO{sub 2}) surface. As a result, this raises the question of the discontinuous energy deposition at the nanometric scale. This experimental overlook is of major interest for nanostructuring and surface nanoprocessing as well as with regard to reliability of electronic components and systems.

  14. Size characterization of ion tracks in PET and PTFE using SAXS

    NASA Astrophysics Data System (ADS)

    Schauries, D.; Rodriguez, M. D.; Afra, B.; Bierschenk, T.; Trautmann, C.; Mudie, S.; Kluth, P.

    2015-12-01

    Ion tracks in polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) were created by swift heavy ion irradiation and subsequently characterized using small angle X-ray scattering (SAXS). Due to their reduced density compared to the surrounding matrix, cylindrical geometry, and parallel orientation, ion tracks produce a characteristic scattering pattern which allows quantitative analysis of their radius with high precision. For ion tracks in PET thermal annealing led to a gradual fading with a decrease in density difference yet a simultaneous increase in ion track radius. Such an increase in radius is the direct opposite compared to temperature induced ion track shrinking in inorganic materials, and suggests a very different thermal response of the polymer.

  15. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  16. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  17. Status and Perspectives of Ion Track Electronics for Advanced Biosensing

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.

    New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.

  18. Impact of Track Structure Effects on Shielding and Dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.

    1999-01-01

    Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and

  19. Fine-Tuning of Electronic Structure of Cobalt(II) Ion in Nonplanar Porphyrins and Tracking of a Cross-Hybrid Stage: Implications for the Distortion of Natural Tetrapyrrole Macrocycles.

    PubMed

    Liu, Qiuhua; Zhang, Xi; Zeng, Wennan; Wang, Jianxiu; Zhou, Zaichun

    2015-11-01

    The core size of the porphyrin macrocycles was closely related to their stability of the different electron structure in the central metal ion. Cobalt(II) ions can undergo a conversion in electron configurations upon N4 core contraction of 0.05 Å in nonplanar porphyrins, and these ions still maintain low spin forms after and before conversion. The structural fine-tuning can induce the appearance of a cross-hybrid stage [d(x(2)-y(2))sp(2) ↔ d(z(2))sp(2)] based on quadrilateral coordination of the planar core. The results indicate that the configuration conversion plays a key role in electron transfer in redox catalysis involving cobalt complexes. The electronic properties of six monostrapped cobalt(II) porphyrins were investigated by spectral, paramagnetic, and electrochemical methods. The macrocyclic deformations and size parameters of Co-containing model compounds were directly obtained from their crystal structures. PMID:26461496

  20. Role of tracking in future relativistic heavy ion experiments

    SciTech Connect

    Gruhn, C.R.

    1986-09-01

    Essentially all electronic high energy experiments have used some form of tracking. All of the planned experiments for the CERN SPS RHI program use tracking. In this talk a brief physics justification for tracking is made, emphasizing the need for correlations. Some of the boundary conditions imposed upon tracking for the SPS/RHIC experiments are examined. The CERN experiment NA36 will be used as an example. Some future alternatives which might facilitate tracking in RHI experiments are examined. 5 refs., 5 figs., 2 tabs.

  1. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  2. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGESBeta

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  3. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    SciTech Connect

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.

  4. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    SciTech Connect

    Artemenkov, D. A. Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-15

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  5. Characterization of multiple-bit errors from single-ion tracks in integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Edmonds, L. D.; Smith, L. S.

    1989-01-01

    The spread of charge induced by an ion track in an integrated circuit and its subsequent collection at sensitive nodal junctions can cause multiple-bit errors. The authors have experimentally and analytically investigated this phenomenon using a 256-kb dynamic random-access memory (DRAM). The effects of different charge-transport mechanisms are illustrated, and two classes of ion-track multiple-bit error clusters are identified. It is demonstrated that ion tracks that hit a junction can affect the lateral spread of charge, depending on the nature of the pull-up load on the junction being hit. Ion tracks that do not hit a junction allow the nearly uninhibited lateral spread of charge.

  6. Tracking of Ions Produced at Near Barrier Energies in Nuclear Reactions

    SciTech Connect

    Shapira, Dan

    2010-01-01

    Examples of detectors, presently in use, for tracking products from nuclear reactions induced by radioactive ion beams are described. A new tracking detector is being designed to study the binary products from reactions induced by heavy neutron-rich radioactive ion beams on heavy neutron-rich target nuclei. The motivation for such studies and the features designed to accomplish this goal will be presented.

  7. Ultraheavy cosmic ray tracks in meteorites: A reappraisal, based on calibrations with relativistic ions

    NASA Technical Reports Server (NTRS)

    Perron, C.

    1985-01-01

    Experiments were carried out on tracks of high energy U ions in olivine, a common meteoritic mineral. The results offer an explanation for the lack of success of previous attempts to derive the Ultraheavy Cosmic Ray composition from the study of tracks in meteorites. They also suggest how such experiments should be performed. The methods tested are described and illustrated.

  8. Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Hilgers, Gerhard; Bleicher, Marcus

    2016-05-01

    The Geant4-based Monte Carlo model for Heavy-Ion Therapy (MCHIT) was extended to study the patterns of energy deposition at sub-micrometer distance from individual ion tracks. Dose distributions for low-energy 1H, 4He, 12C and 16O ions measured in several experiments are well described by the model in a broad range of radial distances, from 0.5 to 3000 nm. Despite the fact that such distributions are characterized by long tails, a dominant fraction of deposited energy (∼80%) is confined within a radius of about 10 nm. The probability distributions of clustered ionization events in nanoscale volumes of water traversed by 1H, 2H, 4He, 6Li, 7Li, and 12C ions are also calculated. A good agreement of calculated ionization cluster-size distributions with the corresponding experimental data suggests that the extended MCHIT can be used to characterize stochastic processes of energy deposition to sensitive cellular structures.

  9. Symphony and cacophony in ion track etching: how to control etching results

    NASA Astrophysics Data System (ADS)

    Fink, D.; Kiv, A.; Cruz, S. A.; Muñoz H., G.; Vacík, J.

    2012-07-01

    In general, etching of two identical ion-irradiated polymer foils in the same vessel with the same etchant for the same times does not lead to identical track shapes in both foils. In contrast, the track shapes, the etching speeds, and consequently also the etchant consumption of the two foils diverge increasingly with increasing etching times, unless this is prevented by forceful external equilibration of the system. This tendency toward divergence of a system of multiple ion tracks originates from its lack of self-synchronization during etching. A theory has been developed for this case that also shows general applicability to other diverging effects in human life.

  10. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    The theoretical analysis presented indicates that Auger recombination can reduce charge collection from very dense ion tracks in silicon devices. It is of marginal importance for tracks produced by 270-MeV krypton, and therefore it is of major importance for ions exhibiting a significantly larger loss. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a nonzero limiting value as t approaches infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  11. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  12. Code System for Calculating Ion Track Condensed Collision Model.

    1997-05-21

    Version 00 ICOM calculates the transport characteristics of ion radiation for applicaton to radiation protection, dosimetry and microdosimetry, and radiation physics of solids. Ions in the range Z=1-92 are handled. The energy range for protons is 0.001-10,000 MeV. For other ions the energy range is 0.001-100MeV/nucleon. Computed quantities include stopping powers, ranges; spatial, angular and energy distributions of particle current and fluence; spatial distributions of the absorbed dose; and spatial distributions of thermalized ions.

  13. Latent tracks of swift heavy ions in Cr23C6 and Y-Ti-O nanoparticles in ODS alloys

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Sohatsky, A. S.; O'Connell, J. H.; Kornieieva, K.; Nikitina, A. A.; Uglov, V. V.; Neethling, J. H.; Ageev, V. S.

    2016-05-01

    The radiation stability of dielectric nanoparticles embedded into a metallic matrix is of considerable practical value due to the growing interest in oxide dispersion strengthened (ODS) steels as promising nuclear reactor materials. In this report the results of a TEM study of structural changes in Cr23C6 and Y-Ti-O nanoparticles in several ODS alloys irradiated with 1.2 MeV/amu Xe and 3.4 MeV/amu Bi ions is presented. It was found that swift heavy ion irradiation leads to the formation of amorphous latent tracks in both materials. The upper limit of the threshold electronic stopping power for track formation in carbides is estimated to be around 35 keV/nm. Multiple ion track overlapping leads to complete amorphization of carbide and Y-Ti oxide nanoparticles. Microstructural analysis have revealed a strong influence of the ferritic matrix on track morphology in Y2Ti2O7 nanoparticles in pre-thinned TEM targets after postradiation annealing and irradiation at elevated temperatures.

  14. Production and distribution of aberrations in resting or cycling human lymphocytes following Fe-ion or Cr-ion irradiation: Emphasis on single track effects

    NASA Astrophysics Data System (ADS)

    Deperas-Standylo, Joanna; Lee, Ryonfa; Nasonova, Elena; Ritter, Sylvia; Gudowska-Nowak, Ewa

    2012-09-01

    In the present study we examined the cytogenetic effects of 177 MeV/u Fe-ions (LET = 335 keV/μm) and 4.1 MeV/u Cr-ions (LET = 3160 keV/μm) in human lymphocytes under exposure conditions that result on average in one particle hit per cell nucleus. In non-cycling (G0-phase) lymphocytes the induction and the repair of excess fragments was measured by means of the premature chromosome condensation (PCC) technique and the distribution of breaks among cells was analysed. The PCC-data were further compared with those reported recently for stimulated lymphocytes at the first post-irradiation mitosis. Our experiments show that a single nuclear traversal by a Fe-ion produced more initial chromatin breakage than one Cr-ion, but after 24 h of repair the number of excess fragments/cell was similar for both ion species. All distributions of aberrations were overdispersed. For low energy Cr-ions, where the track radius is smaller than the radius of the cell nucleus, the data could be well described by a Neyman type A distribution. In contrast, the data obtained for high energy Fe-ions were fitted with a convoluted Poisson-Neyman distribution to account for the fact that the dose is deposited not only in the cell actually traversed but also in neighbouring cells. By applying metaphase analysis a different picture emerged with respect to the aberration yield, i.e. more aberrations were detected in cells exposed to Fe-ions than in those irradiated with Cr-ions. Yet, as observed for non-cycling lymphocytes all aberration distributions generated for metaphase cells were overdispersed. The obtained results are discussed with respect to differences in particle track structure. Additionally, the impact of confounding factors such as apoptosis that affect the number of aberrations expressed in a cell population is addressed.

  15. High-LET ion radiolysis of water: oxygen production in tracks.

    PubMed

    Meesungnoen, Jintana; Jay-Gerin, Jean-Paul

    2009-03-01

    It is known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, a result that is of particular significance in radiobiology and of practical relevance in radiotherapy. In fact, it has been suggested that the radiolytic formation of an oxygenated microenvironment around the tracks of high-LET heavy ions is an important factor in their enhanced biological efficiency in the sense that this may be due to an "oxygen effect" by O(2) produced by these ions in situ. Using Monte Carlo track simulations of pure, deaerated water radiolysis by 4.8 MeV (4)He(2+) (LET approximately 94 keV/microm) and 24 MeV (12)C(6+) (LET approximately 490 keV/microm) ions, including the mechanism of multiple ionization of water, we have calculated the yields and concentrations of O(2) in the tracks of these irradiating ions as a function of time between approximately 10(-12) and 10(-5) s at 25 and 37 degrees C. The track oxygen concentrations obtained compare very well with O(2) concentrations estimated from the "effective" amounts of oxygen that are needed to produce the observed reduction in oxygen enhancement ratio (OER) with LET (assuming this decrease is attributable to the sole radiolytic formation of O(2) in the tracks). For example, for 24 MeV (12)C(6+) ions, the initial track concentration of O(2) is estimated to be more than three orders of magnitude higher than the oxygen levels present in normally oxygenated and hypoxic tumor regions as well as in normal human cells. Such results, which largely plead in favor of the "oxygen in the heavy-ion track" hypothesis, could explain at least in part the greater efficiency of high-LET radiation for cell inactivation (at equal radiation dose). PMID:19267566

  16. Using music structure to improve beat tracking

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.

    2005-09-01

    Beats are an important feature of most music. Beats are used in music information retrieval systems for genre classification, similarity search, and segmentation. However, beats can be difficult to identify, especially in music audio. Traditional beat trackers attempt to (1) match predicted beats to observations of likely beats, and (2) maintain a fairly steady tempo. A third criterion can be added: when repetitions of musical passages occur, the beats in the first repetition should align with the beats in all other repetitions. This third criterion improves beat tracking performance significantly. Repetitions of musical passages are discovered in audio data by searching for similar sequences of chroma vectors. Beats are ``tracked'' by first locating a sequence of likely beats in the music audio using high frequency energy as an indicator of beat likelihood. This beat sequence is then extended by searching forward and backward for more matching beats, allowing slight variations in tempo, and using a relaxation algorithm to optimize the proposed beat locations with respect to the three criteria. Other high-level music features may offer further improvements in beat identification.

  17. Nuclear tracks in CR-39 produced by carbon, oxygen, aluminium and titanium ions.

    PubMed

    Rickards, J; Romo, V; Golzarri, J I; Espinosa, G

    2002-01-01

    This work describes the response of CR-39 (allyl diglycol polycarbonate) to different ions (C, O, Al and Ti) produced by the Instituto de Fisica 3 MV 9SDH-2 Pelletron accelerator and backscattered from a thin Au film on a C support. The ion energies were chosen in series such that the ranges of the different ions in the detector were 2, 3, 4, 5, 6, 7 and 8 microm respectively for each series. Once exposed, the detectors were etched with a solution of 6.25 M KOH at 60 degrees C, and the reading was carried out using a digital image analysis system. An analysis of the measured track diameters of all the types of ions indicates that, for a given range, track kinetics are independent of type of ion, energy and stopping power.

  18. Inhomogeneous distribution of crosslinks in ion tracks in polystyrene and polysilanes

    SciTech Connect

    Seki, Shu; Tsukuda, Satoshi; Maeda, Kensaku; Matsui, Yoshinori; Saeki, Akinori; Tagawa, Seiichi

    2004-10-01

    Gelation in polystyrene, poly(methylphenylsilane), and poly(di-n-hexylsilane) induced by irradiation with 30-200 keV Ga, Si, and Au ion beams is examined and compared with that induced by MeV-order ion beams of similar linear energy transfer. The apparent G values of crosslinking (crosslinks per 100 eV absorbed dose) are calculated using the Charlesby-Pinner relationship, and shown to be dramatically lower than for the corresponding MeV ion beams. This decrease is attributed due to the reduced ion track radius and an increase in the density of crosslinking points. The apparent crosslinking G value obtained by the Charlesby-Pinner relationship represents only the crosslinking points contributing to gelation, and other points such as intramolecular crosslinking in the core of the ion track are not counted in the relationship. The total volume of ion tracks is considered to be the most important feature determining the gel fraction produced by the ion beams. A new formulation that provides a good explanation of the gelation of the polymer is proposed, with applicability to ion beams with energy of keV to MeV order.

  19. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    SciTech Connect

    Tolmachev, Aleksey V.; Webb, Ian K.; Ibrahim, Yehia M.; Garimella, Venkata BS; Zhang, Xinyu; Anderson, Gordon A.; Smith, Richard D.

    2014-08-23

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radio frequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radio frequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards, and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be ‘soft’ in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling ion mobility separations.

  20. Characterization of ion dynamics in structures for lossless ion manipulations.

    PubMed

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations. PMID:25152178

  1. Transport of secondary electrons and reactive species in ion tracks

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  2. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  3. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-01

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  4. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track.

    PubMed

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-12

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions. PMID:27518588

  5. Fluorescent tracking of nickel ions in human cultured cells

    SciTech Connect

    Ke Qingdong; Davidson, Todd; Kluz, Thomas; Oller, Adriana; Costa, Max . E-mail: costam01@nyu.edu

    2007-02-15

    The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability to enter cells and elevate intracellular levels of Ni ions. Water-insoluble Ni compounds such as NiS and Ni{sub 3}S{sub 2} were shown in vitro to enter cells by phagocytosis and potently induce tumors in experimental animals at the site of exposure. These water-insoluble nickel compounds are generally considered to be more potent carcinogens than the water-soluble forms. However, recent in vitro studies have shown similar effects for insoluble and soluble Ni compounds. Using a dye that fluoresces when intracellular Ni ion binds to it, we showed that both soluble and insoluble Ni compounds were able to elevate the levels of Ni ions in the cytoplasmic and nuclear compartments. However, when the source of Ni ions was removed from the culture dish, the intracellular Ni ions derived from soluble Ni compound were lost from the cells at a significantly faster rate than those derived from the insoluble Ni compound. Within 10 h after NiCl{sub 2} removal from the culture medium, Ni ions disappeared from the nucleus and were not detected in the cells by 16 h, while insoluble Ni{sub 3}S{sub 2} yielded Ni ions that persisted in the nucleus after 16 h and were detected in the cytoplasm even after 24 h following Ni removal. These effects are discussed in terms of whole body exposure to water-soluble and -insoluble Ni compounds and consistency with animal carcinogenicity studies.

  6. 4D optimization of scanned ion beam tracking therapy for moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  7. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  8. Electrochemical preparation of metal microstructures on large areas of etched ion track membranes

    NASA Astrophysics Data System (ADS)

    Dobrev, D.; Vetter, J.; Angert, N.

    1999-01-01

    A microgalvanic method for metal filling of etched ion tracks in organic foils on large areas is described. The method and the used galvanic cell permit the deposition of stable standing individual metal whiskers with high aspect ratio and a density of 10 5-10 8 per cm 2 on an area of 12.5 cm 2. The method was verified with copper and it is suitable also for various other metals. It can be applied for the replication of etched ion tracks and for the fabrication of microstructures containing large numbers of individual metal whiskers.

  9. Cosmic heavy ion tracks in mesoscopic biological test objects

    SciTech Connect

    Facius, R.

    1994-12-31

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on `HZE particle effects in manned spaced flight`, it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to `large` fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too (`The BIOSTACK as an approach to high LET radiation research`), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions` trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series.

  10. Relative displacement method for track-structure interaction.

    PubMed

    Schanack, Frank; Ramos, Óscar Ramón; Reyes, Juan Patricio; Pantaleón, Marcos J

    2014-01-01

    The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610

  11. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  12. Relative Displacement Method for Track-Structure Interaction

    PubMed Central

    Ramos, Óscar Ramón; Pantaleón, Marcos J.

    2014-01-01

    The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610

  13. Cortical tracking of hierarchical linguistic structures in connected speech.

    PubMed

    Ding, Nai; Melloni, Lucia; Zhang, Hang; Tian, Xing; Poeppel, David

    2016-01-01

    The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures on the basis of a grammatical system, resulting in a hierarchy of linguistic units, such as words, phrases and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries that are clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. We found that, during listening to connected speech, cortical activity of different timescales concurrently tracked the time course of abstract linguistic structures at different hierarchical levels, such as words, phrases and sentences. Notably, the neural tracking of hierarchical linguistic structures was dissociated from the encoding of acoustic cues and from the predictability of incoming words. Our results indicate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure.

  14. Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech

    PubMed Central

    Ding, Nai; Melloni, Lucia; Zhang, Hang; Tian, Xing; Poeppel, David

    2016-01-01

    The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures based on a grammatical system, resulting in a hierarchy of linguistic units, e.g., words, phrases, and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. Here we demonstrate that during listening to connected speech, cortical activity of different time scales concurrently tracks the time course of abstract linguistic structures at different hierarchical levels, e.g. words, phrases, and sentences. Critically, the neural tracking of hierarchical linguistic structures is dissociated from the encoding of acoustic cues as well as from the predictability of incoming words. The results demonstrate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure. PMID:26642090

  15. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  16. SAXS investigations of the morphology of swift heavy ion tracks in α-quartz.

    PubMed

    Afra, B; Rodriguez, M D; Trautmann, C; Pakarinen, O H; Djurabekova, F; Nordlund, K; Bierschenk, T; Giulian, R; Ridgway, M C; Rizza, G; Kirby, N; Toulemonde, M; Kluth, P

    2013-01-30

    The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.

  17. Track damage and erosion of insulators by ion-induced electronic processes

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1984-01-01

    Track damage and the associated ejection of atoms and molecules from insulators, which occur as a result of ion-induced electronic excitation, are of interest both in their own right and because of the mechanisms through which the energy in the excited electrons is transformed into atomic motion. In this paper an overview is given of the phenomena that are observed. We show that there is a remarkable similarity between the damage profile along the ion's track in the solid and the yield of ejected atoms at the energy that corresponds to each point on the track. It is also seen that the density of extended defects (or, correspondingly, the ejected particle yield) appears to have a 'universal' form that is weakly dependent on the type of material. In the model presented this is a consequence of the inner-shell ionization of light elements in the solid by the incident ion; the resulting Auger decay produces an intense ionization spike that locally triggers the track formation/erosion process. This model allows the estimation of erosion yields/damage profiles for different ions and materials.

  18. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.

    2016-05-01

    The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.

  19. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  20. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  1. Charge collected by diffusion from an ion track under mixed boundary conditions

    SciTech Connect

    Edmonds, L.D. )

    1991-04-01

    This paper analyzes charge-carrier diffusion from an ion track in a silicon substrate, at least a few hundred {mu}m thick. The substrate upper surface is treated as reflective except for a small section, intended to represent a reverse-biased junction, which is treated as a sink. Total charge collected by the sink is calculated by assuming transport to be governed by an ambipolar diffusion equation with temporally constant and spatially uniform carrier lifetime and diffusion coefficient. Present results apply to a normally incident track but could easily be generalized to arbitrary track direction. The collected charge is found to depend on track length and on the electrostatic capacitance, rather than the area, of the sink. Theoretical prediction are compared to the results of a numerical simulation called the Poisson and Continuity Equation Solver (PISCES) for three cases and are found to agree within a factor of two in the worst case.

  2. 1. EXISTING TRASH RAKE STRUCTURE AND STEEL IBEAM TRACK, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXISTING TRASH RAKE STRUCTURE AND STEEL I-BEAM TRACK, LOOKING EAST/NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  3. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology

    NASA Astrophysics Data System (ADS)

    Metz, S.; Trautmann, C.; Bertsch, A.; Renaud, Ph

    2004-03-01

    This paper reports on polyimide microfluidic devices fabricated by photolithography and a layer transfer lamination technology. The microchannels are sealed by laminating an uncured polyimide film on a partially cured layer and subsequent imidization. Selected areas of the microchannels were irradiated with heavy ions of several hundred MeV and the generated ion tracks are chemically etched to submicron pores of high aspect ratio. The ion beam parameters and the track etching conditions define density, length, diameter and shape of the pores. Membrane permeability and separation performance is demonstrated in cross-flow filtration experiments. The devices can be used for selective delivery or probing of fluids to biological tissue, e.g. drug delivery or microdialysis. For chip-based devices the filters can be used as a sample pre-treatment unit for filtration or concentration of particles or molecules.

  4. ION MANIPULATIONS IN STRUCTURES FOR LOSSLESS ION MANIPULATIONS (SLIM): COMPUTATIONAL EVALUATION OF A 90° TURN AND A SWITCH

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia. M; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-01-01

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ~10 V. The ion plume width in these conditions is ~1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs. PMID:26289106

  5. Tracking Coherent Structures and Source Localization in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hsieh, Ani; Schwartz, Ira; Yecko, Philip

    There has been a steady increase in the deployment of autonomous underwater and surface vehicles for applications such as ocean monitoring, tracking of marine processes, and forecasting contaminant transport. The underwater environment poses unique challenges since robots must operate in a communication and localization-limited environment where their dynamics are tightly coupled with the environmental dynamics. This work presents current efforts in understanding the impact of geophysical fluid dynamics on underwater vehicle control and autonomy. The focus of the talk is on the use of collaborative vehicles to track Lagrangian coherent structures and to localize contaminant spills. Research supported by the National Science Foundation and the Office of Naval Research.

  6. Strain fields around high-energy ion tracks in {alpha}-quartz

    SciTech Connect

    Follstaedt, D. M.; Norman, A. K.; Doyle, B. L.; McDaniel, F. D.

    2006-09-15

    Transmission electron microscopy has been used to image the tracks of high-energy {sup 197}Au{sup +26} (374 MeV) and {sup 127}I{sup +18} (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal {alpha}-quartz (SiO{sub 2}). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO{sub 2} films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling.

  7. Manufacturing cost analysis for photovoltaic concentrator tracking structures

    NASA Astrophysics Data System (ADS)

    Heller, B.; Pass, N.; Blackwell, R.

    1983-11-01

    Detailed manufacturing, transportation and installation costs are developed for the current design of three different photovoltaic concentrator tracking structures at a production rate of 10 to the 5th power/sq m per year. These costs are combined with array field performance estimates to obtain cost per watt and levelized energy costs for 500 kW fields. Installed structure costs for the three arrays (including G and A and profit but not module FOB costs) range from $166 to $208/sqm, or $1.04 to $1.28/W sub ap in 1982 dollars. The pedestal tracking structure has a lower cost than the post/frame or pylon/torque tube arrays.

  8. Investigation of nanopore evolution in ion track-etched polycarbonate membranes

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Apel, P. Yu.; Schiedt, B.; Trautmann, C.; Toimil-Molares, M. E.; Karim, S.; Neumann, R.

    2007-12-01

    Single heavy ion tracks in polycarbonate foils were chemically etched in an electrolytical cell under various conditions (different temperatures, etchant concentrations, and applied potentials), and the pore evolution was monitored by measuring the current through the membrane. Different zones of the latent tracks could be identified via changes in the radial etching rate with time. Further it was found that the shape of the radial etching rate versus time curves depends on temperature, etchant concentration, and applied voltage. The functionalities are attributed to etching products (double-charged diphenylol-propane anions), which are adsorbed on the pore walls and, thus, affect the further etching process.

  9. Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss

    NASA Astrophysics Data System (ADS)

    Lang, Maik; Toulemonde, Marcel; Zhang, Jiaming; Zhang, Fuxiang; Tracy, Cameron L.; Lian, Jie; Wang, Zhongwu; Weber, William J.; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2014-10-01

    The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: 58Ni, 101Ru, 129Xe, 181Ta, 197Au, 208Pb, and 238U of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core-shell morphologies induced by ions of different dE/dx.

  10. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  11. A thermalized ion explosion model for high energy sputtering and track registration

    NASA Technical Reports Server (NTRS)

    Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.

    1980-01-01

    A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.

  12. Video object motion tracking: a structured versus unstructured mesh topology

    NASA Astrophysics Data System (ADS)

    Badawy, Wael

    2001-11-01

    This paper presents a novel concept for very low bit rate video codec. It uses a new hierarchical adaptive structured mesh topology. The proposed video codec can be used in wireless video applications. It uses structures to model the dynamics of the video object where the proposed the adaptive structure splitting significantly reduces the number of bits used for mesh description. Moreover, it reduces the latency of motion estimation and compensation operations. A comprehensive performance study is presented for the proposed mesh-based motion tracking and the commonly used techniques. It shows the superior of the proposed concept compare to the current MPEG techniques.

  13. Motion tracking in narrow spaces: a structured light approach.

    PubMed

    Olesen, Oline Vinter; Paulsen, Rasmus R; Højgaar, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees. Finally, we demonstrate qualitative result on real face motion estimation.

  14. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  15. Structural Failure of a Starr-Edwards Aortic Track Valve

    PubMed Central

    Ringel, Richard E.; Moulton, Anthony L.; Burns, Janet E.; Brenner, Joel I.; Berman, Michael A.

    1983-01-01

    Structural failure of a Model 2400 Starr-Edwards aortic track valve occurred suddenly, 4 years after implantation. At operation, the valve cage was removed from the descending aorta. Examination of the excised prosthesis disclosed minimal cloth wear and no evidence of infective growth; however, three struts were fractured above their insertion into the valve ring. To our knowledge, this type of valve malfunction has not been previously noted. Images PMID:15227160

  16. Response of GaN to energetic ion irradiation: conditions for ion track formation

    NASA Astrophysics Data System (ADS)

    Karlušić, M.; Kozubek, R.; Lebius, H.; Ban-d'Etat, B.; Wilhelm, R. A.; Buljan, M.; Siketić, Z.; Scholz, F.; Meisch, T.; Jakšić, M.; Bernstorff, S.; Schleberger, M.; Šantić, B.

    2015-08-01

    We investigated the response of wurzite GaN thin films to energetic ion irradiation. Both swift heavy ions (92 MeV Xe23+, 23 MeV I6+) and highly charged ions (100 keV Xe40+) were used. After irradiation, the samples were investigated using atomic force microscopy, grazing incidence small angle x-ray scattering, Rutherford backscattering spectroscopy in channelling orientation and time of flight elastic recoil detection analysis. Only grazing incidence swift heavy ion irradiation induced changes on the surface of the GaN, when the appearance of nanoholes is accompanied by a notable loss of nitrogen. The results are discussed in the framework of the thermal spike model.

  17. Photoelectron Track Length Distributions Measured in a Negative Ion Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Prieskorn, Z. R.; Hill, J. E.; Kaaret, P. E.; Black, J. K.

    2014-04-01

    We report photoelectron track length distributions between 3 and 8 keV in gas mixtures of Ne+CO2+CH3NO2 (260:80:10 Torr) and CO2+CH3NO2 (197.5: 15 Torr). The measurements were made using a negative ion time projection chamber (NITPC) at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). We report the first quantitative analysis of photoelectron track length distributions in a gas. The distribution of track lengths at a given energy is best fit by a lognormal distribution. A powerlaw distribution of the form, f(E)=a(E/Eo)n, is found to fit the relationship between mean track length and energy. We find n=1.29 +/- 0.07 for Ne+CO2+CH3NO2 and n=1.20 +/- 0.09 for CO2+CH3NO2. Understanding the distribution of photoelectron track lengths in proportional counter gases is important for optimizing the pixel size and the dimensions of the active region in electron-drift time projection chambers (TPCs) and NITPC X-ray polarimeters.

  18. Scanning-force-microscopy study of MeV-atomic-ion-induced surface tracks in organic crystals

    SciTech Connect

    Kopniczky, J.; Reimann, C.T.; Hallen, A.; Sundqvist, B.U.R. ); Tengvall, P.; Erlandsson, R. )

    1994-01-01

    We present scanning force microscope images of craterlike defects induced by individual 78.2-MeV [sup 127]I ions incident on organic single-crystal [ital L]-valine surfaces. For grazing incidence ions, the craters are elongated along the ion azimuth of incidence and display a raised tail in the surface above the ion track. This permanent plastic deformation of the surface indicates that a hydrodynamic pressure-pulse phenomenon occurs in response to the electronically deposited energy.

  19. Phosphorylation of DNA damage-recognizing proteins at heavy-ion track

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Nojima, K.; Furusawa, Y.; Ohnishi, K.

    To identify the repair dynamics for high LET-radiation-induced DNA damage we analyzed the focus formation after exposure to iron-ion beams 500 MeV u 200 KeV um using immunocytochemical methods Since the focus formation of phospho-H2AX gamma-H2AX which is well understood to be activated at radiation-induced double strand breaks DSBs we performed the visualization of the tracks spatial distribution of lesions from an aspect of dose dependency The number of this track induced by iron-ion beams was well corresponded with the value of a calculation well In addition we demonstrate that DNA damage-recognizing proteins such as phospho-serine 1981 of ATM phospho-threonine 2609 of DNA-PKcs phospho-serine 343 of NBS1 and phospho-threonine 68 of Chk2 co-localized with gamma-H2AX at high LET-radiation-induced portion These findings suggest that iron-ion beams were quite effective for detection of DNA damages of DSBs recognized with DNA repair enzymes used here after phosphorylation of them because iron-ion beams can be used to generate extremely localized at DNA damages within restricted regions of the nuclei

  20. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    PubMed

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-01

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  1. Estimation of spatially restricted LET using track structure models

    NASA Technical Reports Server (NTRS)

    Kiefer, J.

    1994-01-01

    The spatial distribution of energy deposition is an important determinant in the formation of biologically significant lesions. It has been widely realized that Linear Energy Transfer (LET) being an average quantity is not sufficient to describe the situation at a submicroscopic scale. To remedy this to some extent 'energy-cut-off' values are sometimes used but since they are related to secondary electron energy and only indirectly to their range they are also not adequate although they may be easily calculated. 'Range-restricted LET' appears to be better but its determination is usually quite involved. Xapsos (1992) suggested a semi-empirical approximation based on a modified Bethe-formula which contains a number of assumption which are difficult to verify. A simpler and easier way is to use existing beam-models which describe energy deposition around an ion's path. They all agree that the energy density (i. e., energy deposited per unit mass) decreases with the inverse square of the distance from the track center. This simple dependence can be used to determine the fraction of total LET which is deposited in a cylinder of a given radius. As an example our own beam model. Energy density depends on distance x (measured in m) from the track center according to the presented formula.

  2. Compact tracking of surgical instruments through structured markers.

    PubMed

    Alberto Borghese, N; Frosio, I

    2013-07-01

    Virtual and augmented reality surgery calls for reliable and efficient tracking of the surgical instruments in the virtual or real operating theatre. The most diffused approach uses three or more not aligned markers, attached to each instrument and surveyed by a set of cameras. However, the structure required to carry the markers does modify the instrument's mass distribution and can interfere with surgeon movements. To overcome these problems, we propose here a new methodology, based on structured markers, to compute the six degrees of freedom of a surgical instrument. Two markers are attached on the instrument axis and one of them has a stripe painted over its surface. We also introduce a procedure to compute with high accuracy the markers center on the cameras image, even when partially occluded by the instrument's axis or by other structures. Experimental results demonstrate the reliability and accuracy of the proposed approach. The introduction of structured passive markers can open new possibilities to accurate tracking, combining markers detection with real-time image processing.

  3. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  4. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.

    PubMed

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E; Rashid, Asim J; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W; Iyer, Shrivats M; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L; Malenka, Robert C; Josselyn, Sheena A; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-26

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.

  5. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  6. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  7. Chitosan Hydrogel Structure Modulated by Metal Ions

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources. PMID:27777398

  8. A graphical method for estimating charge collected by diffusion from an ion track

    SciTech Connect

    Edmonds, L.D.

    1996-08-01

    The diffusion equation has some applications relevant to charge collection from ion tracks in silicon devices. This problem has been treated in the past for cases in which the entire upper surface can be represented as a sink of minority carriers. The present paper treats the case in which there are a number of disconnected upper junctions separated by reflective surfaces. Numerical results, presented as plots of charge-collection efficiency contours, are given for several device geometries. Such plots, combined with a simple superposition, provide charge-collection estimates for arbitrary track length, location, and direction. The mathematical theory applies to any geometry and can be used by the reader to obtain additional plots and/or analytical expressions. The diffusion coefficient can be an arbitrary function of carrier density.

  9. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams

    NASA Astrophysics Data System (ADS)

    Saito, Nami; Bert, Christoph; Chaudhri, Naved; Gemmel, Alexander; Schardt, Dieter; Durante, Marco; Rietzel, Eike

    2009-08-01

    The technical performance of an integrated three-dimensional carbon ion pencil beam tracking system that was developed at GSI was investigated in phantom studies. Aim of the beam tracking system is to accurately treat tumours that are subject to respiratory motion with scanned ion beams. The current system provides real-time control of ion pencil beams to track a moving target laterally using the scanning magnets and longitudinally with a dedicated range shifter. The system response time was deduced to be approximately 1 ms for lateral beam tracking. The range shifter response time has been measured for various range shift amounts. A value of 16 ± 2 ms was achieved for a water equivalent shift of 5 mm. An additional communication delay of 11 ± 2 ms was taken into account in the beam tracking process via motion prediction. Accuracy of the lateral beam tracking was measured with a multi-wire position detector to <=0.16 mm standard deviation. Longitudinal beam tracking accuracy was parameterized based on measured responses of the range shifter and required time durations to maintain a specific particle range. For example, 5 mm water equivalence (WE) longitudinal beam tracking results in accuracy of 1.08 and 0.48 mm WE in root mean square for time windows of 10 and 50 ms, respectively.

  10. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams.

    PubMed

    Saito, Nami; Bert, Christoph; Chaudhri, Naved; Gemmel, Alexander; Schardt, Dieter; Durante, Marco; Rietzel, Eike

    2009-08-21

    The technical performance of an integrated three-dimensional carbon ion pencil beam tracking system that was developed at GSI was investigated in phantom studies. Aim of the beam tracking system is to accurately treat tumours that are subject to respiratory motion with scanned ion beams. The current system provides real-time control of ion pencil beams to track a moving target laterally using the scanning magnets and longitudinally with a dedicated range shifter. The system response time was deduced to be approximately 1 ms for lateral beam tracking. The range shifter response time has been measured for various range shift amounts. A value of 16 +/- 2 ms was achieved for a water equivalent shift of 5 mm. An additional communication delay of 11 +/- 2 ms was taken into account in the beam tracking process via motion prediction. Accuracy of the lateral beam tracking was measured with a multi-wire position detector to < or =0.16 mm standard deviation. Longitudinal beam tracking accuracy was parameterized based on measured responses of the range shifter and required time durations to maintain a specific particle range. For example, 5 mm water equivalence (WE) longitudinal beam tracking results in accuracy of 1.08 and 0.48 mm WE in root mean square for time windows of 10 and 50 ms, respectively.

  11. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity

    PubMed Central

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E.; Rashid, Asim J.; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W.; Iyer, Shrivats M.; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L.; Malenka, Robert C.; Josselyn, Sheena A.; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-01

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore. PMID

  12. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  13. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  15. Efficient parallel algorithm for statistical ion track simulations in crystalline materials

    NASA Astrophysics Data System (ADS)

    Jeon, Byoungseon; Grønbech-Jensen, Niels

    2009-02-01

    We present an efficient parallel algorithm for statistical Molecular Dynamics simulations of ion tracks in solids. The method is based on the Rare Event Enhanced Domain following Molecular Dynamics (REED-MD) algorithm, which has been successfully applied to studies of, e.g., ion implantation into crystalline semiconductor wafers. We discuss the strategies for parallelizing the method, and we settle on a host-client type polling scheme in which a multiple of asynchronous processors are continuously fed to the host, which, in turn, distributes the resulting feed-back information to the clients. This real-time feed-back consists of, e.g., cumulative damage information or statistics updates necessary for the cloning in the rare event algorithm. We finally demonstrate the algorithm for radiation effects in a nuclear oxide fuel, and we show the balanced parallel approach with high parallel efficiency in multiple processor configurations.

  16. Solar wind compressible structures at ion scales

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Alexandrova, O.; Rocoto, V.; Pantellini, F. G. E.; Zaslavsky, A.; Maksimovic, M.; Issautier, K.; Mangeney, A.

    2014-12-01

    In the solar wind turbulent cascade, the energy partition between fluid and kinetic degrees of freedom, in the vicinity of plasma characteristic scales, i.e. ion and electron Larmor radius and inertial lengths, is still under debate. In a neighborhood of the ion scales, it has been observed that the spectral shape changes and fluctuations become more compressible. Nowadays, a huge scientific effort is directed to the comprehension of the link between macroscopic and microscopic scales and to disclose the nature of compressive fluctuations, meaning that if space plasma turbulence is a mixture of quasi-linear waves (as whistler or kinetic Alfvèn waves) or if turbulence is strong with formation of coherent structures responsible for dissipation. Here we present an automatic method to identify compressible coherent structures around the ion spectral break, using Morlet wavelet decomposition of magnetic signal from Cluster spacecraft and reconstruction of magnetic fluctuations in a selected scale range. Different kind of coherent structures have been detected: from soliton-like one-dimensional structures to current sheet- or wave-like two-dimensional structures. Using a multi-satellite analysis, in order to characterize 3D geometry and propagation in plasma rest frame, we recover that these structures propagate quasi-perpendicular to the mean magnetic field, with finite velocity. Moreover, without using the Taylor hypothesis, the spatial scales of coherent structures have been estimated. Our observations in the solar wind can provide constraints on theoretical modeling of small scale turbulence and dissipation in collisionless magnetized plasmas.

  17. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    SciTech Connect

    Bremer, Peer-Timo; Weber, Gunther; Pascucci, Valerio; Day, Marc; Bell, John

    2009-06-01

    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  18. Making porous membranes by chemical etching of heavy-ion tracks in β-PVDF films

    NASA Astrophysics Data System (ADS)

    Grasselli, M.; Betz, N.

    2005-07-01

    Production of porous membranes using heavy ion bombardment and subsequent chemical etching of poly(vinylidene difluoride) (PVDF) films has been reported several years ago. However, porous membranes with pore diameter in the nanometer scale requires a better understanding of the chemical etching mechanism. In this work PVDF foils irradiated with Sn ions (2.85 MeV per nucleon) were exposed to several etching conditions which involved permanganate oxidation in different alkaline environments. The solution of KOH 9 mol L-1 and saturated in KMnO4 was the best etching reactant for PVDF. Functional groups created in the alkaline and oxidative attack by permanganate were studied by FT-IR and UV-vis spectroscopy. The spectroscopic data reveals that the formation of pores occurs by a two-step mechanism: (i) double bonds as a result of dehydrofluorination induced by alkaline media and (ii) oxidation of these double bonds in permanganate solution. The etching temperature and time can be attuned to prepare track-etched membrane with a desired pore diameter in the range of few hundred nanometers. Temperatures ranged between 55 °C and 65 °C were optimal to produce cylindrical pores. Temperatures higher than 85 °C induce conical-shaped track-etched pores while temperatures lower than 50 °C slow down the chemical attack. The addition of a phase-transfer agent enhances the chemical attack and allows the decrease of the etching temperature and/or time.

  19. Data Analysis of Tracks of Heavy Ion Particles in Timepix Detector

    NASA Astrophysics Data System (ADS)

    Hoang, S.; Vilalta, R.; Pinsky, L.; Kroupa, M.; Stoffle, N.; Idarraga, J.

    2014-06-01

    In this paper, we describe some of the computational challenges that need to be addressed when developing active Space Radiation Monitors and Dosimeters using the Timepix detectors developed by the Medipix2 Collaboration at CERN. Measurement of the Linear Energy Transfer (LET), the source and velocity of incident ionizing radiation, are of initial interest when developing such operational devices because they provide the capability to calculate the Dose-equivalent, and to characterize the radiation field for the design of radiation protective devices. In order to facilitate the LET measurement, we first propose a new method for calculating azimuth direction and polar angle of individual tracks of penetrating charged particles based on the pixel clusters they produce. We then describe an energy compensation method for heavy ion tracks suffering from saturation and plasma effects. Finally, we identify interactions within the detector that need to be excluded from the total effective Dose-Equivalent assessment. We make use of data taken at the HIMAC (Heavy Ion Medical Accelerator Center) facility in Chiba, Japan and NSRL (NASA Space Radiation Laboratory) at the Brookhaven National Laboratory in New York, USA for evaluation purposes.

  20. Early stage of the electron kinetics in swift heavy ion tracks in dielectrics

    SciTech Connect

    Medvedev, N. A.; Rethfeld, B.; Volkov, A. E.; Shcheblanov, N. S.

    2010-09-15

    A Monte Carlo approach was applied for simulations of the early stage (first tens of femtosecond) of kinetics of the electronic subsystem of silica (SiO{sub 2}) in tracks of swift heavy ions (SHIs) decelerated in the electronic stopping regime. At the first step multiple ionizations of target atoms by a projectile (Ca{sup +19}, E=11.4 MeV/amu) were described that gave the initial spatial distributions of free electrons having different momenta as well as distributions of holes in different atomic shells. Spatial propagation of fast electrons results in secondary ionizations of target atoms as well as in energy transfer to the lattice at times much shorter than the times of atomic oscillations (phonons). The well detected front of excitation in the electronic and ionic subsystems is formed due to this propagation which cannot be described by models based on diffusion mechanisms (e.g., parabolic equations of heat diffusion). At times {approx}10 fs after the projectile passage, about {approx}0.1% of the energy is already transferred to the lattice. About 63% of the energy deposited by the ion is accumulated in holes at these times. Calculated distributions of these holes through the atomic shells are in excellent agreement with the spectroscopy experiments. Comparison with these experiments demonstrated also that relaxation of the electronic subsystem in SHI tracks in solids cannot be described adequately without taking into account intra-atomic and interatomic Auger (Knotek-Feibelman) processes.

  1. Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis

    1999-01-01

    An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

  2. Multigating, a 4D Optimized Beam Tracking in Scanned Ion Beam Therapy

    PubMed Central

    Graeff, Christian; Constantinescu, Anna; Lüchtenborg, Robert; Durante, Marco; Bert, Christoph

    2014-01-01

    The treatment of moving tumors with a scanned ion beam is challenging due to interplay effects and changing beam range. We propose multigating, as a method for 4D-treatment optimization and delivery. In 3D beam tracking, tracking vectors are added during delivery to beam spot positions based on the detected motion phase. This has the disadvantage of dose errors in case of complex motion patterns and an uncertain out-of-target dose distribution. In multigating, the motion phase for each beam spot is predefined, which allows to add the tracking vector prior to beam weight optimization on all motion phases. The synchronization of delivery and target motion is assured by fast gating. The feasibility of the delivery was shown in a film experiment and required only minor software modification to the treatment planning system. In a treatment planning study in 4 lung cancer patients, target coverage could be restored to the level of a static reference plan by multigating (V95 > 99%) but not by standard beam tracking (V95 < 95%). The conformity of the multigating plans was only slightly lower than those of the static plan, with a conformity number of 72.0% (median, range 64.6–76.6%) compared to 75.8% (70.8–81.5%) in spite of target motion of up to 22 mm. In conclusion, we showed the technical feasibility of multigating, a 4D-optimization and delivery method using scanned beams that allows for conformal and homogeneous dose delivery to moving targets also in case of complex motion. PMID:24354752

  3. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  4. Morphological change tracking of dendritic spines based on structural features.

    PubMed

    Son, J; Song, S; Lee, S; Chang, S; Kim, M

    2011-03-01

    Identification and tracking of dendritic spine morphology from two-dimensional time-lapsed images plays an important role in neurobiological research. Such analysis can enable us to derive a correlation between morphological characteristics and molecular mechanism of dendritic spine development and remodelling. Moreover, Neuronal morphology of hippocampal Cornu Ammonis 1 region is critical for understanding the Alzheimer's disease. Therefore, we need to extract and trace the dendritic spines accurately for examining their development and remodelling processes, which are related to functions of hippocampal Cornu Ammonis 1. There are some problems to be solved in related researches. Noise due to the properties of optical microscopes makes it difficult to identify and trace dendritic spines accurately. To solve these problems, in this paper we present a local spine detection technique minimizing noise influence in two-dimensional optical microscopy images. Also, we suggest an efficient mapping method for tracking the dynamics of dendritic spines to measure their morphological changes quantitatively. First, to utilize structural feature of spines, which are small protrusions of tree-like dendrites, we extract the tips of each dendritic branch and use this position as an initial contour position for a deformable model-based segmentation. We then use a geodesic active contour model to detect the spines accurately. Secondly, we apply an optical flow method, which takes into account both structure and movement of objects, to map every time-series image frame. Proposed method provides accurate measurements of dendritic spine length, volume, shape classification for time-lapse images of dendrites of hippocampal neurons. We compared the proposed spine detection algorithm with manual method performed by biologists and noncommercial software NeuronIQ. In particular, this method is able to segment dendritic spines better than existing methods with high sensitivity in adjacent

  5. The structure of the dithionite ion

    NASA Astrophysics Data System (ADS)

    Peter, L.; Meyer, B.

    1982-11-01

    The Raman spectra of aqueous and solid sodium dithionite have been recorded. Differences in the location, intensity, and number of observed bands are attributed to conformational changes in the dithionite ion. The structure of the aqueous ion is non-planar with a C2h symmetry with an SS bond distance estimated to be 0.220-0.226 nm, as opposed to the dithionite structure in the Na 2S 2O 4·2H 2O salt which is known to have C2 ν structure with a bond distance of 0.2389 nm. The Raman spectra of aqueous dithionite are assigned to Ag (SO) = 997 cm -1; Bg (SO) at 912 cm -1, Bg SO 2 twist at 324 cm -1. The remaining bands are a strong Ag, the SO 2 wag, the SO 2 scissor, and the SS stretch at 584, 461, and 232 cm -1, respectively, but due to coupling all three motions are expected to exhibit substantial SS character. The variation of the spectra of the solid and aqueous sodium dithionite indicate strong environmental effect on the structure of the anion.

  6. The structure of the dithionite ion

    NASA Astrophysics Data System (ADS)

    Peter, L.; Meyer, B.

    The Raman spectra of aqueous and solid sodium dithionite have been recorded. Differences in the location, intensity, and number of observed bands are attributed to conformational changes in the dithionite ion. The structure of the aqueous ion is non-planar with a C2h symmetry with an SS bond distance estimated to be 0.220-0.226 nm, as opposed to the dithionite structure in the Na2S2O4·2H2O salt which is known to have C2ν structure with a bond distance of 0.2389 nm. The Raman spectra of aqueous dithionite are assigned to Ag (SO) = 997 cm-1; Bg (SO) at 912 cm-1, Bg SO2 twist at 324 cm-1. The remaining bands are a strong Ag, the SO2 wag, the SO2 scissor, and the SS stretch at 584, 461, and 232 cm-1, respectively, but due to coupling all three motions are expected to exhibit substantial SS character. The variation of the spectra of the solid and aqueous sodium dithionite indicate strong environmental effect on the structure of the anion.

  7. Jet Structure in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter hat q. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the incone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  8. Jet structure in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    2015-10-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter q̂. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  9. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  10. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    SciTech Connect

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.

  11. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    DOE PAGESBeta

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less

  12. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    PubMed Central

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-01

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties. PMID:25578009

  13. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    PubMed Central

    Burr, Loic; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-01-01

    Summary Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial. Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology. Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons. PMID:26199830

  14. Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Kaderka, R.; Fattori, G.; Riboldi, M.; Pella, A.; Constantinescu, A.; Saito, N.; Durante, M.; Cerveri, P.; Bert, C.; Baroni, G.

    2013-07-01

    Accurate dose delivery to extra-cranial lesions requires tumor motion compensation. An effective compensation can be achieved by real-time tracking of the target position, either measured in fluoroscopy or estimated through correlation models as a function of external surrogate motion. In this work, we integrated two internal/external correlation models (a state space model and an artificial neural network-based model) into a custom infra-red optical tracking system (OTS). Dedicated experiments were designed and conducted at GSI (Helmholtzzentrum für Schwerionenforschung). A robotic breathing phantom was used to reproduce regular and irregular internal target motion as well as external thorax motion. The position of a set of markers placed on the phantom thorax was measured with the OTS and used by the correlation models to infer the internal target position in real-time. Finally, the estimated target position was provided as input for the dynamic steering of a carbon ion beam. Geometric results showed that the correlation models transversal (2D) targeting error was always lower than 1.3 mm (root mean square). A significant decrease of the dosimetric error with respect to the uncompensated irradiation was achieved in four out of six experiments, demonstrating that phase shifts are the most critical irregularity for external/internal correlation models.

  15. Structure and selectivity in bestrophin ion channels

    DOE PAGESBeta

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  16. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  17. Tracks to therapy

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.

    1999-01-01

    Studies of the structure of particle tracks have led to models of track effects based on radial dose and radiobiological target theory that have been very successful in describing and predicting track effects in physical, chemical, and biological systems. For describing mammalian cellular inactivation two inactivation modes are required, called gamma-kill and ion-kill, the first due to synergistic effects of delta rays from adjacent ion paths thus resembling the effects from gamma rays, and the second to the effects of single ion transits through a cell nucleus. The ion-kill effect is more severe, where the fraction of cells experiencing ion kill is responsible for a decrease in the oxygen enhancement ratio, and an increase in relative biological effectiveness, but these are accompanied by loss of repair, hence to a reduction in the efficiency of fractionation in high LET therapy, as shown by our calculations for radiobiological effects in the "spread out Bragg Peak".

  18. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.

  19. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  20. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector

    PubMed Central

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio

    2015-01-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  1. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  2. A Phase-tracking Snow Micro-structure Model

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Zabaras, N.

    2012-12-01

    Utilizing a methodology derived from models for phase transitions in alloy solidification [1], a 3D finite element (FE) model for snow metamorphism was developed. Avalanches are known to occur due to the existence of a weak-layer of faceted crystals, which form due to temperature gradients within the snow through a process known as kinetic metamorphism [2]. In general, snow models are limited in their ability to model these microstructural changes, especially in three dimensions, and rely on effective properties. To enhance the tools available to avalanche researchers a finite element model was developed capable of tracking vapor deposition within the snow. This is accomplished using a fixed-domain, stabilized finite element solution for the energy, mass, momentum, and transport equations. Using a level-set parameter the domain is separated into either solid or fluid components and along the phase-change boundary a "mushy-zone" is establish [1, 3]. This zone is modeled as porous media that includes the effects of shrinkage and density changes [1]. The basis of the model is the open-source C++ libMesh FE library, as such the model includes adaptive mesh coarsening and refinement and relies on domain decomposition for optimum parallel performance. This work is the initial phase of an ongoing research project that aims to demonstrate the ability to model snow at the micro-structural level and move away from the common coarse, effective property modeling techniques. It will serve as the deterministic basis for a multi-scale, stochastic model of snow that will account for uncertainties such as poorly understood growth properties and measurement variability. Future applications may include the inclusion of liquid melt and include external forces, yielding a comprehensive thermo-mechanical model that could evolve and fracture. [1] D. Samanta, N. Zabaras (2005), Modelling convection in solidification processes using stabilized finite element techniques, J. Numer. Meth. Eng

  3. Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data

    NASA Astrophysics Data System (ADS)

    Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Amani, J.; Trautmann, C.; Weidinger, A.

    2015-12-01

    This paper gives an extended overview of the electrical properties of ion tracks in hydrogen-free tetrahedral amorphous carbon (ta-C) with a sp3 bond fraction of about 80%. The films were grown by mass selected ion beam deposition of 100 eV 12C+ ions. The ion tracks are generated by irradiation of ta-C films with uranium ions of 1 GeV kinetic energy. Along the ion path a conversion from diamond-like (sp3) carbon to graphite-like (sp2) carbon takes place. Topography and current measurements of individual ion tracks were performed by atomic force microscopy at ambient temperature. The temperature dependence of the electric conductivity was studied between 15 and 390 K by means of 0.28 mm2 large contact pads averaging over about 107 tracks. For each sample and at each temperature the conductivity as a function of the applied electrical field (non-ohmic behaviour) was measured separately and the data were extrapolated to field zero. In this way, the zero-field conductivity was determined independent from the field dependence. In spite of large differences in the absolute values, the temperature dependence of the zero-field conductivities is found to be very similar in shape for all samples. The conductivities follow a {T}-{1/4} law up to temperatures slightly below room temperature. At higher temperatures a transport mechanism based on over-barrier hopping dominates with an activation energy of about 220 meV for tracks and 260 meV for the ta-C matrix. The field dependence measurements show that the deviation of the I-V characteristics from ohmic behaviour decreases with increasing zero-field conductivity. We also tested Cu-doped ta-C samples and found that they conduct significantly better than pure ta-C. However, the doping also increases the zero-field conductivity resulting in a weaker contrast between the track and matrix. The data are interpreted within the so-called ‘barrier model’ where the electrons are assumed to move fairly freely in well-conducting sp2

  4. Electronic Structure Calculations of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Bromley, Steve; Ziolkowski, Marcin; Marler, Joan

    2016-05-01

    Exotic systems like Highly Charged Ions (HCIs) are attracting more attention based on their properties and possible interactions. Abundance of HCIs in the solar wind and their interaction with the upper atmosphere puts them in the attention of astro- and atmospheric physicists. Also, their unique properties originating in the high charge make them an excellent candidate for precision measurements and the next generation of atomic clocks. For a better understanding of the dynamics of processes involving HCIs a combined theoretical and experimental effort is needed to study their basic properties and interactions. Both theory and experiment need to be combined due to the extreme nature of these systems. We present preliminary insight into electronic structure of light HCIs, their interactions with neutral atoms and dynamics of charge transfer processes.

  5. Defining the Biological Effectiveness of Components of High-LET Track Structure.

    PubMed

    Sridharan, Deepa M; Chappell, Lori J; Whalen, Mary K; Cucinotta, Francis A; Pluth, Janice M

    2015-07-01

    During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particle's energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, δ rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (γ-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5-2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of δ rays, cause the highest degree of persistent damage response. The persistent γ-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to γ-H2AX. The differing phospho-protein profiles exhibited, compared to γ-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of γ-H2AX indicates that the nature of energy distribution defines

  6. Defining the Biological Effectiveness of Components of High-LET Track Structure.

    PubMed

    Sridharan, Deepa M; Chappell, Lori J; Whalen, Mary K; Cucinotta, Francis A; Pluth, Janice M

    2015-07-01

    During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particle's energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, δ rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (γ-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5-2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of δ rays, cause the highest degree of persistent damage response. The persistent γ-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to γ-H2AX. The differing phospho-protein profiles exhibited, compared to γ-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of γ-H2AX indicates that the nature of energy distribution defines

  7. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations.

    PubMed

    Allen, Samuel J; Eaton, Rachel M; Bush, Matthew F

    2016-09-20

    Ion mobility separation of native-like protein and protein complex ions expands the structural information available through native mass spectrometry analysis. Here, we implement Structures for Lossless Ion Manipulations (SLIM) for the analysis of native-like ions. SLIM has been shown previously to operate with near lossless transmission of ions up to 3000 Da in mass. Here for the first time, SLIM was used to separate native-like protein and protein complex ions ranging in mass from 12 to 145 kDa. The resulting arrival-time distributions were monomodal and were used to determine collision cross section values that are within 3% of those determined from radio-frequency-confining drift cell measurements. These results are consistent with the retention of native-like ion structures throughout these experiments. The apparent resolving powers of native-like ions measured using SLIM are as high as 42, which is the highest value reported directly from experimental data for the native-like ion of a protein complex. Interestingly, the apparent resolving power depends strongly on the identity of the analyte, suggesting that the arrival-time distributions of these ions may have contributions from an ensemble of structures in the gas phase that is unique to each analyte. These results suggest that the broad range of emerging SLIM technologies may all be adaptable to the analysis of native-like ions, which will enable future applications in the areas of structural biology, biophysics, and biopharmaceutical characterization.

  8. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    SciTech Connect

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.; Etkin, A.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Chan, C.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.

    1988-07-18

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of approx.2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of approx.25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs.

  9. Morphology of latent and etched heavy ion tracks in radiation resistant polymers polyimide and poly(ethylene naphthalate)

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.; Blonskaya, I. V.; Oganessian, V. R.; Orelovitch, O. L.; Trautmann, C.

    2001-12-01

    The initial phase of chemical etching of ion tracks was studied in the radiation resistant polymers polyimide (PI) and poly(ethylene naphthalate) (PEN). Stacks of thin films were irradiated with Kr, Xe and Bi ions with energies of several MeV per nucleon. During the etching process, the evolution of the pore growth was monitored by conductometric measurements. Similar to earlier observations in other polymers, the etching process revealed the existence of two different radial damage zones, namely, a track core and a track halo. Compared to the virgin polymer, the etching rate in the core region is largely increased, whereas the halo exhibits a higher resistance to the chemical attack indicating radiation-induced cross-linking effects. Typical diameter of the central part of the latent track is measured for different stopping powers of the projectiles. The track to bulk etch ratio is found to reach 500-600 in PI and ˜10 000 in PEN. Due to this property, both materials seem to be suitable for producing micro- and even nanostructures with high aspect ratios.

  10. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  11. Synthesis of patterned freestanding nickel nanowires by using ion track-etched polyimide

    NASA Astrophysics Data System (ADS)

    Walewyns, T.; Scheen, G.; Tooten, E.; Francis, L. A.

    2011-05-01

    Nowadays, a lot of applications including nanoelectronics, spintronics or miniaturized sensors are using nanowires. Unfortunately, current techniques used for local synthesis of nanowires are still not fully compatible with common microfabrication techniques. In this study, we focus on the synthesis of patterned metallic nanowires by electrodeposition within nanoporous polyimide membranes integrated on 3 inch Si bulk wafers. Known to have a high planarization factor, a good resistance to most non-oxidizing acids and bases and to be CMOS compatible, polyimide is increasingly used in microsystems. Furthermore, like polycarbonate or polyester, nanoporous polyimide can be obtained by ion track-etching process. This polymer shows then a great interest to be used as a mold for nanowires growth. Patterned freestanding Nickel nanowires have been synthesized over a 100 nm thickness gold layer evaporated onto a SiO2/Si substrate, with diameters of 20 and 60 nm, and length between 2 and 2.5 μm, depending on the electrodeposition time. Such fabrication process is promising to achieve more complex microelectromechanical systems incorporating nanostructures.

  12. A new control structure to reduce time delay of tracking sensors by applying an angular position sensor.

    PubMed

    Yadegar, Meysam; Karami, Farzaneh; Nobari, Jafar H

    2016-07-01

    In this paper, a new tracking control structure is proposed to decrease the time-delay effect of tracking sensor. To achieve this purpose, an angular position sensor, which generally exists in tracking systems, is used together with the tracking sensor. Also, a compensator is designed and applied to a system with time-delay in order to obtain a behavior same as a system without time-delay. Relying only on tracking sensor may lead to reduce the tracking speed and to increase tracking error. However, it is shown that by using the proposed reformative structure, the speed of tracking and the tracking error can be compensated significantly. In the next step, the performance of the new structure in two cases of constant time-delay and variable time-delay are evaluated and their stability conditions are analyzed. Finally, robustness of the proposed structure is analyzed.

  13. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  14. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  15. Robust feature tracking for endoscopic pose estimation and structure recovery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.

    2013-03-01

    Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.

  16. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud's, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2011-08-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  17. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud'S, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2010-12-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  18. Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques

    NASA Astrophysics Data System (ADS)

    Fan, X.; Parker, D. J.; Smith, M. D.

    2006-06-01

    Positron emission particle tracking (PEPT) is a non-invasive technique used for obtaining dynamic information within multiphase systems. It involves tracking a single radioactively labelled tracer particle. The tracking efficiency and representative of PEPT data are crucially dependent on the amount of radioactivity labelled in a single particle, as well as the physical and chemical properties of a tracer. This paper will discuss the effect of tracer properties on PEPT data and two labelling techniques, direct activation and ion-exchange, in detail. In direct activation, particles are directly bombarded using a 33 MeV 3He beam. A few of the oxygen atoms in the particles are then converted into 18F radioisotope. Direct activation can be used to label a particle with a size range from 1 to 10 mm, but the material must be able to resist a high temperature. The ion-exchange technique can be used to label smaller resin particles with a size ranging from 60 to 1000 μm. The radioactivity labelled in a single resin bead is controlled by ion-exchange properties of the resin material, anions present in the radioactive water and processing time.

  19. Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density

    NASA Astrophysics Data System (ADS)

    Kearsley, Anton T.; Burchell, Mark J.; Price, Mark C.; Cole, Michael J.; Wozniakiewicz, Penelope J.; Ishii, Hope A.; Bradley, John P.; Fries, Marc; Foster, Nicholas J.

    2012-04-01

    The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate "stylus" (in Type A "carrots") and broad "bulb" regions (Types B and C), with occurrence of smaller "styli" in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.

  20. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    PubMed Central

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  1. Structural and metric correlation of electro-optical and radar generated tracks

    NASA Astrophysics Data System (ADS)

    Kovalerchuk, Boris

    2007-04-01

    Integration of electro-optical and radar generated tracks is critical for identifying accurate time and space position information in target tracking and providing a single integrated picture (SIP) of the dynamic situation. This paper proposes a new, robust, real-time algorithm to (i) correctly correlate data from several sensors and the existing system track, (ii) improve target tracking accuracy and (iii) identify when the data represent new tracks. The proposed algorithm uses metric data, linear, and area features extracted from optical and radar images. The major novelty of the algorithm is in use of robust and affine invariant structural relations built on the features for accurate correlation. These features are combined with intelligent adaptation of Kalman filter using Neural Networks. A proposed measure of confidence with the correlation decision is based on both structural and metric similarities of tracks to estimate both bias and random errors. The similarities are based on concepts from the abstract algebraic systems, generalized Gauss-Markov stochastic processes, and Kalman filters for n-dimensional time series that explicitly model measurement dependence on k previous measurements, M(t/t-1,t-2,...,t-k). These techniques are naturally combined with the hierarchical matching approach to increase the overall track accuracy. The proposed approach and algorithm for track correlation/matching is suitable for both centralized and distributed computing architecture.

  2. Track structure simulations at relativistic energies: new cross sections for HZE particles

    NASA Astrophysics Data System (ADS)

    Dingfelder, Michael

    Monte Carlo (MC) simulations of charged particle tracks provide detailed information on highly inhomogeneous spatial distributions of energy depositions, interaction types, and radical species produced. This information is used in Radiation Biology to explore and estimate the effects of radiation quality on biological response. Heavy charged and highly relativistic (HZE) particles are of special interest to men's vision of deep space travel. HZE particles are a component of the Galactic Cosmic Rays (GCR) present in Deep Space but shielded by the Earth's magnetic field. Little is known on their action on biological matter. Monte Carlo track structure simulations follow the primary, as well as all (produced) secondary particles, event-by-event, from starting of ejection energy to total stopping. This requires reliable cross sections for elastic and inelastic scattering events of the incident charged particles with the atoms and molecules of the material under consideration. Liquid water is of special interest since it serves as a substitute for soft tissue. Ionization and excitation cross sections for charged particles are normally calculated within the framework of the (relativistic) plane wave Born approximation (PWBA) or the (relativistic) Bethe approximation. In the PWBA the energyand momentum transfer doubly differential cross section can be written as kinematic factors times the generalized oscillator strength (GOS) for single atoms or the dielectric response function (DF) of the material in the condensed phase. The GOS and the DF are a function of the energy transfer and momentum transfer, are independent of the incoming radiation and fully characterize the target. The GOS can be calculated from first principles while the DF is normally modeled using available experimental information and theoretical constraints. In this talk we will review and present new cross section calculations for electrons, protons and relativistic heavy ions with liquid water and other

  3. Design and Construction of Optimized Electrochemical Cell and Data Analysis System for Etching of Ion Tracks and Electro Deposition of Nano and Micro Wires in Porous Ion Tracks Foils

    NASA Astrophysics Data System (ADS)

    ShakeriJooybari, B.; Moghimi, R.; Golgiri, D.; Afarideh, H.; Lamehi-Rachti, M.; Ghergherehchi, M.

    In this work, an optimized computer controlled electrochemical cell were designed and constructed. This Electrolytic cell was used for etching latent ion tracks and electrochemical deposition of wires in pores of etched-ion tracks foils. The applied voltage and current through the electrochemical cell during the etching and electrodeposition were measured and monitored in real time by a Data Analysis system. Monitoring the current time curve during the filling of pores and growth of micro and nano wires allows one to stop the deposition process after a given time to obtain nano- and micro wire of a predefined length. In this work, Design and manufacture of a sealed electrochemical cell was done in a manner that one can change distance between electrodes and geometry of cathodes. Data analysis system was used to measuring and monitoring of applied voltage and current through the cell consists of three parts: Amplifier, Data acquisition (DAQ) system and Software. A current amplifier that used in data analysis system is a log ratio amplifier. A log ratio amplifier provides an output voltage proportional to the log base 10 of the ratio input current I1 (current during the electrodeposition of wire in cell) and Input current I2(flexible current of precision current source). A DAQ reading output voltage of amplifier and send to Computer. With lab view software analyzed the voltage and converted to the current corresponding to the electrodeposition of wires. Current amplifier designed and built in this work is a noise suppression that can measure small current through the cell with high accuracy. Advantage of proposed log ratio amplifier is one can used this amplifier for measuring and monitoring of current during the filling of pores and growth of wires in the etched ion track foils with various track density.

  4. Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph.

    PubMed

    Du, Dawei; Qi, Honggang; Li, Wenbo; Wen, Longyin; Huang, Qingming; Lyu, Siwei

    2016-08-01

    Recent advances in online visual tracking focus on designing part-based model to handle the deformation and occlusion challenges. However, previous methods usually consider only the pairwise structural dependences of target parts in two consecutive frames rather than the higher order constraints in multiple frames, making them less effective in handling large deformation and occlusion challenges. This paper describes a new and efficient method for online deformable object tracking. Different from most existing methods, this paper exploits higher order structural dependences of different parts of the tracking target in multiple consecutive frames. We construct a structure-aware hyper-graph to capture such higher order dependences, and solve the tracking problem by searching dense subgraphs on it. Furthermore, we also describe a new evaluating data set for online deformable object tracking (the Deform-SOT data set), which includes 50 challenging sequences with full annotations that represent realistic tracking challenges, such as large deformations and severe occlusions. The experimental result of the proposed method shows considerable improvement in performance over the state-of-the-art tracking methods. PMID:27214901

  5. Distortion of Ion Structures by Field Asymmetric Waveform Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Li, Fumin; Tang, Keqi; Smith, Richard D.

    2007-02-15

    Field asymmetric waveform ion mobility spectrometry (FAIMS) is emerging as a major analytical tool, especially in conjunction with mass spectrometry (MS) and/or conventional ion mobility spectrometry (IMS). In particular, FAIMS is used to separate protein or peptide conformers prior to characterization by IMS, MS/MS, or H/D exchange. High electric fields in FAIMS induce ion heating, previously estimated at <10 0C on average and believed too weak to affect ion geometries. Here we use a FAIMS/IMS/MS system to compare the IMS spectra for ESI-generated ubiquitin ions that have and have not passed FAIMS, and find that some unfolding occurs for all charge states. The analysis of those data and their comparison with reported protein unfolding in a Paul trap indicate that at least some structural transitions observed in FAIMS, or previously in an ion trap, are not spontaneous. The observed unfolding is overall similar to that produced by heating of ~40 - 50 0C above room temperature, consistent with the calculated heating of ions at FAIMS waveform peaks. Hence the isomerization in FAIMS likely proceeds in steps during “hot” periods, especially right after ions entering the device. That process distorts ion geometries and causes ion losses by a “self-cleaning” mechanism, and thus should be suppressed as much as possible. We propose achieving that via cooling FAIMS by the amount of ion heating; in most relevant cases cooling by ~75 0C should suffice.

  6. Modeling the multi-ion structure of the solar corona

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Provornikova, Elena; Wang, Tongjiang

    2014-06-01

    The solar corona is typically observed in EUV by SDO/AIA and other instruments using the heavy ion emission lines such as Fe IX, Fe XII, and other ion emission lines. However, the relative (to protons) abundance of the emitting ions is very low and the collisional coupling between the Fe ions and electrons decreases rapidly with height in the low corona, while gravitational settling may become significant in quiescent long-lived magnetic structures, such as streamers. Thus, the structure of the weakly collisional solar corona imaged in Fe IX (and other heavy ions) may differ significantly from the structure of the main electron-proton constituents of the corona. The electron structure is observed by white light coronagraphs, and during solar eclipses in the low corona. I present the results of multi-fluid modeling of coronal streamers and other magnetic structures that demonstrate the effects of weak coupling between the heavy ions and the coronal electron-proton components, and show that the multi-ion coronal structure must be taken into account in interpretation of EUV observations.

  7. Vortex Dust Structures in the Track Plasma of a Proton Beam

    SciTech Connect

    Fortov, V.E.; Filinov, V.S.; Vladimirov, V.I.; Deputatova, L.V.; Petrov, O.F.; Molotkov, V.I.; Rykov, V.A.; Budnik, A.P.; D'yachenko, P.P.; Rykov, K.V.; Khudyakov, A.V.

    2005-07-15

    Results are presented from experimental and theoretical investigations of the behavior of dust grains in a track plasma produced by a beam of accelerated protons. The dynamic ordered dust structures in a proton-beam-produced plasma are obtained for the first time. The processes leading to the formation of such structures are simulated numerically. The experimentally obtained dynamic vortex dust structures in a track plasma of a proton beam are explained theoretically, and the theoretical model developed to describe such a plasma is verified experimentally. Numerical investigations carried out by the method of Brownian dynamics made it possible to qualitatively explain the characteristic features of the formation of vortex dust structures.

  8. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  9. Sheath structure in electronegative plasmas with finite positive ion temperature

    NASA Astrophysics Data System (ADS)

    Palop, J. I. Fernández; Ballesteros, J.; Hernández, M. A.; Crespo, R. Morales; del Pino, S. Borrego

    2004-05-01

    An earlier theoretical work, concerning the sheath structure in electronegative plasmas, is extended to include the effect of the positive ion thermal motion. A significant change is observed in the quantities characterizing the sheath with respect to the cold ion assumption. The sheath is contracted when the positive ion thermal motion is considered causing a decrease in the sheath thickness. The ion saturation current and the floating potential are shown to be distinguished quantities in plasma diagnosis of electronegative plasmas by using plane Langmuir probes.

  10. Secondary ion mass spectrometry combined with alpha track detection for isotope abundance ratio analysis of individual uranium-bearing particles.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki

    2014-03-01

    Secondary ion mass spectrometry (SIMS) was used in combination with alpha track detection for the efficient analysis of uranium-bearing particles with higher (235)U abundances in environmental samples. A polycarbonate film containing particles was prepared and placed in contact with a CR-39 plastic detector. After exposure for 28 days, the detector was etched in a NaOH solution and each uranium-bearing particle was identified through observation of the alpha tracks recorded in the detector. A portion of the film containing each uranium-bearing particle was cut out and put onto a glassy carbon planchet. The films on the planchet were decomposed through plasma ashing for subsequent uranium abundance ratio analysis with SIMS. The alpha track-SIMS analysis of 10 uranium-bearing particles in a sample taken from a nuclear facility enabled n((235)U)/n((238)U) abundance ratios in the range 0.0072-0.25 to be detected, which were significantly higher than those obtained by SIMS without alpha track detection. The duration of the whole analytical process for analysis of 10 particles was about 32 days. The detection efficiency was calculated to be 27.1±6.5%, based on the analysis of the particles in uranium reference materials. The detection limits, defined as the diameter of the particle which produces alpha tracks more than one for a 28-days exposure, were estimated to be 0.8, 0.9, 1.1, 2.1 and 3.0 μm for the particles having the same uranium abundance ratios with NBL CRM U850, U500, U350, U050 and U010 reference materials, respectively. The use of alpha track detection for subsequent SIMS analysis is an inexpensive and an efficient way to measure uranium-bearing particles with higher (235)U abundances. PMID:24468381

  11. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  12. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGESBeta

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; et al

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  13. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  14. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    PubMed

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations. PMID:26510005

  15. Track structure: time evolution from physics to chemistry.

    PubMed

    Dingfelder, M

    2006-01-01

    This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.

  16. Computational Model Tracking Primary Electrons, Secondary Electrons, and Ions in the Discharge Chamber of an Ion Engine

    NASA Technical Reports Server (NTRS)

    Mahalingam, Sudhakar; Menart, James A.

    2005-01-01

    Computational modeling of the plasma located in the discharge chamber of an ion engine is an important activity so that the development and design of the next generation of ion engines may be enhanced. In this work a computational tool called XOOPIC is used to model the primary electrons, secondary electrons, and ions inside the discharge chamber. The details of this computational tool are discussed in this paper. Preliminary results from XOOPIC are presented. The results presented include particle number density distributions for the primary electrons, the secondary electrons, and the ions. In addition the total number of a particular particle in the discharge chamber as a function of time, electric potential maps and magnetic field maps are presented. A primary electron number density plot from PRIMA is given in this paper so that the results of XOOPIC can be compared to it. PRIMA is a computer code that the present investigators have used in much of their previous work that provides results that compare well to experimental results. PRIMA only models the primary electrons in the discharge chamber. Modeling ions and secondary electrons, as well as the primary electrons, will greatly increase our ability to predict different characteristics of the plasma discharge used in an ion engine.

  17. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    PubMed

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials. PMID:27504584

  18. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  19. Scaling behavior and local structure of ion aggregates in single-ion conductors.

    PubMed

    Lu, Keran; Rudzinski, Joseph F; Noid, W G; Milner, Scott T; Maranas, Janna K

    2014-02-21

    Single-ion conductors are attractive electrolyte materials because of their inherent safety and ease of processing. Most ions in a sodium-neutralized PEO sulfonated-isophthalate ionomer electrolyte exist as one dimensional chains, restricted in dimensionality by the steric hindrance of the attached polymer. Because the ions are slow to reconfigure, atomistic MD simulations of this material are unable to adequately sample equilibrium ion structures. We apply a novel coarse-graining scheme using a generalized-YBG procedure in which the polymer backbone is completely removed and implicitly represented by the effective potentials of the remaining ions. The ion-only coarse-grained simulation allows for substantial sampling of equilibrium aggregate configurations. We extend the wormlike micelle theory to model ion chain equilibrium. Our aggregates are random walks which become more positively charged with increasing size. Defects occur on the string-like structure in the form of “dust” and “knots,” which form due to cation coordination with open sites along the string. The presence of these defects suggest that cation hopping along open third-coordination sites could be an important mechanism of charge transport using ion aggregates. PMID:24983107

  20. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    SciTech Connect

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  1. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGESBeta

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  2. Artificially Structured Boundary for a high purity ion trap or ion source

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2014-08-01

    A plasma enclosed by an Artificially Structured Boundary (ASB) is proposed here as an alternative to existing ion source assemblies. In accelerator applications, many ion sources can have a limited lifetime or frequent service intervals due to sputtering and eventual degradation of the ion source assembly. Ions are accelerated towards the exit canal of positive ion sources, whereas, due to the biasing scheme, electrons or negative ions are accelerated towards the back of the ion source assembly. This can either adversely affect the experiment in progress due to sputtered contamination or compromise the integrity of the ion source assembly. Charged particle trajectories in the proximity of an ASB experience electromagnetic fields that are designed to hinder ion-surface interactions. Away from the ASB there is an essentially field free region. The field produced by an ASB is considered to consist of a periodic sequence of electrostatically plugged magnetic field cusps. A classical trajectory Monte Carlo simulation is extended to include electrostatic plugging of magnetic field cusps. The conditions necessary for charged particles to be reflected by the ASB are presented and quantified in terms of normalized parameters.

  3. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    DOE PAGESBeta

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; Garimella, Sandilya V. B.; Zhang, Xing; Hamid, Ahmed M.; Deng, Liulin; Karnesky, William E.; Prost, Spencer A.; Sandoval, Jeremy A.; et al

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  4. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    We report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also shown feasible. The performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design. PMID:25257188

  5. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a

  6. Combining structured light and ladar for pose tracking in THz sensor management

    NASA Astrophysics Data System (ADS)

    Engström, Philip; Axelsson, Maria; Karlsson, Mikael

    2013-05-01

    Stand-off 3D THz imaging to detect concealed treats is currently under development. The technology can provide high resolution 3D range data of a passing subject showing layers of clothes and if there are concealed items. However, because it is a scanning sensor technology with a narrow field of view, the subjects pose and position need to be accurately tracked in real time to focus the system and map the imaged THz data to specific body parts. Structured light is a technique to obtain 3D range information. It is, for example, used in the Microsoft Kinect for pose tracking of game players in real time. We demonstrate how structured light can contribute to a THz sensor management system and track subjects in real time. The main advantage of structured light is its simplicity, the disadvantages are the sensitivity to lighting conditions and material properties as well as a relatively low accuracy. Time of flight laser scanning is a technique that complements structured light well, the accuracy is usually much higher and it is less sensitive to lighting conditions. We show that by combining the techniques it is possible to create a robust real time pose tracking system for THz sensor management. We present a concept system based on the Microsoft Kinect and a SICK LMS-511 laser scanner. The laser scanner is used for 2D tracking of the subjects, this tracking is then used to initialize and validate the Microsoft Kinect pose tracking. We have evaluated the sensors individually in both static and dynamic scenes and present their advantages and drawbacks.

  7. Characteristics of tracks of ions of 14 less than or equal to Z less than or equal to 36 in common rock silicates.

    NASA Technical Reports Server (NTRS)

    Price, P. B.; Lal, D.; Tamhane, A. S.; Perelygin, V. P.

    1973-01-01

    Identification of heavy ion tracks in minerals by measurements of track etch rates and total etchable track lengths were irradiated with beams of Si, Cl, Ti, Fe, Zn, and Kr at energies up to 10.35 MeV/nucleon. Nine minerals commonly used to study fossil cosmic ray tracks in meteorites and lunar samples. From measurements of etched track length as a function of residual range, response curves for various minerals were determined as a function of ionization rate, using the expression previously derived by Price et al. (1968). These curves increase smoothly with ionization rate instead of rising abruptly at some critical value as was previously thought. It is shown that the track etch rate concept accounts qualitatively for total etchable track length distributions, but that the positions of the peaks of different elements in these histograms occur at shorter lengths for fossil tracks than for fresh tracks. Annealing data indicate that, at maximum lunar surface temperatures, tracks in olivine, orthopyroxenes, and feldspars may be significantly shortened, whereas tracks in clinopyroxenes will not be affected.

  8. Simulated tornado debris tracks: implications for inferring corner flow structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael; Lewellen, David

    2011-11-01

    A large collection of three-dimensional large eddy simulations of tornadoes with fine debris have been recently been performed as part of a longstanding effort at West Virginia University to understand tornado corner flow structure and dynamics. Debris removal and deposition is accounted for at the surface, in effect simulating formation of tornado surface marks. Physical origins and properties of the most prominent marks will be presented, and the possibility of inferring tornado corner flow structure from real marks in the field will be discussed. This material is based upon work supported by the National Science Foundation under Grants No. 0635681 and AGS-1013154.

  9. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng

    2011-02-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.

  10. Investigation of Beam-RF Interactions in Twisted Waveguide Accelerating Structures Using Beam Tracking Codes

    SciTech Connect

    Holmes, Jeffrey A; Zhang, Yan; Kang, Yoon W; Galambos, John D; Hassan, Mohamed H; Wilson, Joshua L

    2009-01-01

    Investigations of the RF properties of certain twisted waveguide structures show that they support favorable accelerating fields. This makes them potential candidates for accelerating cavities. Using the particle tracking code, ORBIT, We examine the beam - RF interaction in the twisted cavity structures to understand their beam transport and acceleration properties. The results will show the distinctive properties of these new structures for particle transport and acceleration, which have not been previously analyzed.

  11. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels

    PubMed Central

    Sauguet, Ludovic; Poitevin, Frédéric; Murail, Samuel; Van Renterghem, Catherine; Moraga-Cid, Gustavo; Malherbe, Laurie; Thompson, Andrew W; Koehl, Patrice; Corringer, Pierre-Jean; Baaden, Marc; Delarue, Marc

    2013-01-01

    To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6′ and Thr2′) that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6′ is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6′ actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed. PMID:23403925

  12. Structural Modification of Nanocrystalline Ceria using Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2011-01-01

    Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~ 25 nm, which is the critical region for controlling size-dependent material property. The unique self-healing response of radiation damage at grain boundaries is applied to control the grain size at nanoscale as a function of ion dose and irradiation temperature. Structural modification by energetic ions is proposed to achieve disirable electronic-ionic conductivity.

  13. Atomic structure of highly-charged ions. Final report

    SciTech Connect

    Livingston, A. Eugene

    2002-05-23

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems.

  14. Track structure simulations at relativistic energies: an update on cross section calculations

    NASA Astrophysics Data System (ADS)

    Dingfelder, Michael

    Charged particle track structure simulations follow the primary, as well as all (produced) sec-ondary particles in an event-by-event matter, from starting or ejection energies down to total stopping. They provide detailed information on the spacial distributions of energy depositions, interaction types, and radical species produced. These quantities provide a starting point to describe the interaction of the radiation with matter of biological interest and to explore and estimate the effects of radiation quality on various biological responses of these systems. Of special interest is liquid water which serves as surrogate for soft tissue. Ionization and excitation cross sections for bare charged particles can be calculated within the framework of the (relativistic) plane-wave Born approximation or the (relativistic) Bethe approximation. Both theories rely on a realistic model of the dielectric response function of the material under consideration and need to address relativistic medium polarization effects like the Fermi-density effect in a consistent way. In this talk we will review and present new and updated aspects of charged particle cross section calculations for relativistic heavy ions with liquid water and other materials of biological interest. This includes an updated model for the dielectric response function of liquid water to better reflect new data from inelastic X-ray scattering (IXS) experiments using synchrotron radiation and a model for the dielectric response function of calcium, which serves as a bone surrogate. We will also discuss the implementation of relativistic effect, especially of the Fermi-density effect into the cross section calculations. This work is supported by the National Aeronautics and Space Administration (NASA), grant no. NNJ04HF39G.

  15. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the

  16. Eye Tracking Detects Disconjugate Eye Movements Associated with Structural Traumatic Brain Injury and Concussion

    PubMed Central

    Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H.; McStay, Christopher; Todd, S. Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-01-01

    Abstract Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury. PMID:25582436

  17. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    PubMed

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  18. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  19. Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    PubMed Central

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-01-01

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex. PMID:20877470

  20. Molecular modeling of mechanosensory ion channel structural and functional features.

    PubMed

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  1. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  2. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions

    SciTech Connect

    Liu, Wei; Chun, Eugene; Thompson, Aaron A.; Chubukov, Pavel; Xu, Fei; Katritch, Vsevolod; Han, Gye Won; Roth, Christopher B.; Heitman, Laura H.; IJzerman, Adriaan P.; Cherezov, Vadim; Stevens, Raymond C.

    2012-08-31

    Pharmacological responses of G protein-coupled receptors (GPCRs) can be fine-tuned by allosteric modulators. Structural studies of such effects have been limited due to the medium resolution of GPCR structures. We reengineered the human A{sub 2A} adenosine receptor by replacing its third intracellular loop with apocytochrome b{sub 562}RIL and solved the structure at 1.8 angstrom resolution. The high-resolution structure allowed us to identify 57 ordered water molecules inside the receptor comprising three major clusters. The central cluster harbors a putative sodium ion bound to the highly conserved aspartate residue Asp{sup 2.50}. Additionally, two cholesterols stabilize the conformation of helix VI, and one of 23 ordered lipids intercalates inside the ligand-binding pocket. These high-resolution details shed light on the potential role of structured water molecules, sodium ions, and lipids/cholesterol in GPCR stabilization and function.

  3. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed. PMID:26103632

  4. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.

  5. Structure of ceramic surfaces modified by ion-beam techniques

    SciTech Connect

    McHargue, C.J.; Naramoto, H.; White, C.W.; Williams, J.M.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1982-01-01

    A wide variety of structures are produced by ion implantation in ceramics. Random (substitutional and interstitial site occupancy) solid solutions with concentrations of solute that exceed the solubility limit can be produced in Al/sub 2/O/sub 3/. The changes that occur during annealing are complex and sometimes unpredictable. Silicon carbide becomes amorphous in a manner analogous to Si for ion fluences that produce more than 0.2 dpa damage. Light (N) and heavy (Cr) ions produce similar results if the fluence is scaled to damage energy deposited. Because of mass differences in the ions, two damage regions are developed in TiB/sub 2/. The structure remains crystalline to very high damage levels. These structural alterations cause changes in the surface mechanical properties. Since virtually any chemical species can be implanted, one can independently control structural damage and chemical effects. When coupled with selective annealing, this technique has the potential for producing a wide range of surface structures and properties. 8 figures.

  6. Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part II: numerical simulations of track, structure and intensity

    NASA Astrophysics Data System (ADS)

    Davidson, Noel E.; Ma, Yimin

    2012-07-01

    In part 1 of this study, an assessment of commonly used surface pressure profiles to represent TC structures was made. Using the Australian tropical cyclone model, the profiles are tested in case studies of high-resolution prediction of track, structure and intensity. We demonstrate that: (1) track forecasts are mostly insensitive to the imposed structure; (2) in some cases [here Katrina (2005)], specification of vortex structure can have a large impact on prediction of structure and intensity; (3) the forecast model mostly preserves the characteristics of the initial structure and so correct structure at t = 0 is a requirement for improved structure forecasting; and (4) skilful prediction of intensity does not guarantee skilful prediction of structure. It is shown that for Ivan (2004) the initial structure from each profile is preserved during the simulations, and that markedly different structures can have similar intensities. Evidence presented suggests that different initial profiles can sometimes change the timing of intensification. Thus, correct initial vortex structure is an essential ingredient for more accurate intensity and structure prediction.

  7. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  8. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source.

    PubMed

    Spädtke, P; Lang, R; Mäder, J; Maimone, F; Rossbach, J; Tinschert, K

    2012-02-01

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  9. Ab initio simulations for the ion-ion structure factor of warm dense aluminum.

    PubMed

    Rüter, Hannes R; Redmer, Ronald

    2014-04-11

    We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982

  10. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  11. Electron-ion recombination in nuclear recoils tracks in nonpolar liquids. Calculation of the effect of external electric field on the escape probability

    NASA Astrophysics Data System (ADS)

    Mateja, Piotr; Wojcik, Mariusz

    2016-07-01

    A computer simulation method is applied to study electron-ion recombination in tracks of low-energy nuclear recoils in nonpolar liquids in which the electron transport can be described as ideal diffusion. The electron escape probability is calculated as a function of applied electric field, both for the field parallel to the track and for the field perpendicular to the track. The dependence of escape probability on the field direction is the stronger, the longer the ionization track, with a significant effect being found already for tracks of ~100 nm length. The results are discussed in the context of possible applications of nonpolar molecular liquids as target media in directional dark matter detectors.

  12. Ion irradiation induced structural and electrical transition in graphene

    SciTech Connect

    Zhou Yangbo; Wang Yifan; Xu Jun; Fu Qiang; Wu Xiaosong; Yu Dapeng; Liao Zhimin; Duesberg, Georg S.

    2010-12-21

    The relationship between the electrical properties and structure evolution of single layer graphene was studied by gradually introducing the gallium ion irradiation. Raman spectrums show a structural transition from nano-crystalline graphene to amorphous carbon as escalating the degree of disorder of the graphene sample, which is in correspondence with the electrical transition from a Boltzmann diffusion transport to a carrier hopping transport. The results show a controllable method to tune the properties of graphene.

  13. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    SciTech Connect

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R.; Alvarado, S. F.

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  14. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general. PMID:27172256

  15. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general.

  16. Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure.

    PubMed

    Inoue, S; Grant, D; Leblond, C P

    1989-05-01

    Basement membranes contain 4.5-nm wide sets of two parallel lines, along which short prongs called "spikes" occur at regular intervals. The nature of this structure, referred to as "double tracks," was investigated in Lowicryl sections of mouse kidney and rat Reichert's membrane immunolabeled for basement membrane components using secondary antibodies conjugated to 5-nm gold particles. When the mouse glomerular basement membrane and rat Reichert's membrane were exposed to antibodies directed to the core protein of heparan sulfate proteoglycan, 95% or more of the gold particles were over double tracks, whereas after exposure of Reichert's membrane to antisera against laminin, collagen IV, or entactin, labeling of the double tracks remained at the random level. When heparan sulfate proteoglycan was incubated in Tris buffer, pH 7.4, at 35 degrees C for 1 hr, a precipitate resulted which, on electron microscopic examination, was found to consist of 5- to 6-nm wide sets of two parallel lines along which densities were observed. Immunolabeling confirmed the presence of the proteoglycan's core protein in the sets. Since double tracks were closely similar to this structure and were labeled with the same antibodies, they were likely to be also composed of heparan sulfate proteoglycan. PMID:2522961

  17. Monte-Carlo simulations of electronic excitations in swift heavy ion tracks in SiO{sub 2}

    SciTech Connect

    Medvedev, N. A.; Volkov, A. E.

    2008-04-10

    Monte-Carlo simulations were applied for investigation of the initial electronic kinetics ({<=}10{sup -14} s) in tracks of Ca{sup +19} (11.4 MeV/u) in SiO{sub 2}. The spatial and temporal distributions of the volume and excess energy densities of free electrons, electronic vacancies in different atomic shells and the lattice were obtained. It was demonstrated that at 10{sup -14} s an essential part ({approx}55%) of the energy deposited by the ion is trapped in electronic vacancies. The energy transferred to the lattice at times shorter than the characteristic time of electron-phonon coupling was determined. It was found that only {approx}6% of the excess energy of delocalized electrons near the projectile trajectory ({approx}6 nm) may be thermalized on the time 10{sup -14} s from the projectile passage. Ballistic spatial propagation of excess energy cannot be described by thermal diffusion.

  18. Automatic tracking of vessel-like structures from a single starting point.

    PubMed

    Oliveira, Dário Augusto Borges; Leal-Taixé, Laura; Feitosa, Raul Queiroz; Rosenhahn, Bodo

    2016-01-01

    The identification of vascular networks is an important topic in the medical image analysis community. While most methods focus on single vessel tracking, the few solutions that exist for tracking complete vascular networks are usually computationally intensive and require a lot of user interaction. In this paper we present a method to track full vascular networks iteratively using a single starting point. Our approach is based on a cloud of sampling points distributed over concentric spherical layers. We also proposed a vessel model and a metric of how well a sample point fits this model. Then, we implement the network tracking as a min-cost flow problem, and propose a novel optimization scheme to iteratively track the vessel structure by inherently handling bifurcations and paths. The method was tested using both synthetic and real images. On the 9 different data-sets of synthetic blood vessels, we achieved maximum accuracies of more than 98%. We further use the synthetic data-set to analyze the sensibility of our method to parameter setting, showing the robustness of the proposed algorithm. For real images, we used coronary, carotid and pulmonary data to segment vascular structures and present the visual results. Still for real images, we present numerical and visual results for networks of nerve fibers in the olfactory system. Further visual results also show the potential of our approach for identifying vascular networks topologies. The presented method delivers good results for the several different datasets tested and have potential for segmenting vessel-like structures. Also, the topology information, inherently extracted, can be used for further analysis to computed aided diagnosis and surgical planning. Finally, the method's modular aspect holds potential for problem-oriented adjustments and improvements. PMID:26619263

  19. Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study

    PubMed Central

    Serec, Kristina; Babić, Sanja Dolanski; Podgornik, Rudolf; Tomić, Silvia

    2016-01-01

    Utilizing Fourier transform infrared spectroscopy we have investigated the vibrational spectrum of thin dsDNA films in order to track the structural changes upon addition of magnesium ions. In the range of low magnesium concentration ([magnesium]/[phosphate] = [Mg]/[P] < 0.5), both the red shift and the intensity of asymmetric PO2 stretching band decrease, indicating an increase of magnesium-phosphate binding in the backbone region. Vibration characteristics of the A conformation of the dsDNA vanish, whereas those characterizing the B conformation become fully stabilized. In the crossover range with comparable Mg and intrinsic Na DNA ions ([Mg]/[P] ≈ 1) B conformation remains stable; vibrational spectra show moderate intensity changes and a prominent blue shift, indicating a reinforcement of the bonds and binding in both the phosphate and the base regions. The obtained results reflect the modified screening and local charge neutralization of the dsDNA backbone charge, thus consistently demonstrating that the added Mg ions interact with DNA via long-range electrostatic forces. At high Mg contents ([Mg]/[P] > 10), the vibrational spectra broaden and show a striking intensity rise, while the base stacking remains unaffected. We argue that at these extreme conditions, where a charge compensation by vicinal counterions reaches 92–94%, DNA may undergo a structural transition into a more compact form. PMID:27484473

  20. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  1. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations.

    PubMed

    Watanabe, Ritsuko; Rahmanian, Shirin; Nikjoo, Hooshang

    2015-05-01

    The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular

  2. Structure-structure coupling by liquids: Vibration measurements on a rotating disk with self-tracking LDV

    NASA Astrophysics Data System (ADS)

    Weder, Mario; Horisberger, Beat; Monette, Christine; Dual, Jürg

    2016-06-01

    We present an experimental setup to investigate the structure-structure coupling of a stationary and a rotating disk coupled by an intermediate liquid. This coupling mechanism is particularly important in the mechanical design of Francis turbines, where the vibration of the turbine runner is coupled with the adjacent non-rotating structure. The vibration of the disks is measured using laser Doppler velocimetry (LDV). Whereas we could use a standard scanning LDV system to measure the stationary disk, we had to design and implement a polar scan unit based on the self-tracking LDV method. Here we show the design concept of the setup with a closer look on the self-tracking LDV system as well as selected results of the coupled vibration.

  3. Effect of LET and track structure on the statistical distribution of chromosome aberrations

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Lee, R.; Nasonova, E.; Ritter, S.; Scholz, M.

    Chromosome aberration data obtained for various types of mammalian cells after exposure to low and high LET radiation clearly demonstrate differences in the energy deposition pattern of both radiation qualities. In the present study we focus on the distributions of chromosome aberrations induced in human peripheral blood lymphocytes after exposure to 990 MeV/u Fe ions (LET = 155 keV/μm) or X-rays. For the analysis three different types of distributions were applied, namely a Poisson distribution, a compound Poisson-Poisson (Neyman type A) distribution and a convoluted Poisson-Neyman distribution. The analysis showed that after low LET radiation the distribution of aberrations can be well described by Poisson statistics, reflecting a simple random distribution of damages as expected according to the homogeneous pattern of energy depositions. In contrast, for particles the energy is deposited spatially very inhomogeneous and concentrated along the ion trajectories. After exposure to high energy, high LET particles where the track radius is much larger than the cell nucleus, best fits to the data were achieved by a convoluted Poisson-Neyman statistics. The analysis indicates that, under this exposure condition, the distribution of aberrations is determined by two independent components. The first component is determined by the damage induced by a center of the tracks and follows the Neyman distribution. The second component is determined by the overlapping part of tracks which in the case of very high energetic particles leads to a "photon-like" background dose and is thus characterized by a Poisson distribution.

  4. Instrumentation by distributed optical fiber sensors of a new ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël

    2013-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early

  5. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  6. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  7. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  8. Sheared ion flow driven nonlinear coherent structures in inhomogeneous electron-positron-ion quantum magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.

    2012-12-01

    Nonlinear equations governing the dynamics of finite amplitude drift-acoustic-waves are derived by taking into account sheared ion flow perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons, positrons, and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a counter-rotating vortex for a particular choice of the equilibrium profile. The counter rotating vortices are, however, observed to form on very short scales i.e., of the order of ion Larmor radius ρ i in quantum plasmas. It is observed that the scalelengths over which these structures form get modified in the presence of quantum statistical and Bohm potential terms as well as the positron concentration. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  9. Structural modification of nanocrystalline ceria by ion beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-01-01

    Exceptional size-dependent electronic–ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic–ionic conductivity.

  10. Stable Ion Beam Analysis (RBS and PIXE) Study of Photocatalytic Track-Etched Membranes

    NASA Astrophysics Data System (ADS)

    Rossouw, A.; Artoshina, O. V.; Nechaev, A. N.; Apel, P. Yu.; Petrik, L.; Perold, W. J.; Pineda-Vargas, C. A.

    2015-11-01

    In microfiltration, caking is a major problem. Organic molecules get absorbed on the track-etched membrane TM surface during water purification. This leads to a loss of efficiency and changes in TM selectivity. A solution devised to solve this problem is the creation of self-cleaning, low-absorptive TM coatings. The TM surface was modified by depositing a thin-film photocatalytic semiconductor, titanium dioxide (TiO2). Strong oxidizing agents appear on the TiO2 surface in the presence of water, dissolved oxygen and UV irradiation. This results in the mineralization of the organic compounds present, By applying the use of exotic beams in the material research, it becomes possible to investigate properties regarding the layer thickness, homogeneity and purity of the modified TMs, not otherwise attainable.

  11. Reduction and structural modification of zirconolite on He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  12. Multiply-Charged Positive Ion Polarizabilities from Rydberg Ion Fine Structure

    NASA Astrophysics Data System (ADS)

    Lundeen, Stephen R.; Wright, Laura E.; Snow, Erica L.

    2006-05-01

    Experimental methods originally developed for study of fine structure patterns in high-L Rydberg states of neutral atoms and molecules have recently been extended to allow study of similar states in Rydberg states of multiply-charged ions[1]. Initial studies, carried out in Rydberg states of Si^+ and Si^2+, led to determination of the polarizabilities of Na-like and Mg-like Silicon ions [2,3], but similar studies may be feasible in a wide range of systems. Continued studies are aimed at studying ions with higher charge, such as the closed shell ion Kr^6+, and eventually the Radon-like ions U^6+ and Th^4+. [1] S.R. Lundeen in Advances in Atomic, Molecular and Optical Physics, Vol. 52, edited by P.R. Berman and C.C. Lin, p. 161 [2] R.A. Komara, M.A. Gearba, S.R. Lundeen, C.W. Fehrenbach, Phys. Rev. A 67, 062502 (2003) [3] R.A. Komara, M.A. Gearba, C.W. Fehrenbach, and S.R. Lundeen, J. Phys. B, At. Mol. Opt. Phys. 28, 2787 (2005)

  13. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  14. Capturing Ion-Solid Interactions with MOS structures

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Field, D. A.; Chambers, S.; Harrell, W. R.; Sosolik, C. E.

    2011-10-01

    We have fabricated metal-oxide-semiconductor (MOS) devices for a study of implantation rates and damage resulting from low energy ion-solid impacts. Specifically, we seek to capture ion irradiation effects on the oxides. Fabrication of the MOS devices follows a standard procedure where Ohmic contacts are first created on the wafer backside followed by the thermal growth of various thicknesses of SiO2 (from 50 nm to 200 nm) on the wafer frontside. As-grown SiO2 layers are then exposed to various singly-charged alkalis ions with energies in the range of 100 eV to 10 keV in our beamline setup. Following this exposure, the MOS devices are completed in situ with the deposition of a top Al contact. Characterization of the ion-modified devices involves the standard device technique of biased capacitance-voltage (C-V) measurements where a field is applied across the MOS structure at an elevated temperature to move implanted ions resulting in changes in surface charge density that are reflected as shifts in the flatband voltage (VFB). Similarly, a triangular voltage sweep (TVS) test can be utilized to measure the ionic displacement current as it is driven by a slow linear voltage ramp and it should reveal the total ionic space charge in an MOS.

  15. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  16. Impact of tracking station distribution structure on BeiDou satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Qin; Huang, Guanwen; Wang, Le; Qu, Wei

    2015-11-01

    The racking station distribution structure plays an important role in GNSS satellite orbit determination. Due to the current satellite distribution of the BeiDou satellite navigation system (BDS), the problem how to construct a reasonable distribution of tracking stations to obtain BDS satellite orbits with high precision has become a highly imperative issue. Based on the theory of dynamic orbit determination, two different station distributions were analyzed to study their impact on BDS precise and real-time orbit determination. Subsequently, the impact of Satellite Position Dilution of Precision (SPDOP) values on orbit determination was analyzed. Finally, an improved scheme for the tracking station distribution was designed based on the original scheme. The numerical results show that the SPDOP value can be used to evaluate the contribution of the tracking stations distribution on the BDS IGSO and MEO satellites orbit determination. In addition, the tracking stations which focus on the Asia-Pacific region play a key role in current BDS orbit determination.

  17. Coupled chemical reactions in dynamic nanometric confinement: V. The influence of Li+ and F- ions on etching of nuclear tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernandez, G.; Ruiz, N. L.; Vacik, J.; Hnatowicz, V.; García-Arellano, H.; Alfonta, L.; Kiv, A.

    2014-05-01

    Etching of continuous nuclear tracks in thin polymer foils from both sides is known to lead to the formation of double-conical nanopores. In this work and related ones we try to find out how this etching kinetics is modified when materials are added which react with each other upon their contact towards some new product that influences the etching. For that purpose we have chosen here Li+ and F- ions as the additions, which react with each other to form LiF precipitations. The coupled etching and precipitation kinetics is recorded by measuring the electrical current that is transmitted through the foils upon application of a low-frequency alternating sinusoidal voltage. Depending on the etchant concentrations, the etching temperature and the time of Li+ and F- addition, different effects are found that range from (a) no alteration of the transmitted current at all, via (b) the emergence of an alternating current with a temperature-dependent amplitude, and (c) the complete vanishing of any transmitted current at all, towards (d) chaotic transmitted current histories with phases with strong current spike emission and (e) rather quiet phases, alternating with each other in a rather unsystematic way. The observed effects are ascribed to (a) the enhanced penetration efficiency of both the Li+ and F- ions through the polymeric bulk and/or latent ion tracks after the removal of the polymer's protective surface layer by the etchant, (b) the high mobility of preferentially the F- ions within the polymer, (c) the LiF precipitation within the polymer or on its surface upon encounter of Li+ and F- ions, (d) the nanofluidic properties of narrow etched tracks covered with Li+ ions on the wall surfaces and F- ions beyond, and/or (e) the formation of LiF membranes within the etched tracks.

  18. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  19. Structure property relationships of carbonaceous films grown under ion enhancement

    SciTech Connect

    Weissmantel, C.; Ackermann, E.; Bewilogua, K.; Hecht, G.; Kupfer, H.; Rau, B.

    1986-11-01

    Based on our own results and in comparison with data published by other groups the structure property relationships of carbon and carbon/metal films prepared by sputtering and deposition of partially ionized species are discussed. Films grown by ion beam sputtering are dark brownish and amorphous with a small fraction of microcrystals. However, a transition to transparent and insulating layers can be effected by ion bombardment. C/Me coatings, where Me stands for Ti or Sn, were obtained by magnetron sputtering of composite targets. The films proved to be amorphous up to metal concentrations of more than 10 at. %, but metal and carbide crystals grow upon annealing. Measurements of the hardness, the electrical conductivity, and the contact behavior in dependence on the composition provided interesting information. For carbon films prepared by deposition of partially ionized benzene species it has been found that the properties depend characteristically on the ion energy; typical ''diamondlike'' i-C films are obtained by applying a bias voltage from 1--3 keV. The thermal stability of the amorphous coatings is discussed in conjunction with their electrical conductivity. Summarizing extensive structure investigations, a structure model based on tetrahedrally interlinked carbon rings is proposed. Composites of the type i-C/Me (Me: Al, Ti, Cr), which were prepared by simultaneous metal evaporation, exhibit a wide range of structure property relations.

  20. Correlation of ion dynamics and structure of superionic tellurite glasses

    SciTech Connect

    Dutta, D.; Ghosh, A.

    2008-01-28

    Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.

  1. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect

    Echols, Nathaniel Morshed, Nader; Afonine, Pavel V.; McCoy, Airlie J.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-04-01

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  2. 200 MeV silver ion irradiation induced structural modification in YBa2Cu3O7-y thin films at 89 K: An in situ x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Biswal, R.; John, J.; Mallick, P.; Dash, B. N.; Kulriya, P. K.; Avasthi, D. K.; Kanjilal, D.; Behera, D.; Mohanty, T.; Raychaudhuri, P.; Mishra, N. C.

    2009-09-01

    We report in situ x-ray diffraction (XRD) study of 200 MeV Ag ion irradiation induced structural modification in c-axis oriented YBa2Cu3O7-y (YBCO) thin films at 89 K. The films remained c-axis oriented up to a fluence of 2×1013 ionscm-2, where complete amorphization sets in. The amorphous ion tracks, the strained region around these tracks, and irradiation induced point defects are shown to control the evolution of the structure with ion fluence. Secondary electrons emanating from the ion paths are shown to create point defects in a cylindrical region of 97 nm radius, which corresponds to their maximum range in the YBCO medium. The point defects are created exclusively in the CuO basal planes of fully oxygenated YBCO, which has not been possible, by other techniques including low energy ion irradiation and thermal quenching. The point defects led to a faster decrease in the integral intensity of XRD peaks at very low fluences of irradiation (Φ ≤3×1010 ionscm-2) than what can be expected from amorphous tracks. The radius of amorphous ion tracks, estimated from the fluence dependence of integral XRD peak intensity beyond this fluence, was found to be 1.9 nm. Both point defect and the strained region around amorphous ion tracks are shown to contribute to the increase in the c-parameter at 89 K. The full width at half maximum (FWHM) of XRD peaks arising mostly due to the strained region around the ion tracks showed an incubation effect up to 1012 ionscm-2, before increasing at higher fluences. Fluence dependence of FWHM gives the cross section of the strained region as 37.9 nm2, which is more than three times the cross section of the amorphous ion tracks.

  3. Structural Transitions of Ion Strings in Quantum Potentials

    NASA Astrophysics Data System (ADS)

    Cormick, Cecilia; Morigi, Giovanna

    2012-08-01

    We analyze the stability and dynamics of an ion chain confined inside a high-finesse optical resonator. When the dipolar transition of the ions strongly couples to one cavity mode, the mechanical effects of light modify the chain properties close to a structural transition. We focus on the linear chain close to the zigzag instability and show that linear and zigzag arrays are bistable for certain strengths of the laser pumping the cavity. For these regimes the chain is cooled into one of the configurations by cavity-enhanced photon scattering. The excitations of these structures mix photonic and vibrational fluctuations, which can be entangled at steady state. These features are signaled by Fano-like resonances in the spectrum of light at the cavity output.

  4. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  5. The effect of track structure on cell inactivation and chromosome damage at a constant let of 120 keV/mum

    NASA Astrophysics Data System (ADS)

    Goodwin, E. H.; Bailey, S. M.; Chen, D. J.; Cornforth, M. N.

    The influence of track structure on chromosome damage and cell inactivation are being investigated. Plateau-phase normal human fibroblast cultures were irradiated with gamma rays, and He, Ne and Ar ions. Particle velocities were chosen so that all beams had an LET of 120 keV/mum. In this constant-LET experimental design, the radial distribution of excitations and ionizations about the particle track is the most significant variable. Using premature chromosome condensation, chromatin breaks were measured at two time points, promptly after irradiation and after a prolonged incubation to allow for repair. These measurements give an indication of both initial chromosomal damage and also residual damage that is either not repaired or is misrepaired. Survival was measured under the same conditions. Results indicate that the RBEs for both cell inactivation and, to a lesser extent, chromosome damage decrease as particle energy increases.

  6. Optimization of quasiperiodic structures in a linear resonance ion accelerator

    NASA Astrophysics Data System (ADS)

    Garashchenko, F. G.; Sokolov, L. S.; Tsulaya, A. V.

    1980-06-01

    A method is proposed for optimizing the parameters of a linear ion accelerator with rectangular or trapezoidal shape of the accelerating voltage between the tubes, systematic allowance being made for the quasiperiodicity of their arrangement. Numerical calculations have demonstrated the effectiveness of the method and also the fairly simple structure of its realization. A detailed algorithm is given. An estimate is made of the interval of entrance phases, the maximal value of which exceeds by several percent the limits previously predicted.

  7. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  8. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  9. Characterization of ion-exchange membrane materials: properties vs structure.

    PubMed

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  10. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  11. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  12. Structure, Dynamics, and Ion Conductance of the Phospholamban Pentamer

    PubMed Central

    Maffeo, Christopher; Aksimentiev, Aleksei

    2009-01-01

    Abstract A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5′-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 Å in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel. PMID:19527644

  13. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  14. Microdosimetry of the full slowing down of protons using Monte Carlo track structure simulations.

    PubMed

    Liamsuwan, T; Uehara, S; Nikjoo, H

    2015-09-01

    The article investigates two approaches in microdosimetric calculations based on Monte Carlo track structure (MCTS) simulations of a 160-MeV proton beam. In the first approach, microdosimetric parameters of the proton beam were obtained using the weighted sum of proton energy distributions and microdosimetric parameters of proton track segments (TSMs). In the second approach, phase spaces of energy depositions obtained using MCTS simulations in the full slowing down (FSD) mode were used for the microdosimetric calculations. Targets of interest were water cylinders of 2.3-100 nm in diameters and heights. Frequency-averaged lineal energies ([Formula: see text]) obtained using both approaches agreed within the statistical uncertainties. Discrepancies beyond this level were observed for dose-averaged lineal energies ([Formula: see text]) towards the Bragg peak region due to the small number of proton energies used in the TSM approach and different energy deposition patterns in the TSM and FSD of protons.

  15. Automatic PSO-Based Deformable Structures Markerless Tracking in Laparoscopic Cholecystectomy

    NASA Astrophysics Data System (ADS)

    Djaghloul, Haroun; Batouche, Mohammed; Jessel, Jean-Pierre

    An automatic and markerless tracking method of deformable structures (digestive organs) during laparoscopic cholecystectomy intervention that uses the (PSO) behavour and the preoperative a priori knowledge is presented. The associated shape to the global best particles of the population determines a coarse representation of the targeted organ (the gallbladder) in monocular laparoscopic colored images. The swarm behavour is directed by a new fitness function to be optimized to improve the detection and tracking performance. The function is defined by a linear combination of two terms, namely, the human a priori knowledge term (H) and the particle's density term (D). Under the limits of standard (PSO) characteristics, experimental results on both synthetic and real data show the effectiveness and robustness of our method. Indeed, it outperforms existing methods without need of explicit initialization (such as active contours, deformable models and Gradient Vector Flow) on accuracy and convergence rate.

  16. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  17. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  18. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  19. Time-resolved X-ray Tracking of Expansion and Compression Dynamics in Supersaturating Ion-Networks

    PubMed Central

    Matsushita, Y.; Sekiguchi, H.; Ichiyanagi, K.; Ohta, N.; Ikezaki, K.; Goto, Y.; Sasaki, Y. C.

    2015-01-01

    Supersaturation of a solution system is a metastable state containing more solute than can be normally solubilized. Moreover, this condition is thermodynamically important for a system undergoing a phase transition. This state plays critical roles in deposition morphology in inorganic, organic, polymer and protein solution systems. In particular, microscopic solution states under supersaturated conditions have recently received much attention. In this report, we observed the dynamic motion of individual ion-network domains (INDs) in a supersaturated sodium acetate trihydrate solution (6.4 M) by using microsecond time-resolved and high accuracy (picometre scale) X-ray observations (diffracted X-ray tracking; DXT). We found that there are femto-Newton (fN) anisotropic force fields in INDs that correspond to an Angstrom-scale relaxation process (continuous expansion and compression) of the INDs at 25 μs time scale. The observed anisotropic force-field (femto-Newton) from DXT can lead to new explanations of how material crystallization is triggered. This discovery could also influence the interpretation of supercooling, bio-polymer and protein aggregation processes, and supersaturated systems of many other materials. PMID:26658326

  20. Dynamical Structures in Phase-Separated Films Deposited under Ion Bombardment

    SciTech Connect

    He, J. H.; Carosella, C. A.; Hubler, G. K.; Knies, D. L.; Qadri, S. B.; Grabowski, K. S.

    2009-03-10

    We report our experimental observation of ion bombardment effect on the film structures generated by co-evaporation of Au and silica. Three states are identified depending on the incident ion energy and beam current. Moderate ion bombardment creates nanoscale compositional modulations along the film growth direction. Strong ion bombardment induces disappearance of the compositional modulations. At still higher energy and flux, energetic ions sputter away all deposited atoms. The observed phenomena reflect synergistic effects of ion bombardment on the film growth in phase separated systems. Our observations suggest that ion beams can be employed to control the film structures in the deposition of phase-separated films.

  1. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  2. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    SciTech Connect

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was also evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.

  3. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    DOE PAGESBeta

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was alsomore » evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.« less

  4. Ions in water: The microscopic structure of concentrated hydroxide solutions

    NASA Astrophysics Data System (ADS)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  5. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    PubMed

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  6. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  7. The real structure of columnar pinning centers in heavy-ion-irradiated cuprate superconductors

    SciTech Connect

    Welch, D.O.; Zhu, Y.; Budhani, R.C.

    1995-12-31

    There has been considerable recent interest in the use of columnar defects produced by irradiation with energetic heavy ions to raise the irreversibility line and improve the critical current density of cuprate superconductors. In the interpretation and theoretical modeling of the flux-pinning characteristics of heavy-ion tracks, it is generally assumed that they are simply columns of non-superconducting material. In this paper we present a more realistic description, based both on resistivity measurements and on detailed, quantitative transmission electron microscope methods (both imaging and analytical studies), of the nature of heavy-ion damage, including defects, disorder, strain fields, and oxygen deficiencies in the matrix of the superconductor surrounding the amorphous columns. The presence of such disorder appears to be a consequence of the mechanism of track formation, which involves partial epitaxial regrowth of a molten region which follows the passage of sufficiently energetic ions.

  8. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  9. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  10. Near real-time tracking of dynamic properties for standalone structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.; Cosenza, E.

    2011-11-01

    Automated modal parameter identification of civil engineering structures has been analyzed in a previous paper. An original algorithm, named LEONIDA, working in frequency domain, has been presented and a number of test cases have been discussed in order to point out advantages and drawbacks. It has been demonstrated that LEONIDA represents a promising and reliable tool, in particular for modal testing. Conversely, integration of such a procedure into a fully automated structural health monitoring (SHM) system has shown that it can be used as modal information engine, but length of record durations, amount of computational burden and response time lead to recognize that serious drawbacks and limitations exist for a class of applications, such as continuous monitoring of structures in seismically prone areas. In fact, a fast assessment of relevant structure health conditions in the early post-earthquake phase is becoming of interest in different European areas. In such a context, the statistical treatment of measured dynamic properties could be certainly useful, but it requires the collection of an extensive amount of local and global data in a short time. As a consequence, availability of reliable, robust and fairly fast data processing procedures for modal tracking is fundamental whenever really effective and useful SHM systems are adopted to support civil protection activities during seismic sequences. This applies mainly to strategic structures, whose health conditions must be rapidly assessed after any seismic event, in order to securely manage rescue operations. In the present paper, the main issues related to a fast, robust and reliable modal tracking for emergency management are outlined. Then, an automated modal tracking strategy for SHM applications in earthquake prone regions is described. It is based on the knowledge of the experimental mode shapes and a revised concept of spatial filtering. Results of sample applications of the proposed procedure refer

  11. Electric field effects on resonance structures in negative ion photodetachment

    NASA Astrophysics Data System (ADS)

    Slonim, V. Z.; Greene, C. H.

    1991-12-01

    The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.

  12. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  13. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  14. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    PubMed

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  15. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  16. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  17. Symplectic tracking and compensation of dynamic field integrals in complex undulator structures

    NASA Astrophysics Data System (ADS)

    Bahrdt, Johannes; Wüstefeld, Godehard

    2011-04-01

    In first approximation storage ring multipole magnets are described as simple two-dimensional magnet structures and many linear and nonlinear beam optic features of a magnet lattice can already be derived from this model. In contrast, undulators, and in particular variably polarizing devices, employ complicated three-dimensional magnetic fields which may have a severe impact on the electron beam, in particular, in low energy third generation storage rings. A Taylor expanded generating function method is presented to generate a fast, flexible, and symplectic mapping routine for particle tracking in magnetic fields. This method is quite general and is based on the solution of the Hamilton-Jacobi equation. It requires an analytical representation of the fields, which can be differentiated and integrated. For undulators of the APPLE II type, an accurate analytic field model is derived which is suitable for the tracking routine. This field model is fully parametrized representing all operation modes for the production of elliptical or linear polarized light with an arbitrary inclination angle or even arbitrary polarization. Based on this field model, analytic expressions for 2nd order kicks are derived. They are used to estimate the influence of APPLE II undulators on the electron beam dynamic. Furthermore, an analytic model for the description of shims is given. The shims are needed for field and performance optimization. Passive and active shimming concepts for the compensation of linear and nonlinear effects of variably polarizing undulators are discussed.

  18. Ion induced changes in the structure of bordered pit membranes.

    PubMed

    Lee, Jinkee; Holbrook, N Michele; Zwieniecki, Maciej A

    2012-01-01

    Ion-mediated changes in xylem hydraulic resistance are hypothesized to result from hydrogel like properties of pectins located in the bordered pit membranes separating adjacent xylem vessels. Although the kinetics of the ion-mediated changes in hydraulic resistance are consistent with the swelling/deswelling behavior of pectins, there is no direct evidence of this activity. In this report we use atomic force microscopy (AFM) to investigate structural changes in bordered pit membranes associated with changes in the ionic concentration of the surrounding solution. When submerged in de-ionized water, AFM revealed bordered pit membranes as relatively smooth, soft, and lacking any sharp edges surface, in contrast to pictures from scanning electron microscope (SEM) or AFM performed on air-dry material. Exposure of the bordered pit membranes to 50 mM KCl solution resulted in significant changes in both surface physical properties and elevation features. Specifically, bordered pit membranes became harder and the fiber edges were clearly visible. In addition, the membrane contracted and appeared much rougher due to exposed microfibers. In neither solution was there any evidence of discrete pores through the membrane whose dimensions were altered in response to the ionic composition of the surrounding solution. Instead the variable hydraulic resistance appears to involve changes in the both the permeability and the thickness of the pit membrane.

  19. Cryo-focused-ion-beam applications in structural biology.

    PubMed

    Rigort, Alexander; Plitzko, Jürgen M

    2015-09-01

    The ability to precisely control the preparation of biological samples for investigations by electron cryo-microscopy is becoming increasingly important for ultrastructural imaging in biology. Precision machining instruments such as the focused ion beam microscope (FIB) were originally developed for applications in materials science. However, today we witness a growing use of these tools in the life sciences mainly due to their versatility, since they can be used both as manipulation and as imaging devices, when complemented with a scanning electron microscope (SEM). The advent of cryo-preparation equipment and accessories made it possible to pursue work on frozen-hydrated biological specimens with these two beam (FIB/SEM) instruments. In structural biology, the cryo-FIB can be used to site-specifically thin vitrified specimens for transmission electron microscopy (TEM) and tomography. Having control over the specimen thickness is a decisive factor for TEM imaging, as the thickness of the object under scrutiny determines the attainable resolution. Besides its use for TEM preparation, the FIB/SEM microscope can be additionally used to obtain three-dimensional volumetric data from biological specimens. The unique combination of an imaging and precision manipulation tool allows sequentially removing material with the ion beam and imaging the milled block faces by scanning with the electron beam, an approach known as FIB/SEM tomography. This review covers both fields of cryo-FIB applications: specimen preparation for TEM cryo-tomography and volume imaging by cryo-FIB/SEM tomography.

  20. Crystal Structure of a Potassium Ion Transporter TrkH

    SciTech Connect

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  1. Structural and compositional changes of dissolved organic matter upon solid-phase extraction tracked by multiple analytical tools.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Jung, Heon-Jae; Hur, Jin

    2016-09-01

    Although PPL-based solid-phase extraction (SPE) has been widely used before dissolved organic matter (DOM) analyses via advanced measurements such as ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), much is still unknown about the structural and compositional changes in DOM pool through SPE. In this study, selected DOM from various sources were tested to elucidate the differences between before and after the SPE utilizing multiple analytical tools including fluorescence spectroscopy, FT-ICR-MS, and size exclusion chromatography with organic carbon detector (SEC-OCD). The changes of specific UV absorbance indicated the decrease of aromaticity after the SPE, suggesting a preferential exclusion of aromatic DOM structures, which was also confirmed by the substantial reduction of fluorescent DOM (FDOM). Furthermore, SEC-OCD results exhibited very low recoveries (1-9 %) for the biopolymer fraction, implying that PPL needs to be used cautiously in SPE sorbent materials for treating high molecular weight compounds (i.e., polysaccharides, proteins, and amino sugars). A careful examination via FT-ICR-MS revealed that the formulas lost by the SPE might be all DOM source-dependent. Nevertheless, the dominant missing compound groups were identified to be the tannins group with high O/C ratios (>0.7), lignins/carboxyl-rich alicyclic molecules (CRAM), aliphatics with high H/C >1.5, and heteroatomic formulas, all of which were prevailed by pseudo-analogous molecular formula families with different methylene (-CH2) units. Our findings shed new light on potential changes in the compound composition and the molecular weight of DOM upon the SPE, implying precautions needed for data interpretation. Graphical Abstract Tracking the characteristics of DOM from various origins upon PPL-based SPE utilizing EEMPARAFAC, SEC-OCD, and FT-ICR-MS.

  2. Structural and compositional changes of dissolved organic matter upon solid-phase extraction tracked by multiple analytical tools.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Jung, Heon-Jae; Hur, Jin

    2016-09-01

    Although PPL-based solid-phase extraction (SPE) has been widely used before dissolved organic matter (DOM) analyses via advanced measurements such as ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), much is still unknown about the structural and compositional changes in DOM pool through SPE. In this study, selected DOM from various sources were tested to elucidate the differences between before and after the SPE utilizing multiple analytical tools including fluorescence spectroscopy, FT-ICR-MS, and size exclusion chromatography with organic carbon detector (SEC-OCD). The changes of specific UV absorbance indicated the decrease of aromaticity after the SPE, suggesting a preferential exclusion of aromatic DOM structures, which was also confirmed by the substantial reduction of fluorescent DOM (FDOM). Furthermore, SEC-OCD results exhibited very low recoveries (1-9 %) for the biopolymer fraction, implying that PPL needs to be used cautiously in SPE sorbent materials for treating high molecular weight compounds (i.e., polysaccharides, proteins, and amino sugars). A careful examination via FT-ICR-MS revealed that the formulas lost by the SPE might be all DOM source-dependent. Nevertheless, the dominant missing compound groups were identified to be the tannins group with high O/C ratios (>0.7), lignins/carboxyl-rich alicyclic molecules (CRAM), aliphatics with high H/C >1.5, and heteroatomic formulas, all of which were prevailed by pseudo-analogous molecular formula families with different methylene (-CH2) units. Our findings shed new light on potential changes in the compound composition and the molecular weight of DOM upon the SPE, implying precautions needed for data interpretation. Graphical Abstract Tracking the characteristics of DOM from various origins upon PPL-based SPE utilizing EEMPARAFAC, SEC-OCD, and FT-ICR-MS. PMID:27387996

  3. Applications of a New Tropical Cyclone Initialization Scheme on Improving TC Track, Intensity and Structure Forecasts

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Chen, Y. L.

    2015-12-01

    The TC initialization scheme developed by Nguyen and Chen (2011) (NC2011) was used to produce the initial TC structure and intensity in the model for 18 TCs (2004-2013) over the Northwestern Pacific using the Weather and Research Forecast Model (WRF). For these storms, the initial storm structure and intensity in the model agrees well with observations. These results attest that the environment, including SST, in which the storm is embedded has a significant impact on the intensity and rainband patterns of these well-developed TCs. Recently, the scheme was used throughout the entire life cycle of super typhoon Jelawat (2012), which underwent a rapid intensification (RI) stage, and a few other storms including Haiyan (2013) and Iniki (1992). The NC2014 scheme was also tested in a real-time experiment forecast for a Category 1 hurricane (Ana 2014) over the Hawaiian Islands and compared with the performance of the Hurricane WRF model (HWRF) and the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). For all cases considered, the scheme works well in predicting track, intensity and structure for storms with different intensities at different stages of their life cycle. This is because at the model initial time, the initial storm intensity and structure are well adjusted to the environmental conditions in which it is embedded and well adapted to the model employed.

  4. Labeling the Structural Integrity of Nanoparticles for Advanced In Situ Tracking in Bionanotechnology.

    PubMed

    Meder, Fabian; Thomas, Steffi S; Fitzpatrick, Laurence W; Alahmari, Amirah; Wang, Suxiao; Beirne, Jason G; Vaz, Gizela; Redmond, Gareth; Dawson, Kenneth A

    2016-04-26

    Observing structural integrity of nanoparticles is essential in bionanotechnology but not always straightforward to measure in situ and in real-time. Fluorescent labels used for tracking intrinsically nonfluorescent nanomaterials generally do not allow simultaneous observation of integrity. Consequently, structural changes like degradation and disassembly cannot easily be followed in situ using fluorescence signals. We show that thioflavin T (ThT), a fluorophore and molecular rotor known to tag specific fibril structures in amyloids, can "label" the structural integrity of widely used and intrinsically nonfluorescent, silica nanoparticles (SiNPs). Entrapment of ThT in SiNPs controls the fluorohphore's relaxation pathway and leads to a red-shifted fluorescence spectrum providing real time information on SiNP integrity. The dynamic change of ThT fluorescence during degradation of doped SiNPs is found much higher than that of common labels fluorescein and rhodamine. Degradation kinetics of core-shell structures recorded by ThT fluorescence and light scattering prove the capability to clearly distinguish structural features during SiNPs degradation and allow obtaining degradation kinetics in vitro, in biological media, in serum, and in cells. The effect is transferable to different types of materials, here shown for ThT incorporated SiNPs with tightly tailorable sizes (9-100 nm), poly(lactic-co-glycolic acid) (PLGA) nanoparticles, poly(9-vinylcarbazole) (PVK) nanoparticles, and iron-doped-SiNPs (FeSiNPs). We thus suggest molecular rotors such as ThT as additional labels to effectively and easily sense nanoparticle structural status in situ and to enhance understanding and development of programmed nanoparticle disassembly in bionanotechnology. PMID:26959685

  5. Status of structural analysis of 30 cm diameter ion optics

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Hering, Gary T.

    1990-01-01

    Three structural finite element programs are compared with theory, experimental data, and each other to evaluate their usefulness for modeling the thermomechanical deflection of ion engine electrodes. Two programs, NASTRAN and MARC, used a Cray XMP and the third, Algor, used an IBM compatible personal computer. The shape of the applied temperature gradient greatly affects off-axis displacement, implying that an accurate temperature distribution is required to analyze new designs. The use of bulk material constants to model the perforated electrodes was investigated. The stress and displacement predictions are shown to be sensitive to the temperature gradient and the Young's modulus, and insensitive to number of nodes, above some minimum value, and the Poisson ratio used. The models are shown to be useful tools for evaluating designs. Experimental measurements of temperatures and displacements was identified as the most critical area.

  6. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  7. Optimal structural design of a 5-kW CPV tracking system by considering the ISO 4017/4762 standard through structure and flow simulations

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong

    2015-09-01

    Photovoltaic generation systems have disadvantage in that they are usually installed outdoors and are exposed to extreme environments such as wind, snow and rain loadings. The structure of a photovoltaic generation system should be designed to have sufficient stiffness and strength against such loads. Especially, electric power generation by a concentrator photovoltaic(CPV) system can produce enough power if a right angle is main fained between the solar and the CPV panel within 90° ± 1°. To make the CPV tracking system in this study, we designed the structure by calculating the variations in and the strees applied to the structure by the wind load when the CPV tracking was influenced by the wind load. In this study, a 5-kW CPV tracking structure was designed through a structural analysis and a finiteelement analysis for a wind speed of 65 m/s by using ANSYS. The simulation of the structural design showed that the, structure of the 5-kW CPV tracking system corresponded with the ISO4017/ISO4762 standard. Based on this research, we will produce a 5-kW CPV tracking system and proceed to field test.

  8. Structure of the TRPA1 ion channel suggests regulatory mechanisms

    PubMed Central

    Paulsen, Candice E.; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David

    2015-01-01

    The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents. PMID:25855297

  9. Spectroscopic investigations of the electronic structure of neptunyl ions.

    SciTech Connect

    Wilkerson, M. P.; Berg, J. M.; Dewey, H. J.

    2003-01-01

    Molecular electronic structures are innately sensitive to the geometric and chemical environments around the metal center of coordination compounds . However, the interrelationships between the electronic structures and molecular geometries of actinide species, which often contain more than one electron in the Sf valence shell, are quite complex due to the large numbers of possible electronic states and high densities of vibronically enabled transitions .1'2 Investigations of the optical signatures of simple, well-defined molecular systems should provide the most straightforward approach for unharnessing these fundamental relationships, and in particular, systems with a single electron in the valence Sf shell, such as the neptunyl ion (Np0 22+), should provide the most viable means for characte rizing actinide electronic structure. Furthermore, Sf orbital-occupied actinide systems exhibit not only visible and ultraviolet ligand-to-metal charge-transfer spectral bands, but also near-infrared Sf-Sf transitions resulting from promotion of a Sf electron to an orbital of primarily Sf character .

  10. Variable frequency heavy-ion linac, RILAC I. Design, construction and operation of its accelerating structure

    NASA Astrophysics Data System (ADS)

    Odera, Masatoshi; Chiba, Yoshiaki; Tonuma, Tadao; Hemmi, Masatake; Miyazawa, Yoshitoshi; Inoue, Toshihiko; Kambara, Tadashi; Kase, Masayuki; Kubo, Toshiyuki; Yoshida, Fusako

    1984-11-01

    A variable frequency linear accelerator at RIKEN (IPCR), which is named RILAC, is designed to accelerate ions of almost every element in the periodic table. In this report, the design, construction and performance of the resonator cavities of this linac are described. A new accelerating structure was developed for the variable frequency scheme. The principal aim of the development was to obtain a configuration within the cavity to keep a uniform voltage distribution along the accelerating axis over the wide range of resonant frequencies required. The final form adopted is a coaxial quarter-wave type resonator with a race-track-like cross section for its coaxial inner and outer conductors. It has a movable shorting device as a frequency tuner and its open end is enlarged and loaded with drift tubes, connected to the inner and outer conductors alternatingly. The structure can maintain the required uniformity of the accelerating voltage within 10% in spite of resonant frequency tuning between 17 and 45 MHz. A relatively modest accelerating gradient was chosen so that cw operation could be realized. The RILAC is composed of six such cavities which are independently excited and it succeeded in the acceleration of a beam through all the cavities in 1981.

  11. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Toimil-Molares, M E; Trautmann, Christina

    2015-01-01

    Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7-1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced.

  12. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  13. Structure Modulates Similarity-Based Interference in Sluicing: An Eye Tracking study.

    PubMed

    Harris, Jesse A

    2015-01-01

    In cue-based content-addressable approaches to memory, a target and its competitors are retrieved in parallel from memory via a fast, associative cue-matching procedure under a severely limited focus of attention. Such a parallel matching procedure could in principle ignore the serial order or hierarchical structure characteristic of linguistic relations. I present an eye tracking while reading experiment that investigates whether the sentential position of a potential antecedent modulates the strength of similarity-based interference, a well-studied effect in which increased similarity in features between a target and its competitors results in slower and less accurate retrieval overall. The manipulation trades on an independently established Locality bias in sluiced structures to associate a wh-remnant (which ones) in clausal ellipsis with the most local correlate (some wines), as in The tourists enjoyed some wines, but I don't know which ones. The findings generally support cue-based parsing models of sentence processing that are subject to similarity-based interference in retrieval, and provide additional support to the growing body of evidence that retrieval is sensitive to both the structural position of a target antecedent and its competitors, and the specificity or diagnosticity of retrieval cues.

  14. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    SciTech Connect

    Barton, Dennis; König, Carolin; Neugebauer, Johannes

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  15. Structure Modulates Similarity-Based Interference in Sluicing: An Eye Tracking study.

    PubMed

    Harris, Jesse A

    2015-01-01

    In cue-based content-addressable approaches to memory, a target and its competitors are retrieved in parallel from memory via a fast, associative cue-matching procedure under a severely limited focus of attention. Such a parallel matching procedure could in principle ignore the serial order or hierarchical structure characteristic of linguistic relations. I present an eye tracking while reading experiment that investigates whether the sentential position of a potential antecedent modulates the strength of similarity-based interference, a well-studied effect in which increased similarity in features between a target and its competitors results in slower and less accurate retrieval overall. The manipulation trades on an independently established Locality bias in sluiced structures to associate a wh-remnant (which ones) in clausal ellipsis with the most local correlate (some wines), as in The tourists enjoyed some wines, but I don't know which ones. The findings generally support cue-based parsing models of sentence processing that are subject to similarity-based interference in retrieval, and provide additional support to the growing body of evidence that retrieval is sensitive to both the structural position of a target antecedent and its competitors, and the specificity or diagnosticity of retrieval cues. PMID:26733893

  16. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    NASA Astrophysics Data System (ADS)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes

    2014-10-01

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  17. Structure Modulates Similarity-Based Interference in Sluicing: An Eye Tracking study

    PubMed Central

    Harris, Jesse A.

    2015-01-01

    In cue-based content-addressable approaches to memory, a target and its competitors are retrieved in parallel from memory via a fast, associative cue-matching procedure under a severely limited focus of attention. Such a parallel matching procedure could in principle ignore the serial order or hierarchical structure characteristic of linguistic relations. I present an eye tracking while reading experiment that investigates whether the sentential position of a potential antecedent modulates the strength of similarity-based interference, a well-studied effect in which increased similarity in features between a target and its competitors results in slower and less accurate retrieval overall. The manipulation trades on an independently established Locality bias in sluiced structures to associate a wh-remnant (which ones) in clausal ellipsis with the most local correlate (some wines), as in The tourists enjoyed some wines, but I don't know which ones. The findings generally support cue-based parsing models of sentence processing that are subject to similarity-based interference in retrieval, and provide additional support to the growing body of evidence that retrieval is sensitive to both the structural position of a target antecedent and its competitors, and the specificity or diagnosticity of retrieval cues. PMID:26733893

  18. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    PubMed Central

    2015-01-01

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations. PMID:25222548

  19. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  20. Ion-scale structure in Mercury's magnetopause reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-06-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3-3 mV/m reconnection electric fields separated by ~5-10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  1. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  2. Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging

    NASA Astrophysics Data System (ADS)

    Plotnikov, I.; Rouillard, A. P.; Davies, J. A.; Bothmer, V.; Eastwood, J. P.; Gallagher, P.; Harrison, R. A.; Kilpua, E.; Möstl, C.; Perry, C. H.; Rodriguez, L.; Lavraud, B.; Génot, V.; Pinto, R. F.; Sanchez-Diaz, E.

    2016-08-01

    stream interface measured in situ by an average of 55 km s^{-1} at ST-A and 84 km s^{-1} at STEREO-B (ST-B). We show that the speeds of the corotating density structures derived using our fitting technique track well the long-term variation of the radial speed of the slow solar wind during solar minimum years (2007 - 2008). Furthermore, we demonstrate that these features originate near the coronal neutral line that eventually becomes the heliospheric current sheet.

  3. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  4. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors.

    PubMed

    Niklas, M; Zimmermann, F; Schlegel, J; Schwager, C; Debus, J; Jäkel, O; Abdollahi, A; Greilich, S

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  5. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  6. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors.

    PubMed

    Niklas, M; Zimmermann, F; Schlegel, J; Schwager, C; Debus, J; Jäkel, O; Abdollahi, A; Greilich, S

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis. PMID:27499388

  7. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking.

    PubMed

    Xia, Peng; Liu, Xing; Wu, Bing; Zhang, Shuyuan; Song, Xiaoyu; Yao, Phil Y; Lippincott-Schwartz, Jennifer; Yao, Xuebiao

    2014-12-15

    Visualization of specific molecules and their interactions in real time and space is essential to delineate how cellular dynamics and the signaling circuit are orchestrated. Spatial regulation of conformational dynamics and structural plasticity of protein interactions is required to rewire signaling circuitry in response to extracellular cues. We introduce a method for optically imaging intracellular protein interactions at nanometer spatial resolution in live cells, using photoactivatable complementary fluorescent (PACF) proteins. Subsets of complementary fluorescent protein molecules were activated, localized, and then bleached; this was followed by the assembly of superresolution images from aggregate position of sum interactive molecules. Using PACF, we obtained precise localization of dynamic microtubule plus-end hub protein EB1 dimers and their distinct distributions at the leading edges and in the cell bodies of migrating cells. We further delineated the structure-function relationship of EB1 by generating EB1-PACF dimers (EB1(wt):EB1(wt), EB1(wt):EB1(mt), and EB1(mt):EB1(mt)) and imaging their precise localizations in culture cells. Surprisingly, our analyses revealed critical role of a previously uncharacterized EB1 linker region in tracking microtubule plus ends in live cells. Thus PACF provides a unique approach to delineating spatial dynamics of homo- or heterodimerized proteins at the nanometer scale and establishes a platform to report the precise regulation of protein interactions in space and time in live cells.

  8. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    SciTech Connect

    McKenzie, D. E.

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  9. Ion trap array mass analyzer: structure and performance.

    PubMed

    Li, Xiaoxu; Jiang, Gongyu; Luo, Chan; Xu, Fuxing; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2009-06-15

    An ion trap array (ITA) mass analyzer--a novel ion trap mass analyzer with multiple ion trapping and analyzing channels--was designed and constructed. Its property and performance were investigated and reported in this paper. The ITA was built with several planar electrodes including two parallel printed circuit board (PCB) plates. Each PCB plate was fabricated to several identical rectangular electric strips based on normal PCB fabrication technology and was placed symmetrically to those on the opposite plate. There is no electrode between any two adjacent strips. Every strip was supplied with an rf voltage while the polarity of the voltage applied to the adjacent two strips was opposite. So the electric potential at the central plane between two adjacent strips is zero. Multiple identical electric field regions that contain the dominant quadrupole plus some other high-order fields were produced between the two PCB plates. The multiple identical electric field regions will have the property of ion trapping, ion storage, and mass analysis functions. So an ITA could work as multiple ion trap mass analyzers. It could perform multiple sample ion storage, mass-selected ion isolation, ion ejection, and mass analysis simultaneously. The ITA was operated at both "digital ion trap mode" and "conventional rf mode" experimentally. A preliminary mass spectrum has been carried out in one of the ion trap channels, and it shows a mass resolution of over 1000. Additional functions such as mass-selected ion isolation and mass-selected ion ejection have also been tested. Furthermore, the ITA has a small size and very low cost. An ITA with four channels is less than 30 cm(3) in total volume, and it shows a great promise for the miniaturization of the whole mass spectrometer instrument and high-throughput mass analysis. PMID:19441854

  10. The correlation between the radial distribution of high-energetic ions and the structural as well as electrical properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, André; Welzel, Thomas; Ellmer, Klaus

    2013-12-14

    The origin of the pronounced radial distributions of structural and electrical properties of magnetron sputtered ZnO:Al films has been investigated. The film properties were correlated with the radially resolved ion-distribution functions. While the positive ions exhibit low energies and a radial distribution with a maximum intensity opposite the center of the target, the negative ions can have energies up to several hundred eV, depending on the target potential, with a radial distribution with two maxima opposite the erosion tracks. The most prominent positive ion is that of the working gas (Ar{sup +}), while the highest flux of the negative ions is measured for negative oxygen O{sup −}. The radial distribution of the flux of the high-energetic negative ions can clearly be related to the radial variations of the structural (c-axis lattice parameter, crystallite size) and electronic (resistivity) properties for sputtering from the planar target, which points to the decisive role of the high-energetic negative oxygen ions for the film quality. The relation between the negative ion bombardment and the structural as well as electronic properties can be explained by a qualitative model recently developed by us. The same target has also been investigated in the eroded state. In this case, the limited acceptance angle of the mass spectrometer leads to a misinterpretation of the radial distribution of the flux of the high-energetic negative ions. This effect can be explained by a simulation, based on the assumption that the high-energetic negative ions are mainly accelerated in the cathode (target) sheath perpendicular to the uneven substrate surface.

  11. Method and system for detecting polygon boundaries of structures in images as particle tracks through fields of corners and pixel gradients

    DOEpatents

    Paglieroni, David W.; Manay, Siddharth

    2011-12-20

    A stochastic method and system for detecting polygon structures in images, by detecting a set of best matching corners of predetermined acuteness .alpha. of a polygon model from a set of similarity scores based on GDM features of corners, and tracking polygon boundaries as particle tracks using a sequential Monte Carlo approach. The tracking involves initializing polygon boundary tracking by selecting pairs of corners from the set of best matching corners to define a first side of a corresponding polygon boundary; tracking all intermediate sides of the polygon boundaries using a particle filter, and terminating polygon boundary tracking by determining the last side of the tracked polygon boundaries to close the polygon boundaries. The particle tracks are then blended to determine polygon matches, which may be made available, such as to a user, for ranking and inspection.

  12. Thermal structure of ions and electrons in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1993-06-01

    A theoretical model of thermal ion and electron temperatures in Saturn's inner magnetospheres is presented which is based on a fast model of radial diffusive plasma transport. It is shown that the ion and electron temperatures and the latitudinal behavior of temperatures are consistent with the fast diffusion hypothesis, assuming that O(+) is the dominant ion and that its source is the Dione-Tethys plasma torus. The present results reinforce the conclusions of Barbosa (1990).

  13. Capturing Ion-Solid Interactions with MOS structures

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Harrell, W. R.; Harriss, J. E.; Sosolik, C. E.

    2012-02-01

    We have fabricated metal-oxide-semiconductor (MOS) devices for a study of implantation rates and damage resulting from low energy ion-solid impacts. Specifically, we seek to capture ion irradiation effects on oxides by exposing as-grown SiO2 layers (50 nm to 200 nm) to incident beams of alkali ions with energies in the range of 100 eV to 10 keV. The oxide is analyzed post exposure by encapsulating the irradiated region under a top metallic contact or within a finished MOS device. Characterization of the resulting ion-modified MOS device involves the standard techniques of room temperature and bias-dependent capacitance-voltage (C-V) measurements. The C-V results reveal alkali ion-induced changes in the flatband voltage of irradiated devices which can be used to extract both the range and implantation probabilities of the ions. Biased C-V measurements are utilized to confirm the concentration or dosage of ions in the oxide. A triangular voltage sweep (TVS) measurement at elevated temperatures also reveals the total ionic space charge in the oxide and can be used to extract a mobility for the ions as they pass through the damaged oxide. Comparisons of these measurements to standard device models as well as to ion range calculations in the oxide are presented.

  14. Crustal and uppermost mantle structure variation beneath La Réunion hotspot track

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Barruol, Guilhem; Tkalčić, Hrvoje; Wölbern, Ingo; Rümpker, Georg; Bodin, Thomas; Haugmard, Méric

    2015-10-01

    The Piton de la Fournaise basaltic volcano, on La Réunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Réunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Réunion, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Réunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P-to-S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (˜21 km) compared to La Réunion (˜12 km). A magmatic underplated body may be present under La Réunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume-lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Réunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Réunion and below 50 km beneath Mauritius that could represent

  15. On the consistency of Monte Carlo track structure DNA damage simulations

    SciTech Connect

    Pater, Piotr Seuntjens, Jan; El Naqa, Issam; Bernal, Mario A.

    2014-12-15

    Purpose: Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. Methods: The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV–220 keV were superimposed on a geometric DNA model composed of 2.7 × 10{sup 6} nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy E{sub TH}. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Results: Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when E{sub TH} ≈ 10.79 eV, but deviate significantly for higher E{sub TH} values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their

  16. Structural modifications of low-energy heavy-ion irradiated germanium

    SciTech Connect

    Steinbach, T.; Wernecke, J.; Wesch, W.; Kluth, P.; Ridgway, M. C.

    2011-09-01

    Heavy-ion irradiation of crystalline germanium (c-Ge) results in the formation of a homogeneous amorphous germanium (a-Ge) layer at the surface. This a-Ge layer undergoes structural modification such as a strong volume expansion accompanied by drastic surface blackening with further ion irradiation. In the present paper we investigate the mechanism of this ion-induced structural modification in a-Ge basically for the irradiation with I ions (3 and 9 MeV) at room and low temperature as a function of ion fluence for the ion incidence angles of {Theta}=7 deg. and {Theta}=45 deg. For comparison, Ag- and Au-ion irradiations were performed at room temperature as a function of the ion fluence. At fluences two orders of magnitude above the amorphization threshold, morphological changes were observed for all irradiation conditions used. Over a wide range of ion fluences we demonstrate that the volume expansion is caused by the formation of voids at the surface and in the depth of the projected ion range. At high ion fluences the amorphous layer transforms into a porous structure as established by cross section and plan view electron microscopy investigations. However, the formation depth of the surface and buried voids as well as the shape and the dimension of the final porous structure depend on the ion fluence, ion species, and irradiation temperature and will be discussed in detail. The rate of the volume expansion (i.e., porous layer formation) depends linearly on the value of {epsilon}{sub n}. This clearly demonstrates that the structural changes are determined solely by the nuclear energy deposited within the amorphous phase. In addition, at high ion fluences all perpendicular ion irradiations lead to a formation of a microstructure at the surface, whereas for nonperpendicular ion irradiations a nonsaturating irreversible plastic deformation (ion hammering) without a microstructure formation is observed. For the irradiation with ion energies of several MeV, the effect

  17. Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds

    NASA Astrophysics Data System (ADS)

    Mohanty, Sankhya; Hattel, Jesper H.

    2016-04-01

    Repeatability and reproducibility of parts produced by selective laser melting is a standing issue, and coupled with a lack of standardized quality control presents a major hindrance towards maturing of selective laser melting as an industrial scale process. Consequently, numerical process modelling has been adopted towards improving the predictability of the outputs from the selective laser melting process. Establishing the reliability of the process, however, is still a challenge, especially in components having overhanging structures. In this paper, a systematic approach towards establishing reliability of overhanging structure production by selective laser melting has been adopted. A calibrated, fast, multiscale thermal model is used to simulate the single track formation on a thick powder bed. Single tracks are manufactured on a thick powder bed using same processing parameters, but at different locations in a powder bed and in different laser scanning directions. The difference in melt track widths and depths captures the effect of changes in incident beam power distribution due to location and processing direction. The experimental results are used in combination with numerical model, and subjected to uncertainty and reliability analysis. Cumulative probability distribution functions obtained for melt track widths and depths are found to be coherent with observed experimental values. The technique is subsequently extended for reliability characterization of single layers produced on a thick powder bed without support structures, by determining cumulative probability distribution functions for average layer thickness, sample density and thermal homogeneity.

  18. Extended tracking of the microbial community structure and dynamics in an industrial synthetic metalworking fluid system.

    PubMed

    Kapoor, Renuka; Selvaraju, Suresh B; Yadav, Jagjit S

    2014-03-01

    Understanding of the occupational exposure risk scenario and disease etiology associated with industrial metalworking fluids (MWFs) requires knowledge of the development and composition of their microbial diversity in relation to the underlying fluid management factors. In this study, a managed synthetic MWF operation freshly recharged following the dumping, cleaning, and recharge (DCR) process was tracked in real time for microbial community changes over a period of 1.25 years (65 weeks). The recharged fluid developed very high bacterial counts (viable and nonviable) fairly quickly after the DCR process, indicating its inadequacy. Genus-/group-specific real-time qPCR confirmed the prevalence of six potentially pathogenic/immunogenic microbial genera/groups, viz. pseudomonads, enterics, mycobacteria, legionellae, actinomycetes, and fungi. Selective culturing revealed Acinetobacter and Bacillus as the most frequently isolated Gram-negative and Gram-positive genera, respectively, in addition to the presence of fungi and actinomycetes. Endotoxin perturbations (< 1000 to > 100000 EU mL⁻¹) coincided with temporal increases in Gram-negative bacteria and/or periodic biocide additions. PCR-DGGE-sequencing revealed an expanded estimated bacterial richness (up to 23 bands per sample). Of the 16 dominant bacterial phylotypes identified, the majority were detected for the first time in MWF. Interestingly, the study revealed a crucial role for MWF brand, among other fluid factors, in modulating the community structure and dynamics. PMID:24256434

  19. Biological effectiveness of accelerated particles for the induction of chromosome damage: track structure effects.

    PubMed

    George, Kerry A; Hada, Megumi; Chappell, Lori; Cucinotta, Francis A

    2013-07-01

    We have investigated how radiation quality affects the induction of chromosomal aberrations in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated high charge and energy (HZE) particles including oxygen, neon, silicon, titanium and iron. Chromosome damage was assessed using three-color FISH chromosome painting in chemically induced premature chromosome condensation samples collected at first cell division after irradiation. The LET values for these particles ranged from 30 to 195 keV/μm, and their energies ranged from about 55 MeV/u to more than 1,000 MeV/u. The 89 and 142 MeV/u neon particles produced the most simple-type reciprocal exchanges per unit dose. For complex-type exchanges, 64 MeV/u neon and 450 MeV/u iron were equally effective and induced the greatest amount of complex damage. Track structure models predict that at a fixed value of LET, particles with lower charge number (Z) will have a higher biological effectiveness compared to particles with a higher Z, and that a saturation cross section will be observed for different radiation qualities. Our results are consistent with model expectations within the limitation of experimental error, and provide the most extensive data that have been reported on the radiation quality dependences of chromosomal aberrations. PMID:23692480

  20. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  1. A new neural network approach to the target tracking problem with smart structure

    NASA Astrophysics Data System (ADS)

    Çaylar, Selçuk; Leblebicioǧlu, Kemal; Dural, Gülbin

    2006-10-01

    A modified neural network-based algorithm (modified neural multiple-source tracking algorithm (MN-MUST)) is proposed for real-time multiple-source tracking problem. The proposed approach reduced the input size of the neural network without any degradation of the accuracy of the system for uncorrelated sources. In addition, a spatial filtering stage that considerably improves the performance of the system is proposed to be inserted. It is observed that the MN-MUST algorithm provides an accurate and efficient solution to the target-tracking problem in real time.

  2. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  3. Structure and mechanism of formation of an important ion in doping control

    NASA Astrophysics Data System (ADS)

    Borges, Chad R.; Taccogno, James; Crouch, Dennis J.; Le, Ly; Truong, Thanh N.

    2005-12-01

    An ion with m/z 143 serves as a biomarker that is often continuously monitored in urine samples undergoing screening by electron ionization gas chromatography/mass spectrometry (EI GC/MS) for banned anabolic agents. The ion is known to arise from trimethylsilyl (TMS)-derivatized synthetic 17-hydroxy, 17-methyl steroids. The purpose of this work was to characterize, in detail, the origin(s), structure(s), and mechanism(s) of formation of such ions with m/z 143. High resolution mass spectrometry (HRMS) data revealed the elemental composition of the D-ring derived m/z 143 ion to be C7H15OSi. Analysis of dihydrotestosterone (DHT) and its 2-methyl substituted analog dromostanolone by HRMS revealed that an elementally equivalent ion of m/z 143 could be derived from the A-ring of TMS-derivatized 3-keto-enol steroids demonstrating that an abnormally intense peak in the m/z 143 extracted ion chromatogram of urine samples undergoing screening for banned anabolic agents does not necessarily indicate the presence of a 17-hydroxy, 17-methyl steroid. To gain information on ion structure, breakdown curves for the most abundant product ions of the m/z 143 ion were generated using both native and perdeutero-TMS derivatives, providing structures for second, third, and fourth generation product ions. An EI-mass spectrum of [16,16,17-2H3]-DHT (DHT-d3) demonstrated that one of the C-16 hydrogen atoms is removed prior to the formation of an ion that is highly analogous to the ion with m/z 143 strongly suggesting, in accord with all other evidence, one particular fragmentation pathway and resulting product: a resonance stabilized 3-(O-trimethylsilyl)but-1-ene ion.

  4. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  5. Structural Modification of Nanocrystalline Ceria by Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra J.; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-05-25

    Using energetic ions, we have demonstrated effective modification of grain size in nanocrystalline ceria in the critical region for controlling exceptional size-dependent electronicionic conductivity. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale.

  6. Dynamics of High Energy Ions at a Structured Collisionless Shock Front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Dröge, W.; Kartavykh, Y. Y.

    2016-07-01

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  7. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  8. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the

  9. Dissociative recombination of interstellar ions: electronic structure calculations for HCO/sup +/

    SciTech Connect

    Kraemer, W.P.; Hazi, A.U.

    1985-07-02

    The present study of the interstellar formyl ion HCO/sup +/ is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO/sup +/ process. Similar calculations for the isoelectronic ions HOC/sup +/ and HN/sub 2//sup +/ are in progress. 60 refs.

  10. Structural transitions in ion coordination driven by changes in competition for ligand binding

    PubMed Central

    Varma, Sameer; Rempe, Susan B.

    2009-01-01

    Transferring Na+ and K+ ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into over-coordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry and temperature, on the stabilities of ion coordination structures are also explored. PMID:18954053

  11. "Trunk-like" heavy ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Wolf, R. A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Niehof, J. T.; MacDonald, E. A.; Friedel, R.; Ferradas, C. P.; Luo, H.

    2015-10-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report "trunk-like" ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6-2.6, magnetic local time (MLT) = 9.1-10.5, and magnetic latitude (MLAT) = -2.4-0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5-0.7 keV, L = 3.6-2.5, MLT = 9.1-10.7, and MLAT = -2.4-0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

  12. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    SciTech Connect

    Colby, Ralph H.; Maranas, Janna K; Mueller, Karl T; Runt, James; Winey, Karen I

    2015-03-05

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li, Na, Cs or polycations that conduct small anions F, OH, Br. We utilize a wide range of complimentary experimental materials charactization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li is -60 C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ~ -75C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  13. Structural modifications in biosynthetic melanins induced by metal ions.

    PubMed

    Palumbo, A; d'Ischia, M; Misuraca, G; Prota, G; Schultz, T M

    1988-02-17

    A number of transition metal ions with a wide distribution in biological systems, e.g., Cu2+, Co2+ and Zn2+, are shown to affect markedly the chemical properties of melanins formed by the tyrosinase-catalysed oxidation of dopa. Acid decarboxylation and permanganate degradation provide evidence that melanins prepared in the presence of metal ions contain a high content of carboxyl groups arising from the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DICA) into the pigment polymer. Naturally occurring melanins from cephalopod ink and B16 mouse melanoma were found to be much more similar to melanins prepared in the presence of metal ions than to standard melanins prepared in the absence of metal ions. These results suggest that the presence of carboxylated indole units in natural melanins is probably due to the intervention in the biochemical pathway of metal ions which, as recently shown, catalyse the formation of DICA versus 5,6-dihydroxyindole in the rearrangement of dopachrome. PMID:3124888

  14. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  15. FAST TRACK COMMUNICATION: EUV spectra of highly-charged ions W54+ W63+ relevant to ITER diagnostics

    NASA Astrophysics Data System (ADS)

    Ralchenko, Yu; Draganic, I. N.; Tan, J. N.; Gillaspy, J. D.; Pomeroy, J. M.; Reader, J.; Feldman, U.; Holland, G. E.

    2008-01-01

    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4-20 nm) of highly-charged tungsten ions W54+ to W63+ obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions are confirmed by the measurement of isoelectronic EUV spectra of Hf, Ta and Au. We also discuss the importance of charge-exchange recombination for the correct description of ionization balance in the EBIT plasma.

  16. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  17. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  18. Nanoscale surface structuring during ion bombardment of elemental semiconductors

    NASA Astrophysics Data System (ADS)

    Anzenberg, Eitan

    2013-01-01

    Nano-patterning of surfaces with uniform ion bombardment yields a rich phase-space of topographic patterns. Particle irradiation can cause surface ultra-smoothing or self-organized nanoscale pattern formation in surface topography. Topographic pattern formation has previously been attributed to the effects of the removal of target atoms by sputter erosion. In this thesis, the surface morphology evolution of Si(100) and Ge(100) during low energy ion bombardment of Ar+ and Kr+ ions, respectively, is studied. Our facilities for studies of surface processes at the National Synchrotron Light Source (NSLS) allow in-situ characterization of surface morphology evolution during ion bombardment using grazing incidence small angle x-ray scattering (GISAXS). This technique is used to measure in reciprocal space the kinetics of formation or decay of correlated nanostructures on the surface, effectively measuring the height-height correlations. A linear model is used to characterize the early time kinetic behavior during ion bombardment as a function of ion beam incidence angle. The curvature coefficients predicted by the widely used erosive model of Bradley and Harper are quantitatively negligible and of the wrong sign when compared to the observed effect in both Si and Ge. A mass-redistribution model explains the observed ultra-smoothing at low angles, exhibits an instability at higher angles, and predicts the observed 45° critical angle separating these two regimes in Si. The Ge surface evolution during Kr+ irradiation is qualitatively similar to that observed for Ar+ irradiation of Si at the same ion energy. However, the critical angle for Ge cannot be quantitatively reproduced by the simple mass redistribution model. Crater function theory, as developed by Norris et al., incorporates both mass redistributive and erosive effects, and predicts constraining relationships between curvature coefficients. These constraints are compared to experimental data of both Si and Ge

  19. Large ions: Their vaporization, detection and structural analysis

    SciTech Connect

    Baer, T.; Ng, C.Y.; Powis, I.

    1997-12-31

    This book focuses on some of the fundamental chemistry and physics associated with the behavior of large ions, with the contributors addressing the issues in a quantitative fashion, in order to elucidate clearly some of the key recent advances which have taken place. As such, Large Ions provides an excellent snapshot of current research in this fascinating and important area. The six chapters are written by some of the leading experts in the field, and together they will be of great interest to experts and newcomers, both of whom will benefit from the in-depth discussion of the latest methods and results.

  20. Effects of ion dynamics on kinetic structures of the diffusion region during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Shuster, J. R.; Bessho, N.; Li, G.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Based on results from Particle-in-cell (PIC) simulations, we report how ion dynamics influencethe Hall electric field and electron velocity distributions in the diffusion region of magnetic reconnection.The Hall electric field is due to charge imbalance in the diffusion region. At early times, within a few ion cyclotron oscillations from the peak reconnection,electron orbit dynamics dominate, and the Hall electric field layer assumes the width of the electron current layer.As the pre-existing current sheet ions are accelerated and jetted away, inflowing ions form an ion phase space hole structure.The ion hole structure is self-consistently supported by the Hall electric field. The ion meandering orbit width increasesover the course of about 10 ion cyclotron oscillations from several to approximately 40 electron skin depths (two ion skin depths,where the skin depth is based on the initial current sheet density), and theHall electric field layer widens in the same manner to become much broader than the electron diffusion region.The electron velocity distributions upstream of the electron diffusion region and within the regionof counter streaming ions become fragmented as the ion hole establishes itself.The fragmentation is carried into the electron diffusion region, and through the electron outflow jet, leading to a multitude of arcs in the electron distributions at the end of the jet. The broadening of the Hall electric field layer resolves a longstanding discrepancy concerning whether the narrowest width of the layer is of the electron [Chen et al., 2008] or ion [Mozer et al., 2002] scale. The fragmentation of the electron distributions may be due to an electron-ion instability, and is underinvestigation.

  1. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    NASA Astrophysics Data System (ADS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.

  2. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  3. Real-time tracking of neuronal network structure using data assimilation

    NASA Astrophysics Data System (ADS)

    Hamilton, Franz; Berry, Tyrus; Peixoto, Nathalia; Sauer, Timothy

    2013-11-01

    A nonlinear data assimilation technique is applied to determine and track effective connections between ensembles of cultured spinal cord neurons measured with multielectrode arrays. The method is statistical, depending only on confidence intervals, and requiring no form of arbitrary thresholding. In addition, the method updates connection strengths sequentially, enabling real-time tracking of nonstationary networks. The ensemble Kalman filter is used with a generic spiking neuron model to estimate connection strengths as well as other system parameters to deal with model mismatch. The method is validated on noisy synthetic data from Hodgkin-Huxley model neurons before being used to find network connections in the neural culture recordings.

  4. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions

    SciTech Connect

    Khetselius, O. Yu.

    2008-10-22

    The energies and constants of the hyperfine structure, derivatives of the one-electron characteristics on nuclear radius, nuclear electric quadrupole, magnetic dipole moments for some Li-like multicharged ions are calculated.

  5. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  6. Analysis Of The Structure Of Ion Micro-Beams Emitted From RPI- And PF-Type Facilities

    SciTech Connect

    Malinowski, K.; Skladnik-Sadowska, E.; Czaus, K.; Sadowski, M. J.; Scholz, M.; Schmidt, H.

    2006-01-15

    The paper concerns measurements and quantitative analysis of micro-beams of fast ions produced by high-current pulse plasma discharges, which are investigated within different experimental facilities of the Rod Plasma Injector (RPI) and Plasma-Focus (PF) type. The reported ion measurements were performed mainly within the RPI-IBIS device at the IPJ in Swierk and within the large PF-1000 facility at the IPPLM in Warsaw. The pulsed ion streams were recorded by means of ion-pinhole cameras equipped with solid-state nuclear track detectors (SSNTD). Before their irradiation those detectors were calibrated, i.e. their responses to different ion species of various energies were determined. For this purpose there were used mono-energetic ion beams (obtained from particle accelerators) or ion tracks measured along the ion parabolas recorded by means of a Thomson-type spectrometer. During the described ion measurements the ion-pinhole cameras were placed at different angles to the symmetry axes of the investigated experimental facilities.

  7. 'Trunk-like' ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kistler, L. M.; Spence, H.; Wolf, R.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.; Larsen, B.; Niehof, J. T.; MacDonald, E.; Friedel, R. H.

    2013-12-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. In this study, we report 'trunk-like' ion structures observed in situ by the Van Allen Probes on 2 November 2012. The trunk structures are present in heavy ions but not in H+. For the particular event, ion energies in the He+ trunks, located at L = 3.7-2.6, MLT = 8.8-10.3, and MLAT = -2.0-0.03°, vary monotonically from 3.5 to 0.04 keV. It is suggested that the trunk phenomenon is due to a combination of 1) deeper ion injections from storm activity, 2) the longer charge exchange lifetimes of heavy ions than H+, 3) the separation of a narrow layer of ions around the Alfvén layer from other convecting ions, and 4) the trajectory of the Van Allen Probes (i.e., an orbital effect). Both observation analysis and numerical modeling are utilized in the study.

  8. Critical issues in the formation of quantum computer test structures by ion implantation

    SciTech Connect

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  9. Critical issues in the formation of quantum computer test structures by ion implantation

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-08-01

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO 2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb 25+, in SiO 2/Si is also discussed.

  10. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    SciTech Connect

    Verdon, Gregory; Oh, SeCheol; Serio, Ryan N.; Boudker, Olga

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  11. Advances in ion trap mass spectrometry: Photodissociation as a tool for structural elucidation

    SciTech Connect

    Stephenson, J.L. Jr.; Booth, M.M.; Eyler, J.R.; Yost, R.A.

    1995-12-01

    Photo-induced dissociation (PID) is the next most frequently used method (after collisional activation) for activation of Polyatomic ions in tandem mass spectrometry. The range of internal energies present after the photon absorption process are much narrower than those obtained with collisional energy transfer. Therefore, the usefulness of PID for the study of ion structures is greatly enhanced. The long storage times and instrumental configuration of the ion trap mass spectrometer are ideally suited for photodissociation experiments. This presentation will focus on both the fundamental and analytical applications of CO{sub 2} lasers in conjunction with ion trap mass spectrometry. The first portion of this talk will examine the fundamental issues of wavelength dependence, chemical kinetics, photoabsorption cross section, and collisional effects on photodissociation efficiency. The second half of this presentation will look at novel instrumentation for electrospray/ion trap mass spectrometry, with the concurrent development of photodissociation as a tool for structural elucidation of organic compounds and antibiotics.

  12. Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry

    PubMed Central

    Konijnenberg, Albert; Yilmaz, Duygu; Ingólfsson, Helgi I.; Dimitrova, Anna; Marrink, Siewert J.; Li, Zhuolun; Vénien-Bryan, Catherine; Sobott, Frank; Koçer, Armağan

    2014-01-01

    Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility–mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins. PMID:25404294

  13. Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Singh, V. P.; Mishra, N. C.; Ojha, S.; Kanjilal, D.; Rath, Chandana

    2014-08-01

    In continuation to our earlier studies where we have shown room temperature ferromagnetism observed in TiO2 and Co-doped TiO2 (CTO) thin films independent of their phase (Mohanty et al 2012 J. Phys. D: Appl. Phys. 45 325301), here the modifications in structure and magnetic properties in CTO thin films using 100 MeV Ag7+ ion irradiation are reported. Owing to the important role of defects in tailoring the magnetic properties of the material, we vary the ion fluence from 5 × 1011 to 1 × 1012 ions cm-2 to create post-deposition defects. While the film deposited under 0.1 mTorr oxygen partial pressure retains its crystallinity showing radiation-resistant behaviour even at a fluence of 1 × 1012 ions cm-2, films deposited under 1 to 300 mTorr oxygen partial pressure becomes almost amorphous at the same fluence. Using Poisson's law, the diameter of the amorphized region surrounding the ion path is calculated to be ˜4.2 nm from the x-ray diffraction peak intensity ((1 1 0) for rutile phase) as a function of ion fluence. The saturation magnetization (Ms) decreases exponentially similar to the decrease in x-ray peak intensity with fluence, indicating magnetic disordered region surrounding the ion path. The diameter of the magnetic disordered region is found to be ˜6.6 nm which is larger than the diameter of the amorphized latent track. Therefore, it is confirmed that swift heavy ion irradiation induces a more significant magnetic disorder than the structural disorder.

  14. From one to one million: How does community structure track disturbance across time and space?

    NASA Astrophysics Data System (ADS)

    Webb, A. E.

    2012-12-01

    The rate and severity of disturbances to the biosphere have been increasing over the last millennium due in part to anthropogenic effects, and the results of these disturbances are of increasing interest to the scientific and public communities. This project examines the impact of acidification and global warming on communities across a spectrum of temporal and spatial scales in both modern and fossil systems. Twenty datasets were selected from published zoo- and phyto-plankton literature to represent a temporal and spatial gradient, from small lakes to the open ocean, and from one year to one million years. Each dataset is associated with a proxy for an environmental disturbance (isotopes, pH, sedimentology, etc.) and consists of 15-300 samples across the interval of disturbance. To test the biotic changes induced by disturbance, community structure is measured by quantifying species-abundance distributions using rank-abundance curves and ordinations. A community consists of the individuals present in a given location at a given time, and the relative abundance of different species serves as a proxy for resource-partitioning. Disturbances cause a change in resource-partitioning, either by changing resource availability or by removing/adding species which compete for those resources. Therefore, shifts in resource-partitioning resulting from disturbance can be tracked by changes in community composition. Prior to an environmental disturbance, communities typically consist of many species that evenly partition resources and thereby abundance. After a disturbance, communities are dominated by a few species that can tolerate or thrive in the new conditions. Non-metric multi-dimensional scaling and Bray-Curtis polar ordinations reveal a progression from pre-disturbance communities, through the disturbance, and into the eventual recovery, which may or may not resemble the pre-disturbance communities. Larger disturbances (in terms of spatial extent or temporal duration

  15. Linguistic Complexity and Information Structure in Korean: Evidence from Eye-Tracking during Reading

    ERIC Educational Resources Information Center

    Lee, Yoonhyoung; Lee, Hanjung; Gordon, Peter C.

    2007-01-01

    The nature of the memory processes that support language comprehension and the manner in which information packaging influences online sentence processing were investigated in three experiments that used eye-tracking during reading to measure the ease of understanding complex sentences in Korean. All three experiments examined reading of embedded…

  16. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    NASA Astrophysics Data System (ADS)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  17. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  18. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-04-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  19. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  20. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  1. Effect of Microwave Irradiation on Copper Nanowires Synthesized by Electrochemical Deposition Through Ion Track Membranes as Templates

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Chakarvarti, S. K.

    15 μm thick polycarbonate films were irradiated with Ni ions (11.64 MeV/n) having fluence of the order of 106 ions/cm2. Irradiated foils were etched chemically in 6N NaOH solution at 50°C for 12 minutes to obtain the cylindrical pores having average diameter of 100 nm. Cylindrical pores in these membranes have been used as templates for the synthesis of copper nanowires. A two-electrode electrochemical cell was used for copper electrodeposition in porous polycarbonate templates from acidic copper sulphate solution at 29 ± 1°C. The morphology of copper nanowires were studied by means of scanning electron microscopy (SEM). Effects of microwave treatment on these nanowires were also studied.

  2. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    SciTech Connect

    Svanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-07-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  3. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr(2+) Ions.

    PubMed

    Fyfe, Alastair C; Dunten, Pete W; Martick, Monika M; Scott, William G

    2015-06-19

    Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr(2+) ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3' U tetrad, including one that leads to the formation of a hydrated internal cavity.

  4. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr2+ Ions

    PubMed Central

    Fyfe, Alastair C.; Dunten, Pete W.; Martick, Monika M.; Scott, William G.

    2015-01-01

    Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr2+ ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88 Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3′ U tetrad, including one that leads to the formation of a hydrated internal cavity. PMID:25861762

  5. Structure and characteristics of ions in hot plasma

    NASA Astrophysics Data System (ADS)

    Vainshtein, Leonid Abramovich; Shevel'Ko, Viacheslav Petrovich

    Methods for calculating the radiation and collision characteristics of atoms and ions, such as oscillator forces, transition probabilities, and interaction cross sections and velocities, are presented in a systematic manner. The book contains a large amount of reference data that are essential in nuclear physics, laser spectroscopy, astrophysics, and theory of atomic spectra and collisions. A computer program written in FORTRAN for calculating the characteristics of atoms is included.

  6. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  7. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Bilek, M. M. M.; Kondyurin, A.; Mizuno, K.; McKenzie, D. R.

    2006-06-01

    Plasma immersion ion implantation (PIII), with nitrogen ions of energy 20 keV in the fluence range of 5 × 1014-2 × 1016 ions cm-2, is used to modify 100 nm thin films of polystyrene on silicon wafer substrates. Ellipsometry is used to study changes in thickness with etching and changes in optical constants. Two distinctly different etch rates are observed as the polymer structure is modified. FTIR spectroscopy data reveals the structural changes, including changes in aromatic and aliphatic groups and oxidation and carbonisation processes, occurring in the polystyrene film as a function of the ion fluence. The transformation to a dense amorphous carbon-like material was observed to progress through an intermediate structural form containing a high concentration of Cdbnd C and Cdbnd O bonds.

  8. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  9. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGESBeta

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  10. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    PubMed Central

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-01-01

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering. PMID:25945580

  11. Organic toxins as tools to understand ion channel mechanisms and structure.

    PubMed

    Morales-Lázaro, Sara Luz; Hernández-García, Enrique; Serrano-Flores, Barbara; Rosenbaum, Tamara

    2015-01-01

    Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.

  12. Swift heavy ion induced structural and chemical changes in BOPP film

    NASA Astrophysics Data System (ADS)

    Chawla, S.; Ghosh, A. K.; Ahmad, S.; Avasthi, D. K.

    2006-03-01

    Swift heavy ions (SHIs), such as, 80 MeV Si7+ and 120 MeV Ag9+ ions were used to irradiate 15 μm bi-axially oriented polypropylene (BOPP) films. The fluence (Φ) dependence of the structural and chemical changes in BOPP was investigated. The irradiated BOPP films were analyzed ex situ by means of FTIR, UV and DSC. Due to SHI irradiation, the isotactic helical structure of polypropylene (PP) gets reduced. PP undergoes distortion of its crystal lattice in magnitude proportional to the fluence. The scission of C-H bonds and production of unsaturated groups like dienes and trienes occurred after irradiation with Si ions for Φ ⩾ 1012 ions/cm2 and Ag ions for Φ ⩾ 1011 ions/cm2. It was found that Ag ions are better than Si ions for creation of free radical active sites on BOPP. The observed findings are very useful particularly in the selection of optimum experimental conditions for SHI induced graft copolymerization.

  13. Plasma screening effects on the electronic structure of multiply charged Al ions using Debye and ion-sphere models

    NASA Astrophysics Data System (ADS)

    Das, Madhulita; Sahoo, B. K.; Pal, Sourav

    2016-05-01

    We analyze atomic structures of plasma-embedded aluminum (Al) atom and its ions in the weak- and strong-coupling regimes. The plasma screening effects in these atomic systems are accounted for using the Debye and ion-sphere (IS) potentials for the weakly and strongly coupled plasmas, respectively. Within the Debye model, special attention is given to investigate the spherical and nonspherical plasma screening effects considering in the electron-electron interaction potential. The relativistic coupled-cluster (RCC) method has been employed to describe the relativistic and electronic correlation effects in the above atomic systems. The variations in the ionization potentials (IPs) and excitation energies (EEs) of the plasma-embedded Al ions are presented. It is found that the atomic systems exhibit more stability when the exact screening effects are taken into account. It is also shown that in the presence of a strongly coupled plasma environment, the highly ionized Al ions show blueshifts and redshifts in the spectral lines of the transitions between the states with the same and different principal quantum numbers, respectively. Comparison among the results obtained from the Debye and IS models are also carried out considering similar plasma conditions.

  14. Identification of ion-pair structures in solution by vibrational stark effects

    DOE PAGESBeta

    Hack, John; Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  15. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent. PMID:26807492

  16. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  17. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification.

    PubMed

    Zinnel, Nathanael F; Russell, David H

    2014-05-20

    Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.

  18. Sheath structure in plasmas with nonextensively distributed electrons and thermal ions

    SciTech Connect

    Hatami, M. M.

    2015-02-15

    Sheath region of an electropositive plasma consisting of q-nonextensive electrons and singly charged positive ions with finite temperature is modeled. Using Sagdeev's pseudo potential technique to derive the modified sheath formation criterion, it is shown that the velocity of ions at the sheath edge is directly proportional to the ion temperatures and inversely proportional to the degree of nonextensivity of electrons (q-parameter). Using the modified Bohm criterion, effect of degree of nonextensivity of electrons and temperature of positive ions on the characteristics of the sheath region are investigated numerically. It is shown that an increase in the ion temperature gives rise to an increase in the electrostatic potential and the velocity of ions in the sheath regardless of the value of q. Furthermore, it is seen that the sheath width and the density distribution of the charged particles decrease by increasing the temperature of positive ions. In addition, it is found that the positive ion temperature is less effective on the sheath structure for higher values of the q-parameter. Finally, the results obtained for a thermal plasma with nonextensively distributed electrons are compared with the results of a cold plasma with nonextensive electrons and an extensive (Maxwellian) plasma with thermal ions.

  19. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels.

  20. Track structure model for damage to mammalian cell cultures during solar proton events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.

    1992-01-01

    Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.

  1. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  2. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics.

    PubMed

    Campbell, J Larry; Baba, Takashi

    2015-06-01

    Although lipids are critical components of many cellular assemblies and biological pathways, accurate descriptions of their molecular structures remain difficult to obtain. Many benchtop characterization methods require arduous and time-consuming procedures, and multiple assays are required whenever a new structural feature is probed. Here, we describe a new mass-spectrometry-based workflow for enhanced structural lipidomics that, in a single experiment, can yield almost complete structural information for a given glycerophospholipid (GPL) species. This includes the lipid's sum (Brutto) composition from the accurate mass measured for the intact lipid ion and the characteristic headgroup fragment, the regioisomer composition from fragment ions unique to the sn-1 and sn-2 positions, and the positions of carbon-carbon double bonds in the lipid acyl chains. Here, lipid ions are fragmented using electron impact excitation of ions from organics (EIEIO)--a technique where the singly charged lipid ions are irradiated by an electron beam, producing diagnostic product ions. We have evaluated this methodology on various lipid standards, as well as on a biological extract, to demonstrate this new method's utility.

  3. Fine Structural Detection of Calcium Ions by Photoconversion

    PubMed Central

    Poletto, V.; Galimberti, V.; Guerra, G.; Rosti, V.; Moccia, F.; Biggiogera, M.

    2016-01-01

    We propose a tool for a rapid high-resolution detection of calcium ions which can be used in parallel with other techniques. We have applied a new approach by photo-oxidation of diaminobenzidine in presence of the emission of an excited fluorochrome specific for calcium detection. This method combines the selectivity of available fluorophores to the high spatial resolution offered by transmission electron microscopy to detect fluorescing molecules even when present in low amounts in membrane-bounded organelles. We show in this paper that Mag-Fura 2 photoconversion via diaminobenzidine oxidation is an efficient way for localizing Ca2+ ions at electron microscopy level, is easily carried out and reproducible, and can be obtained on a good amount of cells, since the exposure in our conditions is not limited to the direct irradiation of the sample via an objective but obtained with a germicide lamp. The end product is sufficiently electron dense to be detected clearly when present in sufficient amount within a membrane boundary. PMID:27734989

  4. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  5. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-07-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  6. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization.

    PubMed

    Pepin, Robert; Laszlo, Kenneth J; Marek, Aleš; Peng, Bo; Bush, Matthew F; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ.

  7. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization.

    PubMed

    Pepin, Robert; Laszlo, Kenneth J; Marek, Aleš; Peng, Bo; Bush, Matthew F; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ. PMID:27400696

  8. Influence of Kilo-Electron Oxygen Ion Irradiation on Structural, Electrical and Optical Properties of CdTe Thin Films

    NASA Astrophysics Data System (ADS)

    Honey, Shehla; Thema, F. T.; Bhatti, M. T.; Ishaq, A.; Naseem, Shahzad; Maaza, M.

    2016-09-01

    In this paper, effect of oxygen (O+) ion irradiation on the properties of polycrystalline cubic structure CdTe thin films has been investigated. CdTe thin films were irradiated with O+ ions of energy 80keV at different fluence ranging from 1×1015 to 5×1016 ion/cm2 at room temperature. At 1×1015 ion/cm2 O+ ions fluence, the CdTe structure was maintained while XRD peaks of cubic phase were shifted toward lower angles. At 5×1016 ion/cm2 O+ ions fluence, cubic structure of CdTe thin films was transformed into hexagonal structure. In addition, electrical resistivity and optical bandgap were decreased with increasing O+ ion beam irradiation.

  9. Controlled deposition of sulphur-containing semiconductor and dielectric nano-structured films on metals in SF{sub 6} ion-ion plasma

    SciTech Connect

    Rafalskyi, Dmytro; Bredin, Jérôme; Aanesland, Ane

    2013-12-07

    In the present paper, the deposition processes and formation of films in SF{sub 6} ion-ion plasma, with positive and negative ion flows accelerated to the surface, are investigated. The PEGASES (acronym for Plasma Propulsion with Electronegative GASES) source is used as an ion-ion plasma source capable of generating almost ideal ion-ion plasma with negative ion to electron density ratio more than 2500. It is shown that film deposition in SF{sub 6} ion-ion plasma is very sensitive to the polarity of the incoming ions. The effect is observed for Cu, W, and Pt materials. The films formed on Cu electrodes during negative and positive ion assisted deposition were analyzed. Scanning electron microscope analysis has shown that both positive and negative ion fluxes influence the copper surface and leads to film formation, but with different structures of the surface: the low-energy positive ion bombardment causes the formation of a nano-pored film transparent for ions, while the negative ion bombardment leads to a continuous smooth insulating film. The transversal size of the pores in the porous film varies in the range 50–500 nm, and further analysis of the film has shown that the film forms a diode together with the substrate preventing positive charge drain, and positive ions are neutralized by passing through the nano-pores. The film obtained with the negative ion bombardment has an insulating surface, but probably with a multi-layer structure: destroying the top surface layer allows to measure similar “diode” IV-characteristics as for the nano-pored film case. Basing on results, practical conclusions for the probes and electrodes cleaning in ion-ion SF{sub 6} plasmas have been made. Different applications are proposed for the discovered features of the controlled deposition from ion-ion plasmas, from Li-sulphur rechargeable batteries manufacturing and nanofluidics issues to the applications for microelectronics, including low-k materials formation.

  10. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    SciTech Connect

    Baccou, C. Yahia, V.; Labaune, C.; Depierreux, S.; Neuville, C.; Goyon, C.; Consoli, F.; De Angelis, R.; Ducret, J. E.; Boutoux, G.; Rafelski, J.

    2015-08-15

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  11. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  12. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state. PMID:26329181

  13. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  14. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  15. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters.

    PubMed

    Coincon, Mathieu; Uzdavinys, Povilas; Nji, Emmanuel; Dotson, David L; Winkelmann, Iven; Abdul-Hussein, Saba; Cameron, Alexander D; Beckstein, Oliver; Drew, David

    2016-03-01

    To fully understand the transport mechanism of Na(+)/H(+) exchangers, it is necessary to clearly establish the global rearrangements required to facilitate ion translocation. Currently, two different transport models have been proposed. Some reports have suggested that structural isomerization is achieved through large elevator-like rearrangements similar to those seen in the structurally unrelated sodium-coupled glutamate-transporter homolog GltPh. Others have proposed that only small domain movements are required for ion exchange, and a conventional rocking-bundle model has been proposed instead. Here, to resolve these differences, we report atomic-resolution structures of the same Na(+)/H(+) antiporter (NapA from Thermus thermophilus) in both outward- and inward-facing conformations. These data combined with cross-linking, molecular dynamics simulations and isothermal calorimetry suggest that Na(+)/H(+) antiporters provide alternating access to the ion-binding site by using elevator-like structural transitions. PMID:26828964

  16. Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Moslem, W. M.

    2011-05-15

    Nonlinear ion-acoustic structures are investigated in an unmagnetized, four-component plasma consisting of warm ions, superthermal electrons and positrons, as well as stationary charged dust impurities. The basic set of fluid equations is reduced to modified Korteweg-de Vries equation. The latter admits both solitary waves and double layers solutions. Numerical calculations indicate that these nonlinear structures cannot exist for all physical parameters. Therefore, the existence regions for both solitary and double layers excitations have been defined precisely. Furthermore, the effects of temperature ratios of ions-to-electrons and electrons-to-positrons, positrons and dust concentrations, as well as superthermal parameters on the profiles of the nonlinear structures are investigated. Also, the acceleration and deceleration of plasma species have been highlight. It is emphasized that the present investigation may be helpful in better understanding of nonlinear structures which propagate in astrophysical environments, such as in interstellar medium.

  17. Mapping the Structure and Conformational Movements of Proteins with Transition Metal Ion FRET

    SciTech Connect

    Taraska, J.; Puljung, M; Olivier, N; Olivier, G; Zagotta, W

    2009-01-01

    Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.

  18. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  19. Solitary and double-layer structures in quantum bi-ion plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, Mehran; Tribeche, Mouloud

    2016-06-01

    Weak ion-acoustic solitary waves (IASWs) in an unmagnetized quantum plasmas having two-fluid ions and fluid electrons are considered. Using the one-dimensional quantum hydrodynamics model and then the reductive perturbation technique, a generalized form of nonlinear quantum Korteweg-de Vries (KdV) equation governing the dynamics of weak ion acoustic solitary waves is derived. The effects of ion population, warm ion temperature, quantum diffraction, and polarity of ions on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures. Furthermore, formation and characteristics properties of IA double layers in the present bi-ion plasma model are investigated. The results of this work should be useful and applicable in understanding the wide relevance of nonlinear features of localized electro-acoustic structures in laboratory and space plasma, such as in super-dense astrophysical objects [24] and in the Earth's magnetotail region (Parks [43]. The implications of our results in some space plasma situations are discussed.

  20. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.

    PubMed

    Wang, Yudong; Boden, S A; Bagnall, D M; Rutt, H N; de Groot, C H

    2012-10-01

    We have fabricated and measured single domain wall magnetoresistance devices with sub-20 nm gap widths using a novel combination of electron beam lithography and helium ion beam milling. The measurement wires and external profile of the spin valve are fabricated by electron beam lithography and lift-off. The critical bridge structure is created using helium ion beam milling, enabling the formation of a thinner gap (and so a narrower domain wall) than that which is possible with electron beam techniques alone. Four-point probe resistance measurements and scanning electron microscopy are used to characterize the milled structures and optimize the He ion dose. Successful operation of the device as a spin valve is demonstrated, with a 0.2% resistance change as the external magnetic field is cycled. The helium ion beam milling efficiency as extracted from electrical resistance measurements is 0.044 atoms/ion, about half the theoretical value. The gap in the device is limited to a maximum of 20 nm with this technique due to sub-surface swelling caused by injected ions which can induce catastrophic failure in the device. The fine patterning capabilities of the helium ion microscope milling technique indicate that sub-5 nm constriction widths could be possible. PMID:22972003

  1. Metal Ion Induced Pairing of Cytosine Bases: Formation of I-Motif Structures Identified by IR Ion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, J.

    2015-06-01

    While the Watson-Crick structure of DNA is among the most well-known molecular structures of our time, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or presence of cations. Pairing of two cytosine (C) bases induced by the sharing of a single proton (C-H^+-C) gives rise to the so-called i-motif, occurring particularly in the telomeric region of DNA, and particularly at low pH. At physiological pH, silver cations were recently suggested to form cytosine dimers in a C-Ag^+-C structure analogous to the hemiprotonated cytosine dimer, which was later confirmed by IR spectroscopy.^1 Here we investigate whether Ag^+ is unique in this behavior. Using infrared action spectroscopy employing the free-electron laser FELIX and a tandem mass spectrometer in combination with quantum-chemical computations, we investigate a series of C-M^+-C complexes, where M is Cu, Li and Na. The complexes are formed by electrospray ionization (ESI) from a solution of cytosine and the metal chloride salt in acetonitrile/water. The complexes of interest are mass-isolated in the cell of a FT ion cyclotron resonance mass spectrometer, where they are irradiated with the tunable IR radiation from FELIX in the 600 - 1800 wn range. Spectra in the H-stretching range are obtained with a LaserVision OPO. Both experimental spectra as well as theoretical calculations indicate that while Cu behaves as Ag, the alkali metal ions induce a clearly different dimer structure, in which the two cytosine units are parallelly displaced. In addition to coordination to the ring nitrogen atom, the alkali metal ions coordinate to the carbonyl oxygen atoms of both cytosine bases, indicating that the alkali metal ion coordination favorably competes with hydrogen bonding between the two cytosine sub-units of the i-motif like structure. 1. Berdakin, Steinmetz, Maitre, Pino, J. Phys. Chem. A 2014, 118, 3804

  2. Multi-beam RFQ linac structure for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Ishibashi, Takuya; Ito, Taku; Hattori, Toshiyuki

    2009-07-01

    Both the RF linear accelerator (linac) and the linear induction accelerator have been considered as injectors in a driver system for heavy ion fusion (HIF). In order to relax beam defocusing by space charge effect in the low-energy region, the accelerating beams that were merged and had their beam currents increased by the funnel tree system are injected into storage rings. A multi-beam linac that accelerates multiple beams in an accelerator cavity has the advantages of cost reduction and downsizing of the system. We modeled the multi-beam Interdigital-H type radio frequency quadruple (IH-RFQ) cavities with the different beam numbers and evaluated the electromagnetic characteristics by simulation. As a result, the reasonable ranges of their configuration were indicated for a practical use.

  3. Determining the structure of X (3872) in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Martínez Torres, A.; Navarra, F. S.; Nielsen, M.

    2016-08-01

    We study the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872). In this evaluation we include diagrams involving the anomalous couplings πD*D̅* and XD̅*D* and also the couplings of the X(3872) with charged D and D* mesons. With these new terms the X(3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  4. A review of nanofibrous structures in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pampal, Esra Serife; Stojanovska, Elena; Simon, Bálint; Kilic, Ali

    2015-12-01

    Materials for harvesting and storing energy have been extensively studied in the last decade. Many inorganic materials have already been developed and utilized in products for electrochemical energy-storage systems. The nature of these complex materials requires further investigation from several approaches in order to improve specific characteristics of batteries, such as storage capacity and environmental impact. Fiber scientists have also introduced original solutions using mostly inorganic novel materials. Nanofibers and nanofibrous materials have found applications in the three battery components of anodes, cathodes, and separators. Many methods produce nanofibers; out of these, electrospinning is seen as the most adaptable technique because of the versatility and scalability of the process. The present review collates recent studies on nanofibers for applications in Li-ion batteries, with a focus on the electrospinning technique. The advantages of the investigated fibrous materials are explored in detail.

  5. Strong ion energization by electromagnetic fluctuations in plasmoid-like magnetic structures.

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena

    2016-04-01

    Numerous studies based on data from many magnetospheric missions reported the observations of energetic ions with energies of hundreds of keV in the Earth magnetotail. The acceleration of charged particles to energies exceeding the potential drop across the tail can be produced by strong inductive electric fields generated in the course of transient processes related to changes of the magnetic field topology: e.g., magnetic reconnection, dipolarization, magnetic turbulence, and so on. The observations of energetic ion flows by Cluster/RAPID instruments in the near-Earth tail show the increase of H+, He+, and O+ fluxes in the energy range ≥130 keV during the periods of the tailward flows. The hardening of ion spectra is observed inside the plasmoid-like magnetic structures propagating tailward through the Cluster spacecraft. Simultaneously, the low-frequency electromagnetic fluctuations were observed in such structures. The analysis of 37 events demonstrated that the following factors are favorable for the ion energization: (1) the spatial scale of a plasmoid should exceed the thermal gyroradius of a given ion component in the plasmoid neutral plane; (2) the Power Spectral Density (PSD) of the magnetic fluctuations near the gyrofrequency of a particular ion component should exceed ~ 50.0 nT2/Hz for oxygen ions; while the energization of He+ and H+ takes place for much lower values of the PSD. The kinetic analysis of ion dynamics in the plasmoid-like magnetic configurations with the superimposed electromagnetic fluctuations similar to the observed ones confirms the importance of ion resonant interactions with the low-frequency electromagnetic fluctuations for ion energization inside plasmoids. The analysis also show that to be strongly accelerated ions do not need to pass a large distance in the duskward direction and the effective energization can be reached even at the localized source. Thus, ion acceleration by the electromagnetic fluctuations may smear the dawn

  6. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  7. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  8. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Ostafiychuk, B. K.; Yaremiy, I. P.; Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-01

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He+ ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  9. Structural modifications induced in Bayfol polycarbonate due to heavy highly energetic ions irradiations

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Radwan, Yasmine E.; Elfiky, Dalia; Abutalib, M. M.; Bahareth, Radiyah A.; Fouad, S. S.

    2013-12-01

    The effects of 28 GeV 56Fe and 13.72 GeV 28Si ion irradiation on the structural properties of two types of Bayfol, namely DPF 5023 and CR 1-4 polycarbonates, have been investigated. It is worth mentioning that this report is almost the first one dealing with the topic of material changes in such a high energy range. Samples from each type of Bayfol were classified into two groups. The first group has been exposed to Fe ion fluences at levels between 2000 and 8000 ion/cm2. The second group has been exposed to Si ions with similar fluences. The total energy deposited is between 27.44 and 224 E12 eV. The modifications induced in Bayfol samples due to ion irradiation have been studied using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy. The results indicate that the Fe ion irradiation causes crosslinking in Bayfol DPF 5023, reflected as a decrease in the ordering character. Also, the tendency of Bayfol CR 1-4 to crosslinking due to Fe ion irradiation is lower than that of Bayfol DPF 5023. On the other hand, the Si ion irradiation causes mainly chain scission at the carbonate site of both types of Bayfol associated with the formation of hydroxyl group.

  10. Permeation in ion channels: the interplay of structure and theory.

    PubMed

    Miloshevsky, Gennady V; Jordan, Peter C

    2004-06-01

    Combined with high-resolution atomic-level crystal structures of channel forming peptides, theory has become a powerful tool for illuminating factors influencing permeation. Here, advantages and limitations of the more familiar continuum and molecular modeling techniques are briefly outlined. These methods are applied to issues of permeation in two different channel families: gramicidin and K(+) channels. Using structural data, theory provides verifiable atomic-level insights into permeation dynamics, channel conductance and molecular selectivity mechanisms. Not only can theory confirm experimental inference, it can also sometimes provide structural perspectives in advance of experiment.

  11. Hyper-temporal LiDAR for tracking fine-scale changes in vegetation structure, phenology, and physiology

    NASA Astrophysics Data System (ADS)

    Magney, T. S.; Vierling, L. A.; Eitel, J.; Greaves, H.

    2015-12-01

    Vegetation three-dimensional (3-D) structure is inherently dynamic - plants alter both the allocation of resources within the canopy and branch/shoot morphology at short time-steps to acclimate to local environmental conditions and maximize photosynthetic potential. However, 3-D structure is often ignored in ecological studies because it is difficult to characterize using traditional field methods. Terrestrial laser scanning (TLS) is a rapidly maturing technique to complement and enhance traditional field methods for quantifying 3-D geometric properties of ecosystems. Two major limitations of TLS include the low temporal resolution that often exists between each data acquisition, and the relatively high cost of such systems (entry level systems cost >$40,000 USD) that puts this method out of reach for many potential users. Consequently, TLS is currently limited as a mainstream method for capturing 3-D geometric ecosystem dynamics. Over the last several years, we have been developing a field-ready autonomously operating terrestrial laser scanner (ATLS) capable of monitoring fine-scale changes in vegetation structure on a daily time-step. We will present an overview of recent findings using the ATLS to track changes in vegetation structure in low-stature ecosystems - from cropping system dynamics to Arctic tundra phenology. Further, we will discuss the potential for laser intensity return information from both an ATLS and TLS to track changes in plant phenology and physiology (Chlorophyll content, photoprotective mechanisms, moisture) that occur simultaneously - or prior to - changes in vegetation structure. Our results suggest that fine-scale mapping of plant structure, phenology, and physiology using information from TLS and ATLS could provide new insights into vegetation dynamics in space and time.

  12. Structural analysis of ion selectivity in the NaK channel

    SciTech Connect

    Alam, Amer; Jiang, Youxing

    2009-09-15

    Here, we present a detailed characterization of ion binding in the NaK pore using the high resolution structures of NaK in complex with various cations. These structures reveal four ion binding sites with similar chemical environments but vastly different ion preference. The most non selective of all is site 3, which is formed exclusively by backbone carbonyl oxygen atoms and resides deep within the selectivity filter. Additionally, four water molecules in combination with four backbone carbonyl oxygen atoms are seen to participate in K{sup +} and Rb{sup +} ion chelation both at the external entrance and vestibule of the NaK filter, confirming the preference for an octahedral ligand configuration for K{sup +} and Rb{sup +} binding. In contrast, Na{sup +} binding in the NaK filter, particularly at site 4, utilizes a pyramidal ligand configuration requiring the participation of a water molecule in the cavity. Therefore, the ability of the NaK filter to bind both Na{sup +} and K{sup +} ions seemingly arises from the ions' ability to utilize the existing environment in unique ways rather than any structural rearrangements of the filter itself.

  13. Effect of metal ions on structure and activity of papain from Carica papaya.

    PubMed

    Kaul, P; Sathish, H A; Prakash, V

    2002-02-01

    Papain, a powerful proteolytic enzyme, is an endoprotease belonging to cysteine endopeptidase family. It is used extensively in food processing especially in tenderization of meat. In this study, we have made an attempt to show the structure activity relationship of this enzyme and the role of calcium and magnesium ions in the activity and stability of the enzyme. Results of activation and stabilization of the enzyme by these cations showed concentration dependent effect. The enzymatic activity of papain increases to a maximum of 18% and 24% in presence of calcium and magnesium ions at 1 x 10(-3) M concentration, respectively. Thermal denaturation studies showed that the binding of calcium and magnesium ions bring about change in the thermal stability of papain at various concentrations of these metal ions. Far ultraviolet circular dichroic studies showed no significant change in the alpha-helix and beta-sheet structure of the papain upon binding of these metal ions. The mechanism underlying the structure activity relationship of papain in presence of these metal ions have been discussed here with reference to the ionic radii, ligand binding preference, coordination numbers and the electrostatic forces between the protein molecule and cations present in the microenvironment of the enzyme. PMID:11890048

  14. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Farhat, Charbel; Lakshminarayan, Vinod K.

    2014-04-01

    Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of

  15. Model of evolution of surface grain structure under ion bombardment

    SciTech Connect

    Knyazeva, Anna G.; Kryukova, Olga N.

    2014-11-14

    Diffusion and chemical reactions in multicomponent systems play an important role in numerous technology applications. For example, surface treatment of materials and coatings by particle beam leads to chemical composition and grain structure change. To investigate the thermal-diffusion and chemical processes affecting the evolution of surface structure, the mathematical modeling is efficient addition to experiment. In this paper two-dimensional model is discussed to describe the evolution of titanium nitride coating on the iron substrate under implantation of boron and carbon. The equation for diffusion fluxes and reaction rate are obtained using Gibbs energy expansion into series with respect to concentration and their gradients.

  16. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  17. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  18. Role of structure in ion movement of glasses. Final report, July 1, 1990--December 31, 1995

    SciTech Connect

    Jain, H.

    1996-05-01

    The ion movement in inorganic glasses is key to their optimum use in various applications such as solid electrolytes, durable nuclear waste form, stable insulation in electronic devices etc. The primary objective of this project was to understand ion movement in relation to the physical structure of inorganic glasses. Five different glass forming systems were selected for systematically varying different aspects of the structure and determining their influence on ion dynamics: (1) binary Rb and K germanate glass series; (2) mixed (Rb, Ag) and (Rb, K) germanate glass series (3) high purity quartz amorphized by neutron irradiation (4) sodium triborate glasses with different melt conditions and (5) heavy metal fluoride glasses. A two-pronged research program was developed: on the one hand dc ionic conductivity and ac relaxation were measured for a variety of oxide and fluoride glasses as a function of composition, temperature and frequency to characterize long and short range ion transport phenomena. The ion movement was also observed in terms of nuclear spin relaxation rate at University of Dortmund, Germany. On the other hand, the structure was characterized by high resolution x-ray photoelectron spectroscopy (XPS) at Lehigh, infra-red (IR) and Raman spectroscopy at National Hellenic Research Foundation, Athens, Greece, and extended x-ray absorption fine structure (EXAFS) experiments at National Synchrotron Light Source, Brookhaven National Laboratory. The most significant results of the project are briefly summarized.

  19. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  20. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  1. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    SciTech Connect

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei; Bruegger, Juergen; Villanueva, Guillermo

    2009-03-10

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of a silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.

  2. Gramicidins A, B, and C form structurally equivalent ion channels.

    PubMed Central

    Sawyer, D B; Williams, L P; Whaley, W L; Koeppe, R E; Andersen, O S

    1990-01-01

    The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11. PMID:1705449

  3. Computational multiobjective topology optimization of silicon anode structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mitchell, Sarah L.; Ortiz, Michael

    2016-09-01

    This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

  4. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  5. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  6. Obliquely propagating nonlinear structures in dense dissipative electron positron ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Rizvi, H.; Siddiq, M.

    2012-02-01

    Nonlinear electrostatic waves in dense dissipative magnetized electron-positron-ion (e-p-i) plasmas are investigated employing the quantum hydrodynamic model. In this regard, Zakharov Kuznetsov Burgers (ZKB) equation is derived in dense plasmas using the small amplitude perturbation expansion method. It is observed that obliqueness, positron concentration, kinematic viscosity, and the ambient magnetic field significantly alter the structure of nonlinear quantum ion acoustic waves in dense dissipative e-p-i magnetoplasmas. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock structures in dense astrophysical systems where the quantum effects are expected to dominate.

  7. Crystallization of ion clouds in octupole traps: Structural transitions, core melting, and scaling laws

    SciTech Connect

    Calvo, F.; Champenois, C.; Yurtsever, E.

    2009-12-15

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semianalytical and numerical models, with a particular emphasis at finite-size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  8. A structure zone diagram including plasma based deposition and ion etching

    SciTech Connect

    Anders, Andre

    2009-10-14

    An extended structure zone diagram is proposed that includes energetic deposition, characterized by a large flux of ions typical for deposition by filtered cathodic arcs and high power impulse magnetron sputtering. The axes are comprised of a generalized homologous temperature, the normalized kinetic energy flux, and the net film thickness, which can be negative due to ion etching. It is stressed that the number of primary physical parameters affecting growth by far exceeds the number of available axes in such a diagram and therefore it can only provide an approximate and simplified illustration of the growth condition?structure relationships.

  9. Determining the size-dependent structure of ligand-free gold-cluster ions.

    PubMed

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2010-03-28

    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the develop