Science.gov

Sample records for ion track structure

  1. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  2. Low energy electrons and swift ion track structure in PADC

    DOE PAGES

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; ...

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  3. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  4. Ion track doping

    NASA Astrophysics Data System (ADS)

    Fink, D.; Chadderton, L. T.; Cruz, S. A.; Fahrner, W. R.; Hnatowicz, V.; Te Kaat, E. H.; Melnikov, A. A.; Varichenko, V. S.; Zaitsev, A. M.

    1994-10-01

    Longitudinal dopant distribution along ion tracks in soft (polymers [1?5]) and hard (diamond [6,7]) condensed carbonaceous matter have been studied by neutron depth profiling and cathodoluminesence. Both in-diffusion from the aqueous phase and energetic ion implantation were used in primary track doping. In-situ self-decoration of tracks and post-implantation with a secondary ion species were used in the specific case of ion implantation. Radial dopant distributions were also studied by means of a modified tomographic procedure. Decorative doping of ion bombarded solids is useful in probing track structure, and especially in pointing the way to potential development of nanometric-sized electronic devices.

  5. Track Structure in DNA Irradiated with Heavy Ions

    SciTech Connect

    Bowman, Michael K.; Becker, David; Sevilla, Michael D.; Zimbrick, John D.

    2005-04-01

    The spatial properties of trapped radicals produced in heavy ion-irradiated solid DNA at 77 K have been probed using pulsed Electron Paramagnetic Double Resonance (PELDOR or DEER) techniques. Salmon testes DNA hydrated to twelve water molecules per nucleotide was irradiated with 40Ar ions of energy 100 MeV/nucleon and LET ranging from 300 to 400 keV/?. Irradiated samples were maintained at cryogenic temperature at all times. PELDOR measurements were made using a refocused echo detection sequence that allows dipolar interaction between trapped radicals to be observed. The EPR spectrum is attributed to electron loss/gain DNA base radicals and neutral carbon-centered radicals that likely arise from sugar damage. We find a radical concentration of 13.5*1018 cm-3 in the tracks and a track radius of 6.79 nm. The cross section of these tracks is 144 nm2 yielding a lineal radical density of 2.6 radicals/nm. Based upon the yields previously determined for particles having calculated LET values of 300-400 keV/mm and our measured lineal density, we obtain an LET of 270 keV/mm, which is in good agreement with the calculated range of values. These measurements of radical density and spatial extent provide the first direct experimental determination of track characteristics in irradiated DNA.

  6. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations

    NASA Astrophysics Data System (ADS)

    Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.

    2015-09-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  7. Heavy-ion effects: from track structure to DNA and chromosome damage

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Ottolenghi, A.

    2008-07-01

    The use of carbon ions for the treatment of certain tumour types, especially radioresistant tumours, is becoming more frequent due to the carbon-ion dose localization and high relative biological effectiveness (RBE) in the Bragg peak region. Human beings can also be exposed to heavy ions in space, since galactic cosmic rays are a mixed field consisting of not only high-energy protons and He ions, but also heavier ions including iron. Due to their high linear energy transfer (LET), heavy ions have peculiar track structures, characterized by a high level of energy deposition clustering. Furthermore, high-energy ions produce energetic secondary electrons ('delta rays') which can give rise to energy depositions several micrometres away from the core of the primary particle track. Also in view of hadron therapy and space radiation applications, it is therefore important to characterize heavy-ion tracks from a physical and biophysical point of view. In this framework, herein we will discuss the main physical features of heavy-ion track structure, as well as heavy-ion-induced DNA double-strand breaks, which are regarded as one of the most important initial radiobiological lesions and chromosome aberrations, which are correlated both with cell death and with cell conversion to malignancy.

  8. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  9. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  10. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  11. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGES

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  12. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  13. Development of a single ion detector for radiation track structure studies

    NASA Astrophysics Data System (ADS)

    Vasi, F.; Casiraghi, M.; Bashkirov, V.; Giesen, U.; Schulte, R. W.

    2016-09-01

    The track structure of ionizing radiation predominantly determines the biological effects after irradiation. A new detector to register 3D track structure segments in low pressure gas was proposed in a previous work. The device combines the operational principle of thick gas electron multipliers (THGEM), working in reverse polarity, and resistive plate chambers. In this work, the detector was further developed. Optimization of THGEM thickness, hole pitch and cathode resistivity were studied. A new detector prototype was built and tested with a microbeam providing different radiation qualities. The detector rate capability and ion collection efficiency were also investigated. Results show that the detector efficiency increases with increasing THGEM thickness and decreasing cathode resistivity. Preliminary results show that the ion collection efficiency is low and that the detector performance is limited by a long dead time. The detector is able to register single ions with a low dark rate. However, further development is needed in order to obtain the efficiency necessary to reconstruct 3D track structure.

  14. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  15. Radical Formation and Chemical Track Structure in Ion-Beam Irradiated DNA

    NASA Astrophysics Data System (ADS)

    Becker, David; Adhikary, Amitava; Khanduri, Deepti; Sevilla, Michael D.

    2009-12-01

    Ion-beam irradiation of hydrated DNA at 77 K results in formation of at least three base radicals and a variety of radicals on the sugar phosphate backbone that can be observed using Electron Spin Resonance (ESR) spectroscopy. From dose-response curves for these radicals, we have formulated a radiation-chemical model of the track structure for ion-beam irradiated DNA. The model for chemical behavior posits that the base radicals trapped at 77 K are formed almost entirely in the track penumbra. The lower yields observed in ion-beam irradiated samples results from the fact that only a portion of the energy deposited by the ion beam ends up in this γ-like region. The remainder of the energy is deposited in the core in which the proximity of ion-radical formation results in the fast recombination of oppositely charged radicals, so few survive in the core at 77 K. However, a second group of radicals, neutral sugar radicals, are not as susceptible to recombination as are ion radicals, and can survive after formation in the core; these are presumed to form predominantly in the core. They include the sugar radicals, C1'ṡC3'ṡC5'ṡ, formed from oxidative processes, and C3'ṡdephos and phosphorous radicals which are formed after immediate strand breaks. The later species are thought to result from reductive cleavage by low energy electrons (LEE.) The high energy density in the core results in excited state processes that produce additional sugar radicals. The spatial characteristics of the radicals, deduced from PELDOR experiments, indicates that multiply damaged cluster sites (MDS) are formed in the core; these would be biologically significant, if formed in cells.

  16. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  17. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  18. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  19. An assessment of galactic cosmic radiation quality considering heavy ion track structures within the cellular environment

    NASA Astrophysics Data System (ADS)

    Craven, P. A.; Rycroft, M. J.

    Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological ``efficiency'' of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted ``delta-rays'', dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.

  20. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  1. Coating and functionalization of high density ion track structures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  2. The dimensions of latent ion damage tracks

    NASA Astrophysics Data System (ADS)

    Tombrello, T. A.

    1984-01-01

    A new model for the formation of ion damage tracks in dielectric solids permits the dimensions of the microscopic structure of the latent tracks to be calculated. In this model the formation of the damage is initiated at separate points along the track by the Auger decay of vacancies produced by the ion in inner electronic shells of atoms of the insulator. Each decay produces an intense, localized source of charge, whose interaction with the more uniform ionization of the loosely bound electrons along the ion's path causes the atomic motion that results in the damage. Available data on cellulose triacetate and mica are in excellent agreement with the predictions of the model.

  3. Measurement of track structure parameters of low and medium energy helium and carbon ions in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, G.; Bug, M. U.; Rabus, H.

    2017-10-01

    Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.

  4. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    NASA Astrophysics Data System (ADS)

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce

    2017-08-01

    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  5. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping

    PubMed Central

    Friedland, W.; Schmitt, E.; Kundrát, P.; Dingfelder, M.; Baiocco, G.; Barbieri, S.; Ottolenghi, A.

    2017-01-01

    Track structures and resulting DNA damage in human cells have been simulated for hydrogen, helium, carbon, nitrogen, oxygen and neon ions with 0.25–256 MeV/u energy. The needed ion interaction cross sections have been scaled from those of hydrogen; Barkas scaling formula has been refined, extending its applicability down to about 10 keV/u, and validated against established stopping power data. Linear energy transfer (LET) has been scored from energy deposits in a cell nucleus; for very low-energy ions, it has been defined locally within thin slabs. The simulations show that protons and helium ions induce more DNA damage than heavier ions do at the same LET. With increasing LET, less DNA strand breaks are formed per unit dose, but due to their clustering the yields of double-strand breaks (DSB) increase, up to saturation around 300 keV/μm. Also individual DSB tend to cluster; DSB clusters peak around 500 keV/μm, while DSB multiplicities per cluster steadily increase with LET. Remarkably similar to patterns known from cell survival studies, LET-dependencies with pronounced maxima around 100–200 keV/μm occur on nanometre scale for sites that contain one or more DSB, and on micrometre scale for megabasepair-sized DNA fragments. PMID:28345622

  6. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure

    NASA Astrophysics Data System (ADS)

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-11-01

    The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.

  7. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  8. Formation of ion damage tracks. [in insulators

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.; Wie, C. R.; Itoh, N.; Nakayama, T.

    1984-01-01

    A new model is proposed to explain both localized damage regions and preferential etching of damage tracks caused by the passage of energetic ions in insulators. The formation of each region of extended defects is initiated by the Auger decay of a vacancy produced in an inner electronic shell of an atom of the insulator by an incident ion. This decay produces an intense source of ionization within a small volume around the decaying atom, which causes decomposition of the material in a manner similar to that observed in pulsed laser irradiation. The resulting chemical or crystalline modification of the material is the latent track, which can be preferentially etched due to its changed structure.

  9. SU-E-T-334: Track Structure Simulations of Charged Particles at Low and Intermediate Energies: Cross Sections Needs for Light and Heavy Ions

    SciTech Connect

    Dingfelder, M

    2014-06-01

    Purpose/Methods: Monte Carlo (MC) track structure simulations follow the primary as well as all produced secondary particles in an event-by-event manner, from starting or ejection energy down to total stopping. They provide useful information on physics and chemistry of the biological response to radiation. They depend on reliable interaction cross sections and transport models of the considered radiation quality with biologically relevant materials. Most transport models focus on sufficiently fast and bare (i.e., fully ionized) ions and cross sections calculated within the (relativistic) first Born or Bethe approximations. These theories consider the projectile as a point particle and rely on proton cross sections and simple charge-scaling methods; they neglect the atomic nature of the ion and break down at low and intermediate ion energies. Heavier ions are used in particle therapy and slow to intermediate and low energies in the biologically interesting Bragg peak. Lighter and slower fragment ions, including alpha particles, protons, and neutrons are also produced in nuclear and break up reactions of charged particles. Secondary neutrons also produce recoil protons and ions, mainly in the intermediate energy range. Results/Conclusion: This work reviews existing models for track structure simulations and cross section calculations for light and heavy ions focusing on the low and intermediate energy range. It also presents new and updated aspects on cross section calculations and simulation techniques for ions and discusses the need for new models, calculations, and experimental data.

  10. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.

    PubMed

    Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M

    2013-06-01

    The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.

  11. 3D visualisation of the stochastic patterns of the radial dose in nano-volumes by a Monte Carlo simulation of HZE ion track structure.

    PubMed

    Plante, Ianik; Ponomarev, Artem; Cucinotta, Francis A

    2011-02-01

    The description of energy deposition by high charge and energy (HZE) nuclei is of importance for space radiation risk assessment and due to their use in hadrontherapy. Such ions deposit a large fraction of their energy within the so-called core of the track and a smaller proportion in the penumbra (or track periphery). We study the stochastic patterns of the radial dependence of energy deposition using Monte Carlo track structure codes RITRACKS and RETRACKS, that were used to simulate HZE tracks and calculate energy deposition in voxels of 40 nm. The simulation of a (56)Fe(26+) ion of 1 GeV u(-1) revealed zones of high-energy deposition which maybe found as far as a few millimetres away from the track core in some simulations. The calculation also showed that ∼43 % of the energy was deposited in the penumbra. These 3D stochastic simulations combined with a visualisation interface are a powerful tool for biophysicists which may be used to study radiation-induced biological effects such as double strand breaks and oxidative damage and the subsequent cellular and tissue damage processing and signalling.

  12. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  13. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    SciTech Connect

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  14. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  15. Track-Structure Simulations for Charged Particles

    PubMed Central

    Dingfelder, Michael

    2013-01-01

    Monte-Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as surrogate for soft tissue and is used in most Monte-Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest. PMID:23032889

  16. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  17. Conducting swift heavy ion track networks

    NASA Astrophysics Data System (ADS)

    Fink, D.; Kiv, A.; Fuks, D.; Saad, A.; Vacík, J.; Hnatowicz, V.; Chandra, A.

    2010-03-01

    In this paper, the electronic behavior of conducting swift heavy ion track networks is studied. On the one hand, the transient conductivity of ion tracks in metal oxides on silicon in status nascendi is exploited for this purpose, and on the other hand, conducting tracks are produced by ion irradiation of insulating membranes (either self-supported or deposited onto silicon substrates), subsequent etching and finally inserting conducting materials of whatever provenience (in this work preferentially electrolytes). Depending on their manufacture, the conducting tracks either act as electronically active or passive elements. When applying a voltage across individual tracks in the first case, one observes current spikes with negative differential resistances. These tracks interact among themselves, leading to phase-locked synchronous coupled oscillations with complex patterns that are quite similar to those emerging from neural networks. The other case corresponds to networks of electronically passive conducting tracks which become overall electronically active only through their collective interactions. Though the aforementioned effects had been experimentally described earlier, they are re-visited here to make clear that the corresponding systems have to be considered as being artificial neural networks. On this occasion, some new findings are added.

  18. Nanodosimetric track structure in homogeneous extended beams.

    PubMed

    Conte, V; Moro, D; Colautti, P; Grosswendt, B

    2015-09-01

    Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields.

  19. Funnel-type etched ion tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Vacík, J.; Hnatowicz, V.; Muñoz, G. H.; Alfonta, L.; Klinkovich, I.

    2010-05-01

    It is shown that conical track etching is a much more complicated process than generally assumed. The choice of the corresponding parameters (i.e. the ratios of concentrations and diffusion coefficients of both etchant (e.g. NaOH) and stopping solutions (e.g. HCl) and the etching temperature) determines the ratio of polymer dissolution to etchant penetration. The latter value controls the counterplay of diffusion, etching, ionic conductivity, field emission and capacitive effects, which is decisive for both the final track shapes and their electronic properties. The stages of track evolution during etching under different conditions are outlined in detail. Both transparent conical nanopores and "funnel-type" tracks can be obtained, the latter consisting of a shorter cone and a residual latent track. Depending on the internal structure of that latent track segment, such funnel-type tracks either allow smooth transmission of the rectified currents or they emit unipolar current spikes. Not only the study of electronic properties of single ion tracks, but also of a multitude of tracks makes sense. Depending on the applied parameters, the individual track properties may either just add up, or new effects may be found that emerge from the interaction of the tracks among each other. This is preferentially the case for spike-emitting tracks, where effects such as phase-locked spike synchronization can be found as described by neural network theory.

  20. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  1. TACTIC - Ion tracking in nuclear physics

    NASA Astrophysics Data System (ADS)

    Martin, L.; Ruprecht, G.; Hager, U.; Buchmann, L.; Amaudruz, P. A.; Fox, S.; Laird, A. M.; Chipps, K.; Machule, P.; Openshaw, R.; Walden, P.; Walter, M.; Bruskiewich, P.; Shotter, A. C.

    2010-01-01

    Ion tracking is still an unusual detection method in nuclear physics. TACTIC (TRIUMF annular chamber for tracking and identification of charged particles) is suitable for tracking low-energy ejectiles. The cylindrical design allows for an electrical separation of target and drift region without hindering the ejectiles to enter the drift region. The first experiment with radioactive beam - the reaction 8Li(α,n)11B which is important for the α-process in neutrino-driven supernova winds - took place in June '09. Since no off-the-shelf analysis tools and methods are available for this kind of tracking, TRIUMF's TACTIC group developed graphical tool for analysing data that can also be used for other modern nuclear physics detectors.

  2. Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes

    NASA Astrophysics Data System (ADS)

    Movsesyan, Liana; Schubert, Ina; Yeranyan, Lilit; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2016-01-01

    This work presents the synthesis and characterization of two different zinc oxide (ZnO) nanowire assemblies: arrays of parallel-oriented cylindrical wires and three-dimensional (3D) networks of highly interconnected wires. Both are synthesized by electrochemical deposition in the pores of etched ion-track polycarbonate membranes. The crystallinity and crystallographic properties of the wires are influenced by the deposition parameters. In particular, we investigate how the diameter of the membrane nanopores and the deposition potential affect crystal orientation and morphology during nanowire growth. X-ray diffraction and energy dispersive x-ray analysis demonstrated that all wires are pure ZnO with a wurtzite hexagonal structure and free of impurities. The unique architecture of the synthesized 3D networks of nanowires with a high aspect ratio and enhanced mechanical stability is discussed.

  3. Characterisation of a track structure imaging detector.

    PubMed

    Casiraghi, M; Bashkirov, V A; Hurley, R F; Schulte, R W

    2015-09-01

    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiation.

  4. Industrial applications of ion track technology

    NASA Astrophysics Data System (ADS)

    Hanot, H.; Ferain, E.

    2009-03-01

    It4ip sa is a spin out from the Université Catholique de Louvain (Belgium) dedicated to the development and production of unique templates and membranes based on the combination of ion track technology of polymers. It supplies customers with hi-tech products, state-of-the-art research and product development services with template capability to make high value added membranes. Notably based on results coming from several collaborative R&D projects supported by European and Regional funding, recent improvements of ion track technology open new doors for fast growing applications in niche markets. This paper reviews some of these Hi-Tec applications in different fields such as in healthcare (oncology, drug control release combined to implant and artificial organs etc.), energy (fuel cells and batteries etc.), water de-contamination and electronics (OLED etc.).

  5. First observation of metal ion-induced structural fluctuations of α-helical peptides by using diffracted X-ray tracking.

    PubMed

    Usui, Daiki; Inaba, Satomi; Sekiguchi, Hiroshi; Sasaki, Yuji C; Tanaka, Toshiki; Oda, Masayuki

    2017-09-01

    In order to analyze protein structural dynamics, we designed simple model peptides whose structures changed from random-coil to helix-bundle structures by forming stable hydrophobic core in the presence of metal ions. The strategy involved destabilizing a de novo designed three helix-bundle protein by substituting the residues present in its hydrophobic core with histidine and small amino acids. The conformational changes of peptides induced upon binding of Zn(2+) to histidine were analyzed using circular dichroism spectroscopy, which revealed peptides, HA and HG, to be good candidates for further analyses. The diffracted X-ray tracking experiments showed that the structural fluctuations of both HA and HG were suppressed upon binding of Zn(2+). We succeeded in observing the differences in fluctuations of HA and HG in solution between random-coil like and helix-bundle structures. The metal-binding energies determined using the angular diffusion coefficients were in good agreement with those determined using isothermal titration calorimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Field Emitter Arrays and Displays Produced by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Bernhardt, A F

    2004-12-28

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter ({approx}10nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters ({approx}100nm diameter electron guns) for CTC's ThinCRT{trademark} displays, which have been fabricated to diagonal dimensions > 13. Additional technological applications of ion tracking lithography will be briefly covered.

  7. Atomistic simulation of track formation by energetic ions in zircon

    SciTech Connect

    Moreira, Pedro A.F.P.; Devanathan, Ram; Weber, William J

    2010-01-01

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm{sup -1} and a radius of 3 nm. At a low dE/dx of 2.55 keV nm{sup -1}, the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization.

  8. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; Trautmann, Christina; Chisholm, Matthew F.; Weber, William J.

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.

  9. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE PAGES

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally,more » a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  10. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    PubMed

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  11. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  12. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Astrophysics Data System (ADS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.

    1998-11-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T12 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/μm with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/μm 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T12 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  13. Model of wet chemical etching of swift heavy ions tracks

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h‑1) is in reasonable agreement with that detected in the experiments (24 µm · h‑1).

  14. Track structure model of microscopic energy deposition by protons and heavy ions in segments of neuronal cell dendrites represented by cylinders or spheres

    NASA Astrophysics Data System (ADS)

    Alp, Murat; Cucinotta, Francis A.

    2017-05-01

    Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.

  15. Insights on dramatic radial fluctuations in track formation by energetic ions

    SciTech Connect

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.; Zarkadoula, Eva

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd2TixZr(1-x)O7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study shows the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.

  16. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd2TixZr(1-x)O7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study shows the diameter variations to be asmore » large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  17. Secondary ionisations in a wall-less ion-counting nanodosimeter: quantitative analysis and the effect on the comparison of measured and simulated track structure parameters in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, Gerhard; Bug, Marion U.; Gargioni, Elisabetta; Rabus, Hans

    2015-10-01

    The object of investigation in nanodosimetry is the physical characteristics of the microscopic structure of ionising particle tracks, i.e. the sequence of the interaction types and interaction sites of a primary particle and all its secondaries, which reflects the stochastic nature of the radiation interaction. In view of the upcoming radiation therapy with protons and carbon ions, the ionisation structure of the ion track is of particular interest. Owing to limitations in current detector technology, the only way to determine the ionisation cluster size distribution in a DNA segment is to simulate the particle track structure in condensed matter. This is done using dedicated computer programs based on Monte Carlo procedures simulating the interaction of the primary ions with the target. Hence, there is a need to benchmark these computer codes using suitable experimental data. Ionisation cluster size distributions produced in the nanodosimeter's sensitive volume by monoenergetic protons and alpha particles (with energies between 0.1 MeV and 20 MeV) were measured at the PTB ion accelerator facilities. C3H8 and N2 were alternately used as the working gas. The measured data were compared with the simulation results obtained with the PTB Monte-Carlo code PTra [B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002); M.U. Bug, E. Gargioni, H. Nettelbeck, W.Y. Baek, G. Hilgers, A.B. Rosenfeld, H. Rabus, Phys. Rev. E 88, 043308 (2013)]. Measured and simulated characteristics of the particle track structure are generally in good agreement for protons over the entire energy range investigated. For alpha particles with energies higher than the Bragg peak energy, a good agreement can also be seen, whereas for energies lower than the Bragg peak energy differences of as much as 25% occur. Significant deviations are only observed for large ionisation cluster sizes. These deviations can be explained by a background consisting of secondary ions. These ions are produced in the

  18. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  19. Formation of swift heavy ion tracks on a rutile TiO2 (001) surface.

    PubMed

    Karlušić, Marko; Bernstorff, Sigrid; Siketić, Zdravko; Šantić, Branko; Bogdanović-Radović, Ivančica; Jakšić, Milko; Schleberger, Marika; Buljan, Maja

    2016-10-01

    Nanostructuring of surfaces and two-dimensional materials using swift heavy ions offers some unique possibilities owing to the deposition of a large amount of energy localized within a nanoscale volume surrounding the ion trajectory. To fully exploit this feature, the morphology of nanostructures formed after ion impact has to be known in detail. In the present work the response of a rutile TiO2 (001) surface to grazing-incidence swift heavy ion irradiation is investigated. Surface ion tracks with the well known intermittent inner structure were successfully produced using 23 MeV I ions. Samples irradiated with different ion fluences were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering. With these two complementary approaches, a detailed description of the swift heavy ion impact sites, i.e. the ion tracks on the surface, can be obtained even for the case of multiple ion track overlap. In addition to the structural investigation of surface ion tracks, the change in stoichiometry of the rutile TiO2 (001) surface during swift heavy ion irradiation was monitored using in situ time-of-flight elastic recoil detection analysis, and a preferential loss of oxygen was found.

  20. Formation of swift heavy ion tracks on a rutile TiO2 (001) surface1

    PubMed Central

    Karlušić, Marko; Bernstorff, Sigrid; Siketić, Zdravko; Šantić, Branko; Bogdanović-Radović, Ivančica; Jakšić, Milko; Schleberger, Marika; Buljan, Maja

    2016-01-01

    Nanostructuring of surfaces and two-dimensional materials using swift heavy ions offers some unique possibilities owing to the deposition of a large amount of energy localized within a nanoscale volume surrounding the ion trajectory. To fully exploit this feature, the morphology of nanostructures formed after ion impact has to be known in detail. In the present work the response of a rutile TiO2 (001) surface to grazing-incidence swift heavy ion irradiation is investigated. Surface ion tracks with the well known intermittent inner structure were successfully produced using 23 MeV I ions. Samples irradiated with different ion fluences were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering. With these two complementary approaches, a detailed description of the swift heavy ion impact sites, i.e. the ion tracks on the surface, can be obtained even for the case of multiple ion track overlap. In addition to the structural investigation of surface ion tracks, the change in stoichiometry of the rutile TiO2 (001) surface during swift heavy ion irradiation was monitored using in situ time-of-flight elastic recoil detection analysis, and a preferential loss of oxygen was found. PMID:27738417

  1. Track creation after swift heavy ion irradiation of insulators

    NASA Astrophysics Data System (ADS)

    Medvedev, N.; Osmani, O.; Rethfeld, B.; Schleberger, M.

    2010-10-01

    The dynamics of structural modifications of insulators irradiated with swift heavy ions were investigated theoretically applying a combination of Monte-Carlo method (MC), used to describe SHI penetration and following excitation and relaxation of the electronic subsystem, with Two Temperature Model (TTM) describing the heating of the lattice. This MC-TTM combination demonstrates that secondary ionizations play a very important role for the track formation process. They lead to an additional term in the heat diffusion equation related to energy stored in the hole subsystem. This storage of energy causes a significant delay of heating and prolongs the timescales up to tens of picoseconds.

  2. Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.

  3. Track structure model of cell damage in space flight

    NASA Technical Reports Server (NTRS)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  4. Effect Of Auger Recombination In An Ion Track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1993-01-01

    Report presents theoretical calculations of contribution of Auger recombination to depletion of charge carriers from ionization track left by passage of energetic heavy ion through silicon-based electronic device.

  5. A 3D feature point tracking method for ion radiation

    NASA Astrophysics Data System (ADS)

    Kouwenberg, Jasper J. M.; Ulrich, Leonie; Jäkel, Oliver; Greilich, Steffen

    2016-06-01

    A robust and computationally efficient algorithm for automated tracking of high densities of particles travelling in (semi-) straight lines is presented. It extends the implementation of (Sbalzarini and Koumoutsakos 2005) and is intended for use in the analysis of single ion track detectors. By including information of existing tracks in the exclusion criteria and a recursive cost minimization function, the algorithm is robust to variations on the measured particle tracks. A trajectory relinking algorithm was included to resolve the crossing of tracks in high particle density images. Validation of the algorithm was performed using fluorescent nuclear track detectors (FNTD) irradiated with high- and low (heavy) ion fluences and showed less than 1% faulty trajectories in the latter.

  6. Insights on dramatic radial fluctuations in track formation by energetic ions

    NASA Astrophysics Data System (ADS)

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-06-01

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1‑x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.

  7. Insights on dramatic radial fluctuations in track formation by energetic ions

    PubMed Central

    Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-01-01

    We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1−x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology. PMID:27250764

  8. A simple and rapid method for high-resolution visualization of single-ion tracks

    SciTech Connect

    Omichi, Masaaki; Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu; Tsukuda, Satoshi; Sugimoto, Masaki

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  9. Making tracks: electronic excitation roles in forming swift heavy ion tracks.

    PubMed

    Itoh, N; Duffy, D M; Khakshouri, S; Stoneham, A M

    2009-11-25

    Swift heavy ions cause material modification along their tracks, changes primarily due to their very dense electronic excitation. The available data for threshold stopping powers indicate two main classes of materials. Group I, with threshold stopping powers above about 10 keV nm(-1), includes some metals, crystalline semiconductors and a few insulators. Group II, with lower thresholds, comprises many insulators, amorphous materials and high T(c) oxide superconductors. We show that the systematic differences in behaviour result from different coupling of the dense excited electrons, holes and excitons to atomic (ionic) motions, and the consequent lattice relaxation. The coupling strength of excitons and charge carriers with the lattice is crucial. For group II, the mechanism appears to be the self-trapped exciton model of Itoh and Stoneham (1998 Nucl. Instrum. Methods Phys. Res. B 146 362): the local structural changes occur roughly when the exciton concentration exceeds the number of lattice sites. In materials of group I, excitons are not self-trapped and structural change requires excitation of a substantial fraction of bonding electrons, which induces spontaneous lattice expansion within a few hundred femtoseconds, as recently observed by laser-induced time-resolved x-ray diffraction of semiconductors. Our analysis addresses a number of experimental results, such as track morphology, the efficiency of track registration and the ratios of the threshold stopping power of various materials.

  10. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  11. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    DOE PAGES

    Wang, Liping; Bai, Jianming; Gao, Peng; ...

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design ofmore » a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.« less

  12. Formation of Well-defined Nanocolumns by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Macaulay, J; Contolini, R J; Searson, P C

    2003-04-12

    Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent control of diameter, length, orientation, areal density and composition so that geometry can be directly correlated to the quantum physical property of interest. The precision and control are products of the fabrication technique that we use. The process starts with an ion of sufficient energy to ''track'' a dielectric such as a film applied uniformly onto a substrate. The energy loss of the ion alters chemical bonding in the dielectric along the ion's straight trajectory. A suitable etchant quickly dissolves the latent tracks leaving high aspect ratio holes of small diameter ({approx}10nm) penetrating a film as thick as several microns. These small holes are interesting and useful in their own right and can be made to any desired size by continuing the etching process. Moreover, they serve as molds for electrochemical filling. After this electro-deposition, the mold material can be removed leaving the columns firmly attached to the substrate at the desired orientation. A variety of structures can be envisioned with these techniques. As examples, we have created arrays of Ni and of Pt nanocolumns ({approx}60 nm diameter and {approx}600 nm long) oriented perpendicular to the substrate. The high aspect ratio and small diameter of the columns enables easy observation of quantum behavior, namely efficient electron field emission and Fowler Nordheim behavior.

  13. Track-structure investigations: A supplement to microdosimetry

    NASA Astrophysics Data System (ADS)

    Conte, V.; Grosswendt, B.; Colautti, P.; Moro, D.; De Nardo, L.

    2013-07-01

    We conceived and developed an experimental apparatus able to measure the track structure (the spatial distribution of the points of ionizing collisions) of light ions, allowing the investigation of the track-core and penumbra regions separately. The device is based on single-electron counting technique, and simulates a target volume V of about 20 nm in diameter that can be moved with respect to a narrow primary particle beam, allowing the measurement of the ionization-cluster-size distribution as a function of the impact parameter. The experimental set up is mounted at the Tandem-Alpi LNL particle accelerator complex. The goal of the experiment is to investigate the formation of ionization-cluster-size distributions caused in a nanometre-sized volume by different light ions of medical interest (protons, lithium ions and carbon ions), when penetrating through or passing by the target volume at a specified distance.

  14. Engineering cell-fluorescent ion track hybrid detectors

    PubMed Central

    2013-01-01

    Background The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). Methods The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u−1). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. Results The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. Conclusions The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy

  15. Structured output tracking guided by keypoint matching

    NASA Astrophysics Data System (ADS)

    Fang, Zhiwen; Cao, Zhiguo; Xiao, Yang

    2016-10-01

    Current keypoint-based trackers are widely used in object tracking system because of their robust capability against scale, rotation and so on. However, when these methods are applied in tracking 3D target in a forward-looking image sequences, the tracked point usually shifts away from the correct position as time increases. In this paper, to overcome the tracked point drifting, structured output tracking is used to track the target point with its surrounding information based on Haar-like features. First, around the tracked point in the last frame, a local patch is cropped to extract Haar-like features. Second, using a structured output SVM framework, a prediction function is learned in a larger radius to directly estimate the patch transformation between frames. Finally, during tracking the prediction function is applied to search the best location in a new frame. In order to achieve the robust tracking in real time, keypoint matching is adopted to coarsely locate the searched field in the whole image before using the structured output tracking. Experimentally, we show that our algorithm is able to outperform state-of-the-art keypoint-based trackers.

  16. Dosimetric precision of an ion beam tracking system

    PubMed Central

    2010-01-01

    Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems. PMID:20591160

  17. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  18. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  19. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  20. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  1. Controlled fabrication of ion track nanowires and channels

    NASA Astrophysics Data System (ADS)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  2. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  3. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGES

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; ...

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  4. Monte Carlo track structure for radiation biology and space applications

    NASA Technical Reports Server (NTRS)

    Nikjoo, H.; Uehara, S.; Khvostunov, I. G.; Cucinotta, F. A.; Wilson, W. E.; Goodhead, D. T.

    2001-01-01

    Over the past two decades event by event Monte Carlo track structure codes have increasingly been used for biophysical modelling and radiotherapy. Advent of these codes has helped to shed light on many aspects of microdosimetry and mechanism of damage by ionising radiation in the cell. These codes have continuously been modified to include new improved cross sections and computational techniques. This paper provides a summary of input data for ionizations, excitations and elastic scattering cross sections for event by event Monte Carlo track structure simulations for electrons and ions in the form of parametric equations, which makes it easy to reproduce the data. Stopping power and radial distribution of dose are presented for ions and compared with experimental data. A model is described for simulation of full slowing down of proton tracks in water in the range 1 keV to 1 MeV. Modelling and calculations are presented for the response of a TEPC proportional counter irradiated with 5 MeV alpha-particles. Distributions are presented for the wall and wall-less counters. Data shows contribution of indirect effects to the lineal energy distribution for the wall counters responses even at such a low ion energy.

  5. Cosmic heavy ion tracks in mesoscopic biological test objects

    NASA Technical Reports Server (NTRS)

    Facius, R.

    1994-01-01

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on 'HZE particle effects in manned spaced flight', it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to 'large' fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too ('The BIOSTACK as an approach to high LET radiation research'), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions' trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series. Since biological investigations and physical measurements of particle tracks had to be performed in laboratories widely separated, the preferred fixed contact between biological test objects and the particle detectors

  6. Predictive modeling of synergistic effects in nanoscale ion track formation

    SciTech Connect

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  7. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  8. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  9. Effect of combined local variations in elastic and inelastic energy losses on the morphology of tracks in ion-irradiated materials

    SciTech Connect

    Jozwik Biala, Iwona; Jagielski, Jacek K.; Arey, Bruce W.; Kovarik, Libor; Sattonay, G.; Debelle, A.; Mylonas, S.; Monnet, I.; Thome, Lionel

    2013-07-13

    A judicious choice of irradiation parameters and experimental methodology allowed the visualization of the tracks created by swift heavy ions in pyrochlores over the entire ion trajectories. Several peculiarities were observed: a layered structure of tracks composed of an amorphous core surrounded by a strained crystalline envelope, a change of the track diameter as a function of the ion slowing down, a loss of parallelism of tracks, a transformation from continuous to discontinuous regime, and an increasing contribution of elastic collisions at large depths. These observations are compared to the respective amount of electronic and nuclear energy losses.

  10. Top marine predators track Lagrangian coherent structures

    PubMed Central

    Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique

    2009-01-01

    Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel. PMID:19416811

  11. Top marine predators track Lagrangian coherent structures.

    PubMed

    Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique

    2009-05-19

    Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel.

  12. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  13. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Karlušić, M.; Bogdanović-Radović, I.; Jakšić, M.; Salamon, K.; Bernstorff, S.; Radić, N.

    2012-09-01

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  14. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  15. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  16. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  17. Closure characteristic of thermally responsive ion track membranes

    NASA Astrophysics Data System (ADS)

    Reber, N.; Omichi, H.; Spohr, R.; Wolf, A.; Yoshida, M.

    1999-05-01

    The surface of ion track membranes with single or many pores of cylindrical geometry were covered with poly-N-isopropylacrylamide. Given by the properties of this hydrogel, the opening and closing of the modified pores can be controlled by temperature. Above 31°C, in the shrunken state of the hydrogel, ions and molecules can freely pass through the membrane whereas below 31°C, in the swollen state, the hydrogel clogs the pore. The closure characteristic of single responsive pores for polyethylene glycol (PEG) molecules of various sizes was studied by electrical conductivity measurements. As demonstrated for single pores, the passage of PEG molecules larger than 2 nm is prevented in the closed state. Complementary experiments were performed with membranes containing between 10 6 and 5 × 10 7 pores per cm 2. The flow for different molecules (methyleneblue, orange G and bovine albumin) was investigated by means of a dialysis cell. For different membranes with pores of an initial diameter of 0.6 and 3.5 μm, the flow through the membrane in the swollen state is completely blocked for the bovine albumin molecules. In the open state, both dye and albumin molecules could pass the 3.5 μm pores freely, whereas the flow ratio was considerably reduced for the 0.6 μm pores.

  18. Monitoring structure movement with laser tracking technology

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Giussani, Alberto; Roncoroni, Fabio; Previtali, Mattia

    2013-04-01

    This paper presents the use of laser tracking technology for structure monitoring. In this field the use of this precise instrument is innovative and therefore new investigations are needed for civil structures, especially for applications carried out during unstable environmental conditions. On the other hand, as laser trackers are today very used in industrial applications aimed at collecting data at high speed with precisions superior to +/-0.05 mm, they seem quite promising for those civil engineering applications where numerous geodetic tools, often coupled with mechanical and electrical instruments, are usually used to inspect structure movements. This work illustrates three real civil engineering monitoring applications where laser tracking technology was used to detect object movements. The first one is a laboratory testing for the inspection of a beam (bending moment and shear). The second experiment is the stability inspection of a bridge. The last experiment is one of the first attempts where laser trackers tried to substitute traditional high precision geometric leveling for monitoring an important historical building: the Cathedral of Milan. The achieved results, pro and contra along with some practical issues are described.

  19. Status and Perspectives of Ion Track Electronics for Advanced Biosensing

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.

    New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.

  20. Etch-pit morphology of tracks caused by swift heavy ions in natural dark mica

    NASA Astrophysics Data System (ADS)

    Lang, M.; Glasmacher, U. A.; Moine, B.; Neumann, R.; Wagner, G. A.

    2004-06-01

    Ion tracks in solids can be visualized by appropriate etching. During the etching procedure, size and depth of the etch pits grow linearly with time. Their shape is mainly controlled by the crystal structure. For example, in muscovite, ion tracks have a rhombic cross-section after HF etching, whereas in polycarbonate etch pits are circular after NaOH etching. Natural phlogopite (dark mica) may contain fission tracks and alpha-recoil tracks (ART) as latent radiation damage. HF can be used to make them visible by optical, scanning electron and scanning force microscopy (SEM, SFM). ART, generated by collisions of the recoil nuclei with the lattice atoms, provide etch pits, which are triangular at the surface, whereas the fission tracks, created via electronic energy loss (d E/d x), have hexagonal etch pits. After ion irradiation of phlogopite in the electronic d E/d x regime, the etch pits are triangular below 5.7 keV/nm and hexagonal above 8.8 keV/nm in shape. To examine more precisely the shape transition and its relation to the radiation damage, phlogopite from the Kerguelen Islands (French territory, Indian Ocean) was first annealed (500 °C, 3.5 h) and subsequently irradiated at GSI with 58Ni (kinetic energy ˜81 MeV), d E/d x amounting to 10.4 keV/nm (according to SRIM 2000). Using polyethylene terephthalate (PET) foils of seven different thicknesses as a degrader, d E/d x in the sample could be reduced stepwise to 2.4 keV/nm. The irradiated samples were etched with 4% HF at room temperature and afterwards imaged with SEM and SFM. It was observed that the triangles relate to the octahedral sites (represented by OH, O, Fe, Mg and other ions) and the hexagons to the SiO 4-tetahedral positions in the tetrahedral sheet. We interpret our findings as evidence that the d E/d x-dependent etch-pit morphologies are controlled by the lattice structure.

  1. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  2. Combined model of the material excitation and relaxation in swift heavy ion tracks

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Terekhin, P. N.; Medvedev, N. A.; Volkov, A. E.

    2013-11-01

    A multiscale approach describing material excitation in the nanometric track of a swift heavy ion (SHI) decelerated in a solid in the electronic stopping regime is presented. This model consists of a combination of three different methods: (a) Monte Carlo simulations of excitation of the electron subsystem of a solid at the femtosecond scale due to scatterings of a SHI and generated fast electrons; (b) a molecular-kinetic approach describing the spatial spreading of electrons after finishing of ionization cascades up to timescales of a hundred femtoseconds; and (c) molecular dynamics simulations of reaction of the lattice on the excess energy transferred from the relaxing electron subsystem at the picosecond time scale. The dynamic structure factor (DSF) formalism links together all these methods. It takes into account effects of spatial and temporal correlations in the atomic system of a target during its interaction with excited electrons in an ion track. For LiF crystals a good agreement is demonstrated between track heating estimated from the experimental data and that predicted by the model.

  3. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  4. Impact of Track Structure Effects on Shielding and Dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.

    1999-01-01

    Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and

  5. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  6. Doping of 20 MeV fullerene ion tracks in polyimide

    NASA Astrophysics Data System (ADS)

    Fink, D.; Vacik, J.; Klett, R.; Chadderton, L. T.; Hnatowicz, V.

    1996-12-01

    Thin polymide foils were irradiated with 20 MeV C 60+ ions and subsequently doped with aqueous LiCl solution. The depth distributions of the dopant uptake were then recorded with the neutron depth profiling technique. In contrast to the doping of tracks of single-atomic ions or of small cluster ions, the dopant distribution extends far beyond the single-atomic ion range, indicating that some new secondary effects show up here. These may be attributed to the enhancement of cluster ion ranges in comparison to single-atomic ones [1,2], and additionally to the formation of micro- or nanocracks. The shapes of the dopant distributions are rather independent from the ion fluence, which indicates that the observed overrange effects are a peculiarity of individual fullerene ion tracks, and not just a high fluence effect for overlapping tracks. The total amount of dopant uptake increases with fluence. It scales with the total deposited energy density in a similar way as does the dopant uptake in tracks of single-atomic ions or of small cluster ions. First results with 30 MeV C 60+ ions reconfirm these findings.

  7. Characterization of multiple-bit errors from single-ion tracks in integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Edmonds, L. D.; Smith, L. S.

    1989-01-01

    The spread of charge induced by an ion track in an integrated circuit and its subsequent collection at sensitive nodal junctions can cause multiple-bit errors. The authors have experimentally and analytically investigated this phenomenon using a 256-kb dynamic random-access memory (DRAM). The effects of different charge-transport mechanisms are illustrated, and two classes of ion-track multiple-bit error clusters are identified. It is demonstrated that ion tracks that hit a junction can affect the lateral spread of charge, depending on the nature of the pull-up load on the junction being hit. Ion tracks that do not hit a junction allow the nearly uninhibited lateral spread of charge.

  8. On the threshold for ion track formation in CaF2

    NASA Astrophysics Data System (ADS)

    Karlušić, M.; Ghica, C.; Negrea, R. F.; Siketić, Z.; Jakšić, M.; Schleberger, M.; Fazinić, S.

    2017-02-01

    There is an ongoing debate regarding the mechanism of swift heavy ion (SHI) track formation in CaF2. The objective of this study is to shed light on this important topic using a range of complementary experimental techniques. Evidence of the threshold for ion track formation being below 3 keV nm‑1 is provided by both transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy in the channelling mode, which has direct consequences for the validity of models describing the response of CaF2 to SHI irradiation. Furthermore, information about the elemental composition within the ion tracks is obtained using scanning TEM, electron energy loss spectroscopy, and with respect to the stoichiometry of the materials surface by in situ time of flight elastic recoil detection analysis. Advances in the analyses of the experimental data presented here pave the way for a better understanding of the ion track formation.

  9. Superconducting heavy-ion accelerating structures

    SciTech Connect

    Shepard, K.W.

    1996-08-01

    This paper briefly reviews the technical history of superconducting ion-accelerating structures. Various superconducting cavities currently used and being developed for use in ion linacs are discussed. Principal parameters and operational characteristics of superconducting structures in active use at various heavy-ion facilities are described.

  10. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    SciTech Connect

    Artemenkov, D. A. Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-15

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  11. Ion tracks developed in polyimide resist on Si wafers as template for nanowires

    NASA Astrophysics Data System (ADS)

    Skupinski, Marek; Toulemonde, Marcel; Lindeberg, Mikael; Hjort, Klas

    2005-11-01

    Ion track technology makes it possible to produce low-cost templates for nanowires. In this study we have studied ion tracks in a polyimide resist on silicon. Spin coated, 1.5 μm thick polyimide resist on 4 in. Si wafers was irradiated by 129Xe27+ ions at low fluence. The irradiated resist was etched in sodium hypochlorite (NaClO) solution, and Ni nanowires were electroplated in the pores. Using scanning electron microscopy observations the ion track etch properties were obtained. The linear track etch rate of 0.6-1.0 μm/min was calculated from the conical aspect ratio of the nanowire, and from the pore diameter at the surface at different etch times the bulk etch rate in the halo at a distance longer than 5 nm from the ion axis was found to be 0.3 nm/min, while at a long distance from the ion axis the track etching velocity of the virgin material was 0.01 nm/min. Taking into account the big difference in the track etch velocity between the latent track and the material outside, a latent track diameter of 11 nm could be estimated. Such a diameter value is in good agreement with a prediction obtained from an inelastic thermal spike model. Furthermore, fabrication of 1.5 μm long magnetoresistive nanowires electroplated in ion tracks in the IC compatible polyimide resist may be a way to develop low-cost CMOS integrated magnetoresistive sensors.

  12. Tracking of Ions Produced at Near Barrier Energies in Nuclear Reactions

    SciTech Connect

    Shapira, Dan

    2010-01-01

    Examples of detectors, presently in use, for tracking products from nuclear reactions induced by radioactive ion beams are described. A new tracking detector is being designed to study the binary products from reactions induced by heavy neutron-rich radioactive ion beams on heavy neutron-rich target nuclei. The motivation for such studies and the features designed to accomplish this goal will be presented.

  13. Generation of ions in a pulsed ion source with an interface based on a polymer track membrane

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Khidirov, S. G.; Buido, E. A.

    2016-10-01

    The time-of-flight spectra of ions generated during the extraction of negative ions from the KI solution in water-glycerin mixture by high-strength electric field pulses are studied using a source with an interface based on a polymer track membrane. It has been shown that the ions formed in secondary processes of bombardment of the membrane surface make a considerable contribution to the observed spectra. It has been found that the peaks of negative hydrogen ions have the highest intensity in the spectrum, indicating effective emission of these ions during the bombardment of polyethylene terephthalate by secondary ions with an energy of about 6 keV. The main trends in the modification of the membrane interface to reduce the fraction of secondary ions in the ion beam have been outlined.

  14. Vibro-acoustic performance of newly designed tram track structures

    NASA Astrophysics Data System (ADS)

    Haladin, Ivo; Lakušić, Stjepan; Ahac, Maja

    2017-09-01

    Rail vehicles in interaction with a railway structure induce vibrations that are propagating to surrounding structures and cause noise disturbance in the surrounding areas. Since tram tracks in urban areas often share the running surface with road vehicles one of top priorities is to achieve low maintenance and long lasting structure. Research conducted in scope of this paper gives an overview of newly designed tram track structures designated for use on Zagreb tram network and their performance in terms of noise and vibration mitigation. Research has been conducted on a 150 m long test section consisted of three tram track types: standard tram track structure commonly used on tram lines in Zagreb, optimized tram structure for better noise and vibration mitigation and a slab track with double sleepers embedded in a concrete slab, which presents an entirely new approach of tram track construction in Zagreb. Track has been instrumented with acceleration sensors, strain gauges and revision shafts for inspection. Relative deformations give an insight into track structure dynamic load distribution through the exploitation period. Further the paper describes vibro-acoustic measurements conducted at the test site. To evaluate the track performance from the vibro-acoustical standpoint, detailed analysis of track decay rate has been analysed. Opposed to measurement technique using impact hammer for track decay rate measurements, newly developed measuring technique using vehicle pass by vibrations as a source of excitation has been proposed and analysed. Paper gives overview of the method, it’s benefits compared to standard method of track decay rate measurements and method evaluation based on noise measurements of the vehicle pass by.

  15. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    SciTech Connect

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.

  16. Kinetics of Electrons from Plasma Discharge in a Latent Track Region Induced by Swift Heavy ION Irradiation

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons. In this paper, we provide detailed derivation of a 3D Boltzmann scattering equation for the description of the relative scattering motion of such electrons. Phase-space distribution function for this non-equilibrioum system of scattering electrons can be found by the solution of mentioned equation.

  17. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    The theoretical analysis presented indicates that Auger recombination can reduce charge collection from very dense ion tracks in silicon devices. It is of marginal importance for tracks produced by 270-MeV krypton, and therefore it is of major importance for ions exhibiting a significantly larger loss. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a nonzero limiting value as t approaches infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  18. Effect of Track Potentials on the Movement of Secondary Electrons due to Irradiation of Heavy Ions

    NASA Astrophysics Data System (ADS)

    Moribayashi, Kengo

    2017-02-01

    This paper quantitatively discusses the effect of positive nuclear track potentials on the motion of secondary electrons due to heavy-ion irradiation using a simulation model. This model reproduces the tendency of measurement of the number of secondary electrons. Using this model, physical phenomena can be treated closer to reality than those using the conventional models. Here, the track potential is defined as the potential formed from the electric field near the track of a heavy ion. This effect is expected to be given as functions of not only the mean paths (τ) between incident ion impact ionization events but also the average initial secondary electron energies. The results shown in this paper indicate that the effect of the track potential is mainly determined by τ.

  19. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  20. SAXS study on the morphology of etched and un-etched ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Afra, B.; Rodriguez, M. D.; Mota-Santiago, P.; Muradoglu, S.; Hawley, A.; Kluth, P.

    2015-04-01

    Natural apatite samples were irradiated with 185 MeV Au and 2.3 GeV Bi ions to simulate fission tracks. The resulting track morphology was investigated using synchrotron small angle x-ray scattering (SAXS) measurements before and after chemical etching. We present preliminary results from the SAXS measurement showing the etching process is highly anisotropic yielding faceted etch pits with a 6-fold symmetry. The measurements are a first step in gaining new insights into the correlation between etched and unetched fission tracks and the use of SAXS as a tool for studying etched tracks.

  1. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    PubMed Central

    2015-01-01

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) “rung” electrodes, bordered by DC “guard” electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be “soft” in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations. PMID:25152178

  2. Characterization of ion dynamics in structures for lossless ion manipulations.

    PubMed

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.

  3. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    SciTech Connect

    Tolmachev, Aleksey V.; Webb, Ian K.; Ibrahim, Yehia M.; Garimella, Venkata BS; Zhang, Xinyu; Anderson, Gordon A.; Smith, Richard D.

    2014-08-23

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radio frequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radio frequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards, and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be ‘soft’ in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling ion mobility separations.

  4. Production and distribution of aberrations in resting or cycling human lymphocytes following Fe-ion or Cr-ion irradiation: Emphasis on single track effects

    NASA Astrophysics Data System (ADS)

    Deperas-Standylo, Joanna; Lee, Ryonfa; Nasonova, Elena; Ritter, Sylvia; Gudowska-Nowak, Ewa

    2012-09-01

    In the present study we examined the cytogenetic effects of 177 MeV/u Fe-ions (LET = 335 keV/μm) and 4.1 MeV/u Cr-ions (LET = 3160 keV/μm) in human lymphocytes under exposure conditions that result on average in one particle hit per cell nucleus. In non-cycling (G0-phase) lymphocytes the induction and the repair of excess fragments was measured by means of the premature chromosome condensation (PCC) technique and the distribution of breaks among cells was analysed. The PCC-data were further compared with those reported recently for stimulated lymphocytes at the first post-irradiation mitosis. Our experiments show that a single nuclear traversal by a Fe-ion produced more initial chromatin breakage than one Cr-ion, but after 24 h of repair the number of excess fragments/cell was similar for both ion species. All distributions of aberrations were overdispersed. For low energy Cr-ions, where the track radius is smaller than the radius of the cell nucleus, the data could be well described by a Neyman type A distribution. In contrast, the data obtained for high energy Fe-ions were fitted with a convoluted Poisson-Neyman distribution to account for the fact that the dose is deposited not only in the cell actually traversed but also in neighbouring cells. By applying metaphase analysis a different picture emerged with respect to the aberration yield, i.e. more aberrations were detected in cells exposed to Fe-ions than in those irradiated with Cr-ions. Yet, as observed for non-cycling lymphocytes all aberration distributions generated for metaphase cells were overdispersed. The obtained results are discussed with respect to differences in particle track structure. Additionally, the impact of confounding factors such as apoptosis that affect the number of aberrations expressed in a cell population is addressed.

  5. Track lengths of energetic 132Xe ions in CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Raju, J.; Dwivedi, K. K.

    1994-06-01

    Studies of particle tracks in solids have wide ranging applications in many diverse fields of science and technology. Most of these studies require a precise knowledge of heavy ion track lengths or ranges in various knowledge of heavy ion track lengths or ranges in various commonly used solid dielectrics. We have measured the maximum etchable track lengths of 132Xe at 12 different energies ranging from 5.8 MeV/u to 17.0 MeV/u in CR-39 (Homalite). The ion beam with an initial energy of 17.0 MeV/u was degraded by aluminium foils of different thickness. The detectors were irradiated at an angle of 45° to the beam direction and were etched for a period of 2?6 hrs in 6N NaOH at 55°C to reveal the tracks. The track lengths were measured using an optical microscope and the maximum etchable track lengths were determined. The standard deviations have been evaluated and the experimental results are compared with theoretical values obtained from computer codes ?RANGE? and ?TRIM? and the program of Henke and Benton.

  6. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation

    SciTech Connect

    Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2006-05-01

    Irradiation of single-crystalline InP with swift heavy ions (SHI's) causes the formation of ion tracks for certain irradiation temperatures if the electronic energy deposition exceeds a threshold value. With increasing SHI fluence, more and more ion tracks are formed, until a continuous amorphous layer is produced due to the multiple overlapping of the tracks at high ion fluences. Single-crystalline InP samples were irradiated either at liquid nitrogen temperature (LNT) or at room temperature (RT) with Kr, Xe, or Au ions with specific energies ranging from ca. 0.3 to 3.0 MeV/u. Afterwards, the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy in the plan-view and cross-section geometry. We show that the experimental data obtained can be qualitatively and quantitatively described on the basis of the inelastic thermal spike (TS) model, which was originally used only for metallic targets. The presented extension of the TS model on semiconductors covers mainly the very first stage of the energy transfer from SHI's (so-called 'ionization spikes'). Our results show that the extended TS model offers a self-consistent way to explain the influence of various irradiation conditions (ion mass, ion energy, irradiation temperature, etc.) on the ion track formation and damage accumulation in InP and, therefore, can make a contribution to a better understanding of the underlying mechanisms. Further, our results prejudice the amenity of a single value of the threshold electronic energy loss as a fundamental quantity that is commonly used for the description of track formation in solids irradiated with different ion species. There is no universal RT threshold for track formation in InP, but it is noticeably higher for lighter ions (12.0 and 14.8 keV/nm for RT irradiations with Au and Xe, respectively). Our experimental and simulation results support the idea that the formation of visible tracks requires a predamaging

  7. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation

    NASA Astrophysics Data System (ADS)

    Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2006-05-01

    Irradiation of single-crystalline InP with swift heavy ions (SHI’s) causes the formation of ion tracks for certain irradiation temperatures if the electronic energy deposition exceeds a threshold value. With increasing SHI fluence, more and more ion tracks are formed, until a continuous amorphous layer is produced due to the multiple overlapping of the tracks at high ion fluences. Single-crystalline InP samples were irradiated either at liquid nitrogen temperature (LNT) or at room temperature (RT) with Kr, Xe, or Au ions with specific energies ranging from ca. 0.3to3.0MeV/u . Afterwards, the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy in the plan-view and cross-section geometry. We show that the experimental data obtained can be qualitatively and quantitatively described on the basis of the inelastic thermal spike (TS) model, which was originally used only for metallic targets. The presented extension of the TS model on semiconductors covers mainly the very first stage of the energy transfer from SHI’s (so-called “ionization spikes”). Our results show that the extended TS model offers a self-consistent way to explain the influence of various irradiation conditions (ion mass, ion energy, irradiation temperature, etc.) on the ion track formation and damage accumulation in InP and, therefore, can make a contribution to a better understanding of the underlying mechanisms. Further, our results prejudice the amenity of a single value of the threshold electronic energy loss as a fundamental quantity that is commonly used for the description of track formation in solids irradiated with different ion species. There is no universal RT threshold for track formation in InP, but it is noticeably higher for lighter ions (12.0 and 14.8keV/nm for RT irradiations with Au and Xe, respectively). Our experimental and simulation results support the idea that the formation of visible tracks requires a

  8. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-01

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  9. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track.

    PubMed

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-12

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  10. Transport of secondary electrons and reactive species in ion tracks

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  11. More Ions for Radiotherapy: About Treatment Planning and Track Simulations

    NASA Astrophysics Data System (ADS)

    Krämer, M.

    2017-03-01

    In the recent years, irradiation with swift light ions - from protons up to oxygen -has become an established method in tumour radiotherapy.A prerequisite for successful treatment is the sufficient knowledge of physical and radiobiological processes down to the microscopic or even nanoscopic scale. This report summarizes recent developments. In particular the application of ions other than protons and carbon will be addressed, as well as modelling approaches on the nanoscale.

  12. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  13. Secondary ion emission dynamics model: A tool for nuclear track analysis

    NASA Astrophysics Data System (ADS)

    Iza, P.; Farenzena, L. S.; Jalowy, T.; Groeneveld, K. O.; da Silveira, E. F.

    2006-04-01

    The initial velocity distribution of secondary ions is employed as a tool to analyze nuclear track formation processes occurring in the picosecond time range. The choice of the secondary ion for such analysis depends on the particular surface region and on the desorption time range of interest: (a) H+ ions are emitted promptly from the impact site, (b) H- desorption occurs delayed and mostly from the impact periphery, (c) emitted molecular ions are accelerated away during tens of picoseconds exclusively from the impact periphery. The model is set up considering the track as two coaxial cylinders, the inner one positively charged and the outer one negatively charged. It takes into account effects due to the track charge image formed by a metallic substrate, the projectile angle of incidence, the variation of the electronic stopping power for projectiles out of the equilibrium-charge regime, and a positive and negative track neutralization whose rates are exponentially decreasing with time. Predictions of the model are presented for ion desorption of LiF bombarded by 1 MeV Ar ions.

  14. Fluorescent tracking of nickel ions in human cultured cells

    SciTech Connect

    Ke Qingdong; Davidson, Todd; Kluz, Thomas; Oller, Adriana; Costa, Max . E-mail: costam01@nyu.edu

    2007-02-15

    The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability to enter cells and elevate intracellular levels of Ni ions. Water-insoluble Ni compounds such as NiS and Ni{sub 3}S{sub 2} were shown in vitro to enter cells by phagocytosis and potently induce tumors in experimental animals at the site of exposure. These water-insoluble nickel compounds are generally considered to be more potent carcinogens than the water-soluble forms. However, recent in vitro studies have shown similar effects for insoluble and soluble Ni compounds. Using a dye that fluoresces when intracellular Ni ion binds to it, we showed that both soluble and insoluble Ni compounds were able to elevate the levels of Ni ions in the cytoplasmic and nuclear compartments. However, when the source of Ni ions was removed from the culture dish, the intracellular Ni ions derived from soluble Ni compound were lost from the cells at a significantly faster rate than those derived from the insoluble Ni compound. Within 10 h after NiCl{sub 2} removal from the culture medium, Ni ions disappeared from the nucleus and were not detected in the cells by 16 h, while insoluble Ni{sub 3}S{sub 2} yielded Ni ions that persisted in the nucleus after 16 h and were detected in the cytoplasm even after 24 h following Ni removal. These effects are discussed in terms of whole body exposure to water-soluble and -insoluble Ni compounds and consistency with animal carcinogenicity studies.

  15. Ion beams in radiotherapy - from tracks to treatment planning

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.

    2012-07-01

    Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.

  16. Growth of potassium iodide single-crystals using ion track membranes as templates

    NASA Astrophysics Data System (ADS)

    Dobrev, D.; Vetter, J.; Neumann, R.

    1998-12-01

    A principle possibility is demonstrated to apply the ion track membranes as a template for the crystallization of inorganic salts. As an example, potassium iodide has been grown in a matrix of etched ion tracks produced in polycarbonate foils. Arrays of stable free-standing cylindrical microcolumns are observed after dissolution of the organic matrix. They represent single crystals oriented with their <1 0 0> or <1 1 0> crystallographic directions along the cylinder axes. Possible ways to govern their predominant orientations are briefly discussed.

  17. Cosmic heavy ion tracks in mesoscopic biological test objects

    SciTech Connect

    Facius, R.

    1994-12-31

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on `HZE particle effects in manned spaced flight`, it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to `large` fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too (`The BIOSTACK as an approach to high LET radiation research`), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions` trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series.

  18. Experimental study of point-defect creation in high-energy heavy-ion tracks

    NASA Astrophysics Data System (ADS)

    Perez, A.; Balanzat, E.; Dural, J.

    1990-03-01

    Thin platelets of LiF crystals have been bombarded on the side with Ne (40 MeV/amu), Ar (60 MeV/amu), Kr (42 MeV/amu), and Xe (27 MeV/amu) ions at room temperature in the dose range from 108 to 1013 ions cm-2. Taking into account the large penetration depths of these high-energy ions (~=1.4, 1.8, 0.6, and 0.2 mm for Ne, Ar, Kr, and Xe, respectively), it was possible to measure the depth distribution profiles of primary point defects (F centers) and aggregated defects (F2 centers) using a microspectrophotometric technique. These defects are localized in tracks surrounding the ion trajectories in which the energy is deposited by the δ rays emitted. Concerning the creation of primary defects, it has been shown that each individual track is saturated with F centers (~=4×1018 F centers/cm3). From the evolution of the F center depth profiles as a function of the ion doses, using a model of saturated tracks, it has been possible to determine the radii of the tracks all along the ion trajectories. These radii, which are of the order of 7.5, 8, 14, and 32 nm at the entrance in the crystals for Ne, Ar, Kr, and Xe, respectively, increase continuously up to the values of 12, 16, 20, and 44 nm during the slowing down of the ions up to the end of the trajectories. In the wide range of energy deposition into electronic processes studied (from 0.2 to 20 MeV μm-1), a continuous behavior of the primary-defect creation is observed. This seems to indicate that the same excitonic mechanism is responsible of the primary-Frenkel-pair creation in the volume of the track irradiated by the secondary electrons and other mechanisms such as Coulomb explosion or melting, which could take place in the tracks above a certain dissipated-energy threshold, must be ruled out. Finally, the specificity of damaging with ions compared with other irradiation modes (electrons or electromagnetic radiation) is mainly observed with aggregated defects. Due to the high energy density dissipated in the tracks

  19. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  20. SAXS investigations of the morphology of swift heavy ion tracks in α-quartz.

    PubMed

    Afra, B; Rodriguez, M D; Trautmann, C; Pakarinen, O H; Djurabekova, F; Nordlund, K; Bierschenk, T; Giulian, R; Ridgway, M C; Rizza, G; Kirby, N; Toulemonde, M; Kluth, P

    2013-01-30

    The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.

  1. Track damage and erosion of insulators by ion-induced electronic processes

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1984-01-01

    Track damage and the associated ejection of atoms and molecules from insulators, which occur as a result of ion-induced electronic excitation, are of interest both in their own right and because of the mechanisms through which the energy in the excited electrons is transformed into atomic motion. In this paper an overview is given of the phenomena that are observed. We show that there is a remarkable similarity between the damage profile along the ion's track in the solid and the yield of ejected atoms at the energy that corresponds to each point on the track. It is also seen that the density of extended defects (or, correspondingly, the ejected particle yield) appears to have a 'universal' form that is weakly dependent on the type of material. In the model presented this is a consequence of the inner-shell ionization of light elements in the solid by the incident ion; the resulting Auger decay produces an intense ionization spike that locally triggers the track formation/erosion process. This model allows the estimation of erosion yields/damage profiles for different ions and materials.

  2. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.

    2016-05-01

    The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.

  3. ION MANIPULATIONS IN STRUCTURES FOR LOSSLESS ION MANIPULATIONS (SLIM): COMPUTATIONAL EVALUATION OF A 90° TURN AND A SWITCH

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia. M; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-01-01

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ~10 V. The ion plume width in these conditions is ~1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs. PMID:26289106

  4. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch.

    PubMed

    Garimella, Sandilya V B; Ibrahim, Yehia M; Webb, Ian K; Ipsen, Andreas B; Chen, Tsung-Chi; Tolmachev, Aleksey V; Baker, Erin S; Anderson, Gordon A; Smith, Richard D

    2015-10-21

    The process of redirecting ions through 90° turns and 'tee' switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ∼10 V. The ion plume width in these conditions is ∼1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs.

  5. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  6. Impact of time and space evolution of ion tracks in nonvolatile memory cells approaching nanoscale

    NASA Astrophysics Data System (ADS)

    Cellere, G.; Paccagnella, A.; Murat, M.; Barak, J.; Akkerman, A.; Harboe-Sorensen, R.; Virtanen, A.; Visconti, A.; Bonanomi, M.

    2010-12-01

    Swift heavy ions impacting on matter lose energy through the creation of dense tracks of charges. The study of the space and time evolution of energy exchange allows understanding the single event effects behavior in advanced microelectronic devices. In particular, the shrinking of minimum feature size of most advanced memory devices makes them very interesting test vehicles to study these effects since the device and the track dimensions are comparable; hence, measured effects are directly correlated with the time and space evolution of the energy release. In this work we are studying the time and space evolution of ion tracks by using advanced non volatile memories and Monte Carlo simulations. Experimental results are very well explained by the theoretical calculations.

  7. Impact of time and space evolution of ion tracks in nonvolatile memory cells approaching nanoscale

    SciTech Connect

    Cellere, G.; Paccagnella, A.; Harboe-Sorensen, R.; Visconti, A.; Bonanomi, M.

    2010-12-15

    Swift heavy ions impacting on matter lose energy through the creation of dense tracks of charges. The study of the space and time evolution of energy exchange allows understanding the single event effects behavior in advanced microelectronic devices. In particular, the shrinking of minimum feature size of most advanced memory devices makes them very interesting test vehicles to study these effects since the device and the track dimensions are comparable; hence, measured effects are directly correlated with the time and space evolution of the energy release. In this work we are studying the time and space evolution of ion tracks by using advanced non volatile memories and Monte Carlo simulations. Experimental results are very well explained by the theoretical calculations.

  8. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  9. Ion Beam Measurements of a Dense Plasma Focus Device Using CR 39 Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Ngoi, S. K.; Yap, S. L.; Wong, C. S.; Saadah, A. R.

    2008-05-01

    The project is carried out using a small Mather type plasma focus device powered by a 15 kV, 30 μF capacitor. The filling gas used is argon. The ion beam generated is investigated by both time resolved and time integrated methods. Investigation on the dynamic of the current sheath is also carried out in order to obtain an optimum condition for ion beam production. The angular distribution of the ion emission is measured at positions of 0° (end-on), 45° and 90° (side-on) by using CR-39 nuclear track detectors. The divergence of the ion beam is also determined using these detectors. A biased ion collector is used for time resolved measurement of the ion beam. Time of flight technique is employed for the determination of the ion beam energy. Average ion beam energy obtained is about 180 keV. The ion beam produced can be used for applications such as material surface modification and ion implantation.

  10. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology

    NASA Astrophysics Data System (ADS)

    Metz, S.; Trautmann, C.; Bertsch, A.; Renaud, Ph

    2004-03-01

    This paper reports on polyimide microfluidic devices fabricated by photolithography and a layer transfer lamination technology. The microchannels are sealed by laminating an uncured polyimide film on a partially cured layer and subsequent imidization. Selected areas of the microchannels were irradiated with heavy ions of several hundred MeV and the generated ion tracks are chemically etched to submicron pores of high aspect ratio. The ion beam parameters and the track etching conditions define density, length, diameter and shape of the pores. Membrane permeability and separation performance is demonstrated in cross-flow filtration experiments. The devices can be used for selective delivery or probing of fluids to biological tissue, e.g. drug delivery or microdialysis. For chip-based devices the filters can be used as a sample pre-treatment unit for filtration or concentration of particles or molecules.

  11. Motion tracking for medical imaging: a nonvisible structured light tracking approach.

    PubMed

    Olesen, Oline Vinter; Paulsen, Rasmus R; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2012-01-01

    We present a system for head motion tracking in 3D brain imaging. The system is based on facial surface reconstruction and tracking using a structured light (SL) scanning principle. The system is designed to fit into narrow 3D medical scanner geometries limiting the field of view. It is tested in a clinical setting on the high resolution research tomograph (HRRT), Siemens PET scanner with a head phantom and volunteers. The SL system is compared to a commercial optical tracking system, the Polaris Vicra system, from NDI based on translatory and rotary ground truth motions of the head phantom. The accuracy of the systems was similar, with root mean square (rms) errors of 0.09 degrees for ±20 degrees axial rotations, and rms errors of 0.24 mm for ± 25 mm translations. Tests were made using (1) a light emitting diode (LED) based miniaturized video projector, the Pico projector from Texas Instruments, and (2) a customized version of this projector replacing a visible light LED with a 850 nm near infrared LED. The latter system does not provide additional discomfort by visible light projection into the patient's eyes. The main advantage over existing head motion tracking devices, including the Polaris Vicra system, is that it is not necessary to place markers on the patient. This provides a simpler workflow and eliminates uncertainties related to marker attachment and stability. We show proof of concept of a marker less tracking system especially designed for clinical use with promising results.

  12. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  13. Relative Displacement Method for Track-Structure Interaction

    PubMed Central

    Ramos, Óscar Ramón; Pantaleón, Marcos J.

    2014-01-01

    The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610

  14. How ions affect the structure of water.

    PubMed

    Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A

    2002-10-16

    We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.

  15. Structural Measures to Track the Evolution of SNOMED CT Hierarchies

    PubMed Central

    Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-01-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003

  16. Structural measures to track the evolution of SNOMED CT hierarchies.

    PubMed

    Wei, Duo; Helen Gu, Huanying; Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-10-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users' needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy's structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy's structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it.

  17. Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech

    PubMed Central

    Ding, Nai; Melloni, Lucia; Zhang, Hang; Tian, Xing; Poeppel, David

    2016-01-01

    The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures based on a grammatical system, resulting in a hierarchy of linguistic units, e.g., words, phrases, and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. Here we demonstrate that during listening to connected speech, cortical activity of different time scales concurrently tracks the time course of abstract linguistic structures at different hierarchical levels, e.g. words, phrases, and sentences. Critically, the neural tracking of hierarchical linguistic structures is dissociated from the encoding of acoustic cues as well as from the predictability of incoming words. The results demonstrate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure. PMID:26642090

  18. Cortical tracking of hierarchical linguistic structures in connected speech.

    PubMed

    Ding, Nai; Melloni, Lucia; Zhang, Hang; Tian, Xing; Poeppel, David

    2016-01-01

    The most critical attribute of human language is its unbounded combinatorial nature: smaller elements can be combined into larger structures on the basis of a grammatical system, resulting in a hierarchy of linguistic units, such as words, phrases and sentences. Mentally parsing and representing such structures, however, poses challenges for speech comprehension. In speech, hierarchical linguistic structures do not have boundaries that are clearly defined by acoustic cues and must therefore be internally and incrementally constructed during comprehension. We found that, during listening to connected speech, cortical activity of different timescales concurrently tracked the time course of abstract linguistic structures at different hierarchical levels, such as words, phrases and sentences. Notably, the neural tracking of hierarchical linguistic structures was dissociated from the encoding of acoustic cues and from the predictability of incoming words. Our results indicate that a hierarchy of neural processing timescales underlies grammar-based internal construction of hierarchical linguistic structure.

  19. Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. G.; Gómez-Camacho, J.; Espino, J. M.; Mukha, I.; Martel, I.

    2007-05-01

    Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound 6,7Li and 9Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in 6He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andrés, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gómez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sánchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765, (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.

  20. Strain fields around high-energy ion tracks in {alpha}-quartz

    SciTech Connect

    Follstaedt, D. M.; Norman, A. K.; Doyle, B. L.; McDaniel, F. D.

    2006-09-15

    Transmission electron microscopy has been used to image the tracks of high-energy {sup 197}Au{sup +26} (374 MeV) and {sup 127}I{sup +18} (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal {alpha}-quartz (SiO{sub 2}). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO{sub 2} films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling.

  1. Ion-track membranes of fluoropolymers: Toward controlling the pore size and shape

    NASA Astrophysics Data System (ADS)

    Yamaki, T.; Nuryanthi, N.; Koshikawa, H.; Asano, M.; Sawada, S.; Hakoda, T.; Maekawa, Y.; Voss, K.-O.; Severin, D.; Seidl, T.; Trautmann, C.; Neumann, R.

    2013-11-01

    The possibility of varying the beam parameters and applying the effect of a pre-etching treatment for poly(vinylidene fluoride) (PVDF) ion-track membranes was investigated with the goal of achieving enhanced track etching for effective control of the pore size and shape. Commercially available 25 μm-thick PVDF films were irradiated at room temperature with swift heavy ions from the JAEA's TIARA cyclotron and GSI's UNILAC linear accelerator. Irradiation with a higher linear energy transfer (LET) beam gave faster track etching and larger pores, suggesting that the LET could be the most crucial factor determining the pore size. In-situ infra-red absorption and residual gas analyses shed light on the detailed chemistry of not only the ion-induced degradation, but also post-irradiation reactions. The pre-etching treatment effect involved oxidation of the unsaturated bonds within the latent track, which accelerated the chemical dissolution for efficient pore evolution. In other words, exposure to a gaseous oxidant, i.e., ozone, shortened the breakthrough time.

  2. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  3. 1. EXISTING TRASH RAKE STRUCTURE AND STEEL IBEAM TRACK, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXISTING TRASH RAKE STRUCTURE AND STEEL I-BEAM TRACK, LOOKING EAST/NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  4. Doping of Cn (N = 1, 3, 5, 8) cluster ion tracks in polyimide

    NASA Astrophysics Data System (ADS)

    Fink, D.; Klett, R.; Chung, W. H.; Grünwald, R.; Döbeli, M.; Ames, F.; Chadderton, L. T.; Vacik, J.; Hnatowicz, V.

    Cn+ cluster ions (n = 1, 3, 5, and 8) are implanted at 1 MeV/carbon atom and at fluences of 1010 to 1014 cluster ions/cm2 into thin polyimide foils. The ion-induced radiochemical changes are examined by infrared spectroscopy. The samples are then doped with either aqueous LiCl, or methylene blue dye solutions. The dopant uptake is determined by UV-Vis spectrometry in the first, and by NDP (neutron depth profiling) in the latter case. NDP examinations additionally give information about the depth distributions of the incorporated Li+ ions. Remarkable changes in the infrared signals and in the dopant uptake are found only at fluences when ion track overlapping sets in. For the same fluence, clusters with larger size show more efficient destruction than smaller ones. Also the dopant uptake capability is higher in cluster-irradiated polymers than in single-atomic C+ ion irradiated samples. The depth distribution of the incorporated dopant usually consists of both a pronounced surface-near, and a bulk dopant-enriched region. The surface-near dopant profile increases in height and width with increasing cluster size and fluence. The depth profile shape of the bulk component follows the one of the ion's energy transfer to the target via nuclear collisions. A rule of thumb to describe the action of such a cluster ion onto polymers is given.

  5. A thermalized ion explosion model for high energy sputtering and track registration

    NASA Technical Reports Server (NTRS)

    Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.

    1980-01-01

    A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.

  6. Preparation of ion-track membranes of poly( p-phenylene terephthalamide): Control of pore shape by irradiation with different ion beams

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuyuki; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Voss, Kay-Obbe; Neumann, Reinhard; Yoshida, Masaru

    2007-07-01

    The preparation of ion-track membranes of thermally stable poly( p-phenylene terephthalamide) (PPTA) was performed by ion beam irradiation followed by chemical etching with a sodium hypochlorite solution. Cylindrical pores were observed in the membrane irradiated with 197Au and 238U ions at an energy of 11.1 MeV/n. In contrast, funnel shape pores appeared in the membrane irradiated with 84Kr, 102Ru and 129Xe ion at energies of 6.2, 3.6 and 3.5 MeV/n, respectively. The 197Au and 238U ion irradiation was found to exhibit more than four times larger sensitivity to the track etching under the same etching conditions. Consequently, the pore shape can be controlled by the masses and energies of the irradiated ions, in close relation to the etching sensitivity of the track.

  7. Tracking Coherent Structures and Source Localization in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hsieh, Ani; Schwartz, Ira; Yecko, Philip

    There has been a steady increase in the deployment of autonomous underwater and surface vehicles for applications such as ocean monitoring, tracking of marine processes, and forecasting contaminant transport. The underwater environment poses unique challenges since robots must operate in a communication and localization-limited environment where their dynamics are tightly coupled with the environmental dynamics. This work presents current efforts in understanding the impact of geophysical fluid dynamics on underwater vehicle control and autonomy. The focus of the talk is on the use of collaborative vehicles to track Lagrangian coherent structures and to localize contaminant spills. Research supported by the National Science Foundation and the Office of Naval Research.

  8. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  9. Scanning force microscopy study of surface tracks induced in mica by 78.2-MeV 127I ions

    NASA Astrophysics Data System (ADS)

    Barlo Daya, D. D. N.; Hallén, A.; Håkansson, P.; Sundqvist, B. U. R.; Reimann, C. T.

    1995-12-01

    Tapping mode scanning force microscopy has been employed for the first time to image the radiation damage tracks on muscovite mica due to individual, normally incident 78.2-MeV 127I ions from the Uppsala EN tandem accelerator. Conical-shaped hillocks having nearly circularly-shaped bases with mean width 20 ± 2 nm and mean height 0.5 ± 0.2 nm have been observed. Similar types of hillocks have been observed in the contact mode both in air and under water. The absence of lattice structure on the tops of the hillocks indicates the formation of an amorphous region as a result of the expansion created by the passage of each ion. The presence of a crater beneath a hillock has been observed after the hillock was erased using strong interactions between the scanning force microscope probe tip and the surface.

  10. Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Webb, Ian K.; Prost, Spencer A.; ...

    2014-11-19

    A recent achievement in Structures for Lossless Ion Manipulations (SLIM) is the ability for near lossless ion focusing, transfer, and trapping in sub-atmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated bymore » ion simulations, fabricated utilizing printed circuit board technology and tested experimentally. The RIF was integrated to a SLIM-TOFMS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range along with greatly improved SLIM operational stability.« less

  11. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    PubMed

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-06

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  12. Tracking variable number of multiple subcellular structures in 3D.

    PubMed

    Wen, Quan; Gao, Jean

    2009-01-01

    With the introduction of sensitive and fast electronic imaging devices and the development of biological methods to tag proteins of interest by green fluorescent proteins (GFP), it has now become critical to develop automatic quantitative data analysis tools to study the live cell dynamics at subcellular level. In this paper, a sequential Monte Carlo (SMC) method to track variable number of multiple 3D subcellular structures is proposed. First, multiple subcellular structures are represented by a joint state. Then the distribution of the dimension changing joint state is sampled efficiently by the reverse jump Markov chain Monte Carlo (RJMCMC) method designed with update move, identity switch move, disappearing move, and appearing move. The experimental results show that the proposed method can successfully track multiple 3D subcellular structures with different motion modalities such as object appearing and disappearing.

  13. Manufacturing cost analysis for photovoltaic concentrator tracking structures

    NASA Astrophysics Data System (ADS)

    Heller, B.; Pass, N.; Blackwell, R.

    1983-11-01

    Detailed manufacturing, transportation and installation costs are developed for the current design of three different photovoltaic concentrator tracking structures at a production rate of 10 to the 5th power/sq m per year. These costs are combined with array field performance estimates to obtain cost per watt and levelized energy costs for 500 kW fields. Installed structure costs for the three arrays (including G and A and profit but not module FOB costs) range from $166 to $208/sqm, or $1.04 to $1.28/W sub ap in 1982 dollars. The pedestal tracking structure has a lower cost than the post/frame or pylon/torque tube arrays.

  14. Effect of ion velocity on creation of point defects halos of latent tracks in LiF

    NASA Astrophysics Data System (ADS)

    Volkov, A. E.; Schwartz, K.; Medvedev, N. A.; Trautmann, C.

    2017-09-01

    Parameters of point defects halos (F-color centers) created due to decays of self-trapped valence holes generated in nanometric vicinities of trajectories of gold ions of 275 MeV and 2187 MeV in LiF are estimated in absorption spectroscopy experiments. Such ions have approximately the same electronic stopping: 24.6 keV/nm and 22.9 keV/nm, respectively. In contrast to the usual concept of the velocity effect that a slower ion produces larger structure changes due to a higher density of the deposited energy, the opposite effect occurs for the defect halo revealing a larger radius and a larger defect concentration for an ion of the higher velocity realizing the same energy loss. Spatial spreading of generated valence holes before their self-trapping (500 fs) forms the size of the defect halos around the trajectories of the applied ions. Simulations with Monte-Carlo code TREKIS show no significant difference in the initial spatial distributions of these valence holes by the times of finishing of ionization cascades (∼10 fs after the projectile passage) within the radii of the defect halos deduced from the experiments. Using these distributions as initial conditions for spatial spreading of generated valence holes and taking into account the difference between the defect halo radii, the diffusion coefficients of these holes near the trajectories of 275 and 2187 MeV Au ions in LiF are estimated showing about six times larger value in tracks of the faster ion for irradiations at room temperatures. Presence of H-color centers changes considerably the kinetics of the created defect ensemble in the defect halo resulting in differences between the defect halo parameters in LiF crystals irradiated at 8 K vs. 300 K.

  15. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  16. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    In space, astronauts are unavoidably exposed to charged particles from protons to irons. For a better estimate of the health risks of astronauts, further knowledge on the biological effects of charged particles, in particular the induction of cytogenetic damage is required. One im-portant factor that determines the biological response is the track structure of particles, i.e. their microscopic dose deposition in cells. The aim of the present study was to assess the influence of track structure of heavy ions on the yield and the quality of cytogenetic damage in human peripheral blood lymphocytes representing normal tissue. Cells were irradiated with 9.5 MeV/u C-ions or 990 MeV/u Fe-ions which have a comparable LET (175 keV/µm and 155 keV/µm, respectively) but a different track radius (2.3 and 6200 µm, respectively). When aberrations were analyzed in first cycle metaphases collected at different post-irradiation times (48-84 h) following fluorescence plus Giemsa staining, an increase in the aberration yield with sampling time was observed for both radiation qualities reflecting a damage dependent cell cycle progression delay to mitosis. The pronounced differences in the aberration frequency per cell are attributable to the stochastic distribution of particle traversals per cell nucleus (radius: 2.8 µm). Following C-ion exposure we found a high fraction of non-aberrant cells in samples collected at 48 h which represent cells not directly hit by a particle and slightly damaged cells that successfully repaired the induced lesions. In addition, at higher C-ion fluences the aberra-tion yield saturated, suggesting that a fraction of lymphocytes receiving multiple particle hits is not able to reach mitosis. On the other hand, at 48 h after Fe-ion exposure the proportion of non-aberrant cells is lower than after C-ion irradiation clearly reflecting the track structure of high energy particles (i.e. more homogeneous dose deposition compared to low energy C-ions

  17. Monte Carlo simulation of proton track structure in biological matter

    DOE PAGES

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; ...

    2017-05-25

    Here, understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA –more » where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.« less

  18. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.

    PubMed

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E; Rashid, Asim J; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W; Iyer, Shrivats M; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L; Malenka, Robert C; Josselyn, Sheena A; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-26

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.

  19. Mechanical response to swift ion irradiation-induced nano-tracks in silica

    NASA Astrophysics Data System (ADS)

    Páramo, Ángel R.; Sordo, F.; Garoz, D.; Peña-Rodríguez, O.; Prada, A.; Olivares, J.; Crespillo, M. L.; Perlado, J. M.; Rivera, A.

    2015-06-01

    Ion irradiation on dielectric materials produces several processes, such ionization and defect formation followed by a decay governed by thermal processes such as heat diffusion and atomic rearrangement. Finally in the irradiated region the mechanical properties are altered, strain and stress fields appear, a densification takes places and other properties such as the refractive index are affected. In order to simulate the mechanical response of silica to swift ion irradiation we use a methodology based on molecular dynamics (MD) and finite element methods (FEM). We use information from MD to obtain the local densification generated by an incoming swift ion. Finally we calculate the densification in the ion track using FEM. This method provides information on the strain and stress field along the material as a function of ion irradiation fluence. For this work an experimental campaign using Br ions from 5 to 50 MeV has been done at CMAM accelerator (Madrid). We measured the refractive index and we observe that for high fluences the refractive index decreases. The effect of the strain field on the density could explain the decrease in the refractive index. We check this hypothesis using our methodology coupling MD and FEM.

  20. Chitosan Hydrogel Structure Modulated by Metal Ions

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources.

  1. Chitosan Hydrogel Structure Modulated by Metal Ions

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources. PMID:27777398

  2. Mechanistic details of the formation and growth of nanoscale voids in Ge under extreme conditions within an ion track

    NASA Astrophysics Data System (ADS)

    Hooda, Sonu; Avchachov, Konstantin; Khan, S. A.; Djurabekova, Flyura; Nordlund, Kai; Satpati, B.; Bernstorff, Sigrid; Ahlawat, Sarita; Kanjilal, D.; Kabiraj, D.

    2017-06-01

    The formation of nanoscale voids in amorphous-germanium (a-Ge), and their size and shape evolution under ultra-fast thermal spikes within an ion track of swift heavy ion, is meticulously expatiated using experimental and theoretical approaches. Two step energetic ion irradiation processes were used to fabricate novel and distinct embedded nanovoids within bulk Ge. The ‘bow-tie’ shape of voids formed in a single ion track tends to attain a spherical shape as the ion tracks overlap at a fluence of about 1  ×  1012 ions cm-2. The void assumes a prolate spheroid shape with major axis along the ion trajectory at sufficiently high ion fluences. Small angle x-ray scattering can provide complementary information about the primary stage of void formation hence this technique is applied for monitoring simultaneously their formation and growth dynamics. The results are supported by the investigation of cross-sectional transmission and scanning electron micrographs. The multi-time-scale theoretical approach corroborates the experimental findings and relates the bow-tie shape void formation to density variations as a result of melting and resolidification of Ge within the region of thermal spike generated along an ion track, plus non-isotropic stresses generated towards the end of the thermal spike.

  3. Pickup ion mediated plasmas: Shock wave structure

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-03-01

    Energetic particles such as pickup ions, solar energetic particles, or cosmic rays play an important role in determining shock structure. Cosmic-ray modified shocks were discussed by Axford et al. [2]. Jokipii and Williams [8] considered the effect of cosmic ray viscosity on the structure of cold thermal gas shocks mediated by cosmic rays. In the present paper, we consider a background thermal gas of arbitrary temperature to extend their work. The Zank et al. [7] model is used to determine the shock structure when energetic particle collisionless heat flux and viscosity is included.

  4. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity

    PubMed Central

    Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas; Ramakrishnan, Charu; Steinberg, Elizabeth E.; Rashid, Asim J.; Kim, Hoseok; Park, Sungmo; Santoro, Adam; Frankland, Paul W.; Iyer, Shrivats M.; Pak, Sally; Ährlund-Richter, Sofie; Delp, Scott L.; Malenka, Robert C.; Josselyn, Sheena A.; Carlén, Marie; Hegemann, Peter; Deisseroth, Karl

    2016-01-01

    The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore. PMID

  5. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  6. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  7. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector

    PubMed Central

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD. PMID:26697410

  8. Design of Adaptive Output Feedback Variable Structure Tracking Controllers

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chiang; Wen, Chih-Chin; Chen, Shih-Pin

    Based on the Lyapunov stability theorem, an adaptive output feedback variable structure tracking controller is proposed in this paper for a class of multi-input multi-output (MIMO) dynamic systems with mismatched uncertainties and disturbances. With an adaptive mechanism embedded in the proposed control scheme, the controller will automatically adapt the unknown upper bound of perturbations, so that the information of upper bound of perturbations is not required. Once the controlled system reaches the switching hyperplane, the state tracking errors can be driven into a small bounded region whose size can be adjusted through the design parameter. An application of flight control is given for demonstrating the feasibility of the proposed methodology.

  9. Estimation of spatially restricted LET using track structure models

    NASA Technical Reports Server (NTRS)

    Kiefer, J.

    1994-01-01

    The spatial distribution of energy deposition is an important determinant in the formation of biologically significant lesions. It has been widely realized that Linear Energy Transfer (LET) being an average quantity is not sufficient to describe the situation at a submicroscopic scale. To remedy this to some extent 'energy-cut-off' values are sometimes used but since they are related to secondary electron energy and only indirectly to their range they are also not adequate although they may be easily calculated. 'Range-restricted LET' appears to be better but its determination is usually quite involved. Xapsos (1992) suggested a semi-empirical approximation based on a modified Bethe-formula which contains a number of assumption which are difficult to verify. A simpler and easier way is to use existing beam-models which describe energy deposition around an ion's path. They all agree that the energy density (i. e., energy deposited per unit mass) decreases with the inverse square of the distance from the track center. This simple dependence can be used to determine the fraction of total LET which is deposited in a cylinder of a given radius. As an example our own beam model. Energy density depends on distance x (measured in m) from the track center according to the presented formula.

  10. Ion-track based single-channel templates for single-nanowire contacting

    NASA Astrophysics Data System (ADS)

    Chtanko, N.; Toimil-Molares, M. E.; Cornelius, T. W.; Dobrev, D.; Neumann, R.

    2005-07-01

    This work reports a procedure for the fabrication of membranes containing only one single channel with diameter down to 20 nm and with well-defined geometry. Foils of different types of polymer (polyethylene terephthalate (PET) and polycarbonate (PC)) were tested with respect to their suitability as ion-track template for single-nanowire growth. Membranes with one pore were created by the track-etching technique. The pore size was characterized by electrical conductivity measurements in 1 M KCl. Furthermore, we developed also a method for the preparation and electrical contacting of single metallic nanowires. Cylindrical single pores were filled with Bi by electrochemical deposition. The resulting wires, remaining embedded in the polymer foil, are very suitable for measurements of electrical resistance as a function of parameters such as wire diameter and temperature.

  11. Oligossacharide structure determination on an ion trap

    SciTech Connect

    Asam, M.R.; Glish, G.L.

    1995-12-31

    Oligosaccharides are important elements in intra- and inter-cellular/molecular recognition mechanisms. Linkage types are part of the information that determine the tertiary structure of oligosaccharides and the tertiary structure is what determines specific recognition, so easily obtained linkage sequences will provide valuable information for computer and other modeling of cellular signaling interactions. Hofmeister et al. have shown that lithium cationized oligosaccharides have specific MS/MS dissociation patterns indicative of the carbohydrate linkage under low energy CID conditions in a hybrid mass spectrometer. The authors have used electrospray ionization on a quadrupole ion trap mass spectrometer to examine MS/MS disaccharide dissociation patterns under ion trap conditions. These studies have concentrated on disaccharides complexed with lithium and sodium.

  12. Solar wind compressible structures at ion scales

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Alexandrova, O.; Rocoto, V.; Pantellini, F. G. E.; Zaslavsky, A.; Maksimovic, M.; Issautier, K.; Mangeney, A.

    2014-12-01

    In the solar wind turbulent cascade, the energy partition between fluid and kinetic degrees of freedom, in the vicinity of plasma characteristic scales, i.e. ion and electron Larmor radius and inertial lengths, is still under debate. In a neighborhood of the ion scales, it has been observed that the spectral shape changes and fluctuations become more compressible. Nowadays, a huge scientific effort is directed to the comprehension of the link between macroscopic and microscopic scales and to disclose the nature of compressive fluctuations, meaning that if space plasma turbulence is a mixture of quasi-linear waves (as whistler or kinetic Alfvèn waves) or if turbulence is strong with formation of coherent structures responsible for dissipation. Here we present an automatic method to identify compressible coherent structures around the ion spectral break, using Morlet wavelet decomposition of magnetic signal from Cluster spacecraft and reconstruction of magnetic fluctuations in a selected scale range. Different kind of coherent structures have been detected: from soliton-like one-dimensional structures to current sheet- or wave-like two-dimensional structures. Using a multi-satellite analysis, in order to characterize 3D geometry and propagation in plasma rest frame, we recover that these structures propagate quasi-perpendicular to the mean magnetic field, with finite velocity. Moreover, without using the Taylor hypothesis, the spatial scales of coherent structures have been estimated. Our observations in the solar wind can provide constraints on theoretical modeling of small scale turbulence and dissipation in collisionless magnetized plasmas.

  13. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  15. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  16. Intercomparison of experimental and theoretical ranges of heavy ions in plastic track detectors

    NASA Astrophysics Data System (ADS)

    Virk, H. S.; Randhawa, G. S.; Sharma, S. K.

    1996-01-01

    In the present study, CR-39 and Lexan polycarbonate plastic track detectors have been exposed to various heavy ion beams, i.e. ,238U, b,208Pb, u,197Au, a,139La, e132Xe and b93Nb (energy range from 5.6 to 18.0 MeV/u), from the UNILAC accelerator at GSI, Darmstadt. After exposure, the irradiated samples were etched under optimum etching conditions. The total etchable ranges of these heavy ions have been determined experimentally using a Carl Zeiss binocular microscope. In order to check the validity of the various stopping power and range formulations in this energy range, the experimentally determined range values have been compared with the theoretically computed values from the Benton and Henke, Mukherjee and Nayak, Ziegler et al. and Hubert et al. formulations.

  17. Ion track symmetric and asymmetric nanopores in polyethylene terephthalate foils for versatile applications

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.; Blonskaya, I. V.; Dmitriev, S. N.; Orelovich, O. L.; Sartowska, B. A.

    2015-12-01

    In this report we present several fabrication methods which allow production of ion track nanopore membranes with different pore configurations. Polymer foils, typically polyethylene terephthalate with a thickness of 5-23 μm, are irradiated with accelerated heavy ions (energy of 1-10 MeV/u) and then subjected to different physico-chemical treatments. Depending on the procedure, symmetric or asymmetric pores with nanoscale-sized narrowing are obtained. The asymmetric configurations include conical, funnel-like and bullet-like shapes. In electrolyte solutions the asymmetric nanopores exhibit diode-like properties which strongly depend on the pore shape. The peculiar features of such pores provide a basis for various applications.

  18. Latent tracks of swift heavy ions in Сr23C6 and Y-Ti-O nanoparticles in ODS alloys

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Sohatsky, A. S.; O'Connell, J. H.; Kornieieva, K.; Nikitina, A. A.; Uglov, V. V.; Neethling, J. H.; Ageev, V. S.

    2016-05-01

    The radiation stability of dielectric nanoparticles embedded into a metallic matrix is of considerable practical value due to the growing interest in oxide dispersion strengthened (ODS) steels as promising nuclear reactor materials. In this report the results of a TEM study of structural changes in Cr23C6 and Y-Ti-O nanoparticles in several ODS alloys irradiated with 1.2 MeV/amu Xe and 3.4 MeV/amu Bi ions is presented. It was found that swift heavy ion irradiation leads to the formation of amorphous latent tracks in both materials. The upper limit of the threshold electronic stopping power for track formation in carbides is estimated to be around 35 keV/nm. Multiple ion track overlapping leads to complete amorphization of carbide and Y-Ti oxide nanoparticles. Microstructural analysis have revealed a strong influence of the ferritic matrix on track morphology in Y2Ti2O7 nanoparticles in pre-thinned TEM targets after postradiation annealing and irradiation at elevated temperatures.

  19. Advanced Structural Optimization Under Consideration of Cost Tracking

    NASA Astrophysics Data System (ADS)

    Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.

    2014-06-01

    In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.

  20. Investigation of optical properties of Cu/Ni multilayer nanowires embedded in etched ion-track template

    NASA Astrophysics Data System (ADS)

    Xie, Lu; Yao, Huijun; Duan, Jinglai; Chen, Yonghui; Lyu, Shuangbao; Maaz, Khan; Mo, Dan; Liu, Jie; Sun, Youmei; Hou, Mingdong

    2016-12-01

    For understanding the interaction between light and noble/magnetism multilayer nanowires, Cu/Ni multilayer nanowires are fabricated by a multi-potential step deposition technique in etched ion-track polycarbonate template. The component and the corresponding layer thickness of multilayer nanowire are confirmed by TEM and EDS line-scan analysis. By tailoring the nanowire diameter, the Cu layer thickness and the periodicity of the nanowire, the extinction spectral of nanowire arrays exhibit an extra sensitivity to the change of structural parameters. The resonance wavelength caused by surface plasmon resonance increases obviously with increasing the nanowire diameter, the Cu layer thickness and the periodicity. The observations in our work can be explained by the "impurity effect" and coupled effect and can also be optimized for developing optical devices based on multilayer nanowires.

  1. Early stage of the electron kinetics in swift heavy ion tracks in dielectrics

    SciTech Connect

    Medvedev, N. A.; Rethfeld, B.; Volkov, A. E.; Shcheblanov, N. S.

    2010-09-15

    A Monte Carlo approach was applied for simulations of the early stage (first tens of femtosecond) of kinetics of the electronic subsystem of silica (SiO{sub 2}) in tracks of swift heavy ions (SHIs) decelerated in the electronic stopping regime. At the first step multiple ionizations of target atoms by a projectile (Ca{sup +19}, E=11.4 MeV/amu) were described that gave the initial spatial distributions of free electrons having different momenta as well as distributions of holes in different atomic shells. Spatial propagation of fast electrons results in secondary ionizations of target atoms as well as in energy transfer to the lattice at times much shorter than the times of atomic oscillations (phonons). The well detected front of excitation in the electronic and ionic subsystems is formed due to this propagation which cannot be described by models based on diffusion mechanisms (e.g., parabolic equations of heat diffusion). At times {approx}10 fs after the projectile passage, about {approx}0.1% of the energy is already transferred to the lattice. About 63% of the energy deposited by the ion is accumulated in holes at these times. Calculated distributions of these holes through the atomic shells are in excellent agreement with the spectroscopy experiments. Comparison with these experiments demonstrated also that relaxation of the electronic subsystem in SHI tracks in solids cannot be described adequately without taking into account intra-atomic and interatomic Auger (Knotek-Feibelman) processes.

  2. Swift heavy ions in insulating and conducting oxides: tracks and physical properties

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Bouffard, S.; Studer, F.

    1994-06-01

    Damage induced in several oxide materials by swift heavy ions is presented. The discussion is based on results obtained on the following materials [Y3Fe5O12, AFe12O19 (A = Ba, Sr), BFe2O4 (B = Ni, Mg, Zn), ZrSi2O4, SiO2 quartz, Al2O3, high Tc superconductors (YBa2Cu3O7 - δ and Bi2Sr2CaCu2O8)] which have been irradiated by ions with atomic number ranging between 6 (12C) and 92 (238U) and energies between 0.05 GeV and 6 GeV. The damage cross section A has been deduced using several physical characterisations like Mössbauer spectrometry, saturation magnetisation measurements, channeling Rutherford backscattering, infrared absorption and electrical resistance measurements. Depending on the material and on the value of the electronic stopping power (dE/dx) the damage cross section varies between 10-17 and 10-12 cm2. Using medium and high resolution transmission electron microscopy and chemical etching of the latent track, an electronic stopping power evolution of the damage morphology has been observed leading to the definition of an effective radius Re of the latent track which can be linked to the damage (amorphous) cross section A by the relation Re = √A/π. Moreover there is a direct correlation between these values and the damage morphology: for Re > 3 nm the latent tracks are long and cylindrical, conversely for Re < 3 nm the damage is inhomogeneous along the latent track. The effect of the irradiation temperature, of the crystallographic orientation, of the initial electrical resistivity and of the oxygen stoichiometry will be presented. In opposition to what has been usually believed it will be shown that alumina (Al2O3) is indeed sensitive to the electronic stopping power. Moreover the velocity of the incident ion has a direct influence on the damage production: the lower the velocity, the higher the damage.

  3. Coupled chemical reactions in dynamic nanometric confinement: Ag2O membrane formation during ion track etching

    NASA Astrophysics Data System (ADS)

    Muñoz Hernandez, G.; Cruz, S. A.; Quintero, R.; García Arellano, H.; Fink, D.; Alfonta, L.; Mandabi, Y.; Kiv, A.; Vacik, J.

    2013-09-01

    In this study, continuous swift heavy ion tracks in thin polymer foils were etched from both sides to create two conical nanopores opposing each other. Shortly before both cones merged, one of the nanopores was filled with a silver salt solution, whereas etching of the other cone continued. At the moment of track breakthrough, the etchant reacted with the silver salt solution by forming an impermeable and insulating membrane. Continued etching around the thus-created obstacle led to repetitive {etchant - silver salt solution} interactions. The coupling of the two chemical reactions, {etchant - polymer} and {etchant - silver salt solution}, within the confinement of etched tracks, with continuously changing shapes, showed a highly dynamic nature as recorded by measuring both the electrical current and the optical transmission across the foils. At low etching speeds, a central membrane that grew in radius and thickness with time until, at a critical thickness, the membrane became rather impermeable was formed. However, at high etching speeds, the emerging reaction products exhibited a sponge-like consistency, which allowed for their infinite growth. This precipitation was accompanied by a pronounced current spike formation. A simple theoretical model explains, at a minimum, the basic features.

  4. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    NASA Astrophysics Data System (ADS)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  5. Microdosimetric structure of HZE particle tracks in tissue

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1975-01-01

    Heavy nuclei of the primary galactic radiation in space can have the same linear energy transfer yet greatly different lateral distribution patterns of the energy in the microstructure of tissue. Track structure thus presents itself as a new dosimetric parameter for HZE particles which is at present incompletely understood in its radiobiological significance. The theory of track structure distinguishes two regions: core and penumbra. The core is a narrow region with a radius far below 1 micron in tissue where energy deposition occurs mainly through excitations and collective oscillations of electrons. Energy density in the core accounts for slightly more than half the total LET. The penumbra surrounding the core extends laterally several to many microns depending on the energy of the primary. Energy density in the penumbra decreases steeply with the square of increasing radius. The relationships are illustrated with nuclear emulsion micrographs and plots of energy density profiles. The implications of the findings for a dosimetric system for HZE particles are discussed.

  6. Monte Carlo simulation of proton track structure in biological matter

    NASA Astrophysics Data System (ADS)

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; Fojón, Omar A.; Hanssen, Jocelyn; Rivarola, Roberto D.; Senot, Philippe; Champion, Christophe

    2017-05-01

    Understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V - devoted to the modeling of the slowing-down of 10 keV-100 MeV protons in both water and DNA - where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  7. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  8. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    SciTech Connect

    Bremer, Peer -Timo; Weber, Gunther H.; Pascucci, Valerio; Day, Marc; Bell, John B.

    2010-03-01

    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  9. Analyzing and tracking burning structures in lean premixed hydrogen flames.

    PubMed

    Bremer, Peer-Timo; Weber, Gunther H; Pascucci, Valerio; Day, Marc; Bell, John B

    2010-01-01

    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multiresolution representation. Third, for a given parameter selection, we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy, we can perform an extensive parameter study without reprocessing the data for each set of parameters. The resulting statistics enable scientists to select appropriate parameters and provide insight into the sensitivity of the results with respect to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counterintuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  10. Intercomparison of experimental and theoretical ranges of heavy ions in plastic track detectors

    NASA Astrophysics Data System (ADS)

    Randhawa, G. S.; Sharma, S. K.; Virk, H. S.

    1996-01-01

    In the present study, CR-39 and Lexan polycarbonate plastic track detectors have been exposed to various heavy ion beams, i.e. 238U, 208Pb, 197Au, 139La, 132Xe and 93Nb (energy range from 5.6 to 18.0 MeV/u), from the UNILAC accelerator at GSI, Darmstadt. After exposure, the irradiated samples were etched under optimum etching conditions. The total etchable ranges of these heavy ions have been determined experimentally using a Carl Zeiss binocular microscope. In order to check the validity of the various stopping power and range formulations in this energy range, the experimentally determined range values have been compared with theoretically computed values from the Benton and Henke [Nucl. Instr. and Meth. 67 (1969) 87], Mukherjee and Nayak [Nucl. Instr. and Meth. 159 (1979) 421], Ziegler et al. [Stopping power and range of ions in solids, vol. 1 (Pergamon, New York, 1985); Nucl. Instr. and Meth. B 35 (1988) 215] and Hubert et al. [Nucl. Instr. and Meth. B 36 (1989) 357] formulations.

  11. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  12. Structure and selectivity in bestrophin ion channels

    DOE PAGES

    Yang, Tingting; Liu, Qun; Kloss, Brian; ...

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  13. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  14. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  15. Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis

    1999-01-01

    An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

  16. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    NASA Astrophysics Data System (ADS)

    Mazzei, R.; Fernández, A.; García Bermúdez, G.; Torres, A.; Gutierrez, M. C.; Magni, M.; Celma, G.; Tadey, D.

    2008-06-01

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured.

  17. Sodium hypochlorite as a developer for heavy ion tracks in polyimide

    NASA Astrophysics Data System (ADS)

    Klintberg, Lena; Lindeberg, Mikael; Thornell, Greger

    2001-12-01

    The developing and etching of heavy ion tracks in polyimide with sodium hypochlorite have been studied to gain control over the parameters that affect the etch result. The shape of the resulting pores is a function of both alkalinity and hypochlorite content of the solution. Sodium hypochlorite decomposes during etching, and the rate constant has been determined as a function of the alkalinity at 62 °C. Polished cross-sections have been examined to determine the pore shape, and this method has shown to be a straightforward way to characterise the pores. Decreasing the alkalinity gives more cylindrical pores, but increases the decomposition rate of the hypochlorite solution and decreases the etch rate.

  18. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    SciTech Connect

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.

  19. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    DOE PAGES

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; ...

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less

  20. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    PubMed Central

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-01

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties. PMID:25578009

  1. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    PubMed Central

    Burr, Loic; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-01-01

    Summary Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial. Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology. Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons. PMID:26199830

  2. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  3. Anomalous effect of ion velocity on track formation in GeS

    NASA Astrophysics Data System (ADS)

    Szenes, G.; Pécz, B.

    2016-12-01

    Systematic experiments were performed for studying the effect of the projectile velocity (velocity effect, VE) in GeS which has a highly anisotropic conductivity. The prethinned specimens were irradiated by Bi, Au, W, Xe, Ag, Kr, Ni and Fe ions of about E ≈ 1 MeV/nucleon energy. Track radii were measured by transmission electron microscopy. Compared to previous experiments performed with high velocity projectile, there is a marked VE for Se > 20 keV/nm (Se - electronic stopping power). However, the VE is gradually reduced and finally disappears as Se decreases. This effect is described for the first time. The predictions according to the Analytical Thermal Spike Model are in excellent quantitative agreement with the experiments in the range Se > 20 keV/nm. The anomalous behavior of track evolution at lower values of Se is attributed to the combination of semiconducting and insulating properties. An explanation of the VE is given based on the Coulomb explosion model.

  4. Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Kaderka, R.; Fattori, G.; Riboldi, M.; Pella, A.; Constantinescu, A.; Saito, N.; Durante, M.; Cerveri, P.; Bert, C.; Baroni, G.

    2013-07-01

    Accurate dose delivery to extra-cranial lesions requires tumor motion compensation. An effective compensation can be achieved by real-time tracking of the target position, either measured in fluoroscopy or estimated through correlation models as a function of external surrogate motion. In this work, we integrated two internal/external correlation models (a state space model and an artificial neural network-based model) into a custom infra-red optical tracking system (OTS). Dedicated experiments were designed and conducted at GSI (Helmholtzzentrum für Schwerionenforschung). A robotic breathing phantom was used to reproduce regular and irregular internal target motion as well as external thorax motion. The position of a set of markers placed on the phantom thorax was measured with the OTS and used by the correlation models to infer the internal target position in real-time. Finally, the estimated target position was provided as input for the dynamic steering of a carbon ion beam. Geometric results showed that the correlation models transversal (2D) targeting error was always lower than 1.3 mm (root mean square). A significant decrease of the dosimetric error with respect to the uncompensated irradiation was achieved in four out of six experiments, demonstrating that phase shifts are the most critical irregularity for external/internal correlation models.

  5. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector

    PubMed Central

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio

    2015-01-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  6. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  8. The effect of track structure on the induction of chromosomal aberrations in murine cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  9. Tracks to therapy

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.

    1999-01-01

    Studies of the structure of particle tracks have led to models of track effects based on radial dose and radiobiological target theory that have been very successful in describing and predicting track effects in physical, chemical, and biological systems. For describing mammalian cellular inactivation two inactivation modes are required, called gamma-kill and ion-kill, the first due to synergistic effects of delta rays from adjacent ion paths thus resembling the effects from gamma rays, and the second to the effects of single ion transits through a cell nucleus. The ion-kill effect is more severe, where the fraction of cells experiencing ion kill is responsible for a decrease in the oxygen enhancement ratio, and an increase in relative biological effectiveness, but these are accompanied by loss of repair, hence to a reduction in the efficiency of fractionation in high LET therapy, as shown by our calculations for radiobiological effects in the "spread out Bragg Peak".

  10. Tracks to therapy

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.

    1999-01-01

    Studies of the structure of particle tracks have led to models of track effects based on radial dose and radiobiological target theory that have been very successful in describing and predicting track effects in physical, chemical, and biological systems. For describing mammalian cellular inactivation two inactivation modes are required, called gamma-kill and ion-kill, the first due to synergistic effects of delta rays from adjacent ion paths thus resembling the effects from gamma rays, and the second to the effects of single ion transits through a cell nucleus. The ion-kill effect is more severe, where the fraction of cells experiencing ion kill is responsible for a decrease in the oxygen enhancement ratio, and an increase in relative biological effectiveness, but these are accompanied by loss of repair, hence to a reduction in the efficiency of fractionation in high LET therapy, as shown by our calculations for radiobiological effects in the "spread out Bragg Peak".

  11. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations.

    PubMed

    Allen, Samuel J; Eaton, Rachel M; Bush, Matthew F

    2016-09-20

    Ion mobility separation of native-like protein and protein complex ions expands the structural information available through native mass spectrometry analysis. Here, we implement Structures for Lossless Ion Manipulations (SLIM) for the analysis of native-like ions. SLIM has been shown previously to operate with near lossless transmission of ions up to 3000 Da in mass. Here for the first time, SLIM was used to separate native-like protein and protein complex ions ranging in mass from 12 to 145 kDa. The resulting arrival-time distributions were monomodal and were used to determine collision cross section values that are within 3% of those determined from radio-frequency-confining drift cell measurements. These results are consistent with the retention of native-like ion structures throughout these experiments. The apparent resolving powers of native-like ions measured using SLIM are as high as 42, which is the highest value reported directly from experimental data for the native-like ion of a protein complex. Interestingly, the apparent resolving power depends strongly on the identity of the analyte, suggesting that the arrival-time distributions of these ions may have contributions from an ensemble of structures in the gas phase that is unique to each analyte. These results suggest that the broad range of emerging SLIM technologies may all be adaptable to the analysis of native-like ions, which will enable future applications in the areas of structural biology, biophysics, and biopharmaceutical characterization.

  12. A new method for measuring ion clusters produced by charged particles in nanometre track sections of DNA size

    NASA Astrophysics Data System (ADS)

    Pszona, S.; Kula, J.; Marjanska, S.

    2000-06-01

    A new method is presented for measuring the frequency distribution of ion clusters, formed in nanometre sections of track, by charged particles. The simulated nanometer-size sites are produced in a device, called the Jet Counter. It consists of a pulse-operated valve which injects an expanding jet of nitrogen gas into an interaction chamber. The resulting distributions of ion clusters produced by alpha particle tracks (from 241Am) in sections ranging from 2 to around 10 nm at unit density in nitrogen gas have been measured. Analysis of the experimental results confirm that the primary ionisation distributions produced in the nanometer sections comply with the Poisson distribution. The ionisation cluster distributions produced in the 2-10 nm track-segments are the first ever to be determined experimentally.

  13. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations.

    PubMed

    Ibrahim, Yehia M; Hamid, Ahmed M; Cox, Jonathan T; Garimella, Sandilya V B; Smith, Richard D

    2017-02-07

    We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.

  14. Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data

    NASA Astrophysics Data System (ADS)

    Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Amani, J.; Trautmann, C.; Weidinger, A.

    2015-12-01

    This paper gives an extended overview of the electrical properties of ion tracks in hydrogen-free tetrahedral amorphous carbon (ta-C) with a sp3 bond fraction of about 80%. The films were grown by mass selected ion beam deposition of 100 eV 12C+ ions. The ion tracks are generated by irradiation of ta-C films with uranium ions of 1 GeV kinetic energy. Along the ion path a conversion from diamond-like (sp3) carbon to graphite-like (sp2) carbon takes place. Topography and current measurements of individual ion tracks were performed by atomic force microscopy at ambient temperature. The temperature dependence of the electric conductivity was studied between 15 and 390 K by means of 0.28 mm2 large contact pads averaging over about 107 tracks. For each sample and at each temperature the conductivity as a function of the applied electrical field (non-ohmic behaviour) was measured separately and the data were extrapolated to field zero. In this way, the zero-field conductivity was determined independent from the field dependence. In spite of large differences in the absolute values, the temperature dependence of the zero-field conductivities is found to be very similar in shape for all samples. The conductivities follow a {T}-{1/4} law up to temperatures slightly below room temperature. At higher temperatures a transport mechanism based on over-barrier hopping dominates with an activation energy of about 220 meV for tracks and 260 meV for the ta-C matrix. The field dependence measurements show that the deviation of the I-V characteristics from ohmic behaviour decreases with increasing zero-field conductivity. We also tested Cu-doped ta-C samples and found that they conduct significantly better than pure ta-C. However, the doping also increases the zero-field conductivity resulting in a weaker contrast between the track and matrix. The data are interpreted within the so-called ‘barrier model’ where the electrons are assumed to move fairly freely in well-conducting sp2

  15. Gas-Phase Transformation of Phosphatidylcholine Cations to Structurally Informative Anions via Ion/Ion Chemistry

    PubMed Central

    Stutzman, John R.; Blanksby, Stephen J.; McLuckey, Scott A.

    2013-01-01

    Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0) were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC+PDPA-H]−. Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC-CH3]−. Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC-CH3]− suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. PMID:23469867

  16. Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry.

    PubMed

    Stutzman, John R; Blanksby, Stephen J; McLuckey, Scott A

    2013-04-02

    Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1)) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC(18:1/16:0)), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry.

  17. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  18. Tracking interacting subcellular structures by sequential Monte Carlo method.

    PubMed

    Wen, Quan; Gao, Jean

    2007-01-01

    With the wide application of green fluorescent protein (GFP) in the study of live cell, which leads to a better understanding of biochemical events at subcellular level, there is a surging need for the computer-aided analysis on the huge amount of image sequence data acquired by the advanced microscopy devices. One of such tasks is the motility analysis of the multiple subcellular structures. In this paper, an algorithm using sequential Monte Carlo (SMC) method for multiple interacting object tracking is proposed. We use joint state to represent all the objects together, and model the interaction between objects in the 2D plane by augmenting an extra dimension and evaluating their overlapping relationship in the 3D space. Markov chain Monte Carlo (MCMC) method with a novel height swap move is applied to sample the joint state distribution efficiently. To facilitate distinguishing between different objects, a new observation method is also proposed by matching the size and intensity profile of the object. The experimental results show that our method is promising.

  19. A Phase-tracking Snow Micro-structure Model

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Zabaras, N.

    2012-12-01

    Utilizing a methodology derived from models for phase transitions in alloy solidification [1], a 3D finite element (FE) model for snow metamorphism was developed. Avalanches are known to occur due to the existence of a weak-layer of faceted crystals, which form due to temperature gradients within the snow through a process known as kinetic metamorphism [2]. In general, snow models are limited in their ability to model these microstructural changes, especially in three dimensions, and rely on effective properties. To enhance the tools available to avalanche researchers a finite element model was developed capable of tracking vapor deposition within the snow. This is accomplished using a fixed-domain, stabilized finite element solution for the energy, mass, momentum, and transport equations. Using a level-set parameter the domain is separated into either solid or fluid components and along the phase-change boundary a "mushy-zone" is establish [1, 3]. This zone is modeled as porous media that includes the effects of shrinkage and density changes [1]. The basis of the model is the open-source C++ libMesh FE library, as such the model includes adaptive mesh coarsening and refinement and relies on domain decomposition for optimum parallel performance. This work is the initial phase of an ongoing research project that aims to demonstrate the ability to model snow at the micro-structural level and move away from the common coarse, effective property modeling techniques. It will serve as the deterministic basis for a multi-scale, stochastic model of snow that will account for uncertainties such as poorly understood growth properties and measurement variability. Future applications may include the inclusion of liquid melt and include external forces, yielding a comprehensive thermo-mechanical model that could evolve and fracture. [1] D. Samanta, N. Zabaras (2005), Modelling convection in solidification processes using stabilized finite element techniques, J. Numer. Meth. Eng

  20. Local structures of ions at ion-exchange resin/solution interface.

    PubMed

    Harada, Makoto; Okada, Tetsuo

    2005-08-26

    The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.

  1. Helical Pulse Line Structures for Ion Acceleration

    SciTech Connect

    Briggs, R.J.; Reginato, L.L.; Waldron, W.L.

    2005-05-01

    The basic concept of the ''Pulse Line Ion Accelerator'' is presented, where pulse power sources create a ramped traveling wave voltage pulse on a helical pulse line. Ions can surf on this traveling wave and achieve energy gains much larger than the peak applied voltage. Tapered and untapered lines are compared, and a transformer coupling technique for launching the wave is described.

  2. Synthesis of patterned freestanding nickel nanowires by using ion track-etched polyimide

    NASA Astrophysics Data System (ADS)

    Walewyns, T.; Scheen, G.; Tooten, E.; Francis, L. A.

    2011-05-01

    Nowadays, a lot of applications including nanoelectronics, spintronics or miniaturized sensors are using nanowires. Unfortunately, current techniques used for local synthesis of nanowires are still not fully compatible with common microfabrication techniques. In this study, we focus on the synthesis of patterned metallic nanowires by electrodeposition within nanoporous polyimide membranes integrated on 3 inch Si bulk wafers. Known to have a high planarization factor, a good resistance to most non-oxidizing acids and bases and to be CMOS compatible, polyimide is increasingly used in microsystems. Furthermore, like polycarbonate or polyester, nanoporous polyimide can be obtained by ion track-etching process. This polymer shows then a great interest to be used as a mold for nanowires growth. Patterned freestanding Nickel nanowires have been synthesized over a 100 nm thickness gold layer evaporated onto a SiO2/Si substrate, with diameters of 20 and 60 nm, and length between 2 and 2.5 μm, depending on the electrodeposition time. Such fabrication process is promising to achieve more complex microelectromechanical systems incorporating nanostructures.

  3. Defining the Biological Effectiveness of Components of High-LET Track Structure.

    PubMed

    Sridharan, Deepa M; Chappell, Lori J; Whalen, Mary K; Cucinotta, Francis A; Pluth, Janice M

    2015-07-01

    During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particle's energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, δ rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (γ-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5-2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of δ rays, cause the highest degree of persistent damage response. The persistent γ-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to γ-H2AX. The differing phospho-protein profiles exhibited, compared to γ-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of γ-H2AX indicates that the nature of energy distribution defines

  4. Active structured learning for cell tracking: algorithm, framework, and usability.

    PubMed

    Lou, Xinghua; Schiegg, Martin; Hamprecht, Fred A

    2014-04-01

    One distinguishing property of life is its temporal dynamics, and it is hence only natural that time lapse experiments play a crucial role in modern biomedical research areas such as signaling pathways, drug discovery or developmental biology. Such experiments yield a very large number of images that encode complex cellular activities, and reliable automated cell tracking emerges naturally as a prerequisite for further quantitative analysis. However, many existing cell tracking methods are restricted to using only a small number of features to allow for manual tweaking. In this paper, we propose a novel cell tracking approach that embraces a powerful machine learning technique to optimize the tracking parameters based on user annotated tracks. Our approach replaces the tedious parameter tuning with parameter learning and allows for the use of a much richer set of complex tracking features, which in turn affords superior prediction accuracy. Furthermore, we developed an active learning approach for efficient training data retrieval, which reduces the annotation effort to only 17%. In practical terms, our approach allows life science researchers to inject their expertise in a more intuitive and direct manner. This process is further facilitated by using a glyph visualization technique for ground truth annotation and validation. Evaluation and comparison on several publicly available benchmark sequences show significant performance improvement over recently reported approaches. Code and software tools are provided to the public.

  5. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-21

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  6. Quasiclassical model of ion shell structure

    SciTech Connect

    Dyachkov, K.G.; Pankratov, P.M.

    1993-12-01

    An effective potential of the nl-electrons in atoms or ions obtained from the well-known screened hydrogenlike potential model is used to calculate ionization energies in the quasiclassical approximation. The method is suitable for the inner and outer shells of the ground and excited states. We consider here the outer shells of the lighter element ions. The approach yields good results for multicharged ions as well as for the weakly ionized s subshells and for less-than-half-filled p subshells. 18 refs., 1 fig., 2 tabs.

  7. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.

    PubMed

    Zhang, Xinyu; Garimella, Sandilya V B; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V; Norheim, Randolph V; Baker, Erin S; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2015-06-16

    A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.

  8. Whole cell structural imaging at 20 nanometre resolutions using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Chen, X.; Chen, C.-B.; Udalagama, CNB; van Kan, J. A.; Bettiol, A. A.

    2013-07-01

    MeV proton and alpha (helium ion) particle beams can now be focused to 20 nm spot sizes, and ion/matter simulations using the DEEP computer code show that these resolutions are maintained through the top micrometre or so of organic material. In addition, the energy deposition profiles of the transmitted ions are laterally constrained to a few nanometers from the initial ion path. This paves the way for high resolution structural imaging of relatively thick biological material, e.g. biological cells. Examples are shown of high resolution structural imaging of whole biological cells (MRC5) using on-axis scanning transmission ion microscopy (STIM). Nanoparticles have the ability to cross the cell membrane, and may therefore prove useful as drug delivery probes. We show that the combination of on-axis STIM for imaging the cell interior, and off-axis STIM for imaging gold nanoparticles with enhanced contrast within the cell, represents a powerful set of ion beam techniques for tracking gold nanoparticles in biological cells. Whole cell imaging at high spatial resolutions represents a new area for nuclear microprobes.

  9. The structure of the stable negative ion of calcium

    SciTech Connect

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s/sup 2/4p)/sup 2/p state. The electron affinity of Ca was measured to be 0.043 /sup + -/ 0.007 eV.

  10. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  11. Experimental tools for track structure investigations: new approaches for dosimetry and microdosimetry.

    PubMed

    Schuhmacher, H; Dangendorf, V

    2002-01-01

    In recent years, several new methods have been developed for track structure investigations. They use macroscopic gas volumes to transfer the results to microscopic dimensions and are based on either the cluster counting principle or on optical methods for full track analysis. The first type of method allows cluster size distributions in nanometre dimensions to be measured. The second type reveals the full topology of the ionisation pattern of tracks or track segments within a volume of a few micrometres with a spatial resolution down to 5 nm. The basic principles of these instruments and their main features are summarised and a selection of results obtained to date are shown.

  12. Ion heating in an auroral potential structure

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Daglis, I. A.; Tsironis, C.

    2004-06-01

    We investigate the interaction of O+ ions with a one-dimensional potential well, using Hamiltonian formulation. Heating of plasma originating in the terrestrial ionosphere plays a catalytic role in solar-driven magnetic storms, which dissipate energy globally within the magnetosphere of the earth. An interesting candidate for ionospheric plasma heating is a potential well located at auroral arcs in the high-latitude magnetosphere. We consider a potential with an exponential form, having a characteristic length Lx. The oxygen ions drift towards the auroral arc in the presence of a constant magnetic field Bz and a constant electric field Ey. The orbits of individual ions for different initial conditions - phase angle and kinetic energy - are traced. Our results show that, depending upon the initial conditions, test particles can be either accelerated or decelerated. Furthermore, we perform a parametric study for the interactions of mono-energetic and Maxwellian type of initial ion distribution - using random phase angle injection of the particles - with respect to our main model parameter, the characteristic length of the potential Lx. We conclude that for characteristic lengths comparable to twice the ion gyroradius, the O+ population is accelerated.

  13. Design and Construction of Optimized Electrochemical Cell and Data Analysis System for Etching of Ion Tracks and Electro Deposition of Nano and Micro Wires in Porous Ion Tracks Foils

    NASA Astrophysics Data System (ADS)

    ShakeriJooybari, B.; Moghimi, R.; Golgiri, D.; Afarideh, H.; Lamehi-Rachti, M.; Ghergherehchi, M.

    In this work, an optimized computer controlled electrochemical cell were designed and constructed. This Electrolytic cell was used for etching latent ion tracks and electrochemical deposition of wires in pores of etched-ion tracks foils. The applied voltage and current through the electrochemical cell during the etching and electrodeposition were measured and monitored in real time by a Data Analysis system. Monitoring the current time curve during the filling of pores and growth of micro and nano wires allows one to stop the deposition process after a given time to obtain nano- and micro wire of a predefined length. In this work, Design and manufacture of a sealed electrochemical cell was done in a manner that one can change distance between electrodes and geometry of cathodes. Data analysis system was used to measuring and monitoring of applied voltage and current through the cell consists of three parts: Amplifier, Data acquisition (DAQ) system and Software. A current amplifier that used in data analysis system is a log ratio amplifier. A log ratio amplifier provides an output voltage proportional to the log base 10 of the ratio input current I1 (current during the electrodeposition of wire in cell) and Input current I2(flexible current of precision current source). A DAQ reading output voltage of amplifier and send to Computer. With lab view software analyzed the voltage and converted to the current corresponding to the electrodeposition of wires. Current amplifier designed and built in this work is a noise suppression that can measure small current through the cell with high accuracy. Advantage of proposed log ratio amplifier is one can used this amplifier for measuring and monitoring of current during the filling of pores and growth of wires in the etched ion track foils with various track density.

  14. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    PubMed Central

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  15. Fission track-secondary ion mass spectrometry as a tool for detecting the isotopic signature of individual uranium containing particles.

    PubMed

    Esaka, Fumitaka; Lee, Chi-Gyu; Magara, Masaaki; Kimura, Takaumi

    2012-04-06

    A fission track technique was used as a sample preparation method for subsequent isotope abundance ratio analysis of individual uranium containing particles with secondary ion mass spectrometry (SIMS) to measure the particles with higher enriched uranium efficiently. A polycarbonate film containing particles was irradiated with thermal neutrons and etched with 6M NaOH solution. Each uranium containing particle was then identified by observing fission tracks created and a portion of the film having a uranium containing particle was cut out and put onto a glassy carbon planchet. The polycarbonate film, which gave the increases of background signals on the uranium mass region in SIMS analysis, was removed by plasma ashing with 200 W for 20 min. In the analysis of swipe samples having particles containing natural (NBL CRM 950a) or low enriched uranium (NBL CRM U100) with the fission track-SIMS method, uranium isotope abundance ratios were successfully determined. This method was then applied to the analysis of a real inspection swipe sample taken at a nuclear facility. As a consequence, the range of (235)U/(238)U isotope abundance ratio between 0.0276 and 0.0438 was obtained, which was higher than that measured by SIMS without using a fission track technique (0.0225 and 0.0341). This indicates that the fission track-SIMS method is a powerful tool to identify the particle with higher enriched uranium in environmental samples efficiently.

  16. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  17. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  18. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    PubMed Central

    Zhang, Xinyu; Garimella, Sandilya V. B.; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tohnachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin S.; Anderson, Gordon A; Ibrahim, Yehia M.; Smith, Richard D.

    2015-01-01

    A new Structures for Lossless lon Manipulations (SUM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC :field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SUM trap. The present results provide a foundation for the development of much more complex SUM devices that facilitate extended ion manipulations. PMID:25971536

  19. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    DOE PAGES

    Zhang, Xinyu; Garimella, Sandilya V. B.; Prost, Spencer A.; ...

    2015-06-14

    Here, a structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap.more » We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.« less

  20. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Sandilya V. B.; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin S.; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-14

    Here, a structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  1. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  2. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  3. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    PubMed

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  4. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  5. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  6. Method for fabricating MNOS structures utilizing hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Saks, N. S.

    1984-05-01

    An improved method for reducing the density of electronic trapping states and fixed insulator charge in the thin oxide layer of an MNOS structure is discussed. The method includes the steps of implanting hydrogen ions in field region of the oxide layer and annealing the MNOS structure at 400 deg C to cause the ions to diffuse laterally into the gate region of the oxide layer.

  7. A new method for the simultaneous detection of mammalian cells and ion tracks on a surface of CR-39.

    PubMed

    Konishi, Teruaki; Amemiya, Kuniaki; Natsume, Toshiyuki; Takeyasu, Akihiro; Yasuda, Nakahiro; Furusawa, Yoshiya; Hieda, Kotaro

    2007-05-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effects. We employed a contact microscopy technique, which was developed for boron imaging in boron neutron capture therapy to the irradiation mammalian cells by low-energy heavy ions. This method enables the simultaneous visualization of mammalian cells as a relief on a plastic track detector, CR-39, and the etch pits which indicate the positions of ion traversals. This technique provides visual geometric information about the cells and ion traversal, without any specially designed devices or microscopes. Only common laboratory equipment, such as a conventional optical microscope, a UV lamp, and commercially available CR-39 is required. To validate this method, CHO-K1 and HeLa cells were cultured on the CR-39 surface and then irradiated with low-energy Ar and Ne ions, respectively. The positions of induced DNA double strand breaks were detected as gamma-H2AX fluorescent spots, which coincided with the positions of the etch pits in the cell relief image.

  8. Robust feature tracking for endoscopic pose estimation and structure recovery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.

    2013-03-01

    Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.

  9. Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density

    NASA Astrophysics Data System (ADS)

    Kearsley, Anton T.; Burchell, Mark J.; Price, Mark C.; Cole, Michael J.; Wozniakiewicz, Penelope J.; Ishii, Hope A.; Bradley, John P.; Fries, Marc; Foster, Nicholas J.

    2012-04-01

    The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate "stylus" (in Type A "carrots") and broad "bulb" regions (Types B and C), with occurrence of smaller "styli" in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.

  10. Ion nose spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.

    2016-12-01

    We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  11. Kinetic structure of slow shocks - Effects of the electromagnetic ion/ion cyclotron instability

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Winske, D.

    1992-01-01

    The structure of slow magnetosonic shocks in the low beta regime is analyzed with attention given to ion heating and the effects of waves upstream of the electromagnetic ion/ion cyclotron (EMIIC) instability. Shock formation is assessed by means of three methods - a relaxation method and two based on dynamic flow interactions - to determine the effects of initialization and boundary conditions on the formation. Good solutions are found with the piston method and the similar flow-flow method in which the plasma is injected from two boundaries to form two slow shocks. Plasma parameters and shock normal angle are found to be the key variables dictating the structure of the magnetosonic shocks. Four unique classes of resultant shock structures are described in which classical, steady, or nonsteady behavior is found. The analysis also yields insight into the relationship between EMIIC instability and ion dissipation.

  12. Focused Ion Beam Fabrication of Microelectronic Structures

    DTIC Science & Technology

    1990-12-01

    writ- (5400 A thick, - 50 at. % Au), pumping out the organome- ing across preevaporated metal (Au, W, AL, and NiCr ) con- tallic gas and then sputtering ...surface interaction is multifaceted. Energetic ions (the relevant range in this field has been 1-300 keV) incident on a surface will: a) sputter off...main commercial applications of these columns, namely, photomask repair and integrated circuit restructuring, diagnostics and repair, exploit sputtering

  13. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    SciTech Connect

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; Garimella, Sandilya V. B.; Zhang, Xing; Hamid, Ahmed M.; Deng, Liulin; Karnesky, William E.; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin Shammel; Smith, Richard D.

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.

  14. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    SciTech Connect

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  15. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    We report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also shown feasible. The performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design. PMID:25257188

  16. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations.

    PubMed

    Chen, Tsung-Chi; Ibrahim, Yehia M; Webb, Ian K; Garimella, Sandilya V B; Zhang, Xing; Hamid, Ahmed M; Deng, Liulin; Karnesky, William E; Prost, Spencer A; Sandoval, Jeremy A; Norheim, Randolph V; Anderson, Gordon A; Tolmachev, Aleksey V; Baker, Erin S; Smith, Richard D

    2016-02-02

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in an extended and more effective manner, while opening opportunities for many more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear improvement in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.

  17. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM).

    PubMed

    Garimella, Sandilya V B; Ibrahim, Yehia M; Webb, Ian K; Tolmachev, Aleksey V; Zhang, Xinyu; Prost, Spencer A; Anderson, Gordon A; Smith, Richard D

    2014-11-01

    We report a conceptual study and computational evaluation of novel planar electrode structures for lossless ion manipulations (SLIM). Planar electrode SLIM components were designed that allow for flexible ion confinement, transport, and storage using a combination of radio frequency (rf) and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g., a few Torr). More complex ion manipulations (e.g., turning ions by 90(o) and dynamically switching selected ion species into orthogonal channels) are also shown feasible. The performance of SLIM devices at ~4 Torr pressure for performing ion mobility-based separations (IMS) is computationally evaluated and compared with initial experimental results, and both are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  18. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  19. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGES

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  20. Atomistic simulation of defects formation and structure transitions in U-Mo alloys at swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kolotova, L. N.; Starikov, S. V.

    2017-01-01

    At irradiation of swift heavy ions, the track formation frequently takes place in nuclear materials. There is a large interest to understanding of the mechanisms of defects/track formation at this phenomenon. In this work, the atomistic simulation of defects formation and melting in U-Mo alloys at irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes at irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation at irradiation in the various conditions are calculated.

  1. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  2. Computational Model Tracking Primary Electrons, Secondary Electrons, and Ions in the Discharge Chamber of an Ion Engine

    NASA Technical Reports Server (NTRS)

    Mahalingam, Sudhakar; Menart, James A.

    2005-01-01

    Computational modeling of the plasma located in the discharge chamber of an ion engine is an important activity so that the development and design of the next generation of ion engines may be enhanced. In this work a computational tool called XOOPIC is used to model the primary electrons, secondary electrons, and ions inside the discharge chamber. The details of this computational tool are discussed in this paper. Preliminary results from XOOPIC are presented. The results presented include particle number density distributions for the primary electrons, the secondary electrons, and the ions. In addition the total number of a particular particle in the discharge chamber as a function of time, electric potential maps and magnetic field maps are presented. A primary electron number density plot from PRIMA is given in this paper so that the results of XOOPIC can be compared to it. PRIMA is a computer code that the present investigators have used in much of their previous work that provides results that compare well to experimental results. PRIMA only models the primary electrons in the discharge chamber. Modeling ions and secondary electrons, as well as the primary electrons, will greatly increase our ability to predict different characteristics of the plasma discharge used in an ion engine.

  3. Robotic Manifold Tracking of Coherent Structures in Flows

    DTIC Science & Technology

    2012-05-01

    analysis techniques to derive a tracking strategy for a team of robots. The cooperative control strategy leverages the spatio-temporal sensing capa...Ĵt‖ chosen to be in the interval [2dMin,2dMax]. IV. ANALYSIS In this section, we discuss the theoretical feasibility of the proposed saddle straddle...turbulence,” Phys. D, vol. 147, pp. 352–370, Dec 2000. [2] S. C. Shadden, F. Lekien, and J. E. Marsden , “Definition and properties of lagrangian coherent

  4. Copper nanocones grown in polymer ion-track membranes as field emitters

    NASA Astrophysics Data System (ADS)

    Serbun, P.; Jordan, F.; Navitski, A.; Müller, G.; Alber, I.; Toimil-Molares, M. E.; Trautmann, C.

    2012-04-01

    Field emission (FE) properties of unstructured and patch-structured cathodes with randomly distributed and vertically aligned copper nanocones (Cu-NCs) are reported. The cones of ~28 μm height, 2.4 μm base diameter and 95-220 nm tip radius were fabricated by electrochemical deposition of Cu into conical channels of heavy-ion-irradiated and asymmetrically etched polycarbonate membranes. FE measurements of the unstructured cathodes with slowly-grown Cu-NCs of high number density (107 cm-2) and excellent mechanical stability yield stable currents up to 280 μA from an emission spot of 30 μm. For the structured cathodes with a triangular patch array of less dense Cu-NCs (<106 cm-2), well-aligned FE with ~90% efficiency is reproducibly achieved. A trade-off between low onset field (~22 V/μm) for sparsely grown Cu-NCs with sharp tips and high current limit (~100 μA) for densely grown ones with broader tips is observed. Possibilities for further optimization of such field emitters for cold cathode applications are discussed.

  5. Ion Beam Synthesis Of Metal - Silicon Carbide - Si Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Lindner, J. K. N.; Tsang, W. M.; Stritzker, B.; Wong, S. P.

    2003-08-01

    High doses of Ti, Ni, Mo, or W ions were implanted at elevated temperatures either conventionally or using a MEVVA ion source into ion beam synthesized Si/SiC/Si or SiC/Si layer structures in order to create metallic layers contacting the SiC. The depth distribution of metal atoms and the formation of silicide and carbide phases as well as the formation of cavities at the lower SiC/Si interface are studied by Rutherford backscattering spectroscopy (RBS) and cross-sectional transmission electron microscopy (XTEM). A brief survey of the effects ocurring in the ion beam metallization of SiC films is given and the benefit of using ion beams for metallization of thin films is elucidated.

  6. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels

    PubMed Central

    Sauguet, Ludovic; Poitevin, Frédéric; Murail, Samuel; Van Renterghem, Catherine; Moraga-Cid, Gustavo; Malherbe, Laurie; Thompson, Andrew W; Koehl, Patrice; Corringer, Pierre-Jean; Baaden, Marc; Delarue, Marc

    2013-01-01

    To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6′ and Thr2′) that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6′ is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6′ actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed. PMID:23403925

  7. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    PubMed Central

    Li, Xiaojuan; Huang, Yiqun; O’Connor, Peter B.; Lin, Cheng

    2011-01-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ε-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing. PMID:21472584

  8. Structure Change of PTFE by Low Energy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watari, Kunio; Iwao, Toru; Yumoto, Motoshige

    The authors irradiate low energy nitrogen ion (100eV) on PTFE (poly-tetra-fluoro-ethylene) for surface modification. However, PTFE cannot anticipate adhesive strength improvement because it is collapse type polymer and weariness of surface occurs by ion irradiation. We paid attention to cross-linked structure to solve this problem. By this study introduce below, PTFE was changed collapse type polymer into cross-linked type polymer by rising temperature above the glass transition in the case of ion irradiation. As a result, the formation of the CF3 combination was restrained and collapse phenomenon was prevented by ion irradiation above the glass transition. In addition, it was suggested that cross-linked structure is effective for adhesive strength improvement by convolution of C1s spectrum and density profile.

  9. Krypton ion induced structural phase transition in zirconia thin film

    NASA Astrophysics Data System (ADS)

    Balasaritha, P.; Amirthapandian, S.; Magudapathy, P.; Krishnan, R.; Panigrahi, B. K.

    2017-05-01

    The ZrO2 thin film was grown using pulsed laser deposition (PLD) method and irradiated with 60 keV Kr+ ions. The as-prepared and ion irradiated ZrO2 thin films were characterised with high resolution transmission electron microscope(HRTEM). The as-prepared ZrO2 thin film was found to be monoclinic in structure. Upon 60 keV Kr+ ion implantation, the ZrO2 thin films transformed from monoclinic to tetragonal phase along with the formation of krypton bubbles.

  10. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  11. Dynamic ion structure factor of warm dense matter.

    PubMed

    Vorberger, J; Donko, Z; Tkachenko, I M; Gericke, D O

    2012-11-30

    The dynamics of the ion structure in warm dense matter is determined by molecular dynamics simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin approach, a hydrodynamic model, and the method of moments with local constraints are capable of reproducing the numerical results but have rather limited predictive powers as they all need some numerical data as input. The method of moments is found to be the most promising.

  12. Structural Modification of Nanocrystalline Ceria using Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2011-01-01

    Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~ 25 nm, which is the critical region for controlling size-dependent material property. The unique self-healing response of radiation damage at grain boundaries is applied to control the grain size at nanoscale as a function of ion dose and irradiation temperature. Structural modification by energetic ions is proposed to achieve disirable electronic-ionic conductivity.

  13. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  14. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    PubMed

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

  15. Track structure: time evolution from physics to chemistry.

    PubMed

    Dingfelder, M

    2006-01-01

    This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.

  16. Online State-Based Structured SVM Combined With Incremental PCA for Robust Visual Tracking.

    PubMed

    Yin, Yingjie; Xu, De; Wang, Xingang; Bai, Mingran

    2015-09-01

    In this paper, we propose a robust state-based structured support vector machine (SVM) tracking algorithm combined with incremental principal component analysis (PCA). Different from the current structured SVM for tracking, our method directly learns and predicts the object's states and not the 2-D translation transformation during tracking. We define the object's virtual state to combine the state-based structured SVM and incremental PCA. The virtual state is considered as the most confident state of the object in every frame. The incremental PCA is used to update the virtual feature vector corresponding to the virtual state and the principal subspace of the object's feature vectors. In order to improve the accuracy of the prediction, all the feature vectors are projected onto the principal subspace in the learning and prediction process of the state-based structured SVM. Experimental results on several challenging video sequences validate the effectiveness and robustness of our approach.

  17. Time-domain analysis of neural tracking of hierarchical linguistic structures.

    PubMed

    Zhang, Wen; Ding, Nai

    2017-02-01

    When listening to continuous speech, cortical activity measured by MEG concurrently follows the rhythms of multiple linguistic structures, e.g., syllables, phrases, and sentences. This phenomenon was previously characterized in the frequency domain. Here, we investigate the waveform of neural activity tracking linguistic structures in the time domain and quantify the coherence of neural response phases over subjects listening to the same stimulus. These analyses are achieved by decomposing the multi-channel MEG recordings into components that maximize the correlation between neural response waveforms across listeners. Each MEG component can be viewed as the recording from a virtual sensor that is spatially tuned to a cortical network showing coherent neural activity over subjects. This analysis reveals information not available from previous frequency-domain analysis of MEG global field power: First, concurrent neural tracking of hierarchical linguistic structures emerges at the beginning of the stimulus, rather than slowly building up after repetitions of the same sentential structure. Second, neural tracking of the sentential structure is reflected by slow neural fluctuations, rather than, e.g., a series of short-lasting transient responses at sentential boundaries. Lastly and most importantly, it shows that the MEG responses tracking the syllabic rhythm are spatially separable from the MEG responses tracking the sentential and phrasal rhythms.

  18. 200 MeV silver ion irradiation induced structural modification in YBa{sub 2}Cu{sub 3}O{sub 7-y} thin films at 89 K: An in situ x-ray diffraction study

    SciTech Connect

    Biswal, R.; Dash, B. N.; Mishra, N. C.; John, J.; Raychaudhuri, P.; Mallick, P.; Kulriya, P. K.; Avasthi, D. K.; Kanjilal, D.; Behera, D.; Mohanty, T.

    2009-09-01

    We report in situ x-ray diffraction (XRD) study of 200 MeV Ag ion irradiation induced structural modification in c-axis oriented YBa{sub 2}Cu{sub 3}O{sub 7-y} (YBCO) thin films at 89 K. The films remained c-axis oriented up to a fluence of 2x10{sup 13} ions cm{sup -2}, where complete amorphization sets in. The amorphous ion tracks, the strained region around these tracks, and irradiation induced point defects are shown to control the evolution of the structure with ion fluence. Secondary electrons emanating from the ion paths are shown to create point defects in a cylindrical region of 97 nm radius, which corresponds to their maximum range in the YBCO medium. The point defects are created exclusively in the CuO basal planes of fully oxygenated YBCO, which has not been possible, by other techniques including low energy ion irradiation and thermal quenching. The point defects led to a faster decrease in the integral intensity of XRD peaks at very low fluences of irradiation (PHI<=3x10{sup 10} ions cm{sup -2}) than what can be expected from amorphous tracks. The radius of amorphous ion tracks, estimated from the fluence dependence of integral XRD peak intensity beyond this fluence, was found to be 1.9 nm. Both point defect and the strained region around amorphous ion tracks are shown to contribute to the increase in the c-parameter at 89 K. The full width at half maximum (FWHM) of XRD peaks arising mostly due to the strained region around the ion tracks showed an incubation effect up to 10{sup 12} ions cm{sup -2}, before increasing at higher fluences. Fluence dependence of FWHM gives the cross section of the strained region as 37.9 nm{sup 2}, which is more than three times the cross section of the amorphous ion tracks.

  19. Ion mobility–mass spectrometry for structural proteomics

    PubMed Central

    Zhong, Yueyang; Hyung, Suk-Joon; Ruotolo, Brandon T

    2012-01-01

    Ion mobility coupled to mass spectrometry has been an important tool in the fields of chemical physics and analytical chemistry for decades, but its potential for interrogating the structure of proteins and multiprotein complexes has only recently begun to be realized. Today, ion mobility– mass spectrometry is often applied to the structural elucidation of protein assemblies that have failed high-throughput crystallization or NMR spectroscopy screens. Here, we highlight the technology, approaches and data that have led to this dramatic shift in use, including emerging trends such as the integration of ion mobility–mass spectrometry data with more classical (e.g., ‘bottom-up’) proteomics approaches for the rapid structural characterization of protein networks. PMID:22292823

  20. Emerging approaches to probing ion channel structure and function.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2012-08-01

    Ion channels, as membrane proteins, are the sensors of the cell. They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells. Because of their importance in cellular communication, ion channels have been intensively studied at the structural and functional levels. Here, we summarize the diverse approaches, including molecular and cellular, chemical, optical, biophysical, and computational, used to probe the structural and functional rearrangements that occur during channel activation (or sensitization), inactivation (or desensitization), and various forms of modulation. The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.

  1. Computer simulation of structural modifications induced by highly energetic ions in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-11-01

    The structural modification caused by the high-energy-ion irradiation of single-crystalline uranium dioxide was simulated by the molecular dynamics method. As the initial condition, high kinetic energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Basak et al. [C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloys Compd. 360 (2003) 210-216] was utilized to calculate interaction between atoms. The supplied kinetic energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. The amorphous track radius Ra was determined as a function of the effective stopping power gSe, i.e., the kinetic energy of atoms per unit length created by ion irradiation (Se: electronic stopping power, g: energy transfer ratio from stopping power to lattice vibration energy). It was found that the relationship between Ra and gSe follows the relation Ra2=aln(gS)+b. Compared to the case of Si and β-cristobalite single crystals, it was harder to produce amorphous track because of the long range interaction between U atoms.

  2. Ion nose spectral structures observed by the Van Allen Probes

    DOE PAGES

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  3. Ion nose spectral structures observed by the Van Allen Probes

    SciTech Connect

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; Kistler, L. M.; Larsen, Brian Arthur; Reeves, Geoffrey D.; Skoug, Ruth M.; Funsten, Herbert O.

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  4. Ion flow and sheath structure near positively biased electrodes

    NASA Astrophysics Data System (ADS)

    Hood, R.; Scheiner, B.; Baalrud, S. D.; Hopkins, M. M.; Barnat, E. V.; Yee, B. T.; Merlino, R. L.; Skiff, F.

    2016-11-01

    What effect does a dielectric material surrounding a small positively biased electrode have on the ion flow and sheath structure near the electrode? Measurements of the ion velocity distribution function and plasma potential near positively biased electrodes were made using laser-induced fluorescence and an emissive probe. The results were compared with 2D particle-in-cell simulations. Both measurements and simulations showed that when the positive electrode was surrounded by the dielectric material, ions were accelerated toward the electrode to approximately 0.5 times the ion sound speed before being deflected radially by the electron sheath potential barrier of the electrode. The axial potential profile in this case contained a virtual cathode. In comparison, when the dielectric material was removed from around the electrode, both the ion flow and virtual cathode depth near the electrode were dramatically reduced. These measurements suggest that the ion presheath from the dielectric material surrounding the electrode may enclose the electron sheath of the electrode, resulting in a virtual cathode that substantially influences the ion flow profile in the region.

  5. Structural determinants of ion permeation in CRAC channels

    PubMed Central

    McNally, Beth A.; Yamashita, Megumi; Engh, Anita; Prakriya, Murali

    2009-01-01

    CRAC channels generate Ca2+ signals critical for the activation of immune cells and exhibit an intriguing pore profile distinguished by extremely high Ca2+ selectivity, low Cs+ permeability, and small unitary conductance. To identify the ion conduction pathway and gain insight into the structural bases of these permeation characteristics, we introduced cysteine residues in the CRAC channel pore subunit, Orai1, and probed their accessibility to various thiol-reactive reagents. Our results indicate that the architecture of the ion conduction pathway is characterized by a flexible outer vestibule formed by the TM1-TM2 loop, which leads to a narrow pore flanked by residues of a helical TM1 segment. Residues in TM3, and specifically, E190, a residue considered important for ion selectivity, are not close to the pore. Moreover, the outer vestibule does not significantly contribute to ion selectivity, implying that Ca2+ selectivity is conferred mainly by E106. The ion conduction pathway is sufficiently narrow along much of its length to permit stable coordination of Cd2+ by several TM1 residues, which likely explains the slow flux of ions within the restrained geometry of the pore. These results provide a structural framework to understand the unique permeation properties of CRAC channels. PMID:20018736

  6. Structural aspects of group I metal ion-nucleoside interactions

    NASA Astrophysics Data System (ADS)

    Theophanides, T.; Bariyanga, J.

    1989-12-01

    Lithium, sodium and potassium complexes of guanosine and inosine have been synthesized and characterized. The structures of the complexes have been studied by fast atom bombardment mass spectrometry (FAB-MS). The molecular structures of some defined complexes have been studied from spectral analysis. Detailed interpretation of the spectra suggests that the metal cation is linked to purine's N7 site. In addition, several ion clusters containing the matrix glycerol and the metal ions have been detected among the fragments of the mass spectra.

  7. Solitary structures with ion and electron thermal anisotropy

    NASA Astrophysics Data System (ADS)

    Khusroo, Murchana; Bora, Madhurjya P.

    2015-11-01

    The formation of electrostatic solitary structures is analysed for a magnetised plasma with ion and electron thermal anisotropies. The ion thermal anisotropy is modelled with the help of the Chew-Goldberger-Low (CGL) double adiabatic equations of state while the electrons are treated as inertia-less species with an anisotropic bi-Maxwellian velocity distribution function. A negative electron thermal anisotropy ≤ft({{T}e\\bot}/{{T}e\\parallel}>1\\right) is found to help form large amplitude solitary structures which are in agreement with observational data.

  8. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a

  9. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the

  10. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions

    SciTech Connect

    Liu, Wei; Chun, Eugene; Thompson, Aaron A.; Chubukov, Pavel; Xu, Fei; Katritch, Vsevolod; Han, Gye Won; Roth, Christopher B.; Heitman, Laura H.; IJzerman, Adriaan P.; Cherezov, Vadim; Stevens, Raymond C.

    2012-08-31

    Pharmacological responses of G protein-coupled receptors (GPCRs) can be fine-tuned by allosteric modulators. Structural studies of such effects have been limited due to the medium resolution of GPCR structures. We reengineered the human A{sub 2A} adenosine receptor by replacing its third intracellular loop with apocytochrome b{sub 562}RIL and solved the structure at 1.8 angstrom resolution. The high-resolution structure allowed us to identify 57 ordered water molecules inside the receptor comprising three major clusters. The central cluster harbors a putative sodium ion bound to the highly conserved aspartate residue Asp{sup 2.50}. Additionally, two cholesterols stabilize the conformation of helix VI, and one of 23 ordered lipids intercalates inside the ligand-binding pocket. These high-resolution details shed light on the potential role of structured water molecules, sodium ions, and lipids/cholesterol in GPCR stabilization and function.

  11. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    PubMed

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  12. Combining structured light and ladar for pose tracking in THz sensor management

    NASA Astrophysics Data System (ADS)

    Engström, Philip; Axelsson, Maria; Karlsson, Mikael

    2013-05-01

    Stand-off 3D THz imaging to detect concealed treats is currently under development. The technology can provide high resolution 3D range data of a passing subject showing layers of clothes and if there are concealed items. However, because it is a scanning sensor technology with a narrow field of view, the subjects pose and position need to be accurately tracked in real time to focus the system and map the imaged THz data to specific body parts. Structured light is a technique to obtain 3D range information. It is, for example, used in the Microsoft Kinect for pose tracking of game players in real time. We demonstrate how structured light can contribute to a THz sensor management system and track subjects in real time. The main advantage of structured light is its simplicity, the disadvantages are the sensitivity to lighting conditions and material properties as well as a relatively low accuracy. Time of flight laser scanning is a technique that complements structured light well, the accuracy is usually much higher and it is less sensitive to lighting conditions. We show that by combining the techniques it is possible to create a robust real time pose tracking system for THz sensor management. We present a concept system based on the Microsoft Kinect and a SICK LMS-511 laser scanner. The laser scanner is used for 2D tracking of the subjects, this tracking is then used to initialize and validate the Microsoft Kinect pose tracking. We have evaluated the sensors individually in both static and dynamic scenes and present their advantages and drawbacks.

  13. Structure and dynamics of aqueous solution of uranyl ions

    SciTech Connect

    Chopra, Manish; Choudhury, Niharendu

    2014-04-24

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied.

  14. Cyclotetraphosphinophosphonium ions: synthesis, structures, and pseudorotation.

    PubMed

    Dyker, C Adam; Riegel, Susanne D; Burford, Neil; Lumsden, Michael D; Decken, Andreas

    2007-06-13

    The first derivatives of catenated cyclotetraphosphinophosphonium cations, [(PhP)4PPhMe]+ (8a), [(MeP)4PMe2]+ (8b), [(CyP)4PPh2]+ (8d), [(CyP)4PMe2]+ (8e), [(PhP)4PPh2]+ (8f), [(PhP)4PMe2]+ (8g), are synthesized as trifluoromethanesulfonate (triflate, OSO2CF3-) salts through the reaction of cyclopentaphosphines (PhP)5 (4a) or (MeP)5 (4b) with methyl triflate (MeOTf) or by a net phosphenium ion [PR2+, R = Ph, Me; from R2PCl and trimethylsilyltriflate (Me3SiOTf)] insertion into the P-P bond of either cyclotetraphosphine (CyP)4 (3c) or cyclopentaphosphines (PhP)5 (4a) or (MeP)5 (4b). Although more conveniently prepared from 4a, compound 8a[OTf] can also be formed from (PhP)4 (3a) and MeOTf, and derivatives 8f[OTf] and 8g[OTf] are also accessible through reactions of 3a and R2PCl/Me3SiOTf with R = Ph or Me, respectively. A tetrachlorogallate salt of [(PhP)4PPhtBu]+ (8c) has been synthesized by alkylation of 4a with tBuCl/GaCl3. 31P[1H] NMR parameters for all derivatives of 8 have been determined by iterative simulation of experimental data. Derivatives 8a[OTf], 8b[OTf], 8c[GaCl4], 8e[OTf], 8f[OTf], and 8g[OTf] and have been characterized by X-ray crystallography, showing the most favorable all-trans configuration of substituents for the phosphine centers, thus minimizing steric interactions. Each derivative adopts a unique envelope or twist conformation of C1 symmetry. The effective C2 symmetry observed for 8b, d, e, f, and g in solution, signified by their 31P[1H] NMR AA'BB'X spin systems, implies a rapid conformational exchange for derivatives of 8. The core frameworks of the cations in the solid state are viewed as snapshots of different conformational isomers within the solution-phase pseudorotation process.

  15. Observations of the latent track structure in polymers by diffusion measurements

    NASA Astrophysics Data System (ADS)

    Bacmeister, G. U.; Enge, W.

    1997-08-01

    The diffusion constants of ion irradiated Makrofol KG polycarbonate (PC) sheets have been measured with argon and nitrogen as diffusion gas. In order to determine the characteristics of the original latent tracks the material was not etched. The polymers were irradiated with uranium, gold, lead and selen ions at energies of about 10 MeV/u and different fluences in the range of 10 11 ions/cm 2. We used stacks with layers of 8 μm thickness for the irradiation. This allowed us to relate a definite energy loss to each layer and to examine the dependence of the diffusion constant on the energy loss. Additionally we irradiated polymers with 180 keV electrons. The irradiation there was performed with constant energy and current. As reference the diffusion constant of pristine material (i.e. the untreated material) was also measured. Thus the results found with Makrofol KG were checked under different conditions. The ion irradiated probes show two quite different dependencies of the diffusion constant on the ion energy loss. These effects are strongly related to the fluence and the flux of the irradiation. In case of low fluences the diffusion constant is up to 8 times higher than that of the pristine material. In the probes irradiated with high fluences we observed a decrease of the diffusion constant down to half the value of the pristine material. All probes irradiated with high fluences have visibly changed to a brittle material. The electron irradiated probes only show the decrease of the diffusion constant. The material has also visibly changed. To understand the dependence of the diffusion constant on the energy loss we suggest a model. As a result of this model we achieve an average radius of the latent track. Its values show a strong dependence on the ion energy loss. The calculated values vary from 9 to 25 nm.

  16. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  17. Structure of ceramic surfaces modified by ion-beam techniques

    SciTech Connect

    McHargue, C.J.; Naramoto, H.; White, C.W.; Williams, J.M.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1982-01-01

    A wide variety of structures are produced by ion implantation in ceramics. Random (substitutional and interstitial site occupancy) solid solutions with concentrations of solute that exceed the solubility limit can be produced in Al/sub 2/O/sub 3/. The changes that occur during annealing are complex and sometimes unpredictable. Silicon carbide becomes amorphous in a manner analogous to Si for ion fluences that produce more than 0.2 dpa damage. Light (N) and heavy (Cr) ions produce similar results if the fluence is scaled to damage energy deposited. Because of mass differences in the ions, two damage regions are developed in TiB/sub 2/. The structure remains crystalline to very high damage levels. These structural alterations cause changes in the surface mechanical properties. Since virtually any chemical species can be implanted, one can independently control structural damage and chemical effects. When coupled with selective annealing, this technique has the potential for producing a wide range of surface structures and properties. 8 figures.

  18. PDBalert: automatic, recurrent remote homology tracking and protein structure prediction

    PubMed Central

    Agarwal, Vatsal; Remmert, Michael; Biegert, Andreas; Söding, Johannes

    2008-01-01

    Background During the last years, methods for remote homology detection have grown more and more sensitive and reliable. Automatic structure prediction servers relying on these methods can generate useful 3D models even below 20% sequence identity between the protein of interest and the known structure (template). When no homologs can be found in the protein structure database (PDB), the user would need to rerun the same search at regular intervals in order to make timely use of a template once it becomes available. Results PDBalert is a web-based automatic system that sends an email alert as soon as a structure with homology to a protein in the user's watch list is released to the PDB database or appears among the sequences on hold. The mail contains links to the search results and to an automatically generated 3D homology model. The sequence search is performed with the same software as used by the very sensitive and reliable remote homology detection server HHpred, which is based on pairwise comparison of Hidden Markov models. Conclusion PDBalert will accelerate the information flow from the PDB database to all those who can profit from the newly released protein structures for predicting the 3D structure or function of their proteins of interest. PMID:19025670

  19. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  20. Structural properties of ion beam mixed tungsten/steel layers

    NASA Astrophysics Data System (ADS)

    Piatkowska, A.; Jagielski, J.; Kopcewicz, M.; Matz, W.; Zalar, A.; Mozetic, M.

    2003-05-01

    Structural properties of Kr ion beam mixed layers of tungsten deposited on high-speed steel have been studied by using Grazing incidence X-ray diffraction, conversion electron Mössbauer spectroscopy and Auger electron spectroscopy techniques. The results show that ion beam mixing at room temperature leads to the formation of an amorphous layer composed of the mixture of amorphous tungsten and amorphous Fe-W phase. The amorphous structure is stable upon annealing up to at least 450 °C. The ion beam mixing at the temperatures above 350 °C results in the formation of crystalline W 2C phase in addition to the amorphous Fe-W one persisting up to at least 450 °C.

  1. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  2. Intermittent structures at ion scales in the turbulent solar wind

    NASA Astrophysics Data System (ADS)

    Perrone, Denise; Alexandrova, Olga; Lion, Sonny; Roberts, Owen W.; Maksimovic, Milan; Escoubet, Philippe C.; Zouganelis, Yannis

    2017-04-01

    Understanding the physical mechanisms of dissipation, and the related heating, in turbulent collisionless plasmas (such as the solar wind) represents nowadays one of the key issues of plasma physics. Although the complex behavior of the solar wind has been matter of investigation of many years, some of the primary problems still remain a puzzle for the scientific community. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to current sheets and Alfvén vortex-like structures. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field and typical scales around ion characteristic scales. Moreover, some of them propagate in the plasma rest frame. Moreover, a further analysis on the ion velocity distribution shows a high variability; in particular, close to coherent structures the proton distribution function appears strongly deformed and far from the thermodynamic equilibrium. We discuss possible interpretation of the observed structures and their role in the heating process of the plasma.

  3. A New Ion Implant Monitor Electrical Test Structure.

    DTIC Science & Technology

    1986-01-01

    In this paper, a new Ion Implant Monitor test structure and measurement method is reported. A direct measurement of the sheet resistance of the...probe measurements. Voltage measurements are directly converted to sheet resistance , thus measurements may be performed rapidly.

  4. The gas phase structure of coulombically stretched polyethylene glycol ions.

    PubMed

    Larriba, Carlos; de la Mora, Juan Fernandez

    2012-01-12

    Prior ion-mobility mass-spectrometry (IMS-MS) studies of polyethylene glycol (PEG) ions have identified only two out of many sharply different observed structures: Linear shapes with several individually solvated singly charged cations at high charge states z (beads on a string), and single multiply charged globules at low z. The present study is devoted to assign all other existing structures of PEG ions, for the first time reaching masses of 100 kDa and charge states up to z = 10. There are at most z different structures at charge state z. All involve a single globule carrying n charges, tied to one or several appendices bearing z - n separate charges in a beads-on-a-string configuration. All sharp shape transitions observed at decreasing ion mass involve ejection of one elementary charge (sometimes two) from the shrinking globule into the growing linear appendage. This picture is supported by molecular dynamics simulations and approximate calculations of electrical mobilities for computed structures.

  5. Structure and dynamics of ion transport through gramicidin A.

    PubMed Central

    Mackay, D H; Berens, P H; Wilson, K R; Hagler, A T

    1984-01-01

    Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed. PMID:6206901

  6. Unraveling the Structure of Ultracold Mesoscopic Collinear Molecular Ions

    NASA Astrophysics Data System (ADS)

    Schurer, J. M.; Negretti, A.; Schmelcher, P.

    2017-08-01

    We present an in-depth many-body investigation of the so-called mesoscopic molecular ions that can buildup when an ion is immersed into an atomic Bose-Einstein condensate in one dimension. To this end, we employ the multilayer multiconfiguration time-dependent Hartree method for mixtures of ultracold bosonic species for solving the underlying many-body Schrödinger equation. This enables us to unravel the actual structure of such massive charged molecules from a microscopic perspective. Laying out their phase diagram with respect to atom number and interatomic interaction strength, we determine the maximal number of atoms bound to the ion and reveal spatial densities and molecular properties. Interestingly, we observe a strong interaction-induced localization, especially for the ion, that we explain by the generation of a large effective mass, similarly to ions in liquid Helium. Finally, we predict the dynamical response of the ion to small perturbations. Our results provide clear evidence for the importance of quantum correlations, as we demonstrate by benchmarking them with wave function ansatz classes employed in the literature.

  7. Prompt Gas Desorption Due to Ion Impact on Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Vijay, Sagar; Seidl, Peter A.; Faltens, Andy; Lidia, Steven M.

    2011-10-01

    The repetition rate and peak current of high intensity ion accelerators for inertial fusion or other applications may be limited under certain conditions by the desorption of gas molecules and atoms due to stray ions striking the accelerator structure. We have measured the prompt yield of atoms in close proximity to the point of impact of the ions on a surface. Using the 300-keV, K+ ion beam of the Neutralized Drift Compression Experiment (NDCX-I), ions strike a metal target in a 5-10 microsecond bunch. The collector of a Bayert-Alpert style ionization gauge is used to detect the local pressure burst several centimeters away. Pressure transients are observed on a micro-second time scale due to the initial burst of desorbed gas, and on a much longer (~1 second) timescale, corresponding to the equilibration of the pressure after many ``bounces'' of atoms in the vacuum chamber. We report on these time dependent pressure measurements, modeling of the pressure transient, and implications for high-intensity ion accelerators. Work performed under auspices of U.S. DOE by LBNL under Contract DE-AC02-05CH1123.

  8. Tracking recurrence of correlation structure in neuronal recordings.

    PubMed

    Neymotin, Samuel A; Talbot, Zoe N; Jung, Jeeyune Q; Fenton, André A; Lytton, William W

    2017-01-01

    Correlated neuronal activity in the brain is hypothesized to contribute to information representation, and is important for gauging brain dynamics in health and disease. Due to high dimensional neural datasets, it is difficult to study temporal variations in correlation structure. We developed a multiscale method, Population Coordination (PCo), to assess neural population structure in multiunit single neuron ensemble and multi-site local field potential (LFP) recordings. PCo utilizes population correlation (PCorr) vectors, consisting of pair-wise correlations between neural elements. The PCo matrix contains the correlations between all PCorr vectors occurring at different times. We used PCo to interpret dynamics of two electrophysiological datasets: multisite LFP and single unit ensemble. In the LFP dataset from an animal model of medial temporal lobe epilepsy, PCo isolated anomalous brain states, where particular brain regions broke off from the rest of the brain's activity. In a dataset of rat hippocampal single-unit recordings, PCo enabled visualizing neuronal ensemble correlation structure changes associated with changes of animal environment (place-cell remapping). PCo allows directly visualizing high dimensional data. Dimensional reduction techniques could also be used to produce dynamical snippets that could be examined for recurrence. PCo allows intuitive, visual assessment of temporal recurrence in correlation structure directly in the high dimensionality dataset, allowing for immediate assessment of relevant dynamics at a single site. PCo can be used to investigate how neural correlation structure occurring at multiple temporal and spatial scales reflect underlying dynamical recurrence without intermediate reduction of dimensionality. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Tracking recurrence of correlation structure in neuronal recordings

    PubMed Central

    Neymotin, Samuel A.; Talbot, Zoe N.; Jung, Jeeyune Q.; Fenton, André A.; Lytton, William W.

    2017-01-01

    Background Correlated neuronal activity in the brain is hypothesized to contribute to information representation, and is important for gauging brain dynamics in health and disease. Due to high dimensional neural datasets, it is difficult to study temporal variations in correlation structure. New Method We developed a multiscale method, Population Coordination (PCo), to assess neural population structure in multiunit single neuron ensemble and multi-site local field potential (LFP) recordings. PCo utilizes population correlation (PCorr) vectors, consisting of pair-wise correlations between neural elements. The PCo matrix contains the correlations between all PCorr vectors occurring at different times. Results We used PCo to interpret dynamics of two electrophysiological datasets: multisite LFP and single unit ensemble. In the LFP dataset from an animal model of medial temporal lobe epilepsy, PCo isolated anomalous brain states, where particular brain regions broke off from the rest of the brain’s activity. In a dataset of rat hippocampal single-unit recordings, PCo enabled visualizing neuronal ensemble correlation structure changes associated with changes of animal environment (place-cell remapping). Comparison with Existing Method(s) PCo allows directly visualizing high dimensional data. Dimensional reduction techniques could also be used to produce dynamical snippets that could be examined for recurrence. PCo allows intuitive, visual assessment of temporal recurrence in correlation structure directly in the high dimensionality dataset, allowing for immediate assessment of relevant dynamics at a single site. Conclusions PCo can be used to investigate how neural correlation structure occurring at multiple temporal and spatial scales reflect underlying dynamical recurrence without intermediate reduction of dimensionality. PMID:27746231

  10. Cellular parameters for track structure modelling of radiation hazard in space

    NASA Astrophysics Data System (ADS)

    Hollmark, M.; Lind, B.; Gudowska, I.; Waligorski, M.

    Based on irradiation with 45 MeV/u N and B ions and with Co-60 gamma rays, track structure cellular parameters have been fitted for V 79-379A Chinese hamster lung fibroblasts and for human melanoma cells (AA wtp53). These sets of parameters will be used to develop a calculation of radiation hazard in deep space, based on the system for evaluating, summing and reporting occupational exposures proposed in 1967 by subcommittee of the NCRP, but never issued as an NCRP report. The key concepts of this system were: i) expression of the risk from all radiation exposures relative to that from a whole-body exposure to Co-60 radiation; ii) relating the risk from any exposure to that of the standard (Co-60) radiation through an "effectiveness factor" (ef), a product of sub-factors representing radiation quality, body region irradiated, and depth of penetration of radiation; the product of absorbed dose by ef being termed the "exposure record unit" (eru); iii) development of ef values and a cumulative eru record for external and internal emitters. Application of this concept should provide a better description of the Gy -equivalent presently in use by NASA for evaluating risk in deep space than the equivalent dose, following ICRP-60 recommendations. Dose and charged particle fluence levels encountered in space, particularly after Solar Particle Events, require that deterministic rather than stochastic effects be considered. Also, synergistic effects due to simultaneous multiple charged particle transfers, may have to be considered. Thus, models applicable in radiotherapy, where the Gy -equivalent is also applied, in conjunction with transport calculations performed using, e.g. the ADAM and EVA phantoms, along the concepts of the 1967 NCRP system, may be more appropriate for evaluating the radiation hazard from external fields with a large flux and a major high-LET component.

  11. Micro structure processing on plastics by accelerated hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  12. The structure and regulation of magnesium selective ion channels.

    PubMed

    Payandeh, Jian; Pfoh, Roland; Pai, Emil F

    2013-11-01

    The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.

  13. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    SciTech Connect

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R.; Alvarado, S. F.

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  14. Ion Bombardment of Microprotrusions in High Gradient Accelerating Structures

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro; Antonsen, Thomas Jr.; Haber, Irving

    2010-11-04

    This paper starts from a brief overview of theoretical studies of high-gradient accelerating structures at the University of Maryland. The rest of the paper is devoted to the analysis of ion bombardment of small protrusions in such structures. First, this problem is studied analytically. Then, some results of particle-in-cell simulations performed with the use of code WARP are presented and discussed.

  15. Three-dimensional tracking and analysis of ion channel signals across dendritic arbors

    PubMed Central

    Ginger, Melanie; Broser, Philip; Frick, Andreas

    2013-01-01

    Most neuron types possess elaborate dendritic arbors that receive and integrate excitatory and inhibitory inputs from numerous other neurons to give rise to cell-type specific firing patterns. The computational properties of these dendrites are therefore crucial for neuronal information processing, and are strongly determined by the expression of many types of voltage-gated ion channels in their membrane. The dendritic distribution patterns of these ion channels are characteristic for each ion channel type, are dependent on the neuronal identity, and can be modified in a plastic or pathophysiological manner. We present a method that enables us to semi-automatically map and quantify in 3D the expression levels of specific ion channel types across the entire dendritic arbor. To achieve this, standard immunohistochemistry was combined with reconstruction and quantification procedures for the localization and relative distribution of ion channels with respect to dendritic morphology. This method can, in principle, be applied to any fluorescent signal, including fluorescently tagged membrane proteins, RNAs, or intracellular signaling molecules. PMID:23576958

  16. Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk

    1992-01-01

    The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.

  17. Robust object tracking based on structural local sparsity via a global L2 norm constraint

    NASA Astrophysics Data System (ADS)

    Li, Meihui; Peng, Zhenming; Zhang, Ping

    2016-10-01

    In the structural local sparse model, every candidate derived from the particle filter framework is divided into several overlapping image patches. However, in the tracking process, the structural characteristics of the target may change due to alterations in appearance, resulting in unstable pooled features and therefore drifting and false tracking. We propose a method to correct the changed part of the target using atoms in the patched dictionary by adding a global constraint. If the target is corrupted, this constraint term will weaken the influence of variation and strengthen the stability of the pooled features. Otherwise, the method is based on the whole target and will protect its spatial continuity. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed algorithm has excellent tracking behavior, displaying robustness and stability with little drifting on a target with altering appearance and partial occlusion.

  18. FAST TRACK COMMUNICATION: Neodymium ion diffusion during sintering of Nd : YAG transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.

    2009-03-01

    Using an electron microprobe, we measured and characterized the Nd3+ ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries.

  19. Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study

    PubMed Central

    Serec, Kristina; Babić, Sanja Dolanski; Podgornik, Rudolf; Tomić, Silvia

    2016-01-01

    Utilizing Fourier transform infrared spectroscopy we have investigated the vibrational spectrum of thin dsDNA films in order to track the structural changes upon addition of magnesium ions. In the range of low magnesium concentration ([magnesium]/[phosphate] = [Mg]/[P] < 0.5), both the red shift and the intensity of asymmetric PO2 stretching band decrease, indicating an increase of magnesium-phosphate binding in the backbone region. Vibration characteristics of the A conformation of the dsDNA vanish, whereas those characterizing the B conformation become fully stabilized. In the crossover range with comparable Mg and intrinsic Na DNA ions ([Mg]/[P] ≈ 1) B conformation remains stable; vibrational spectra show moderate intensity changes and a prominent blue shift, indicating a reinforcement of the bonds and binding in both the phosphate and the base regions. The obtained results reflect the modified screening and local charge neutralization of the dsDNA backbone charge, thus consistently demonstrating that the added Mg ions interact with DNA via long-range electrostatic forces. At high Mg contents ([Mg]/[P] > 10), the vibrational spectra broaden and show a striking intensity rise, while the base stacking remains unaffected. We argue that at these extreme conditions, where a charge compensation by vicinal counterions reaches 92–94%, DNA may undergo a structural transition into a more compact form. PMID:27484473

  20. Eye Tracking Detects Disconjugate Eye Movements Associated with Structural Traumatic Brain Injury and Concussion

    PubMed Central

    Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H.; McStay, Christopher; Todd, S. Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-01-01

    Abstract Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury. PMID:25582436

  1. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    PubMed

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  2. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  3. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking

    PubMed Central

    Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander

    2015-01-01

    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943

  4. A hybrid structure gaseous detector for ion backflow suppression

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Lian; Qi, Hui-Rong; Hu, Bi-Tao; Wang, Hai-Yun; Ou-Yang, Qun; Chen, Yuan-Bo; Zhang, Jian; Wen, Zhi-Wen

    2017-05-01

    A new concept for a hybrid structure gaseous detector module with ion backflow suppression for the time projection chamber in a future circular collider is presented. It is a hybrid structure cascaded Gas Electron Multiplier (GEM) with a Micromegas detector. Both Micromegas and GEM have the capability to naturally reduce most of the ions produced in the amplification region. The GEM also acts as the preamplifer device and increases gas gain together with the Micromegas. Feasibility tests of the hybrid detector are performed using an 55Fe X-ray source. The energy resolution is better than 27% for 5.9 keV X-rays. It is demonstrated that a backflow ratio better than 0.2% can be reached in the hybrid readout structure at a gain of 5000. Supported by National Key Programme for S&T Research and Development (2016YFA0400400) and by National Natural Science Foundation of China (11275224)

  5. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  6. Reduction and structural modification of zirconolite on He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  7. Monte-Carlo simulations of electronic excitations in swift heavy ion tracks in SiO{sub 2}

    SciTech Connect

    Medvedev, N. A.; Volkov, A. E.

    2008-04-10

    Monte-Carlo simulations were applied for investigation of the initial electronic kinetics ({<=}10{sup -14} s) in tracks of Ca{sup +19} (11.4 MeV/u) in SiO{sub 2}. The spatial and temporal distributions of the volume and excess energy densities of free electrons, electronic vacancies in different atomic shells and the lattice were obtained. It was demonstrated that at 10{sup -14} s an essential part ({approx}55%) of the energy deposited by the ion is trapped in electronic vacancies. The energy transferred to the lattice at times shorter than the characteristic time of electron-phonon coupling was determined. It was found that only {approx}6% of the excess energy of delocalized electrons near the projectile trajectory ({approx}6 nm) may be thermalized on the time 10{sup -14} s from the projectile passage. Ballistic spatial propagation of excess energy cannot be described by thermal diffusion.

  8. Trajectory tracking and vibration control in a space frame flexible structure with a PZT stack actuator

    NASA Astrophysics Data System (ADS)

    Garcia-Perez, Oscar A.; Silva-Navarro, G.; Peza-Solís, J. F.; Trujillo-Franco, L. G.

    2015-04-01

    This work deals with the robust asymptotic output tracking control problem of the tip position of a space frame flexible structure, mounted on a rigid revolute servomechanism actuated and controlled with a dc motor. The structure is also affected by undesirable vibrations due to excitation of its first lateral vibration modes and possible variations of the tip mass. The overall flexible structure is modeled by using finite element methods and this is validated via experimental modal analysis techniques. The tip position of the structure is estimated from acceleration and strain gauge measurements. The asymptotic output tracking problem is formulated and solved by means of Passivity-Based and Sliding-Mode Control techniques, applied to the dc motor coupled to the rigid part of the structure, and those undesirable vibrations are simultaneously attenuated by an active vibration control using Positive Position Feedback control schemes implemented on a PZT stack actuator properly located into the mechanical structure. The investigation also addresses the trajectory tracking problem of fast motions, with harmonic excitations close to the first vibration modes of the structure. The overall dynamic performance is evaluated and validated by numerical and experimental results.

  9. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    SciTech Connect

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin; Ibrahim, Yehia M.; Webb, Ian K.; Baker, Erin M.; Prost, Spencer A.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.

    2016-11-02

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.

  10. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations Using Compression Ratio Ion Mobility Programming.

    PubMed

    Garimella, Sandilya V B; Hamid, Ahmed M; Deng, Liulin; Ibrahim, Yehia M; Webb, Ian K; Baker, Erin S; Prost, Spencer A; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D

    2016-12-06

    In this work we report an approach for spatial and temporal gas-phase ion population manipulation, wherein we collapse ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventional traveling wave (TW)-driven region to a region where the TW is intermittently halted or "stuttered". This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using "structures for lossless ion manipulations" (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved signal-to-noise (S/N) ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multipass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening and increasing peak widths.

  11. Coherent structures in ion temperature gradient turbulence-zonal flow

    NASA Astrophysics Data System (ADS)

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ã.-. D.; Diamond, P. H.

    2014-10-01

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  12. Passive radar tracking of a maneuvering target using variable structure multiple-model algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zhou, Xiaohui; Zhang, Jin

    2013-03-01

    The variable structure multiple-model (VSMM) algorithm to passive radar maneuvering target tracking problem is considered. A new VSMM design, expected mode augmentation based on likely model set (LMS-EMA) algorithm is presented. The LMS-EMA algorithm adaptively determines the fixed grid model set using likely model set (LMS) algorithm, and generates the expected mode based on this set. Then, the union of fixed grid model set and expected model is used to perform multiple-model estimation. The performance of the LMS-EMA algorithm is evaluated via simulation of a highly maneuvering target tracking problem.

  13. Tracking of structural and functional cardiac measures from infancy into school-age.

    PubMed

    Toemen, Liza; Gaillard, Romy; van Osch-Gevers, Lennie; Helbing, Willem A; Hofman, Albert; Jaddoe, Vincent Wv

    2017-09-01

    Objective Cardiac structure and function are important predictors for cardiovascular disease in adults. Not much is known about tracking of cardiac measures, other than left ventricular mass, from early life onwards. We examined whether and to what extent cardiac measures track from infancy into school-age. Methods We performed a population-based prospective cohort study among 1072 children. Aortic root diameter, left atrial diameter, left ventricular mass, relative wall thickness and fractional shortening were measured repeatedly by echocardiography. We explored tracking between infancy (1.5, six and 24 months) and school-age (six and 10 years). Results Of all cardiac measures, aortic root diameter, left atrial diameter and left ventricular mass were significantly correlated between infancy and school-age ( r = 0.10-0.42, all p-values < 0.01), with the strongest correlations between 24 months and 10 years. Of the different structures, aortic root diameter showed the strongest correlations. Approximately 30% of children who were in the lowest or highest quartile of a measure at the age of 1.5 months remained in that quartile at the age of 10 years. When analysing the effects of the infant cardiac measures on the same outcomes at 10 years in conditional regression models, we observed effect estimates of the same size for the different age windows. Conclusion Our results suggest moderate tracking of structural cardiac measures from early infancy until school-age, which become stronger at older ages, but not of relative wall thickness or fractional shortening. Moderate tracking of cardiac structures suggests that cardiac structures are at least partly determined in early life.

  14. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  15. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.

    2017-03-01

    An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  16. Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part II: numerical simulations of track, structure and intensity

    NASA Astrophysics Data System (ADS)

    Davidson, Noel E.; Ma, Yimin

    2012-07-01

    In part 1 of this study, an assessment of commonly used surface pressure profiles to represent TC structures was made. Using the Australian tropical cyclone model, the profiles are tested in case studies of high-resolution prediction of track, structure and intensity. We demonstrate that: (1) track forecasts are mostly insensitive to the imposed structure; (2) in some cases [here Katrina (2005)], specification of vortex structure can have a large impact on prediction of structure and intensity; (3) the forecast model mostly preserves the characteristics of the initial structure and so correct structure at t = 0 is a requirement for improved structure forecasting; and (4) skilful prediction of intensity does not guarantee skilful prediction of structure. It is shown that for Ivan (2004) the initial structure from each profile is preserved during the simulations, and that markedly different structures can have similar intensities. Evidence presented suggests that different initial profiles can sometimes change the timing of intensification. Thus, correct initial vortex structure is an essential ingredient for more accurate intensity and structure prediction.

  17. Correlation of ion dynamics and structure of superionic tellurite glasses

    SciTech Connect

    Dutta, D.; Ghosh, A.

    2008-01-28

    Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.

  18. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  19. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect

    Echols, Nathaniel Morshed, Nader; Afonine, Pavel V.; McCoy, Airlie J.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-04-01

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  20. Structured light 3D tracking system for measuring motions in PET brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Jørgensen, Morten R.; Paulsen, Rasmus R.; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-02-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure where the projector is treated as a camera. Additionally, the surface reconstructions are corrected for the non-linear projector output prior to image capture. The results are convincing and a first step toward a fully automated tracking system for measuring head motions in PET imaging.

  1. Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures.

    PubMed

    Stoyanov, Danail; Mylonas, George P; Deligianni, Fani; Darzi, Ara; Yang, Guang Zhong

    2005-01-01

    In robotically assisted laparoscopic surgery, soft-tissue motion tracking and structure recovery are important for intraoperative surgical guidance, motion compensation and delivering active constraints. In this paper, we present a novel method for feature based motion tracking of deformable soft-tissue surfaces in totally endoscopic coronary artery bypass graft (TECAB) surgery. We combine two feature detectors to recover distinct regions on the epicardial surface for which the sparse 3D surface geometry may be computed using a pre-calibrated stereo laparoscope. The movement of the 3D points is then tracked in the stereo images with stereo-temporal constrains by using an iterative registration algorithm. The practical value of the technique is demonstrated on both a deformable phantom model with tomographically derived surface geometry and in vivo robotic assisted minimally invasive surgery (MIS) image sequences.

  2. Data mining of metal ion environments present in protein structures

    PubMed Central

    Zheng, Heping; Chruszcz, Maksymilian; Lasota, Piotr; Lebioda, Lukasz; Minor, Wladek

    2010-01-01

    Analysis of metal-protein interaction distances, coordination numbers, B-factors (displacement parameters), and occupancies of metal binding sites in protein structures determined by X-ray crystallography and deposited in the PDB shows many unusual values and unexpected correlations. By measuring the frequency of each amino acid in metal ion binding sites, the positive or negative preferences of each residue for each type of cation were identified. Our approach may be used for fast identification of metal-binding structural motifs that cannot be identified on the basis of sequence similarity alone. The analysis compares data derived separately from high and medium resolution structures from the PDB with those from very high resolution small-molecule structures in the Cambridge Structural Database (CSD). For high resolution protein structures, the distribution of metal-protein or metal-water interaction distances agrees quite well with data from CSD, but the distribution is unrealistically wide for medium (2.0 – 2.5 Å) resolution data. Our analysis of cation B-factors versus average B-factors of atoms in the cation environment reveals substantial numbers of structures contain either an incorrect metal ion assignment or an unusual coordination pattern. Correlation between data resolution and completeness of the metal coordination spheres is also found. PMID:18614239

  3. Filamented ion tail structures at Titan: A hybrid simulation study

    NASA Astrophysics Data System (ADS)

    Feyerabend, Moritz; Simon, Sven; Motschmann, Uwe; Liuzzo, Lucas

    2015-11-01

    This study investigates the processes that lead to the detection of split signatures in ion density during several crossings of the Cassini spacecraft through Titan's mid-range plasma tail (T9, T63, and T75). During each of these flybys, the Cassini Plasma Spectrometer detected Titan's ionospheric ion population twice; i.e., the spacecraft passed through two spatially separated regions where cold ions were detected, with the regions also being dominated by ions of different masses in the case of T9. Whether this filamented tail structure is an omnipresent feature of Titan's plasma interaction or a result of non-stationary upstream conditions during specific flybys is still unclear. To explain these features, we apply the hybrid simulation code AIKEF (kinetic ions and fluid electrons). Our model includes chemical reactions as well as a realistic photoionization model for a sophisticated description of the ionospheric composition of Titan. Our simulations show that the filamentation of Titan's tail is indeed a common feature of the moon's plasma interaction. Light ionospheric species escape along draped magnetic field lines to form a parabolically shaped filament structure, which is mainly seen in planes that contain the upstream magnetospheric magnetic field and the upstream flow direction. In addition, transport of ions of all species from the ramside towards downstream produces a cone structure behind Titan, with a region of decreased density inside and filaments of 1-2 RT (RT=2575 km) thickness and enhanced density at the surface of the cone. Spacecraft trajectories that penetrate these structures allow for the detection of split signatures in the tail. The orientation of the upstream magnetic field and plasma flow as well as local time effects (i.e., Titan's orbital position) influence the location of the filaments in the tail and can also cause asymmetries in their sizes and densities. The detection of the split signatures along a spacecraft trajectory may

  4. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  5. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  6. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  7. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  8. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  9. Stable Ion Beam Analysis (RBS and PIXE) Study of Photocatalytic Track-Etched Membranes

    NASA Astrophysics Data System (ADS)

    Rossouw, A.; Artoshina, O. V.; Nechaev, A. N.; Apel, P. Yu.; Petrik, L.; Perold, W. J.; Pineda-Vargas, C. A.

    2015-11-01

    In microfiltration, caking is a major problem. Organic molecules get absorbed on the track-etched membrane TM surface during water purification. This leads to a loss of efficiency and changes in TM selectivity. A solution devised to solve this problem is the creation of self-cleaning, low-absorptive TM coatings. The TM surface was modified by depositing a thin-film photocatalytic semiconductor, titanium dioxide (TiO2). Strong oxidizing agents appear on the TiO2 surface in the presence of water, dissolved oxygen and UV irradiation. This results in the mineralization of the organic compounds present, By applying the use of exotic beams in the material research, it becomes possible to investigate properties regarding the layer thickness, homogeneity and purity of the modified TMs, not otherwise attainable.

  10. Controlling the length of conical pores etched in ion-tracked poly(ethylene terephthalate) membranes.

    PubMed

    Mukaibo, Hitomi; Horne, Lloyd P; Park, Dooho; Martin, Charles R

    2009-11-01

    An etching procedure that allows for reproducible control of the length of conically shaped pores etched into poly(ethylene terephthalate) (PET) membranes is developed. At the lower etch temperature used (20 degrees C), the length of the pore is found to be linearly related to etch time. At the higher etch temperature (30 degrees C) the etch rate is five times faster and the pores quickly propagate through the entire thickness of the PET membrane. Hence, the lower etch temperature is best for controlling the pore length. Pores etched at this temperature are used to prepare arrays of gold cones where the length of the cones is controlled from 1 to 10 microm. The track-etch rates and the radial-etch rates at both of the etch temperatures used are also reported.

  11. Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading

    NASA Astrophysics Data System (ADS)

    Panzarino, Jason F.; Ramos, Jesus J.; Rupert, Timothy J.

    2015-02-01

    Molecular dynamics simulations were used to quantify mechanically induced structural evolution in nanocrystalline Al with an average grain size of 5 nm. A polycrystalline sample was cyclically strained at different temperatures, while a recently developed grain tracking algorithm was used to measure the relative contributions of novel deformation mechanisms such as grain rotation and grain sliding. Sample texture and grain size were also tracked during cycling, to show how nanocrystalline plasticity rearranges overall grain structure and alters the grain boundary network. While no obvious texture is developing during cycling, the processes responsible for plasticity act collectively to alter the interfacial network. Cyclic loading led to the formation of many twin boundaries throughout the sample as well as the occasional coalescence of neighboring grains, with higher temperatures causing more evolution. A temperature-dependent cyclic strengthening effect was observed, demonstrating that both the structure and properties of nanocrystalline metals can be dynamic during loading.

  12. Coupled chemical reactions in dynamic nanometric confinement: V. The influence of Li+ and F- ions on etching of nuclear tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernandez, G.; Ruiz, N. L.; Vacik, J.; Hnatowicz, V.; García-Arellano, H.; Alfonta, L.; Kiv, A.

    2014-05-01

    Etching of continuous nuclear tracks in thin polymer foils from both sides is known to lead to the formation of double-conical nanopores. In this work and related ones we try to find out how this etching kinetics is modified when materials are added which react with each other upon their contact towards some new product that influences the etching. For that purpose we have chosen here Li+ and F- ions as the additions, which react with each other to form LiF precipitations. The coupled etching and precipitation kinetics is recorded by measuring the electrical current that is transmitted through the foils upon application of a low-frequency alternating sinusoidal voltage. Depending on the etchant concentrations, the etching temperature and the time of Li+ and F- addition, different effects are found that range from (a) no alteration of the transmitted current at all, via (b) the emergence of an alternating current with a temperature-dependent amplitude, and (c) the complete vanishing of any transmitted current at all, towards (d) chaotic transmitted current histories with phases with strong current spike emission and (e) rather quiet phases, alternating with each other in a rather unsystematic way. The observed effects are ascribed to (a) the enhanced penetration efficiency of both the Li+ and F- ions through the polymeric bulk and/or latent ion tracks after the removal of the polymer's protective surface layer by the etchant, (b) the high mobility of preferentially the F- ions within the polymer, (c) the LiF precipitation within the polymer or on its surface upon encounter of Li+ and F- ions, (d) the nanofluidic properties of narrow etched tracks covered with Li+ ions on the wall surfaces and F- ions beyond, and/or (e) the formation of LiF membranes within the etched tracks.

  13. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  14. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations.

    PubMed

    Watanabe, Ritsuko; Rahmanian, Shirin; Nikjoo, Hooshang

    2015-05-01

    The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular

  15. Indications of Nuclear-Track-Guided Electrons Induced by Fast Heavy Ions in Insulators

    SciTech Connect

    Xiao, G.; Schiwietz, G.; Stolterfoht, N.; Schmoldt, A.; Grether, M.; Koehrbrueck, R.; Spieler, A.; Stettner, U.; Grande, P.L.

    1997-09-01

    We present experimental evidence for a deceleration of convoy electrons produced by 5MeV/u ions (N{sup 7+} , Ne{sup 10+} , S{sup 13+} , Ni{sup 23+} , and Ag{sup 37+} ) during the interaction with insulator foils at normal incidence. The deceleration first increases with increasing projectile charge, reaches a maximum at a projectile charge of about 16, and seems to approach zero for even higher charges. Different possible mechanisms and quantitative estimates for the slowing down of convoy electrons are presented. {copyright} {ital 1997} {ital The American Physical Society}

  16. Study of heavy ion range in different solid state nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Diwan, P. K.; Singh, Lakhwant; Singh, Gurinder; Kumar, Shyam

    2000-03-01

    The range of several heavy ions as 238U, 208Pb, 197Au, 139La, 58Ni and 56Fe in sodalime glass; 197Au and 58Ni in muscovite mica and Lexan polycarbonate; 209Bi and 197Au in CR-39 have been determined experimentally. The calculations of range for these projectile-target combinations have been made using the Benton and Henke [10], Mukherjee and Nayak [11], Ziegler et al. [12] and Hubert et al. [14] semiempirical formulations. Finally a comparison has been made with the experimental results.

  17. Structure, dynamics, and ion conductance of the phospholamban pentamer.

    PubMed

    Maffeo, Christopher; Aksimentiev, Aleksei

    2009-06-17

    A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5'-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 A in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel.

  18. Online structured sparse learning with labeled information for robust object tracking

    NASA Astrophysics Data System (ADS)

    Fan, Baojie; Cong, Yang; Tang, Yandong

    2017-01-01

    We formulate object tracking under the particle filter framework as a collaborative tracking problem. The priori information from training data is exploited effectively to online learn a discriminative and reconstructive dictionary, simultaneously without losing structural information. Specifically, the class label and the semantic structure information are incorporated into the dictionary learning process as the classification error term and ideal coding regularization term, respectively. Combined with the traditional reconstruction error, a unified dictionary learning framework for robust object tracking is constructed. By minimizing the unified objective function with different mixed norm constraints on sparse coefficients, two robust optimizing methods are developed to learn the high-quality dictionary and optimal classifier simultaneously. The best candidate is selected by minimizing the reconstructive error and classification error jointly. As the tracking continues, the proposed algorithms alternate between the robust sparse coding and the dictionary updating. The proposed trackers are empirically compared with 14 state-of-the-art trackers on some challenging video sequences. Both quantitative and qualitative comparisons demonstrate that the proposed algorithms perform well in terms of accuracy and robustness.

  19. Automatic tracking of vessel-like structures from a single starting point.

    PubMed

    Oliveira, Dário Augusto Borges; Leal-Taixé, Laura; Feitosa, Raul Queiroz; Rosenhahn, Bodo

    2016-01-01

    The identification of vascular networks is an important topic in the medical image analysis community. While most methods focus on single vessel tracking, the few solutions that exist for tracking complete vascular networks are usually computationally intensive and require a lot of user interaction. In this paper we present a method to track full vascular networks iteratively using a single starting point. Our approach is based on a cloud of sampling points distributed over concentric spherical layers. We also proposed a vessel model and a metric of how well a sample point fits this model. Then, we implement the network tracking as a min-cost flow problem, and propose a novel optimization scheme to iteratively track the vessel structure by inherently handling bifurcations and paths. The method was tested using both synthetic and real images. On the 9 different data-sets of synthetic blood vessels, we achieved maximum accuracies of more than 98%. We further use the synthetic data-set to analyze the sensibility of our method to parameter setting, showing the robustness of the proposed algorithm. For real images, we used coronary, carotid and pulmonary data to segment vascular structures and present the visual results. Still for real images, we present numerical and visual results for networks of nerve fibers in the olfactory system. Further visual results also show the potential of our approach for identifying vascular networks topologies. The presented method delivers good results for the several different datasets tested and have potential for segmenting vessel-like structures. Also, the topology information, inherently extracted, can be used for further analysis to computed aided diagnosis and surgical planning. Finally, the method's modular aspect holds potential for problem-oriented adjustments and improvements.

  20. Effect of LET and track structure on the statistical distribution of chromosome aberrations

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Lee, R.; Nasonova, E.; Ritter, S.; Scholz, M.

    Chromosome aberration data obtained for various types of mammalian cells after exposure to low and high LET radiation clearly demonstrate differences in the energy deposition pattern of both radiation qualities. In the present study we focus on the distributions of chromosome aberrations induced in human peripheral blood lymphocytes after exposure to 990 MeV/u Fe ions (LET = 155 keV/μm) or X-rays. For the analysis three different types of distributions were applied, namely a Poisson distribution, a compound Poisson-Poisson (Neyman type A) distribution and a convoluted Poisson-Neyman distribution. The analysis showed that after low LET radiation the distribution of aberrations can be well described by Poisson statistics, reflecting a simple random distribution of damages as expected according to the homogeneous pattern of energy depositions. In contrast, for particles the energy is deposited spatially very inhomogeneous and concentrated along the ion trajectories. After exposure to high energy, high LET particles where the track radius is much larger than the cell nucleus, best fits to the data were achieved by a convoluted Poisson-Neyman statistics. The analysis indicates that, under this exposure condition, the distribution of aberrations is determined by two independent components. The first component is determined by the damage induced by a center of the tracks and follows the Neyman distribution. The second component is determined by the overlapping part of tracks which in the case of very high energetic particles leads to a "photon-like" background dose and is thus characterized by a Poisson distribution.

  1. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  2. Coupled chemical reactions in dynamic nanometric confinement: IV. Ion transmission spectrometric analysis of nanofluidic behavior and membrane formation during track etching in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Vacik, J.; Hnatowicz, V.; Muñoz H, G.; García Arellano, H.; Kiv, A.; Alfonta, L.

    2015-03-01

    In recent papers, it was shown that coupled chemical-topological reactions (CCRs) with both NaOH etchant and silver salts, performed in thin swift-heavy ion-irradiated polymers under the application of a test voltage across the polymer foils, eventually gave rise to characteristic current/voltage features and Bode plots that were tentatively attributed to the formation of Ag2O membranes within the etched tracks. The same was also found when replacing the silver ions by lithium ions, and adding fluoride ions to the NaOH etchant, to promote LiF membrane formation. Ion Transmission Spectrometry (ITS) enabled us to reconfirm the existence of these membranes beyond doubt. The membrane thickness was determined to be ∼0.2-0.4 µm in the best cases. ITS also revealed that hitherto membrane formation occurs only in ∼1% of all tracks, or even less. The reason for this poor abundance seems to be that the decisive factor for membrane formation, which is the firm anchoring of the emerging solid Ag2O or LiF reaction products on the etched track walls, was hitherto rarely fulfilled. We attribute this tentatively to the too high test voltage applied for controlling the CCR process that might hinder the product anchoring on the walls by promoting nanofluidic electromigration. Indeed, voltage reduction seems to improve the situation.

  3. Mechanisms controlling the spatial structure of midlatitude storm tracks and their variation under global warming

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Tamarin, T.

    2016-12-01

    The Atlantic and Pacific storm tracks in the northern hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclonic eddies in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time-zonal mean background flow, a stationary wave and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. Our results imply that in the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low level PV anomaly associated with cyclones. Upstream of that region, the stationary wave is opposing the former two and the poleward tendency is therefore reduced. Through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases. For a global warming scenario, we find that poleward deflection due to transient nonlinear advection and latent heating will strengthen, meaning that the poleward motion of individual cyclones increases with increasing global mean temperatures. Our results imply that for a 4 K rise in the global mean surface temperature, the averaged poleward drift of cyclones will increase by approximately 1 degree of latitude. This will have significant impact on midlatitude climate, and implies that localized storm tracks, such as the Atlantic and Pacific storm tracks, will exhibit a more poleward deflected shape

  4. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be

  5. Instrumentation by distributed optical fiber sensors of a new ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël

    2013-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early

  6. Damage cross-sections for MeV energy He ion induced hydrogen ejection in polymers-material structure effects

    NASA Astrophysics Data System (ADS)

    Salah, H.; Touchrift, B.

    2004-03-01

    Using the elastic recoil detection analysis (ERDA) method for hydrogen analysis, a He-4(+) ion beam was used simultaneously for irradiating samples and as a tool to measure the hydrogen desorption yield as a function of irradiation dose. The influence of molecular structure on helium-induced desorption is studied for different polymers. The dose-response curves of hydrogen released from irradiated structures are presented and used to determine the damage cross-sections. The deduced desorption extent for a single impact is of the order of a few Angstroms, revealing localized regions of desorption. Hydrogen desorption is found to be sensitive to chemical composition of the target. The overall experimental data of the hydrogen desorption yield are described by the same function of the type Y(phi) = (C/phi(n) ) exp (-sigma phi) where phi is the irradiation dose and C and n are a fitting parameter. The first part of the function describes 'prompt ejection', predominant at lower irradiation dose where the created latent tracks remain separated. The exponential term accounts for the 'thermal ejection' process activated by ion-track overlapping involved at higher irradiation doses. A threshold dose is found that separates the two regimes and above which the overlapping tracks form a highly heated condensed gas and activate chemical processes. Chemical modifications have been studied using infrared-absorption spectroscopy, which reveal the formation of stable molecules that could desorb intact.

  7. Opto-structural and dielectric properties of 80 MeV oxygen ion irradiated natural phlogopite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2013-04-01

    Ion beams of MeV energies produce latent tracks in most dielectrics. These ion tracks in turn produce various modifications in their structural, optical and dielectric properties. These modifications are monitored using various techniques such as Ultraviolet-visible spectrometry, X-ray Diffraction, LCR meter and Fourier Transform Infra red spectroscopy in natural phlogopite mica. Thin sheets (˜20 μm) of phlogopite mica were exposed to 80 MeV oxygen ions. A systematic decrease of the optical band gap with ion fluence was observed. An increase in the Urbach energy indicates an increase in the disorder in phlogopite mica. The dielectric constant was found to decrease with increasing fluence while measurements of tan δ, a.c. conductivity and dielectric loss show an increase. The measured data revealed that the value of a.c. conductivity depends linearly on the frequency, with slope n ranging between 0.62 and 0.77. X-ray Diffraction analysis of pristine and irradiated phlogopite mica demonstrated that the crystallite size decreases while strain and dislocation density increases with increasing fluence. Fourier Transform Infra red spectra showed the shifting of the OH stretching band and the disappearance of Si-H bands due to irradiation. Different causes of these modifications are discussed here.

  8. Last ion engine thrust puts ESA's SMART-1 on the right track for its Moon encounter

    NASA Astrophysics Data System (ADS)

    2004-10-01

    SMART-1, on its way to the Moon, has now covered more than 80 million kilometres. Its journey started on 27 September 2003, when the spacecraft was launched on board an Ariane 5 rocket from Europe’s spaceport in Kourou, French Guiana. Since then, it has been spiralling in progressively larger orbits around Earth, to eventually be captured by the lunar gravity and enter into orbit around the Moon in November this year. The SMART-1 mission was designed to pursue two main objectives. The first is purely technological: to demonstrate and test a number of space techniques to be applied to future interplanetary exploration missions. The second goal is scientific, mainly dedicated to lunar science. It is the technology demonstration goal, in particular the first European flight test of a solar-powered ion engine as a spacecraft’s main propulsion system, that gave shape to the peculiar route and duration (13 months) of the SMART-1 journey to the Moon. The long spiralling orbit around Earth, which is bringing the spacecraft closer and closer to the Moon, is needed for the ion engine to function and be tested over a distance comparable to that a spacecraft would travel during a possible interplanetary trip. The SMART-1 mission is also testing the response of a spacecraft propelled by such an engine during gravity-assisted manoeuvres. These are techniques currently used on interplanetary journeys, which make use of the gravitational pull of celestial objects (e.g. planets) for the spacecraft to gain acceleration and reach its final target while saving fuel. In SMART-1’s case, the Moon’s gravitational pull has been exploited in three “lunar resonance” manoeuvres. The first two successfully took place in August and September 2004. The last resonance manoeuvre was on 12 October, during the last major ion engine thrust, which lasted nearly five days, from 10 to 14 October. Thanks to this final thrust, SMART-1 will make two more orbits around Earth without any further

  9. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  10. Limitations (and merits) of PENELOPE as a track-structure code.

    PubMed

    Fernández-Varea, José M; González-Muñoz, Gloria; Galassi, Mariel E; Wiklund, Kristin; Lind, Bengt K; Ahnesjö, Anders; Tilly, Nina

    2012-01-01

    To outline the limitations of PENELOPE (acronym of PENetration and Energy LOss of Positrons and Electrons) as a track-structure code, and to comment on modifications that enable its fruitful use in certain microdosimetry and nanodosimetry applications. Attention is paid to the way in which inelastic collisions of electrons are modelled and to the ensuing implications for microdosimetry analysis. Inelastic mean free paths and collision stopping powers calculated with PENELOPE and two well-known optical-data models are compared. An ad hoc modification of PENELOPE is summarized where ionization and excitation of liquid water by electron impact is simulated using tables of realistic differential and total cross sections. PENELOPE can be employed advantageously in some track-structure applications provided that the default model for inelastic interactions of electrons is replaced by suitable tables of differential and total cross sections.

  11. Cooperative tracking control of nonlinear multiagent systems using self-structuring neural networks.

    PubMed

    Chen, Gang; Song, Yong-Duan

    2014-08-01

    This paper considers a cooperative tracking problem for a group of nonlinear multiagent systems under a directed graph that characterizes the interaction between the leader and the followers. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network (NN) with flexible structure is used to approximate the unknown dynamics at each node. Considering that the leader is a neighbor of only a subset of the followers and the followers have only local interactions, we introduce a cooperative dynamic observer at each node to overcome the deficiency of the traditional tracking control strategies. An observer-based cooperative controller design framework is proposed with the aid of graph tools, Lyapunov-based design method, self-structuring NN, and separation principle. It is proved that each agent can follow the active leader only if the communication graph contains a spanning tree. Simulation results on networked robots are provided to show the effectiveness of the proposed control algorithms.

  12. Structures and physical properties of gaseous metal cationized biological ions.

    PubMed

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  13. Spontaneous nucleation of structural defects in inhomogeneous ion chains

    NASA Astrophysics Data System (ADS)

    De Chiara, Gabriele; del Campo, Adolfo; Morigi, Giovanna; Plenio, Martin B.; Retzker, Alex

    2010-11-01

    Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.

  14. Impact of tracking station distribution structure on BeiDou satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Qin; Huang, Guanwen; Wang, Le; Qu, Wei

    2015-11-01

    The racking station distribution structure plays an important role in GNSS satellite orbit determination. Due to the current satellite distribution of the BeiDou satellite navigation system (BDS), the problem how to construct a reasonable distribution of tracking stations to obtain BDS satellite orbits with high precision has become a highly imperative issue. Based on the theory of dynamic orbit determination, two different station distributions were analyzed to study their impact on BDS precise and real-time orbit determination. Subsequently, the impact of Satellite Position Dilution of Precision (SPDOP) values on orbit determination was analyzed. Finally, an improved scheme for the tracking station distribution was designed based on the original scheme. The numerical results show that the SPDOP value can be used to evaluate the contribution of the tracking stations distribution on the BDS IGSO and MEO satellites orbit determination. In addition, the tracking stations which focus on the Asia-Pacific region play a key role in current BDS orbit determination.

  15. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    SciTech Connect

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Webb, Ian K.; Hamid, Ahmed M.; Norheim, Randolph V.; Prost, Spencer A.; Sandoval, Jeremy A.; Baker, Erin S.; Smith, Richard D.

    2016-10-18

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.

  16. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations.

    PubMed

    Deng, Liulin; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Hamid, Ahmed M; Norheim, Randolph V; Prost, Spencer A; Sandoval, Jeremy A; Baker, Erin S; Smith, Richard D

    2016-10-07

    The initial use of traveling waves (TW) for ion mobility (IM) separations using structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source and was limited to injected ion populations of ∼10(6) charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods, such as in extended pulses. In this work a new SLIM "flat funnel" (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ∼3.2 × 10(8) charges for the extended trapping volume, over an order of magnitude greater than that of the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, rf, and dc confining field SLIM parameters involved in ion accumulation, injection, transmission, and IM separation in the FF module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in the signal-to-noise ratios (S/N) due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.

  17. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    SciTech Connect

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was also evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.

  18. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    DOE PAGES

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; ...

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was alsomore » evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.« less

  19. The effect of track structure on cell inactivation and chromosome damage at a constant let of 120 keV/mum

    NASA Astrophysics Data System (ADS)

    Goodwin, E. H.; Bailey, S. M.; Chen, D. J.; Cornforth, M. N.

    The influence of track structure on chromosome damage and cell inactivation are being investigated. Plateau-phase normal human fibroblast cultures were irradiated with gamma rays, and He, Ne and Ar ions. Particle velocities were chosen so that all beams had an LET of 120 keV/mum. In this constant-LET experimental design, the radial distribution of excitations and ionizations about the particle track is the most significant variable. Using premature chromosome condensation, chromatin breaks were measured at two time points, promptly after irradiation and after a prolonged incubation to allow for repair. These measurements give an indication of both initial chromosomal damage and also residual damage that is either not repaired or is misrepaired. Survival was measured under the same conditions. Results indicate that the RBEs for both cell inactivation and, to a lesser extent, chromosome damage decrease as particle energy increases.

  20. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  1. Principles of ion recognition in RNA: insights from the group II intron structures.

    PubMed

    Marcia, Marco; Pyle, Anna Marie

    2014-04-01

    Metal ions promote both RNA folding and catalysis, thus being essential in stabilizing the structure and determining the function of large RNA molecules, including group II introns. The latter are self-splicing metalloribozymes, containing a heteronuclear four-metal-ion center within the active site. In addition to these catalytic ions, group II introns bind many other structural ions, including delocalized ions that bind the RNA diffusively and well-ordered ions that bind the RNA tightly with high occupancy. The latter ions, which can be studied by biophysical methods, have not yet been analyzed systematically. Here, we compare crystal structures of the group IIC intron from Oceanobacillus iheyensis and classify numerous site-bound ions, which are primarily localized in the intron core and near long-range tertiary contacts. Certain ion-binding sites resemble motifs observed in known RNA structures, while others are idiosyncratic to the group II intron. Particularly interesting are (1) ions proximal to the active site, which may participate in splicing together with the catalytic four-metal-ion center, (2) organic ions that bind regions predicted to interact with intron-encoded proteins, and (3) unusual monovalent ions bound to GU wobble pairs, GA mismatches, the S-turn, the tetraloop-receptor, and the T-loop. Our analysis extends the general principles by which ions participate in RNA structural organization and it will aid in the determination and interpretation of future RNA structures.

  2. Principles of ion recognition in RNA: insights from the group II intron structures

    PubMed Central

    Marcia, Marco; Pyle, Anna Marie

    2014-01-01

    Metal ions promote both RNA folding and catalysis, thus being essential in stabilizing the structure and determining the function of large RNA molecules, including group II introns. The latter are self-splicing metalloribozymes, containing a heteronuclear four-metal-ion center within the active site. In addition to these catalytic ions, group II introns bind many other structural ions, including delocalized ions that bind the RNA diffusively and well-ordered ions that bind the RNA tightly with high occupancy. The latter ions, which can be studied by biophysical methods, have not yet been analyzed systematically. Here, we compare crystal structures of the group IIC intron from Oceanobacillus iheyensis and classify numerous site-bound ions, which are primarily localized in the intron core and near long-range tertiary contacts. Certain ion-binding sites resemble motifs observed in known RNA structures, while others are idiosyncratic to the group II intron. Particularly interesting are (1) ions proximal to the active site, which may participate in splicing together with the catalytic four-metal-ion center, (2) organic ions that bind regions predicted to interact with intron-encoded proteins, and (3) unusual monovalent ions bound to GU wobble pairs, GA mismatches, the S-turn, the tetraloop-receptor, and the T-loop. Our analysis extends the general principles by which ions participate in RNA structural organization and it will aid in the determination and interpretation of future RNA structures. PMID:24570483

  3. Emerging models of glutamate receptor ion channel structure and function.

    PubMed

    Mayer, Mark L

    2011-10-12

    Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6 Å resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.

  4. Ions in water: The microscopic structure of concentrated hydroxide solutions

    NASA Astrophysics Data System (ADS)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  5. Ion structure in dense plasmas: MSA versus HNC

    NASA Astrophysics Data System (ADS)

    Wünsch, K.; Vorberger, J.; Gregori, G.; Gericke, D. O.

    2009-05-01

    We present results for the ionic structure in dense, moderately to strongly coupled plasmas using two models: the mean spherical approximation (MSA) and the hypernetted chain (HNC) approach. While the first method allows for an analytical solution, the latter has to be solved iteratively. Independent of the coupling strength, the results show only small differences when the ions are considered to form an unscreened one-component plasma (OCP) system. If the electrons are treated as a polarizable background, the different ways to incorporate the screening yield, however, large discrepancies between the models, particularly for more strongly coupled plasmas.

  6. Time-resolved X-ray Tracking of Expansion and Compression Dynamics in Supersaturating Ion-Networks

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Sekiguchi, H.; Ichiyanagi, K.; Ohta, N.; Ikezaki, K.; Goto, Y.; Sasaki, Y. C.

    2015-12-01

    Supersaturation of a solution system is a metastable state containing more solute than can be normally solubilized. Moreover, this condition is thermodynamically important for a system undergoing a phase transition. This state plays critical roles in deposition morphology in inorganic, organic, polymer and protein solution systems. In particular, microscopic solution states under supersaturated conditions have recently received much attention. In this report, we observed the dynamic motion of individual ion-network domains (INDs) in a supersaturated sodium acetate trihydrate solution (6.4 M) by using microsecond time-resolved and high accuracy (picometre scale) X-ray observations (diffracted X-ray tracking; DXT). We found that there are femto-Newton (fN) anisotropic force fields in INDs that correspond to an Angstrom-scale relaxation process (continuous expansion and compression) of the INDs at 25 μs time scale. The observed anisotropic force-field (femto-Newton) from DXT can lead to new explanations of how material crystallization is triggered. This discovery could also influence the interpretation of supercooling, bio-polymer and protein aggregation processes, and supersaturated systems of many other materials.

  7. Time-resolved X-ray Tracking of Expansion and Compression Dynamics in Supersaturating Ion-Networks

    PubMed Central

    Matsushita, Y.; Sekiguchi, H.; Ichiyanagi, K.; Ohta, N.; Ikezaki, K.; Goto, Y.; Sasaki, Y. C.

    2015-01-01

    Supersaturation of a solution system is a metastable state containing more solute than can be normally solubilized. Moreover, this condition is thermodynamically important for a system undergoing a phase transition. This state plays critical roles in deposition morphology in inorganic, organic, polymer and protein solution systems. In particular, microscopic solution states under supersaturated conditions have recently received much attention. In this report, we observed the dynamic motion of individual ion-network domains (INDs) in a supersaturated sodium acetate trihydrate solution (6.4 M) by using microsecond time-resolved and high accuracy (picometre scale) X-ray observations (diffracted X-ray tracking; DXT). We found that there are femto-Newton (fN) anisotropic force fields in INDs that correspond to an Angstrom-scale relaxation process (continuous expansion and compression) of the INDs at 25 μs time scale. The observed anisotropic force-field (femto-Newton) from DXT can lead to new explanations of how material crystallization is triggered. This discovery could also influence the interpretation of supercooling, bio-polymer and protein aggregation processes, and supersaturated systems of many other materials. PMID:26658326

  8. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  9. Microdosimetry of the full slowing down of protons using Monte Carlo track structure simulations.

    PubMed

    Liamsuwan, T; Uehara, S; Nikjoo, H

    2015-09-01

    The article investigates two approaches in microdosimetric calculations based on Monte Carlo track structure (MCTS) simulations of a 160-MeV proton beam. In the first approach, microdosimetric parameters of the proton beam were obtained using the weighted sum of proton energy distributions and microdosimetric parameters of proton track segments (TSMs). In the second approach, phase spaces of energy depositions obtained using MCTS simulations in the full slowing down (FSD) mode were used for the microdosimetric calculations. Targets of interest were water cylinders of 2.3-100 nm in diameters and heights. Frequency-averaged lineal energies ([Formula: see text]) obtained using both approaches agreed within the statistical uncertainties. Discrepancies beyond this level were observed for dose-averaged lineal energies ([Formula: see text]) towards the Bragg peak region due to the small number of proton energies used in the TSM approach and different energy deposition patterns in the TSM and FSD of protons.

  10. Automatic PSO-Based Deformable Structures Markerless Tracking in Laparoscopic Cholecystectomy

    NASA Astrophysics Data System (ADS)

    Djaghloul, Haroun; Batouche, Mohammed; Jessel, Jean-Pierre

    An automatic and markerless tracking method of deformable structures (digestive organs) during laparoscopic cholecystectomy intervention that uses the (PSO) behavour and the preoperative a priori knowledge is presented. The associated shape to the global best particles of the population determines a coarse representation of the targeted organ (the gallbladder) in monocular laparoscopic colored images. The swarm behavour is directed by a new fitness function to be optimized to improve the detection and tracking performance. The function is defined by a linear combination of two terms, namely, the human a priori knowledge term (H) and the particle's density term (D). Under the limits of standard (PSO) characteristics, experimental results on both synthetic and real data show the effectiveness and robustness of our method. Indeed, it outperforms existing methods without need of explicit initialization (such as active contours, deformable models and Gradient Vector Flow) on accuracy and convergence rate.

  11. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  12. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    PubMed

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  13. The real structure of columnar pinning centers in heavy-ion-irradiated cuprate superconductors

    SciTech Connect

    Welch, D.O.; Zhu, Y.; Budhani, R.C.

    1995-12-31

    There has been considerable recent interest in the use of columnar defects produced by irradiation with energetic heavy ions to raise the irreversibility line and improve the critical current density of cuprate superconductors. In the interpretation and theoretical modeling of the flux-pinning characteristics of heavy-ion tracks, it is generally assumed that they are simply columns of non-superconducting material. In this paper we present a more realistic description, based both on resistivity measurements and on detailed, quantitative transmission electron microscope methods (both imaging and analytical studies), of the nature of heavy-ion damage, including defects, disorder, strain fields, and oxygen deficiencies in the matrix of the superconductor surrounding the amorphous columns. The presence of such disorder appears to be a consequence of the mechanism of track formation, which involves partial epitaxial regrowth of a molten region which follows the passage of sufficiently energetic ions.

  14. In Situ Tracking Kinetic Pathways of Li(+)/Na(+) Substitution during Ion-Exchange Synthesis of LixNa1.5-xVOPO4F0.5.

    PubMed

    Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng

    2017-09-13

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li(+)/Na(+) substitution during solvothermal ion-exchange synthesis of LixNa1.5-xVOPO4F0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na(+) by Li(+), leading to peculiar Na(+)/Li(+)/vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.

  15. Stimulus-responsive track pores

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaru; Tamada, Masao; Asano, Masaharu; Omichi, Hideki; Kubota, Hitoshi; Katakai, Ryoichi; Spohr, Reimar; Vetter, Johann

    1993-03-01

    Ion track grafting enables the manufacture of chemically responsive track pores analogous to the discrete membrane channels found in biology. For this purpose etched ion tracks generated in CR-39 are surface-grafted by methacryloyl-L-alaninemethylester. In the future, the responsive track pores could be used to model the actively controlled channels in biomembranes and may lead to interesting technological applications.

  16. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  17. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  18. Travelling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans.

    PubMed

    Harvey, David J; Scarff, Charlotte A; Edgeworth, Matthew; Crispin, Max; Scanlan, Christopher N; Sobott, Frank; Allman, Sarah; Baruah, Kavitha; Pritchard, Laura; Scrivens, James H

    2013-08-01

    Travelling wave ion mobility was investigated for its ability to separate N-glycans from other compounds and for resolution of isomers. Charged glycans, exemplified by sialylated complex N-glycans released from bovine fetuin and ionised by electrospray, could be separated from residual glycopeptides allowing the minor, more highly sialylated compounds to be detected where their ions were obscured by ions from other compounds in different charge states. This technique was also found to be excellent for extracting the N-glycan profiles from contaminated samples. Structural identification of the glycans was performed by negative ion CID fragmentation, a method that provides a wealth of structurally diagnostic ions. However, fragment ions can also appear in the glycan profiles where they can be mistaken for glycan molecular ions. Fragments and molecular ions were frequently shown to have different drift time profiles, allowing them to be differentiated. Some separation of isomers was found but only for the smallest compounds. Differentiation from conformers was achieved by plotting drift time profiles of the fragments; these profiles matched those of the precursor ions where conformers were present. The techniques were applied to investigations of N-glycans released from the fungus Piptoporus betulinus where the technique was used to separate different carbohydrate types present in biological extracts. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    PubMed Central

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-01-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains. PMID:28378837

  20. Real-time tracking the Li(+)-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes.

    PubMed

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-05

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li(+) migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  1. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  2. Complete structural characterization of ceramides as [M-H](-) ions by multiple-stage linear ion trap mass spectrometry.

    PubMed

    Hsu, Fong-Fu

    2016-11-01

    Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MS(n)) towards complete structural determination of ceramides in ten major families characterized as the [M-H](-) ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS(2) spectrum, while the sequential MS(3) and MS(4) spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail.

  3. Development and fabrication of a two-axis tracking structure and baseline module improvement

    SciTech Connect

    Sanders, J.A.; Cass, D.C.

    1987-03-01

    The design improvement objectives of this project were to further enhance the performance and reduce cost of the second-generation low-profile point-focus Fresnel lens concentrator. The primary objective was to redesign a two-axis drive mechanism and structure that overcomes the failure modes of the first-generation design and increases collector aperture area without detriment to performance. A secondary objective was to develop secondary optics and grid obscuration techniques to improve module electrical performance and increase tracking error tolerance. The drive mechanism and structure design resulted in a significant reduction in the number of parts and improved structural integrity. The tracking structure is capable of supporting 70 square meters of flat-plate modules and 41 square meters of second-generation point-focus Fresnel lens modules. A total internal reflector (TIR) with cell grid obscuration grooves was designed. The TIR had superior offtracking performance over secondary reflectors but, without grid obscuration, was unable to achieve operating efficiencies equal to the earlier designs. Grid obscuration designs were evolved and proof of concept established. Further development is necessary to evaluate the actual application of grid obscuration techniques under high concentration.

  4. Tracking "apolar" NMe4+ ions within two polyoxothiomolybdates that have the same pores: smaller clathrate and larger highly porous clusters in action.

    PubMed

    Korenev, Vladimir S; Boulay, Antoine G; Haouas, Mohamed; Bannani, Fatma; Fedin, Vladimir P; Sokolov, Maxim N; Terazzi, Emmanuel; Garai, Somenath; Müller, Achim; Taulelle, Francis; Marrot, Jérôme; Leclerc, Nathalie; Floquet, Sébastien; Cadot, Emmanuel

    2014-03-10

    Two nanosized polyoxothiometalates were synthesized based on linking oxomolybdate building blocks with {Mo2O2S2}(2+) groups. Remarkably, both compounds are formed selectively primarily upon changing the related concentrations in a logical way; they exhibit common structural features based on the same {Mo9O6S3}-type pores, which result in connections between {Mo6O21} pentagons and {Mo2O2S2}(2+) linkers. Whereas the much larger spherical Mo132-type Keplerate contains twenty pores, the smaller Mo63 -type cluster remarkably contains only two. The two compounds and a similar Keplerate exhibit interesting supramolecular properties related to interactions with the unusual predominantly apolar NMe4(+) cations. Structural characterization of the Mo63 -type compound reveals in the solid state a clathrate-like species that contains four NMe4(+) cations embedded in two types of structurally well-adapted pockets. Related NMR spectroscopic investigations in solution using NMe4(+) as the NMR spectroscopic probe are in agreement with the solid-state description. (1)H NMR spectroscopic experiments (1D variable-temperature, 2D total correlation spectroscopy (TOCSY), exchange spectroscopy (EXSY), and diffusion-ordered spectroscopy (DOSY)) feature firmly immobilized and mobile NMe4(+) ions in relationship with the type of host-guest arrangements. The use of the (1)H NMR DOSY spectroscopic methodology has been successfully applied to track the interactions of the NMe4(+) cations with the {Mo9O6S3} pores of a sulfurated Keplerate, thereby allowing the first quantitative analysis of this type of plugging process. The stability constant K=(210±20) mol(-1)  L is discussed related to the character of the process.

  5. Combining ion mobility spectrometry with hydrogen-deuterium exchange and top-down MS for peptide ion structure analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R; Donohoe, Gregory C; Valentine, Stephen J

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H](4+) ions exhibit two conformers with collision cross sections of 418 Å(2) and 471 Å(2). [M+3H](3+) ions exhibit a predominant conformer with a collision cross section of 340 Å(2) as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å(2). Maximum HDX levels for the more compact [M+4H](4+) ions and the compact and partially-folded [M+3H](3+) ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  6. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  7. Magnetic force microscopy and spinstand testing of multi-row-per-track discrete bit patterned media fabricated by focused ion beam

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Huang, T. L.; Leong, S. H.; Hu, S. B.; Ng, K. W.; Yuan, Z. M.; Zong, B. Y.; Shi, J. Z.; Hendra, S. K.; Liu, B.; Ng, V.

    2009-04-01

    Multi-row-per-track discrete bit patterned media with interleaved bits have been fabricated on granular perpendicular media disks by focused ion beam and tested by magnetic force microscopy and spinstand tester. It was found that sub-100 nm patterned magnetic islands showed single domain behavior and narrowed switching field distribution. We further demonstrate from captured spinstand readback waveforms the concept of recording two rows of interleaved dot bits as one track. In addition to overcoming the down track patterning resolution limit, the proposed concept patterned media provide many other advantages including higher data rate for read/write, a flexible bit aspect ratio (BAR)≥2 design for better integration with head design and servo control, as well as allowing the use of wider write pole to improve writing efficiency for high density recording.

  8. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  9. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  10. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J

    2017-05-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.

  11. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-03-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  12. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-05-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  13. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation.

    PubMed

    Grygiel, C; Lebius, H; Bouffard, S; Quentin, A; Ramillon, J M; Madi, T; Guillous, S; Been, T; Guinement, P; Lelièvre, D; Monnet, I

    2012-01-01

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX ("Analyse en Ligne sur IRRSUD par diffraction de rayons X"), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accélérateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO(3). We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO(3), which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO(3), defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.

  14. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Grygiel, C.; Lebius, H.; Bouffard, S.; Quentin, A.; Ramillon, J. M.; Madi, T.; Guillous, S.; Been, T.; Guinement, P.; Lelièvre, D.; Monnet, I.

    2012-01-01

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX ("Analyse en Ligne sur IRRSUD par diffraction de rayons X"), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accélérateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO3. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO3, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO3, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.

  15. Tropical Cyclone Intensity, Structure and Track Observed with Multi-Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Yang, S.; Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2016-12-01

    Tropical cyclones (TCs) are among the most severe weather systems and can lead to catastrophic damage to human lives, properties, and society. A TC's intensity, structure and track are the major parameters for weather forecasts of TC activities. Satellite sensors provide the only method of global, near real-time observations of TC life cycles. Passive microwave sensors, such as Advanced Microwave Scanning Radiometer 2 (AMSR-2), Global Precipitation Measurement microwave imager (GMI), and Special Sensor Microwave Imager/Sounder (SSMIS), can present accurate analysis of TC intensity, center position, eyewall, and spiral convection zones because of the ability for microwave frequencies to penetrate clouds and observe hydrometeor structure. Multi-satellite sensors are required to provide a near real-time global coverage of TCs because each Low Earth Orbit (LEO) sensor can make observations twice per day over a given location. The Naval Research Laboratory-Monterey (NRL-MRY) TC web page is the one-stop site where people can search for all available TC microwave sensor observations and associated numerical weather prediction (NWP) TC forecasts for current TCs and historical TC datasets. This TC web page can provide information of near real-time TC observations and predictions for local/regional managements to make better decisions on mitigating potential TC damages. This presentation will describe recent advances on the rich resources of satellite-based TC observations and related NWP forecasts on the NRL-MRY TC web page, including the inter-sensor calibration on frequency shift between sensors for consistent view of TC brightness temperatures (TBs) among these sensors, recenter of TC position with the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm, and a new interpolation scheme to create a unified TC TB database. An improved TC track analysis and TC diurnal properties with this new TC TB database will also be presented and discussed for better

  16. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultra-relativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  17. Poles tracking of weakly nonlinear structures using a Bayesian smoothing method

    NASA Astrophysics Data System (ADS)

    Stephan, Cyrille; Festjens, Hugo; Renaud, Franck; Dion, Jean-Luc

    2017-02-01

    This paper describes a method for the identification and the tracking of poles of a weakly nonlinear structure from its free responses. This method is based on a model of multichannel damped sines whose parameters evolve over time. Their variations are approximated in discrete time by a nonlinear state space model. States are estimated by an iterative process which couples a two-pass Bayesian smoother with an Expectation-Maximization (EM) algorithm. The method is applied on numerical and experimental cases. As a result, accurate frequency and damping estimates are obtained as a function of amplitude.

  18. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  19. Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking.

    PubMed

    Ge, Quanbo; Wei, Zhongliang; Cheng, Tianfa; Chen, Shaodong; Wang, Xiangfeng

    2017-05-06

    Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion methods has better adjustment performance for the complex air task network systems, and it can effectively help the system to achieve the goal under the given constraints. Because of the time-varying situation of the task network system induced by moving nodes and non-cooperative target, and limitations such as communication bandwidth and measurement distance, it is necessary to dynamically adjust the system fusion structure including sensors and fusion methods in a given adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by using an optimization learning technology. The purpose is to dynamically determine the sensors' numbers and the associated sensors to take part in the centralized and distributed fusion processes, respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are introduced. Especially, the survivability index is presented and defined. Secondly, based on the two indexes and considering other conditions such as communication bandwidth and measurement distance, optimization models for both single target tracking and multi-target tracking are established. Correspondingly, solution steps are given for the two optimization models in detail. Simulation examples are demonstrated to validate the proposed algorithms.

  20. H∞ Tracking Control for Minimum Time Slewing of Flexible Space Structure

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Fujiki, Takaaki; A. Fujii, Hironori

    This paper presents experimental results of H infinity tracking control for slewing flexible space structures. The model of flexible space structure employed in the experiment consists of a rigid body rotating around a shaft and a flexible beam attached to the rigid body. The minimum time optimal control for flexible structure, which is a multi bang-bang control, is used to obtain a reference optimal trajectory. Two full-bridge strain gauges are located at the root of the beam in order to sense the bending-moment of the flexible beam and a tachometer is located at the rotary shaft of the torque motor in order to measure the angular velocity of the rigid main body. The angular velocity and bending-moment are utilized to calculate the control torque provided to the main body. The effectiveness of the H infinity feedback tracking control on suppression of residual vibration and achieving the goal attitude is studied for two types of flexible beams experimentally.

  1. Anomaly detection for a vibrating structure: A subspace identification/tracking approach.

    PubMed

    Candy, J V; Franco, S N; Ruggiero, E L; Emmons, M C; Lopez, I M; Stoops, L M

    2017-08-01

    Mechanical devices operating in noisy environments lead to low signal-to-noise ratios creating a challenging signal processing problem to monitor the vibrational signature of the device in real-time. To detect/classify a particular type of device from noisy vibration data, it is necessary to identify signatures that make it unique. Resonant (modal) frequencies emitted offer a signature characterizing its operation. The monitoring of structural modes to determine the condition of a device under investigation is essential, especially if it is a critical entity of an operational system. The development of a model-based scheme capable of the on-line tracking of structural modal frequencies by applying both system identification methods to extract a modal model and state estimation methods to track their evolution is discussed along with the development of an on-line monitor capable of detecting anomalies in real-time. An application of this approach to an unknown structural device is discussed illustrating the approach and evaluating its performance.

  2. Crystallization of ultrathin W-Si multilayer structures by high-energy heavy ion irradiations

    SciTech Connect

    Marfaing, J.; Marine, W. ); Vidal, B. ); Toulemonde, M. ); Hage Ali, M.; Stoquert, J.P. )

    1990-10-22

    Ultrathin amorphous multilayers structures (1.55 nm bilayer period) were irradiated by high-energy heavy ion ({sup 127}I and {sup 238}U ions). Transmission electron microscopy study shows that the ion-material interaction in such a configuration leads to an irreversible transformation of the initial amorphous structures. In this letter, we report the first observation of the crystallization of the multilayers induced by the heavy ion irradiations with a subsequent formation of a new WSi structure. The crucial role of the electronic effects in the crystallization process is discussed relatively to the other phenomena induced under the ion irradiation.

  3. Some electronic and magnetic properties of Fluoride ion in Fluoride structure nanocrystals

    NASA Astrophysics Data System (ADS)

    Imtani, Ali Nasir

    2012-01-01

    We have investigated the effects of the environment potential around Fluoride ion on some important electronic and magnetic properties such as dipole polarisability, moment of oscillator strengths S(k) and magnetic susceptibility. The theoretical procedure is based on the variational-perturbation theory with two parameter trial functions incorporated in an ionic model. We estimate these properties in four cases for Fluoride ion; free ion, ion under different potentials, ion in the crystals and ion in nanocrystal, CdF2, CaF2, PbF2, SrF2 and BaF2. Our results indicate that these properties vary with ion environments and the free state of Fluoride ion has higher values and there is linearity behaviour of these properties with lattice constant. For Fluoride ion in nanocrystal, we have found that there is an extra parameter that can also affect the dipole polarisability, the number of ions in the structure.

  4. Ion induced changes in the structure of bordered pit membranes.

    PubMed

    Lee, Jinkee; Holbrook, N Michele; Zwieniecki, Maciej A

    2012-01-01

    Ion-mediated changes in xylem hydraulic resistance are hypothesized to result from hydrogel like properties of pectins located in the bordered pit membranes separating adjacent xylem vessels. Although the kinetics of the ion-mediated changes in hydraulic resistance are consistent with the swelling/deswelling behavior of pectins, there is no direct evidence of this activity. In this report we use atomic force microscopy (AFM) to investigate structural changes in bordered pit membranes associated with changes in the ionic concentration of the surrounding solution. When submerged in de-ionized water, AFM revealed bordered pit membranes as relatively smooth, soft, and lacking any sharp edges surface, in contrast to pictures from scanning electron microscope (SEM) or AFM performed on air-dry material. Exposure of the bordered pit membranes to 50 mM KCl solution resulted in significant changes in both surface physical properties and elevation features. Specifically, bordered pit membranes became harder and the fiber edges were clearly visible. In addition, the membrane contracted and appeared much rougher due to exposed microfibers. In neither solution was there any evidence of discrete pores through the membrane whose dimensions were altered in response to the ionic composition of the surrounding solution. Instead the variable hydraulic resistance appears to involve changes in the both the permeability and the thickness of the pit membrane.

  5. Carbon-Ion Pencil Beam Scanning Treatment With Gated Markerless Tumor Tracking: An Analysis of Positional Accuracy.

    PubMed

    Mori, Shinichiro; Karube, Masataka; Shirai, Toshiyuki; Tajiri, Minoru; Takekoshi, Takuro; Miki, Kentaro; Shiraishi, Yurika; Tanimoto, Katsuyuki; Shibayama, Kouichi; Yasuda, Shigeo; Yamamoto, Naoyoshi; Yamada, Shigeru; Tsuji, Hiroshi; Noda, Koji; Kamada, Tadashi

    2016-05-01

    Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected in real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fatigue crack monitoring in train track steel structures using plastic optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Yang, D.; Li, D.; Kuang, K. S. C.

    2017-10-01

    Plastic optical fiber (POF) sensors have shown excellent potential for damage detection and structural health monitoring in a variety of engineering structures. This paper discusses the feasibility of using POF sensors in conjunction with a signal-processing algorithm capable of detecting and monitoring fatigue-induced cracks in train track steel structures in real time. The POF sensor, which was modified from an existing design to increase the signal sensitivity, allows for accurate detection of a fatigue crack developed in a specimen, and was found to compare well to the reference acoustic emission (AE) sensors and crack opening displacement (COD) gauge attached to the specimen. The crack-detection technique, which relies on capturing the intensity variation of the POF sensor, was not susceptible to any signal fluctuations commonly associated with intensity-based optical fiber sensors. The results show that the technique has potential for use in detecting the initiation and propagation of specific segments of a structure vulnerable to cracking due to external cyclic loading, e.g. at welded joints in train tracks under train loads or offshore structures subject to wave loads. The POF sensor system is composed of inexpensive parts (LED light source, photodetectors, and data acquisition units) and can easily be installed to the host structure. To validate the proposed damage-detection technique, the instrumented specimens are subjected to cyclic loading in order to induce stable crack propagation in the specimen. A COD gauge and AE were used for the purpose of calibration and comparison. The results show remarkable resemblance in terms of crack initiation and propagation identification exhibited by all three types of sensors, highlighting the potential of the proposed sensor for crack initiation detection and subsequent monitoring of crack propagation.

  7. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Deng, Liulin; Zheng, Xueyun; Webb, Ian K.; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report on ion mobility separations (IMS) achievable using traveling waves in a Structures for Lossless Ion Manipulations (TW-SLIM) module having a 44-cm path length and sixteen 90º turns. The performance of the TW-SLIM module was evaluated for ion transmission, and ion mobility separations with different RF, TW parameters and SLIM surface gaps in conjunction with mass spectrometry. In this work TWs were created by the transient and dynamic application of DC potentials. The TW-SLIM module demonstrated highly robust performance and the ion mobility resolution achieved even with sixteen close spaced turns was comparable to a similar straight path TW-SLIM module. We found an ion mobility peak capacity of ~ 31 and peak generation rate of 780 s-1 for TW speeds of <210 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ~ 0.9-m drift tube-based IMS-MS platform operated at the same pressure (4 torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater ion mobility resolutions via greatly extended ion path lengths and compact serpentine designs that do not significantly impact the instrumentation profile, a direction described in a companion manuscript.

  8. Compact non-rock-salt structures in sodium fluoride cluster ions at specific sizes revealed by ion mobility mass spectrometry.

    PubMed

    Ohshimo, Keijiro; Takahashi, Tohru; Moriyama, Ryoichi; Misaizu, Fuminori

    2014-10-30

    Structures of small sodium fluoride cluster cations, Na(n)F(n-1)(+), have been determined for n = 5-23 by ion mobility mass spectrometry. In the mass spectrum of Na(n)F(n-1)(+) cluster ions measured after collisions in the ion-drift cell, cuboid ions with near-regular hexahedron such as n = 14 (3 × 3 × 3), 23 (3 × 3 × 5), 38 (3 × 5 × 5), 63 (5 × 5 × 5), and 88 (5 × 5 × 7) were predominantly observed as magic numbers. By comparison of the collision cross sections obtained from the ion mobility measurements with theoretical ones, we have experimentally shown that the ions of n = 7 and 10 have stable non-rock-salt type structures in which one sodium atom is encapsulated into the sodium fluoride cuboid lattice. The collision cross sections of n = 12 and 13 are almost equal to that of the n = 14 cuboid. A similar feature was also observed in collision cross sections of n = 21 and 22, which are equal to that of the n = 23 cuboid. These features indicate that the cluster ions of n = 12, 13, 21, and 22 have near-cuboid structures with some surface defects.

  9. Status of structural analysis of 30 cm diameter ion optics

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Hering, Gary T.

    1990-01-01

    Three structural finite element programs are compared with theory, experimental data, and each other to evaluate their usefulness for modeling the thermomechanical deflection of ion engine electrodes. Two programs, NASTRAN and MARC, used a Cray XMP and the third, Algor, used an IBM compatible personal computer. The shape of the applied temperature gradient greatly affects off-axis displacement, implying that an accurate temperature distribution is required to analyze new designs. The use of bulk material constants to model the perforated electrodes was investigated. The stress and displacement predictions are shown to be sensitive to the temperature gradient and the Young's modulus, and insensitive to number of nodes, above some minimum value, and the Poisson ratio used. The models are shown to be useful tools for evaluating designs. Experimental measurements of temperatures and displacements was identified as the most critical area.

  10. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    SciTech Connect

    Chacon, Kelly N.; Mealman, Tiffany D.; McEvoy, Megan M.; Blackburn, Ninian J.

    2014-10-13

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. In this paper, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Finally, our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.

  11. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    DOE PAGES

    Chacon, Kelly N.; Mealman, Tiffany D.; McEvoy, Megan M.; ...

    2014-10-13

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. In this paper, we use selenomethionine (SeM) active site labelsmore » in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Finally, our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.« less

  12. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    PubMed Central

    Mealman, Tiffany D.; McEvoy, Megan M.; Blackburn, Ninian J.

    2014-01-01

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. Here, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm. PMID:25313055

  13. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  14. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    DOE PAGES

    Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; ...

    2014-09-15

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less

  15. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations.

    PubMed

    Webb, Ian K; Garimella, Sandilya V B; Tolmachev, Aleksey V; Chen, Tsung-Chi; Zhang, Xinyu; Cox, Jonathan T; Norheim, Randolph V; Prost, Spencer A; LaMarche, Brian; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2014-10-07

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a "Tee" configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.

  16. Structural transitions in ion coordination driven by changes in competition for ligand binding.

    PubMed

    Varma, Sameer; Rempe, Susan B

    2008-11-19

    Transferring Na(+) and K(+) ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations, and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into overcoordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry, and temperature, on the stabilities of ion coordination structures are also explored.

  17. Structural and Thermodynamic Properties of Selective Ion Binding in a K+ Channel

    PubMed Central

    Lockless, Steve W; Zhou, Ming; MacKinnon, Roderick

    2007-01-01

    Thermodynamic measurements of ion binding to the Streptomyces lividans K+ channel were carried out using isothermal titration calorimetry, whereas atomic structures of ion-bound and ion-free conformations of the channel were characterized by x-ray crystallography. Here we use these assays to show that the ion radius dependence of selectivity stems from the channel's recognition of ion size (i.e., volume) rather than charge density. Ion size recognition is a function of the channel's ability to adopt a very specific conductive structure with larger ions (K+, Rb+, Cs+, and Ba2+) bound and not with smaller ions (Na+, Mg2+, and Ca2+). The formation of the conductive structure involves selectivity filter atoms that are in direct contact with bound ions as well as protein atoms surrounding the selectivity filter up to a distance of 15 Å from the ions. We conclude that ion selectivity in a K+ channel is a property of size-matched ion binding sites created by the protein structure. PMID:17472437

  18. Near real-time tracking of dynamic properties for standalone structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.; Cosenza, E.

    2011-11-01

    Automated modal parameter identification of civil engineering structures has been analyzed in a previous paper. An original algorithm, named LEONIDA, working in frequency domain, has been presented and a number of test cases have been discussed in order to point out advantages and drawbacks. It has been demonstrated that LEONIDA represents a promising and reliable tool, in particular for modal testing. Conversely, integration of such a procedure into a fully automated structural health monitoring (SHM) system has shown that it can be used as modal information engine, but length of record durations, amount of computational burden and response time lead to recognize that serious drawbacks and limitations exist for a class of applications, such as continuous monitoring of structures in seismically prone areas. In fact, a fast assessment of relevant structure health conditions in the early post-earthquake phase is becoming of interest in different European areas. In such a context, the statistical treatment of measured dynamic properties could be certainly useful, but it requires the collection of an extensive amount of local and global data in a short time. As a consequence, availability of reliable, robust and fairly fast data processing procedures for modal tracking is fundamental whenever really effective and useful SHM systems are adopted to support civil protection activities during seismic sequences. This applies mainly to strategic structures, whose health conditions must be rapidly assessed after any seismic event, in order to securely manage rescue operations. In the present paper, the main issues related to a fast, robust and reliable modal tracking for emergency management are outlined. Then, an automated modal tracking strategy for SHM applications in earthquake prone regions is described. It is based on the knowledge of the experimental mode shapes and a revised concept of spatial filtering. Results of sample applications of the proposed procedure refer

  19. Structural aspects of rubidium ion selectivity by tribenzo-21-crown-7

    SciTech Connect

    Bryan, J.C.; Sachleben, R.A.; Lavis, J.M.; Davis, M.C.; Burns, J.H.; Hay, B.P.

    1998-06-01

    The structural origins of the selectivity of rubidium ion over other alkali metal ions (Cs, Rb, Na, Re) by tribenzo-21-crown-7 is investigated from single-crystal X-ray diffraction. The structures reported here are the first reported for a tribenzo-21-crown-7, and the alkali metal ion complexes are the first reported structures of these ions with any 21-crown-7 ether. Different crown conformations are observed for each structure. Molecular mechanics calculations were performed on all conformers, and the results are related to the observed extraction selectivity for rubidium.

  20. High-speed tracking of intracellular structures: understanding the transport mechanisms in living plant cells

    NASA Astrophysics Data System (ADS)

    López-Quesada, C.; Joseph, M.; Selva, J.; Farré, A.; Egea, G.; Ludevid, M. D.; Martín-Badosa, E.; Montes-Usategui, M.

    2011-10-01

    Zera® technology offers the possibility to artificially induce the formation of spherical organelles in different kinds of cells. Their large size and high density, compared to the native organelles of the cell, make them good candidates to be used as a handles for the realization of biophysical experiments inside living cells. Furthermore, they present a high signal-to-noise ratio in fluorescence microscopy and small photobleaching. This work focuses mainly on the nature of protein body motion in Nicotiana Benthamiana (tobacco) cells. The high-speed tracking of these structures reveals that they move in a stepwise mode, suggesting that myosin XI motors directly pull these organelles through the cytosol. Our results indicate that these artificially-induced structures are well integrated into the natural processes of the cell so that the technique may be advantageous for the study of the intracellular transport mechanisms. Large forces can be exerted with optical tweezers to mechanically interact with the moving organelles.

  1. Magnetic and structural properties of manganese ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Awo-Affouda, Chaffra A.

    2007-12-01

    This thesis focuses on semiconductor based spin electronics. The integration of ferromagnetic regions into semiconductor "spintronic" devices to produce spin polarized current is a dynamic research area. One avenue is to make conventional semiconductors ferromagnetic by doping with a transition metal impurity such as Mn. For this, we first investigated the magnetic properties of Mn-implanted Si. We were able to measure above room temperature ferromagnetic hysteresis loops. The high Curie temperature obtained (>400 K), indicated that the synthesis of a technologically useful Si-based magnetic semiconductor is possible. We then focused on studying the structure of the implanted samples in order to establish a correlation between the magnetic and structural properties. The structural investigation involved secondary ion mass spectrometry, Rutherford backscattering, and transmission electron microscopy (TEM) as the main characterization techniques. The combination of the structural and magnetic studies allowed us to isolate an "active" region from which the ferromagnetism originates. We then found that the magnetic properties of the samples are strongly dependant on the interaction of the Mn atoms with the residual implant damage. The evolution of the Mn concentration profiles was also found to be closely related to the distribution of the Si lattice defects. We also observed the formation of Mn rich secondary phases at high enough annealing temperatures >800°C. However, we argued that theses crystallites cannot account for all the observed magnetic properties due to the low Curie temperature of these compounds in bulk form. We concluded that achieving a room temperature Si-based DMS has great potential but careful synthesis of this material system is needed to prevent secondary phase formation.

  2. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  3. Three-scale structure of diffusion region in the presence of cold ions

    NASA Astrophysics Data System (ADS)

    Divin, A.; Khotyaintsev, Yu. V.; Vaivads, A.; André, M.; Toledo-Redondo, S.; Markidis, S.; Lapenta, G.

    2016-12-01

    Kinetic simulations and spacecraft observations typically display the two-scale structure of collisionless diffusion region (DR), with electron and ion demagnetization scales governing the spatial extent of the DR. Recent in situ observations of the nightside magnetosphere, as well as investigation of magnetic reconnection events at the Earth's magnetopause, discovered the presence of a population of cold (tens of eV) ions of ionospheric origin. We present two-dimensional particle-in-cell simulations of collisionless magnetic reconnection in multicomponent plasma with ions consisting of hot and cold populations. We show that a new cold ion diffusion region scale is introduced in between that of hot ions and electrons. Demagnetization scale of cold ion population is several times (˜4-8) larger than the initial cold ion gyroradius. Cold ions are accelerated and thermalized during magnetic reconnection and form ion beams moving with velocities close to the Alfvén velocity.

  4. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-06

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  5. Understanding chlorophylls: central magnesium ion and phytyl as structural determinants.

    PubMed

    Fiedor, Leszek; Kania, Agnieszka; Myśliwa-Kurdziel, Beata; Orzeł, Łukasz; Stochel, Grazyna

    2008-12-01

    Phytol, a C20 alcohol esterifying the C-17(3) propionate, and Mg2+ ion chelated in the central cavity, are conservative structural constituents of chlorophylls. To evaluate their intramolecular structural effects we prepared a series of metal- and phytyl-free derivatives of bacteriochlorophyll a and applied them as model chlorophylls. A detailed spectroscopic study on the model pigments reveals meaningful differences in the spectral characteristics of the phytylated and non-phytylated pigments. Their analysis in terms of solvatochromism and axial coordination shows how the central Mg and phytyl residue shape the properties of the pigment. Surprisingly, the presence/absence of the central Mg has no effect on the solvatochromism of (bacterio)chlorophyll pi-electron system and the hydrophobicity of phytyl does not interfere with the first solvation shell of the chromophore. However, both residues significantly influence the conformation of the pigment macrocycle and the removal of either residue increases the macrocycle flexibility. The chelation of Mg has a flattening effect on the macrocycle whereas bulky phytyl residue seems to control the conformation of the chromophore via steric interactions with ring V and its substituents. The analysis of spectroscopic properties of bacteriochlorophyllide (free acid) shows that esterification of the C-17(3) propionate is necessary in chlorophylls because the carboxyl group may act as a strong chelator of the central Mg. These observations imply that the truncated chlorophylls used in theoretical studies are not adequate as models of native chromophores, especially when fine effects are to be modeled.

  6. Investigation of structural mimetics of natural phosphate ion binding motifs.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A

    2015-02-16

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of the phosphate residue. New hosts contain additional free amino groups with the aim to facilitate coordination of protonated anions, such as dihydrogen phosphate. According to spectrophotometric measurements, stepwise 1:1 and 1:2 binding modes have been observed for both receptors in the presence of acetate, hydrogen sulfate and dihydrogen phosphate. Compared with the acyclic receptor, the macrocyclic receptor has demonstrated a remarkably enhanced selectivity for dihydrogen phosphate over other anions. Fluorometric measurements have revealed different responses of the acyclic and macrocyclic receptors towards anions. However, in both cases, a 5-8 nm hypsochromic shift of fluorescence maximum has been observed upon interaction of acetate and dihydrogen phosphate with receptors.

  7. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  8. Ion etching of human adenovirus 2: structure of the core

    SciTech Connect

    Newcomb, W.W.; Boring, J.W.; Brown, J.C.

    1984-07-01

    The surface of human adenovirus 2 was etched by irradiating intact virions with low-energy (1-keV) Ar/sup +/ ions in a Technics Hummer V sputter coater. Viral structures exposed by the etching process were shadowed and then examined in the electron microscope. Periods of etching that were sufficient to reduce the viral diameter by 20 to 30 nm revealed distinct substructural elements in the virion core. Cores were found to consist of a cluster of 12 large, uniformly sized spheres which abutted one another in the intact virion. The spheres, for which we suggest the name adenosomes, had a diameter of 23.0 +/- 2.3 nm, and they were related to each other by two-, three-, and fivefold axes of rotational symmetry. The results support the view, originally suggested by Brown et al. that the adenovirus 2 core is composed of 12 large spheres packed tightly together in such a way that each is directed toward the vertex of an icosahedron. Such a structure, constructed of 23.0-nm-diameter spheres, would have an outside diameter (vertex-to-vertex distance) of 67.0 nm and a face-to-face distance of 58.2 nm. It could be accommodated inside the icosahedral adenovirus capsid if each large sphere were located beneath a capsid vertex.

  9. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  10. MCTBI: a web server for predicting metal ion effects in RNA structures.

    PubMed

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg(2+) effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  12. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Toimil-Molares, M E; Trautmann, Christina

    2015-01-01

    Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were confo