Sample records for ion-beam based methods

  1. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Yahong; Hu Chundong; Liu Sheng

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  2. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen

    2012-01-01

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  3. Calibrating ion density profile measurements in ion thruster beam plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Zun; Tang, Haibin; Ren, Junxue; Zhang, Zhe; Wang, Joseph

    2016-11-01

    The ion thruster beam plasma is characterized by high directed ion velocity (104 m/s) and low plasma density (1015 m-3). Interpretation of measurements of such a plasma based on classical Langmuir probe theory can yield a large experimental error. This paper presents an indirect method to calibrate ion density determination in an ion thruster beam plasma using a Faraday probe, a retarding potential analyzer, and a Langmuir probe. This new method is applied to determine the plasma emitted from a 20-cm-diameter Kaufman ion thruster. The results show that the ion density calibrated by the new method can be as much as 40% less than that without any ion current density and ion velocity calibration.

  4. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection.

    PubMed

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter

    2010-06-21

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  5. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in the beam width could be measured with a precision of 0.9 mm. Furthermore, shifts of the lateral beam position could be monitored with a sub-millimetre precision. The presented investigations demonstrate experimentally that the non-invasive measurement and analysis of secondary ion distributions around head-sized homogeneous objects provide information on the actual beam delivery. Beam range, width and position could be monitored with a precision attractive for therapeutic situations.

  6. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  7. High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver

    2013-03-01

    Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence distributions like those in intensity-modulated treatment plans or plans including dose painting. Since no water phantom is needed to perform measurements, the flat-panel detector investigated has high potential for use with gantries. Before the method can be used in the clinical routine, it has to be sufficiently tested for each detector-facility combination.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de; Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are basedmore » on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.« less

  9. Using measured 30-150 kVp polychromatic tungsten x-ray spectra to determine ion chamber calibration factors, Nx (Gy C(-1)).

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-10-01

    Two methods for determining ion chamber calibration factors (Nx) are presented for polychromatic tungsten x-ray beams whose spectra differ from beams with known Nx. Both methods take advantage of known x-ray fluence and kerma spectral distributions. In the first method, the x-ray tube potential is unchanged and spectra of differing filtration are measured. A primary standard ion chamber with known Nx for one beam is used to calculate the x-ray fluence spectrum of a second beam. Accurate air energy absorption coefficients are applied to the x-ray fluence spectra of the second beam to calculate actual air kerma and Nx. In the second method, two beams of differing tube potential and filtration with known Nx are used to bracket a beam of unknown Nx. A heuristically derived Nx interpolation scheme based on spectral characteristics of all three beams is described. Both methods are validated. Both methods improve accuracy over the current half value layer Nx estimating technique.

  10. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  11. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  12. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  13. Experiments on Ion Beam Deflection Using Ion Optics with Slit Apertures

    NASA Astrophysics Data System (ADS)

    Okawa, Yasushi; Hayakawa, Yukio; Kitamura, Shoji

    2004-03-01

    An experimental investigation on ion beam deflection by grid translation was performed. The ion beam deflection in ion optics is a desired technology for ion thrusters because thrust vector control utilizing this technique can eliminate the need for conventional gimbaling devices and thus reduce propulsion system mass. A grid translation mechanism consisting of a piezoelectric motor, a ceramic lever, and carbon-based grids with slit apertures was fabricated and high repeatability in beam deflection characteristics was obtained using this mechanism. Results showed that the beam deflection angle was proportional to the grid translation distance and independent of slit width and grid voltage. A numerical simulation successfully reproduced the beam deflection characteristics in a qualitative and quantitative sense. A maximum beam deflection angle of approximately plus or minus 6 degrees, which was comparable to that of the ordinary gimbaling devices used in space, was obtained without a severe drain current. Therefore, the beam deflection by grid translation is promising as a thrust vectoring method in ion thrusters.

  14. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Computers and the design of ion beam optical systems

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  16. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  17. Comparisons between GRNTRN simulations and beam measurements of proton lateral broadening distributions

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John

    Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.

  18. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-04-01

    This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  20. MO-A-213AB-11: First Experimental Test of Secondary Ion Tracking for the Assessment of Beam Range in a Patient-Like Phantom.

    PubMed

    Martisikova, M; Jakubek, J; Gwosch, K; Hartmann, B; Telsemeyer, J; Soukup, P; Granja, C; Pospisil, S; Jaekel, O

    2012-06-01

    Radiation therapy with ion beams provides highly conformal dose distributions. Therefore, monitoring the dose delivery within the patient in a non- invasive way is desired. The clinically available method based on tissue activation measurements with a PET-camera shows limitations due to the low induced activities and biological washout of the activated nuclei. The prompt production of secondary ions is supposed to be less influenced by biological processes. This contribution investigates the feasibility of beam range monitoring in a patient-like geometry containing realistic tissue inhomogeneities. The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany using carbon ion beams of 213 and 250MeV/u. Static pencil beams (FWHM of 6mm) were applied to the skull base and brain regions of a head phantom containing real bones. The emerging secondary ions were registered by the silicon detector Timepix. It was developed by the Medipix Collaboration and provides 256×256 pixels with 55um pitch. To determine the direction of the particles, a multi-layered detector (3D voxel detector, J.Jakubek etal. JINST6 C12010) was employed. The contribution of K. Gwosch etal. addresses the performance of this method in a homogeneous phantom. In the 3D distributions of the measured secondary ions clear differences between the application of lower and higher energies were observed. This Result was achieved in both brain (homogeneous) and skull base regions (containing inhomogeneities). Differences between the energies could be observed with the detector positioned on the occipital side as well as on the facial side of the head. We performed the first experiments towards beam range monitoring in a patient-like geometry exploiting tracking of prompt secondary ions with a small detector prototype. Despite the inherent tissue inhomogeneities, we found sensitivity on the beam range in both brain and skull base. Research carried out in frame of the Medipix Collaboration. Research carried out in frame of the Medipix Collaboration. © 2012 American Association of Physicists in Medicine.

  1. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  2. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  3. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks.

    PubMed

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-21

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u -1 . The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm -3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  4. Methods and apparatus for altering material using ion beams

    DOEpatents

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  5. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  6. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  7. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  8. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  9. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  10. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  11. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  12. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  13. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  14. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    NASA Astrophysics Data System (ADS)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  15. Potential mapping with charged-particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Tillery, D. G.

    1979-01-01

    Experimental methods of mapping the equipotential surfaces near some structure of interest rely on the detection of charged particles which have traversed the regions of interest and are detected remotely. One method is the measurement of ion energies for ions created at a point of interest and expelled from the region by the fields. The ion energy at the detector in eV corresponds to the potential where the ion was created. An ionizing beam forms the ions from background neutrals. The other method is to inject charged particles into the region of interest and to locate their exit points. A set of several trajectories becomes a data base for a systematic mapping technique. An iterative solution of a boundary value problem establishes concepts and limitations pertaining to the mapping problem.

  16. On the effectiveness of ion range determination from in-beam PET data

    NASA Astrophysics Data System (ADS)

    Fiedler, Fine; Shakirin, Georgy; Skowron, Judith; Braess, Henning; Crespo, Paulo; Kunath, Daniela; Pawelke, Jörg; Pönisch, Falk; Enghardt, Wolfgang

    2010-04-01

    At present, in-beam positron emission tomography (PET) is the only method for in vivo and in situ range verification in ion therapy. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI) Darmstadt, Germany, a unique in-beam PET installation has been operated from 1997 until the shut down of the carbon ion therapy facility in 2008. Therapeutic irradiation by means of 12C ion beams of more than 400 patients have been monitored. In this paper a first quantitative study on the accuracy of the in-beam PET method to detect range deviations between planned and applied treatment in clinically relevant situations using simulations based on clinical data is presented. Patient treatment plans were used for performing simulations of positron emitter distributions. For each patient a range difference of ± 6 mm in water was applied and compared to simulations without any changes. The comparisons were performed manually by six experienced evaluators for data of 81 patients. The number of patients required for the study was calculated using the outcome of a pilot study. The results indicate a sensitivity of (91 ± 3)% and a specificity of (96 ± 2)% for detecting an overrange, a reduced range is recognized with a sensitivity of (92 ± 3)% and a specificity of (96 ± 2)%. The positive and the negative predictive value of this method are 94% and 87%, respectively. The interobserver coefficient of variation is between 3 and 8%. The in-beam PET method demonstrated a high sensitivity and specificity for the detection of range deviations. As the range is a most indicative factor of deviations in the dose delivery, the promising results shown in this paper confirm the in-beam PET method as an appropriate tool for monitoring ion therapy.

  17. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  18. Development of Wien filter for small ion gun of surface analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahng, Jungbae; Busan Center, Korea Basic Science Institute, Busan 609-735; Hong, Jonggi

    The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum.more » Methods Phys. Res., Sect. B 206, 830–837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar{sup +}{sub 2500} clusters from Ar{sup +}{sub 2400} to Ar{sup +}{sub 2600} clusters with a 1-mm collimator.« less

  19. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  20. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  1. A new multidimensional diagnostic method for measuring the properties of intense ion beams

    NASA Astrophysics Data System (ADS)

    Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao

    1996-02-01

    A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.

  2. Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2002-11-01

    A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.

  3. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  4. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  5. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  6. Helium ion beam imaging for image guided ion radiotherapy.

    PubMed

    Martišíková, M; Gehrke, T; Berke, S; Aricò, G; Jäkel, O

    2018-06-14

    Ion beam radiotherapy provides potential for increased dose conformation to the target volume. To translate it into a clinical advantage, it is necessary to guarantee a precise alignment of the actual internal patient geometry with the treatment beam. This is in particular challenging for inter- and intrafractional variations, including movement. Ion beams have the potential for a high sensitivity imaging of the patient geometry. However, the research on suitable imaging methods is not conclusive yet. Here we summarize the research activities within the "Clinical research group heavy ion therapy" funded by the DFG (KFO214). Our aim was to develop a method for the visualization of a 1 mm thickness difference with a spatial resolution of about 1 mm at clinically applicable doses. We designed and built a dedicated system prototype for ion radiography using exclusively the pixelated semiconductor technology Timepix developed at CERN. Helium ions were chosen as imaging radiation due to their decreased scattering in comparison to protons, and lower damaging potential compared to carbon ions. The data acquisition procedure and a dedicated information processing algorithm were established. The performance of the method was evaluated at the ion beam therapy facility HIT in Germany with geometrical phantoms. The quality of the images was quantified by contrast-to-noise ratio (CNR) and spatial resolution (SR) considering the imaging dose. Using the unique method for single ion identification, degradation of the images due to the inherent contamination of the outgoing beam with light secondary fragments (hydrogen) was avoided. We demonstrated experimentally that the developed data processing increases the CNR by 350%. Consideration of the measured ion track directions improved the SR by 150%. Compared to proton radiographs at the same dose, helium radiographs exhibited 50% higher SR (0.56 ± 0.04lp/mm vs. 0.37 ± 0.02lp/mm) at a comparable CNR in the middle of the phantom. The clear visualization of the aimed inhomogeneity at a diagnostic dose level demonstrates a resolution of 0.1 g/cm 2 or 0.6% in terms of water-equivalent thickness. We developed a dedicated method for helium ion radiography, based exclusively on pixelated semiconductor detectors. The achievement of a clinically desired image quality in simple phantoms at diagnostic dose levels was demonstrated experimentally.

  7. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from the ion source by high voltage applied to the extraction and accelerating grids. The current distribution of a single beamlet emitted from a single pore of IOS depends on the shape of the plasma boundary in the emission region. Total beam extracted by IOS is calculated at every point of 3D mesh as sum of all contributions from each grid pore. The code effectively unifies the ion beam formation, extraction and neutralization processes with neutral beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. Running time: 10 min for a standard run.

  8. A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail

    NASA Technical Reports Server (NTRS)

    Brown, Ian G.; Lane, John E.; Youngquist, Robert C.

    2006-01-01

    We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.

  9. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  10. Thermoelectric Figures of Merit of Zn4Sb3 and Zrnisn-based Half-heusler Compounds Influenced by Mev Ion-beam Bombardments

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C. I.; Ila, D.

    Semiconducting β-Zn4Sb3 and ZrNiSn-based half-Heusler compound thin films with applications as thermoelectric (TE) materials were prepared using ion beam assisted deposition (IBAD). High-purity solid zinc (Zn) and antimony (Sb) were evaporated by electron beam to grow the β-Zn4Sb3 thin film while high-purity zirconium (Zr) powder and nickel (Ni) tin (Sn) powders were evaporated by electron beam to grow the ZrNiSn-based half-Heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardment for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardment. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam couldcause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ω-method (3rd harmonic) measurement system to measure the cross-plane thermal conductivity, the van der Pauw measurement system to measure the electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.

  11. High-flux source of low-energy neutral beams using reflection of ions from metals

    NASA Technical Reports Server (NTRS)

    Cuthbertson, John W.; Motley, Robert W.; Langer, William D.

    1992-01-01

    Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.

  12. Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2016-10-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.

  13. Evaluation of an empirical monitor output estimation in carbon ion radiotherapy.

    PubMed

    Matsumura, Akihiko; Yusa, Ken; Kanai, Tatsuaki; Mizota, Manabu; Ohno, Tatsuya; Nakano, Takashi

    2015-09-01

    A conventional broad beam method is applied to carbon ion radiotherapy at Gunma University Heavy Ion Medical Center. According to this method, accelerated carbon ions are scattered by various beam line devices to form 3D dose distribution. The physical dose per monitor unit (d/MU) at the isocenter, therefore, depends on beam line parameters and should be calibrated by a measurement in clinical practice. This study aims to develop a calculation algorithm for d/MU using beam line parameters. Two major factors, the range shifter dependence and the field aperture effect, are measured via PinPoint chamber in a water phantom, which is an identical setup as that used for monitor calibration in clinical practice. An empirical monitor calibration method based on measurement results is developed using a simple algorithm utilizing a linear function and a double Gaussian pencil beam distribution to express the range shifter dependence and the field aperture effect. The range shifter dependence and the field aperture effect are evaluated to have errors of 0.2% and 0.5%, respectively. The proposed method has successfully estimated d/MU with a difference of less than 1% with respect to the measurement results. Taking the measurement deviation of about 0.3% into account, this result is sufficiently accurate for clinical applications. An empirical procedure to estimate d/MU with a simple algorithm is established in this research. This procedure allows them to use the beam time for more treatments, quality assurances, and other research endeavors.

  14. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  15. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  16. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching.

    PubMed

    Liebig, J P; Göken, M; Richter, G; Mačković, M; Przybilla, T; Spiecker, E; Pierron, O N; Merle, B

    2016-12-01

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF 2 ) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF 2 etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Single-atom detection of isotopes

    DOEpatents

    Meyer, Fred W.

    2002-01-01

    A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.

  18. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate.more » The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.« less

  20. High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source

    NASA Astrophysics Data System (ADS)

    Zeng, Qiusun; Chen, Dehong; Wang, Minghuang

    2017-12-01

    In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.

  1. Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John

    2007-01-01

    The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.

  2. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    DOEpatents

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  3. Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions.

    PubMed

    Czub, Joanna; Banaś, Dariusz; Braziewicz, Janusz; Buraczewska, Iwona; Jaskóła, Marian; Kaźmierczak, Urszula; Korman, Andrzej; Lankoff, Anna; Lisowska, Halina; Szefliński, Zygmunt; Wojewódzka, Maria; Wójcik, Andrzej

    2018-05-30

    Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.

    2017-10-01

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.

  5. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  6. A simple method used to evaluate phase-change materials based on focused-ion beam technique

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Lv, Shilong; Zhou, Xilin; Du, Xiaofeng; Cheng, Yan; Yang, Pingxiong; Chu, Junhao

    2013-05-01

    A nanoscale phase-change line cell based on focused-ion beam (FIB) technique has been proposed to evaluate the electrical property of the phase-change material. Thanks to the FIB-deposited SiO2 hardmask, only one etching step has been used during the fabrication process of the cell. Reversible phase-change behaviors are observed in the line cells based on Al-Sb-Te and Ge-Sb-Te films. The low power consumption of the Al-Sb-Te based cell has been explained by theoretical calculation accompanying with thermal simulation. This line cell is considered to be a simple and reliable method in evaluating the application prospect of a certain phase-change material.

  7. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  8. Can we estimate plasma density in ICP driver through electrical parameters in RF circuit?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Chakraborty, A., E-mail: arunkc@iter-india.org

    2015-04-08

    To avoid regular maintenance, invasive plasma diagnostics with probes are not included in the inductively coupled plasma (ICP) based ITER Neutral Beam (NB) source design. Even non-invasive probes like optical emission spectroscopic diagnostics are also not included in the present ITER NB design due to overall system design and interface issues. As a result, negative ion beam current through the extraction system in the ITER NB negative ion source is the only measurement which indicates plasma condition inside the ion source. However, beam current not only depends on the plasma condition near the extraction region but also on the perveancemore » condition of the ion extractor system and negative ion stripping. Nevertheless, inductively coupled plasma production region (RF driver region) is placed at distance (∼ 30cm) from the extraction region. Due to that, some uncertainties are expected to be involved if one tries to link beam current with plasma properties inside the RF driver. Plasma characterization in source RF driver region is utmost necessary to maintain the optimum condition for source operation. In this paper, a method of plasma density estimation is described, based on density dependent plasma load calculation.« less

  9. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance,more » envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining the spatial and intensity characteristics of the heavy ion beamlets. The MCP used in this manner is a sensitive, accurate, and long-lasting detector, resistant against signal degradation experienced by previous methods of intense heavy ion beam detection and imaging. The performance of the GBI was benchmarked against existing mechanical emittance diagnostics and the results of sophisticated beam transport numerical simulation codes to demonstrate its usefulness as a diagnostic tool. A method of beam correction to remove the effects of quadrupole focusing element rotational misalignments is proposed using data obtainable from a GBI. An optimizing code was written to determine the parameters of the correction system elements based on input from the GBI. The results of this code for the Small Recirculator beam are reported on.« less

  10. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: christopher.kurz@physik.uni-muenchen.de; Bauer, Julia; Unholtz, Daniel

    2016-02-15

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolvedmore » (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.« less

  11. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  12. Through-silicon via plating void metrology using focused ion beam mill

    NASA Astrophysics Data System (ADS)

    Rudack, A. C.; Nadeau, J.; Routh, R.; Young, R. J.

    2012-03-01

    3D IC integration continues to increase in complexity, employing advanced interconnect technologies such as throughsilicon vias (TSVs), wafer-to-wafer (W2W) bonding, and multi-chip stacking. As always, the challenge with developing new processes is to get fast, effective feedback to the integration engineer. Ideally this data is provided by nondestructive in-line metrology, but this is not always possible. For example, some form of physical cross-sectioning is still the most practical way to detect and characterize TSV copper plating voids. This can be achieved by cleaving, followed by scanning electron microscope (SEM) inspection. A more effective physical cross-sectioning method has been developed using an automated dual-beam focused ion beam (FIB)-SEM system, in which multiple locations can be sectioned and imaged while leaving the wafer intact. This method has been used routinely to assess copper plating voids over the last 24 months at SEMATECH. FIB-SEM feedback has been used to evaluate new plating chemistries, plating recipes, and process tool requalification after downtime. The dualbeam FIB-SEM used for these studies employs a gallium-based liquid metal ion source (LMIS). The overall throughput of relatively large volumes being milled is limited to 3-4 hours per section due to the maximum available beam current of 20 nA. Despite the larger volumetric removal rates of other techniques (e.g., mechanical polishing, broad-ion milling, and laser ablation), the value of localized, site-specific, and artifact-free FIB milling is well appreciated. The challenge, therefore, has been to reap the desired FIB benefits, but at faster volume removal rates. This has led to several system and technology developments for improving the throughput of the FIB technique, the most recent being the introduction of FIBs based on an inductively coupled plasma (ICP) ion source. The ICP source offers much better performance than the LMIS at very high beam currents, enabling more than 1 μA of ion beam current for fast material removal. At a lower current, the LMIS outperforms the ICP source, but imaging resolution below 30 nm has been demonstrated with ICP-based systems. In addition, the ICP source allows a wide range of possible ion species, with Xe currently the milling species of choice, due to its high mass and favorable ion source performance parameters. Using a 1 μA Xe beam will have an overall milling rate for silicon some 20X higher than a Ga beam operating at 65 nA. This paper will compare the benefits already seen using the Ga-based FIB-SEM approach to TSV metrology, with the improvements in throughput and time-to-data obtained by using the faster material removal capabilities of a FIB based on an ICP ion source. Plasma FIB (PFIB) is demonstrated to be a feasible tool for TSV plating void metrology.

  13. A Penning sputter ion source with very low energy spread

    NASA Astrophysics Data System (ADS)

    Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.

    2010-03-01

    We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.

  14. Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.

    2010-01-01

    Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less

  15. Polarized negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less

  16. Ion Beam Measurements of a Dense Plasma Focus Device Using CR 39 Nuclear Track Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngoi, S. K.; Yap, S. L.; Wong, C. S.

    The project is carried out using a small Mather type plasma focus device powered by a 15 kV, 30 {mu}F capacitor. The filling gas used is argon. The ion beam generated is investigated by both time resolved and time integrated methods. Investigation on the dynamic of the current sheath is also carried out in order to obtain an optimum condition for ion beam production. The angular distribution of the ion emission is measured at positions of 0 deg. (end-on), 45 deg. and 90 deg. (side-on) by using CR-39 nuclear track detectors. The divergence of the ion beam is also determinedmore » using these detectors. A biased ion collector is used for time resolved measurement of the ion beam. Time of flight technique is employed for the determination of the ion beam energy. Average ion beam energy obtained is about 180 keV. The ion beam produced can be used for applications such as material surface modification and ion implantation.« less

  17. A dedicated software application for treatment verification with off-line PET/CT imaging at the Heidelberg Ion Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Chen, W.; Bauer, J.; Kurz, C.; Tessonnier, T.; Handrack, J.; Haberer, T.; Debus, J.; Parodi, K.

    2017-01-01

    We present the workflow of the offline-PET based range verification method used at the Heidelberg Ion Beam Therapy Center, detailing the functionalities of an in-house developed software application, SimInterface14, with which range analysis is performed. Moreover, we introduce the design of a decision support system assessing uncertainties and facilitating physicians in decisions making for plan adaptation.

  18. Ion beam induced 18F-radiofluorination: straightforward synthesis of gaseous radiotracers for the assessment of regional lung ventilation using positron emission tomography.

    PubMed

    Gómez-Vallejo, V; Lekuona, A; Baz, Z; Szczupak, B; Cossío, U; Llop, J

    2016-09-29

    A simple, straightforward and efficient method for the synthesis of [ 18 F]CF 4 and [ 18 F]SF 6 based on an ion beam-induced isotopic exchange reaction is presented. Positron emission tomography ventilation studies in rodents using [ 18 F]CF 4 showed a uniform distribution of the radiofluorinated gas within the lungs and rapid elimination after discontinuation of the administration.

  19. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  20. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  1. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    PubMed

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Ion beam figuring of Φ520mm convex hyperbolic secondary mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing

    2016-10-01

    The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.

  3. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    PubMed

    Prosa, Ty J; Larson, David J

    2017-04-01

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  4. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    PubMed

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  6. WE-D-BRF-04: Experimental Investigations On Ion Radiography with Beam Scanning Using a Range Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, I; Magallanes, L; Ludwig Maximilian University Munich

    2014-06-15

    Purpose: Ion beams exhibit a finite range and an inverted depth-dose profile, the Bragg peak. These favorable properties allow superior tumordose conformality, but introduce sensitivity to range uncertainties. Hence, imaging techniques play an increasingly important role to support the treatment planning and the in-vivo monitoring of the actual ion beam treatment. Methods: This work presents the experimental investigations carried out to address the feasibility of ion transmission imaging at the Heidelberg Ion Therapy center using an active raster scanning beam delivery system and a prototype range telescope set-up based on a stack of 61 parallel-plate ionization chambers (PPIC) interleaved withmore » 3 mm absorber plates of PMMA. Results: An extensive characterization of the set-up in terms of beam parameters and settings of the read-out electronics was performed and results will be presented. A data processing method to increase the range resolution (MIRR) of the PPIC stack was developed. In this approach, the position of the maximum of the Bragg curve is deduced from the ratio of measured signals in adjacent PPIC channels. MIRR evaluation is based on Bragg curves obtained from Monte Carlo simulations and validated with experimental data acquired with the PPIC stack using ion beams. MIRR was applied to the carbon ion radiography of an anthropomorphic Alderson head phantom yielding a resolution of 0.8 mm water equivalent thickness (WET) compared to the nominal value of 3.495 mm WET given by the thickness of the absorber slabs in the PPIC stack. An absolute comparison of the Alderson phantom carbon ion transmitted image with an X-ray digitally reconstructed radiography, both converted into WET, will also be shown. Conclusion: The obtained results are very promising and motivate further developments of the system towards an eventual clinical use.This work is supported by the German Research Foundation and the German Academic Exchange Service. This work is supported by the German Research Foundation (DFG) and the German Academic Exchange Service (DAAD)« less

  7. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  8. Design of a CW high charge state heavy ion RFQ for SSC-LINAC

    NASA Astrophysics Data System (ADS)

    Liu, G.; Lu, Y. R.; He, Y.; Wang, Z.; Xiao, C.; Gao, S. L.; Yang, Y. Q.; Zhu, K.; Yan, X. Q.; Chen, J. E.; Yuan, Y. J.; Zhao, H. W.

    2013-02-01

    The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.

  9. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Monokinetization of atomic beams by the method of laser photodetachment of electrons

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    1990-05-01

    A method is suggested for the generation of atomic beams with a high degree of monokinetization from beams of negative ions accelerated in an electric field up to a threshold moment at which, subject to the Doppler effect, the longitudinal component of the ion velocity becomes sufficient for the photodetachment of an electron from an ion by photons in a laser beam collinear with the ion beam. The resultant neutral atoms continue to move without acceleration and at the same longitudinal velocities equal to the threshold value. An analysis of a number of factors limiting this effect is given below.

  10. The characteristics of a new negative metal ion beam source and its applications

    NASA Astrophysics Data System (ADS)

    Paik, Namwoong

    2001-10-01

    Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract shortened by UMI.)

  11. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  12. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  13. Production of multicharged metal ion beams on the first stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya

    2016-02-15

    Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ionmore » beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.« less

  14. Probe measurements of the electron velocity distribution function in beams: Low-voltage beam discharge in helium

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.

    2018-04-01

    Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.

  15. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  16. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  17. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  18. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lin; Gigax, Jonathan; Chen, Di

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and in some cases introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb forcemore » drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less

  19. Ion beam figuring of highly steep mirrors with a 5-axis hybrid machine tool

    NASA Astrophysics Data System (ADS)

    Yin, Xiaolin; Tang, Wa; Hu, Haixiang; Zeng, Xuefeng; Wang, Dekang; Xue, Donglin; Zhang, Feng; Deng, Weijie; Zhang, Xuejun

    2018-02-01

    Ion beam figuring (IBF) is an advanced and deterministic method for optical mirror surface processing. The removal function of IBF varies with the different incident angles of ion beam. Therefore, for the curved surface especially the highly steep one, the Ion Beam Source (IBS) should be equipped with 5-axis machining capability to remove the material along the normal direction of the mirror surface, so as to ensure the stability of the removal function. Based on the 3-RPS parallel mechanism and two dimensional displacement platform, a new type of 5-axis hybrid machine tool for IBF is presented. With the hybrid machine tool, the figuring process of a highly steep fused silica spherical mirror is introduced. The R/# of the mirror is 0.96 and the aperture is 104mm. The figuring result shows that, PV value of the mirror surface error is converged from 121.1nm to32.3nm, and RMS value 23.6nm to 3.4nm.

  20. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  1. Production of negatively charged radioactive ion beams

    DOE PAGES

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-02-15

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less

  2. Planned development of a radioactive beam capability at the LBNL 88-inch cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Moltz, D.M.; Norman, E.B.

    1997-12-31

    Planned development of low-Z, proton-rich, radioactive beams ({sup 11}C, {sup 13}N, {sup 14}, {sup 15}O, and {sup 18}F) at the 88 inch Cyclotron of the Lawrence Berkeley National Lab is described. Based on the {open_quotes}coupled cyclotron method{close_quotes}, isotopes produced by (p,n) and (p,a) reactions at a high-current (30 mA), low-energy (10 MeV) medical cyclotron will be transferred {approximately}300 meters by high-speed gas-jet transport to the ECR ion-source at the 88 inch Cyclotron. Important features of this approach are its low cost, use of simple and well tested technology, applicability to nearly all elements, and avoidance of lengthy (chemical or physical)more » isotopic release delays at the production target. Developmental progress is reported for various operational components. Based on conservative estimates, e.g. 1% ECR ion-yield, extracted radioactive ion beams are projected to exceed 10{sup 6} ions/sec. Experiments which will use these beams include studies of the scattering of mirror nuclei, single and mutual excitation in inelastic scattering and single nucleon transfer reactions.« less

  3. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  4. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  5. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  6. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight deviations between the experimentally determined and the real Bragg peak positions. For improved accuracy, the energy dependence of the stopping power, and herewith the water equivalent thickness, of the material downstream of the water tank should be considered in the analysis of measured data.

  7. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy for carbon ion beam irradiation.

  8. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  9. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  10. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  11. Numerical simulation of ion charge breeding in electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less

  12. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}z< {k}zc, and the maximal growth rate is reached at {k}z≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  13. Studies on Beam Formation in an Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Nass, A.; Stancari, M.; Steffens, E.

    2009-08-01

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  14. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-01-13

    Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

  15. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    NASA Astrophysics Data System (ADS)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  16. SU-D-BRB-02: Investigations of Secondary Ion Distributions in Carbon Ion Therapy Using the Timepix Detector.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jaekel, O; Martisikova, M

    2012-06-01

    Due to the high conformity of carbon ion therapy, unpredictable changes in the patient's geometry or deviations from the planned beam properties can result in changes of the dose distribution. PET has been used successfully to monitor the actual dose distribution in the patient. However, it suffers from biological washout processes and low detection efficiency. The purpose of this contribution is to investigate the potential of beam monitoring by detection of prompt secondary ions emerging from a homogeneous phantom, simulating a patient's head. Measurements were performed at the Heidelberg Ion-Beam Therapy Center (Germany) using a carbon ion pencil beam irradiated on a cylindrical PMMA phantom (16cm diameter). For registration of the secondary ions, the Timepix detector was used. This pixelated silicon detector allows position-resolved measurements of individual ions (256×256 pixels, 55μm pitch). To track the secondary ions we used several parallel detectors (3D voxel detector). For monitoring of the beam in the phantom, we analyzed the directional distribution of the registered ions. This distribution shows a clear dependence on the initial beam energy, width and position. Detectable were range differences of 1.7mm, as well as vertical and horizontal shifts of the beam position by 1mm. To estimate the clinical potential of this method, we measured the yield of secondary ions emerging from the phantom for a beam energy of 226MeV/u. The differential distribution of secondary ions as a function of the angle from the beam axis for angles between 0 and 90° will be presented. In this setup the total yield in the forward hemisphere was found to be in the order of 10 -1 secondary ions per primary carbon ion. The presented measurements show that tracking of secondary ions provides a promising method for non-invasive monitoring of ion beam parameters for clinical relevant carbon ion fluences. Research with the pixel detectors was carried out in frame of the Medipix Collaboration. © 2012 American Association of Physicists in Medicine.

  17. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  18. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidorov, A.; Dorf, M.; Zorin, V.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less

  19. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  20. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness.

    PubMed

    Cometto, A; Russo, G; Bourhaleb, F; Milian, F M; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A

    2014-12-07

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions.Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion.Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data.

  1. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOEpatents

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  2. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  3. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    1995-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  4. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-02-05

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  5. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, L.; Beuhler, R.J.; Matthew, M.W.; Ledbetter, M.

    1984-06-25

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10/sup 6/ atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm/sup 2//sec in order to effect a precise modification in that selected area of the workpiece.

  6. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, Lewis; Buehler, Robert J.; Matthew, Michael W.; Ledbetter, Myron

    1985-01-01

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10.sup.6 atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm.sup.2 /sec. in order to effect a precise modification in that selected area of the workpiece.

  7. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  8. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  9. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.

  10. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  11. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.

    PubMed

    Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K

    2008-07-01

    To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.

  12. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  13. PET imaging for treatment verification of ion therapy: Implementation and experience at GSI Darmstadt and MGH Boston

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Bortfeld, Thomas; Enghardt, Wolfgang; Fiedler, Fine; Knopf, Antje; Paganetti, Harald; Pawelke, Jörg; Shakirin, Georgy; Shih, Helen

    2008-06-01

    Ion beams offer the possibility of improved conformation of the dose delivered to the tumor with better sparing of surrounding tissue and critical structures in comparison to conventional photon and electron external radiation treatment modalities. Full clinical exploitation of this advantage can benefit from in vivo confirmation of the actual beam delivery and, in particular, of the ion range in the patient. During irradiation, positron emitters like 15O (half-life T1/2≈2 min) and 11C ( T1/2≈20 min) are formed in nuclear interactions between the ions and the tissue. Detection of this transient radioactivity via positron emission tomography (PET) and comparison with the expectation based on the prescribed beam application may serve as an in vivo, non-invasive range validation method of the whole treatment planning and delivery chain. For technical implementation, PET imaging during irradiation (in-beam) requires the development of customized, limited angle detectors with data acquisition synchronized with the beam delivery. Alternatively, commercial PET or PET/CT scanners in close proximity to the treatment site enable detection of the residual activation from long-lived emitters shortly after treatment (offline). This paper reviews two clinical examples using a dedicated in-beam PET scanner for verification of carbon ion therapy at GSI Darmstadt, Germany, as well as a commercial offline PET/CT tomograph for post-radiation imaging of proton treatments at Massachusetts General Hospital, Boston, USA. Challenges as well as pros and cons of the two imaging approaches in dependence of the different ion type and beam delivery system are discussed.

  14. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  15. Effect of heavy ion beam irradiation on germination of local Toraja rice seed (M1-M2) mutant generation

    NASA Astrophysics Data System (ADS)

    Sjahril, R.; Riadi, M.; Rafiuddin; Sato, T.; Toriyama, K.; Abe, T.; Trisnawaty, A. R.

    2018-05-01

    Local rice in general has several weaknesses among others, long life, high plant posture and low yield result. The character is a limiting factor that causes farmers low interest to grow local rice. It is feared this will cause the lack of local rice cultivars as germplasm materials. Therefore, there is an effort to create a diversity of morphological characters, as the character of selection, especially related to the age of harvest and plant posture. One method is through breeding mutation by irradiation using ion beam. The objective of this research is to evaluate seed germination resulted after irradiation using ion beam in two varieties of Toraja local rice. The study was prepared based on a randomized block design pattern consisting of six treatments by testing two local Toraja rice varieties namely Pare Ambok and Pare Lea treated with ion beam irradiation of Argon and Carbon ion and control plant as comparison. Each grain from one panicle was germinated in one line method on a Ø15 cm Petri dish and transplanted into small plastic bags. Each treatment was repeated as much as 20 times which was then considered as a strain. The results showed that irradiation using Argon ion in local rice seed of Pare Ambok variety and of Pare Lea varieties produce better seedlings sprouts than irradiation using Carbon ion. Further M2 seed germination shows uniqueness in some seedlings produced such as lighter leaf color, albinism, wrinkled leaf, etc. which could prove potential mutant lines in tested M2 lines seed.

  16. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  17. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    PubMed

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  18. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  19. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  20. Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography

    NASA Astrophysics Data System (ADS)

    Kollmann, H.; Esmann, M.; Becker, S. F.; Piao, X.; Huynh, C.; Kautschor, L.-O.; Bösker, G.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Park, N.; Silies, M.; Lienau, C.

    2016-03-01

    Metallic nanoantennas are able to spatially localize far-field electromagnetic waves on a few nanometer length scale in the form of surface plasmon excitations 1-3. Standard tools for fabricating bowtie and rod antennas with sub-20 nm feature sizes are Electron Beam Lithography or Ga-based Focused Ion Beam (FIB) Milling. These structures, however, often suffer from surface roughness and hence show only a limited optical polarization contrast and therefore a limited electric field localization. Here, we combine Ga- and He-ion based milling (HIM) for the fabrication of gold bowtie and rod antennas with gap sizes of less than 6 nm combined with a high aspect ratio. Using polarization-sensitive Third-Harmonic (TH) spectroscopy, we compare the nonlinear optical properties of single HIM-antennas with sub-6-nm gaps with those produced by standard Ga-based FIB. We find a pronounced enhancement of the total TH intensity of more than three in comparison to Ga-FIB antennas and a highly improved polarization contrast of the TH intensity of 250:1 for Heion produced antennas 4. These findings combined with Finite-Element Method calculations demonstrate a field enhancement of up to one hundred in the few-nanometer gap of the antenna. This makes He-ion beam milling a highly attractive and promising new tool for the fabrication of plasmonic nanoantennas with few-nanometer feature sizes.

  1. Versatile plasma ion source with an internal evaporator

    NASA Astrophysics Data System (ADS)

    Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.

    2011-04-01

    A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.

  2. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, J; Kim, M; Shin, D

    2014-06-01

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction ofmore » beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.« less

  3. Growth of biaxially textured template layers using ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Park, Seh-Jin

    A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.

  4. Dynamic Target Definition: a novel approach for PTV definition in ion beam therapy.

    PubMed

    Cabal, Gonzalo A; Jäkel, Oliver

    2013-05-01

    To present a beam arrangement specific approach for PTV definition in ion beam therapy. By means of a Monte Carlo error propagation analysis a criteria is formulated to assess whether a voxel is safely treated. Based on this a non-isotropical expansion rule is proposed aiming to minimize the impact of uncertainties on the dose delivered. The method is exemplified in two cases: a Head and Neck case and a Prostate case. In both cases the modality used is proton beam irradiation and the sources of uncertainties taken into account are positioning (set up) errors and range uncertainties. It is shown how different beam arrangements have an impact on plan robustness which leads to different target expansions necessary to assure a predefined level of plan robustness. The relevance of appropriate beam angle arrangements as a way to minimize uncertainties is demonstrated. A novel method for PTV definition in on beam therapy is presented. The method show promising results by improving the probability of correct dose CTV coverage while reducing the size of the PTV volume. In a clinical scenario this translates into an enhanced tumor control probability while reducing the volume of healthy tissue being irradiated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  6. Direct nuclear reaction experiments for stellar nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Cherubini, S.

    2017-09-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi-Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the ^{18} F(p, α ^{15} O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the ^{18} F(d, α ^{15} O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  7. Ion source and beam guiding studies for an API neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, A.; Ji, Q.; Persaud, A.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ionmore » current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.« less

  8. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    PubMed

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  9. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  10. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  11. Simulated electron beam trajectories toward a field ion microscopy specimen

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Camus, P. P.; Kelly, T. F.

    1993-04-01

    This article explores the conditions under which a directed electron beam originating nearly normal to the specimen axis can be made to impact the near-apex region of a field ion microscopy specimen in a high electric field. Electron trajectories were calculated using a modified Runge-Kutta numerical method. The results indicate that an electron beam can be directed to a specimen under typical field ion microscopy conditions using two methods: by varying initial beam tilt (less than 60 mrad) or by translating the initial beam position relative to the specimen apex (less than 5 mm). The net focusing effect of the high electric field on the electron beam can be treated, to first order, as an astigmatism and may be correctable by a post-lens deflection system.

  12. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using Rutherford backscattering technique which showed the satisfactory functioning of the system. The accuracy of the fluence measurements is found to be less than 2% which meets the demands of the irradiation experiments undertaken using the developed set up. The system was incorporated for regular use at the existing ultra high vacuum (UHV) ion irradiation chamber of 1.7 MV Tandem accelerator and several ion implantation experiments on a variety of samples like SS304, D9, ODS alloys have been successfully carried out.

  13. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  14. Point-like neutron source based on high-current electron cyclotron resonance ion source with powerful millimeter wave plasma heating

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.

    2018-01-01

    A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.

  15. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  16. Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams.

    PubMed

    Barnes, Michael P; Greer, Peter B

    2017-01-01

    Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam performance. The MPC beam constancy checks test the beam output, uniformity, and beam center against the user defined baseline. MPC was run daily over a period of 5 months (n = 115) in parallel with the Daily QA3 device. Additionally, IC Profiler, in-house EPID tests, and ion chamber measurements were performed biweekly and results presented in a form directly comparable to MPC. The sensitivity of MPC was investigated using controlled adjustments of output, beam angle, and beam position steering. Over the period, MPC output agreed with ion chamber to within 0.6%. For an output adjustment of 1.2%, MPC was found to agree with ion chamber to within 0.17%. MPC beam center was found to agree with the in-house EPID method within 0.1 mm. A focal spot position adjustment of 0.4 mm (at isocenter) was measured with MPC beam center to within 0.01 mm. An average systematic offset of 0.5% was measured in the MPC uniformity and agreement of MPC uniformity with symmetry measurements was found to be within 0.9% for all beams. MPC uniformity detected a change in beam symmetry of 1.5% to within 0.3% and 0.9% of IC Profiler for flattened and FFF beams, respectively. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Development of an energy analyzer as diagnostic of beam-generated plasma in negative ion beam systems

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.

    2017-08-01

    The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.

  18. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  19. Detectors for low energy electron cooling in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlier, F. S.

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less

  20. Proof of principle of helium-beam radiography using silicon pixel detectors for energy deposition measurement, identification, and tracking of single ions.

    PubMed

    Gehrke, Tim; Gallas, Raya; Jäkel, Oliver; Martišíková, Maria

    2018-02-01

    Hadron therapy has the capability to provide a high dose conformation to tumor regions. However, it requires an accurate target positioning. Thus, the precise monitoring of the patient's anatomical positioning during treatment is desirable. For this purpose, hadron-beam radiography with protons (pRad) and ions (iRad) could be an attractive tool complementing the conventional imaging technologies. On the pathway to an envisaged clinical application, several challenges have to be addressed. Among them are achieving the desired spatial resolution in the presence of multiple Coulomb scattering (MCS), performing radiographs with a sufficient thickness resolution at clinically applicable dose levels, and the search for combinations of particularly suitable hadrons and detectors. These topics are investigated in this work for a detection system based on silicon pixel detectors. A method of iRad based on energy deposition measurements in thin layers is introduced. It exploits a detection system consisting of three parallel silicon pixel detectors, which also enables particle tracking and identification. Helium ions, which exhibit less pronounced MCS than protons, were chosen as imaging radiation. A PMMA phantom with a mean water-equivalent thickness (WET) of 192 mm, containing maximal WET-variations of ±6 mm, was imaged with a 173 MeV/u helium ion beam at the Heidelberg Ion-Beam Therapy Center. WET-differences in form of 2.3 mm × 2.3 mm steps were aimed to be visualized and resolved in images of the energy deposition measured behind the phantom. The detection system was placed downstream of the imaged object in order to detect single ions leaving it. The combination of the measured information on energy deposition, ion type, and the track behind the phantom was used for the image formation, employing a self-developed data-processing procedure. It was shown that helium-beam radiography is feasible with the reported detection system. The introduced data preprocessing purified the detector signal from detector artifacts and improved the image quality. Additionally, the rejection of hydrogen ions originating from nuclear interactions was shown to increase the contrast-to-noise ratio (CNR) by at least a factor of 2.5. This enabled the resolution of relative thickness differences of 1.2% at a dose level typical for diagnostic x-ray images. The spatial resolution was improved by taking into account the direction of single helium ions leaving the phantom. A spatial resolution (MTF 10% ) of at least 1.15p mm -1 for the presented experimental set-up was achieved. A successful feasibility study of helium-beam radiography with the introduced detection system was conducted. The methodology of iRad was based on energy deposition measurements in thin silicon layers. The tracking of single ions and the method of the ion identification was shown to be important for helium-beam radiography in terms of spatial resolution and CNR. © 2017 American Association of Physicists in Medicine.

  1. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  2. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.

    PubMed

    Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui

    2010-12-01

    In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.

  3. Solution of the Fokker-Planck equation with mixing of angular harmonics by beam-beam charge exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, D.R.

    1989-09-01

    A method for solving the linear Fokker-Planck equation with anisotropic beam-beam charge exchange loss is presented. The 2-D equation is transformed to a system of coupled 1-D equations which are solved iteratively as independent equations. Although isotropic approximations to the beam-beam losses lead to inaccurate fast ion distributions, typically only a few angular harmonics are needed to include accurately the effect of the beam-beam charge exchange loss on the usual integrals of the fast ion distribution. Consequently, the algorithm converges very rapidly and is much more efficient than a 2-D finite difference method. A convenient recursion formula for the couplingmore » coefficients is given and generalization of the method is discussed. 13 refs., 2 figs.« less

  4. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  5. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  6. Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less

  7. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    NASA Astrophysics Data System (ADS)

    Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  8. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei

    2009-03-10

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of amore » silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.« less

  9. Study on the coloration response of a radiochromic film to MeV cluster ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Chiba, Atsuya; Hirano, Yoshimi; Saitoh, Yuichi

    2017-11-01

    A radiochromic film, Gafchromic HD-V2, is applied to a possible method of measuring a two-dimensional (2D) spatial profile of MeV cluster ion beams. The coloration responses of the HD-V2 film to MeV carbon and gold cluster ion beams are experimentally investigated since some cluster effect may appear. The degree of the film coloration is quantified as a change in optical density (OD) by reading the films with an image scanner for high-resolution measurement of the 2D beam profile. The OD response of HD-V2 is characterized as a function of the ion and atom fluence for comparison. The dependences of the OD response on the cluster size, kinetic energy, and ion species are discussed. It is found that the sensitivity of the OD change is reduced when the cluster size is large. The beam profile of MeV cluster ion beams delivered from the tandem accelerator in TIARA is characterized from the measurement result using HD-V2 films. The present results show that the use of the Gafchromic HD-V2 film is suitable for the detail beam profile measurement of MeV cluster ions, especially C60 ions, whose available intensity is rather low in comparison with that of monatomic ion beams.

  10. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    PubMed

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  11. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lin; Gigax, Jonathan; Chen, Di

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less

  12. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    DOE PAGES

    Shao, Lin; Gigax, Jonathan; Chen, Di; ...

    2017-06-12

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less

  13. Emittance preservation in plasma-based accelerators with ion motion

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...

    2017-11-01

    In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less

  14. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, Marc; Görtz, Björn; Ristau, Detlev

    2006-03-01

    Methods for the manufacture of rugate filters by the ion-beam-sputtering process are presented. The first approach gives an example of a digitized version of a continuous-layer notch filter. This method allows the comparison of the basic theory of interference coatings containing thin layers with practical results. For the other methods, a movable zone target is employed to fabricate graded and gradual rugate filters. The examples demonstrate the potential of broadband optical monitoring in conjunction with the ion-beam-sputtering process. First-characterization results indicate that these types of filter may exhibit higher laser-induced damage-threshold values than those of classical filters.

  15. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  16. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He + and Ne + beam lithographymore » of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  17. A novel method for assessment of fragmentation and beam-material interactions in helium ion radiotherapy with a miniaturized setup.

    PubMed

    Gallas, Raya R; Arico, Giulia; Burigo, Lucas N; Gehrke, Tim; Jakůbek, Jan; Granja, Carlos; Tureček, Daniel; Martišíková, Maria

    2017-10-01

    Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups. We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220MeV/u 4 He beam was below 6% behind 24.5cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy. The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  19. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  20. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    PubMed Central

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  1. Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields.

    PubMed

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T; Bull, Arthur W; Sevilla, Michael D

    2012-12-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields.

  2. Method for discriminative particle selection

    DOEpatents

    Post, Richard F.

    1992-01-01

    The invention is a method and means for separating ions or providing an ion beam. The invention generates ions of the isotopes to be separated, and then provides a traveling electric potential hill created by a sequential series of quasi static electric potential hills. By regulating the velocity and potential amplitude of the traveling electric potential hill ionized isotopes are selectively positively or negatively accelerated. Since the ionized isotopes have differing final velocities, the isotopes may be collected separately or used to produce an ion beam of a selected isotope.

  3. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  4. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  5. FIB-based measurement of local residual stresses on microsystems

    NASA Astrophysics Data System (ADS)

    Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd

    2006-03-01

    The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  6. Theory of the polarization of highly charged ions in storage rings: Production, preservation, observation and application to the search for a violation of the fundamental symmetries

    NASA Astrophysics Data System (ADS)

    Bondarevskaya, A.; Prozorov, A.; Labzowsky, L.; Plunien, G.; Liesen, D.; Bosch, F.

    2011-10-01

    Theoretical concepts for the production, preservation and control of polarized highly charged ion beams in storage rings are investigated. It is argued that hydrogen-like ions can be polarized efficiently by optical pumping of the Zeeman sublevels of ground state hyperfine levels and that the maximum achievable nuclear polarization exceeds 90%. In order to study the preservation of the polarization during the ion motion through the magnetic system of the ring, the concept of the instantaneous quantization axis is introduced. It is suggested that the employment of “Siberian snakes” may help to preserve the ion beam polarization in the ring. The control of the beam polarization can be achieved by different methods: by measuring the Stokes parameters for the emitted photons or by observing the angular dependence of the transition rates for polarized ions. The important motivation for the production of polarized ion beams is the possibility to observe parity nonconservation effects in the hyperfine-quenched transitions in helium-like highly charged ions, where these effects can reach an unprecedented high value for atomic physics. The possible observation of parity nonconservation effects connected with the nuclear anapole moment is also discussed. A method for the observation of the electric dipole moment of an electron in a storage ring with a polarized highly charged ion beam is proposed. This method allows, in principle, to improve the existing boundaries for the electric dipole moment of an electron. However, the requirements of the corresponding experiment are very stringent.

  7. Groundbased studies of spacecraft glow and erosion caused by impact of oxygen and nitrogen beams

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Cohen, S. A.; Manos, D. M.; Motley, R. W.; Paul, S. F.

    1987-01-01

    To simulate surface reactions in the space environment a ground-based facility was developed that produces a very high flux 10(14) to 10(16)/sq cm/s of low energy (2 to 20 eV) neutral atoms and molecules. The neutral beams are created using a method involving neutralization and reflection of ions from a biased limiter, where the ions are extracted from a toroidal plasma source. The spectra of emission due to beam-solid interactions on targets of Chemglaze Z-306 optical paint and Kapton are presented. Erosion yields for carbon and Kapton targets with low energy (approx. 10 eV) nitrogen and oxygen beams were measured. The reaction rates and surface morphology for the erosion of Kapton are similar to those measured in experiments on STS-5.

  8. Ion related problems for the XLS ring

    NASA Astrophysics Data System (ADS)

    Bozoki, Eva S.; Halama, Henry

    1991-10-01

    The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.

  9. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  10. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  11. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  12. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  13. New Fusion Concept Using Coaxial Passing Through Each Other Self-focusing Colliding Beams (Invention)

    NASA Astrophysics Data System (ADS)

    Chikvashvili, Ioseb

    2011-10-01

    In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.

  14. Dose response of alanine detectors irradiated with carbon ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru

    Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were alsomore » examined.« less

  16. Recent Development of IMP LECR3 Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.M.; Zhao, H.W.; Li, J.Y.

    2005-03-15

    18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.

  17. Nitric oxide assisted C60 secondary ion mass spectrometry for molecular depth profiling of polyelectrolyte multilayers.

    PubMed

    Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A

    2015-12-15

    Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  19. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  20. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction.more » The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.« less

  1. Intense ion beam diagnostics for ICF

    NASA Astrophysics Data System (ADS)

    Yasuike, K.; Cuneo, M. E.; Wenger, D. F.; Bailey, J. E.; Hanson, D. L.; Mehlhorn, T. A.; Imasaki, K.; Nakai, S.; Mima, K.

    1998-11-01

    Development of diagnostic methods for high intensity ion beams for ICF is crucial for understanding the ion diode physics. At Osaka University, an arrayed pinhole camera (APC) diagnostic method had been developed to measure the proton beams with an energy of 1 MeV and a J_i. of 100 A/cm^2. on Reiden-SHVS. The APC measures spatial distributions of the beam divergence in r and θ drection and the intensity distribution. An ion image detector capable to acquire a whole temporal evolution within a shot is necessary to measure the higher intensity beams. A fast scintillator with photo-multiplier tubes has been chosen as the image detector. The detector is being tested on a single pinhole camera using a Lithium beam with a particle energy of 5 MeV, a J_i. of 0.5-1 kA/cm^2. and duration of 50 ns, which are very close to the parameters required from ICF, on the SABRE at Sandia National Labs. We will present the diagnostic design and preliminary experiments from SABRE and also present the experimental results from Reiden-SHVS.

  2. Mutation breeding of ornamental plants using ion beams.

    PubMed

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants.

  3. Mutation breeding of ornamental plants using ion beams

    PubMed Central

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants. PMID:29681749

  4. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less

  5. Monte Carlo simulations of secondary electron emission due to ion beam milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less

  6. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  7. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  8. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  9. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam.

    PubMed

    Lourenço, A; Thomas, R; Homer, M; Bouchard, H; Rossomme, S; Renaud, J; Kanai, T; Royle, G; Palmans, H

    2017-04-07

    The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm 2 , without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.

  10. Planned Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  11. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  12. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  13. Thin layer activation-based evaluation of tribological behaviour of light ion-implanted metallic samples

    NASA Astrophysics Data System (ADS)

    Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.; Mateescu, L.

    1997-05-01

    In our Cyclotron Laboratory wear and/or corrosion studies of metallic machine parts are performed on a routine basis by using the Charged Particle Surface Activation method, also commonly known as the Thin Layer Activation (TLA) technique. In principle, this method consists of an ion beam irradiation of the surface of interest (typically using proton and deuteron beams), followed by in-situ radioactivity monitoring, on a testing bench or in normal running conditions. The observed changes in radioactivity are then transformed in mass losses, by using a specific calibration procedure. In spite of the high reliability of the method, which allows fast and accurate determinations under real operating conditions, the issue of possible influence of ion bombardment upon the tribologic properties of irradiated components had yet to be clarified. To do that, a dedicated set-up was designed so as to ensure a simultaneous irradiation of the disk-shaped samples at various incident beam energies and doses. Since the expected structural modifications were associated not only to ion-induced damages, but also to the local heating, we tried to outline the contribution of each of the two above-mentioned effects. Consequently, the microstructure effects have been investigated by both electronic and metallography microscopy. The Vickers micro-hardness test has been taken before and after irradiation of each sample. Two main outcomes can be reported: the use of radioactive labelling for wear and corrosion control using MeV beams with doses below 10 17 ions/cm 2 of light particles such as protons and deuterons does not lead to significant changes of the tribologic properties of the studied machine part; and besides, wear diagrams (wear levels vs. running time) for Carbon Steel Alloy (OL-45 in Romanian standard, 0.45% carbon) and {Cu63}/{Zn37} brass irradiated at different doses (10 17 - 10 18 ions/cm 2) have been obtained.

  14. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  15. Application and development of ion-source technology for radiation-effects testing of electronics

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.

    2017-09-01

    Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.

  16. Technical use of compact micro-onde devicesa)

    NASA Astrophysics Data System (ADS)

    Sortais, P.; Lamy, T.; Médard, J.; Angot, J.; Sudraud, P.; Salord, O.; Homri, S.

    2012-02-01

    Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010), 10.1063/1.3272878] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.

  17. Theoretical investigations on plasma processes in the Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.

  18. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  19. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, N.; Fredriksen, Å.; Carr, J.; Scime, E.

    2015-03-01

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment on Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σb,*=4 ×10-19 m2 , and the effective beam collisional cross sections by RFEA in Njord to be σb=1.7 ×10-18 m2 .

  20. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOEpatents

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  1. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  2. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  3. Heralded ions via ionization coincidence

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Speirs, R. W.; Wissenberg, S. H.; Tielen, R. P. M.; Sparkes, B. M.; Scholten, R. E.

    2018-04-01

    We demonstrate a method for the deterministic production of single ions by exploiting the correlation between an electron and associated ion following ionization. Coincident detection and feedback in combination with Coulomb-driven particle selection allows for high-fidelity heralding of ions at a high repetition rate. Extension of the scheme beyond time-correlated feedback to position- and momentum-correlated feedback will provide a general and powerful means to optimize the ion beam brightness for the development of next-generation focused ion beam technologies.

  4. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  5. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  6. Time of Flight based diagnostics for high energy laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  7. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  8. Overview of ion source characterization diagnostics in INTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.

    2016-02-15

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less

  9. Overview of ion source characterization diagnostics in INTF

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Yang, Z.; Dong, P.

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less

  11. Change Spectrum Characteristics Modification of Films Deposited by Magnetron Sputtering with the Assistance of Argon Ions Beam

    NASA Astrophysics Data System (ADS)

    Umnov, S.; Asainov, O.

    2015-04-01

    Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.

  12. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less

  13. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  14. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less

  15. Ion beam figuring approach for thermally sensitive space optics.

    PubMed

    Yin, Xiaolin; Deng, Weijie; Tang, Wa; Zhang, Binzhi; Xue, Donglin; Zhang, Feng; Zhang, Xuejun

    2016-10-01

    During the ion beam figuring (IBF) of a space mirror, thermal radiation of the neutral filament and particle collisions will heat the mirror. The adhesive layer used to bond the metal parts and the mirror is very sensitive to temperature rise. When the temperature exceeds the designed value, the mirror surface shape will change markedly because of the thermal deformation and stress release of the adhesive layer, thereby reducing the IBF accuracy. To suppress the thermal effect, we analyzed the heat generation mechanism. By using thermal radiation theory, we established a thermal radiation model of the neutral filament. Additionally, we acquired a surface-type Gaussian heat source model of the ion beam sputtering based on the removal function and Faraday scan result. Using the finite-element-method software ABAQUS, we developed a method that can simulate the thermal effect of the IBF for the full path and all dwell times. Based on the thermal model, which was experimentally confirmed, we simulated the thermal effects for a 675  mm×374  mm rectangular SiC space mirror. By optimizing the dwell time distribution, the peak temperature value of the adhesive layer during the figuring process was reduced under the designed value. After one round of figuring, the RMS value of the surface error changed from 0.094 to 0.015λ (λ=632.8  nm), which proved the effectiveness of the thermal analysis and suppression method.

  16. RCNP Project on Polarized {sup 3}He Ion Sources - From Optical Pumping to Cryogenic Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Inomata, T.; Takahashi, Y.

    2009-08-04

    A polarized {sup 3}He ion source has been developed at RCNP for intermediate and high energy spin physics. Though we started with an OPPIS (Optical Pumping Polarized Ion Source), it could not provide highly polarized {sup 3}He beam because of fundamental difficulties. Subsequently to this unhappy result, we examined novel types of the polarized {sup 3}He ion source, i.e., EPPIS (Electron Pumping Polarized Ion Source), and ECRPIS (ECR Polarized Ion Source) experimentally or theoretically, respectively. However, attainable {sup 3}He polarization degrees and beam intensities were still insufficient for practical use. A few years later, we proposed a new idea formore » the polarized {sup 3}He ion source, SEPIS (Spin Exchange Polarized Ion Source) which is based on enhanced spin-exchange cross sections at low incident energies for {sup 3}He{sup +}+Rb, and its feasibility was experimentally examined.Recently, we started a project on polarized {sup 3}He gas generated by the brute force method with low temperature (approx4 mK) and strong magnetic field (approx17 T), and rapid melting of highly polarized solid {sup 3}He followed by gasification. When this project will be successful, highly polarized {sup 3}He gas will hopefully be used for a new type of the polarized {sup 3}He ion source.« less

  17. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  18. CONTROL FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Brackney, H.W.

    1960-08-01

    Improvements in methods and means for controlling the position and condition of the ion beam of calutrons for more efficient operation were developed. These improvements were accomplished by the addition of a new electrode in the receiver adjacent to and on the far side of one of the ion collector pockets. this electrode receiving and metering a small pcrtion of the outer fringe of the ion beam directed to this pocket. More sensitive and accurate control of the focusing of the ion beams may be obtained by maximizing the ratio of the current to the above pocket to the current to the additional electrode.

  19. Emittance matching of a slow extracted beam for a rotating gantry

    NASA Astrophysics Data System (ADS)

    Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.

    2017-09-01

    The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.

  20. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    DTIC Science & Technology

    2015-01-01

    for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of

  1. Charge breeding simulations for radioactive ion beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less

  2. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  3. Studies on the coupling transformer to improve the performance of microwave ion source.

    PubMed

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  4. Studies on the coupling transformer to improve the performance of microwave ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Anuraag, E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on themore » transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.« less

  5. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Centera)

    NASA Astrophysics Data System (ADS)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.; Scheloske, S.; Spädtke, P.; Tinschert, K.

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year.

  6. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  7. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  8. Secondary radiation measurements for particle therapy applications: charged particles produced by 4He and 12C ion beams in a PMMA target at large angle

    NASA Astrophysics Data System (ADS)

    Rucinski, A.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.

    2018-03-01

    Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like \

  9. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  10. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Namba, Masao

    2012-08-01

    Recent radiotherapy technologies including carbon-ion radiotherapy can improve the dose concentration in the target volume, thereby not only reducing side effects in organs at risk but also the secondary cancer risk within or near the irradiation field. However, secondary cancer risk in the low-dose region is considered to be non-negligible, especially for younger patients. To achieve a dose estimation of the whole body of each patient receiving carbon-ion radiotherapy, which is essential for risk assessment and epidemiological studies, Monte Carlo simulation plays an important role because the treatment planning system can provide dose distribution only in∕near the irradiation field and the measured data are limited. However, validation of Monte Carlo simulations is necessary. The primary purpose of this study was to establish a calculation method using the Monte Carlo code to estimate the dose and quality factor in the body and to validate the proposed method by comparison with experimental data. Furthermore, we show the distributions of dose equivalent in a phantom and identify the partial contribution of each radiation type. We proposed a calculation method based on a Monte Carlo simulation using the PHITS code to estimate absorbed dose, dose equivalent, and dose-averaged quality factor by using the Q(L)-L relationship based on the ICRP 60 recommendation. The values obtained by this method in modeling the passive beam line at the Heavy-Ion Medical Accelerator in Chiba were compared with our previously measured data. It was shown that our calculation model can estimate the measured value within a factor of 2, which included not only the uncertainty of this calculation method but also those regarding the assumptions of the geometrical modeling and the PHITS code. Also, we showed the differences in the doses and the partial contributions of each radiation type between passive and active carbon-ion beams using this calculation method. These results indicated that it is essentially important to include the dose by secondary neutrons in the assessment of the secondary cancer risk of patients receiving carbon-ion radiotherapy with active as well as passive beams. We established a calculation method with a Monte Carlo simulation to estimate the distribution of dose equivalent in the body as a first step toward routine risk assessment and an epidemiological study of carbon-ion radiotherapy at NIRS. This method has the advantage of being verifiable by the measurement.

  11. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  13. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  14. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulbrandsen, N., E-mail: njal.gulbrandsen@uit.no; Fredriksen, Å.; Carr, J.

    2015-03-15

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment onmore » Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σ{sub b,*}=4×10{sup −19} m{sup 2}, and the effective beam collisional cross sections by RFEA in Njord to be σ{sub b}=1.7×10{sup −18} m{sup 2}.« less

  15. Rare isotope beam energy measurements and scintillator developments for ReA3

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Ying

    The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations. A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with respect to the acceleration RF clock. The time-of-flight system can provide beam energy information with precision of <0.1%. Scintillators are widely used to reliably measure beam profiles and beam distributions. At low energies, scintillator-based diagnostic devices are more problematic because of their fast light yield degradation under ion bombardment. The degradation of the scintillation yield of single crystal YAG: Ce under He+ irradiation at low energies between 28 and 58 keV has been systematically studied. The scintillator was irradiated at the rare isotope ReAccelerator (ReA) facility. The scintillation emission is attributed to its rapid 5d-4f transition of Ce3+ ions. As the bombardment time increases, an exponential decay of the light output is observed due to the induced radiation damage of the crystal lattice. The decrease of the experimentally observed light yield as a function of particle fluence is found to be in fair agreement with the Birks model. Analysis indicates that the damage cross section of scintillation centers slightly decreases with the ion energy. The scintillator degrades slower under higher-energy irradiation. In order to investigate scintillation degradation over a wide range of irradiation energies and scintillator materials, the scintillation processes for KBr, YAG:Ce, CaF2:Eu and CsI:Tl crystals under H2 + irradiation in the energy range of 600-2150 keV/u have been investigated. The data indicates that YAG:Ce and CsI:Tl can maintain stable luminescence under continuous ion bombardment for at least a total fluence of 1.8x10 12 ions/mm2. On the other hand, the luminescence of CaF2:Eu shows a rapid initial decay but then maintains a nearly constant luminescence yield. The extraordinary scintillation response of KBr is initially enhanced under ion bombardment, approaches a maximum, and then eventually decays. The scintillation efficiency of the CsI:Tl scintillator is superior to the other materials. The low-energy H2+ bombardment (25 keV/u) on the YAG:Ce scintillator can lead to the significant degradation of the scintillation yields. Different scintillation degradation responses for the low- and high-energy bombardments can be attributed to the transmission loss of the emitted light inside the crystal caused by displacement damages.

  16. Effective doping of low energy ions into superfluid helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Chen, Lei; Freund, William M.

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measuredmore » using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.« less

  17. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  18. Diamondlike carbon protective coatings for optical windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.

    1989-01-01

    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.

  19. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    PubMed

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.

  20. Nanopatterning of optical surfaces during low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-06-01

    Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.

  1. In situ electrostatic characterisation of ion beams in the region of ion acceleration

    NASA Astrophysics Data System (ADS)

    Bennet, Alexander; Charles, Christine; Boswell, Rod

    2018-02-01

    In situ and ex situ techniques have been used to measure directional ion beams created by a sharp axial potential drop in low pressure expanding plasmas. Although Retarding Field Energy Analysers (RFEAs) are the most convenient technique to measure the ion velocities and plasma potentials along with the plasma density, they are bulky and are contained in a grounded shield that may perturb the electric potential profile of the expanding plasma. In principle, ex situ techniques produce a more reliable measurement and Laser Induced Fluorescence spectroscopy (LIF) has previously been used to characterise the spatial velocity profile of ion beams in the same region of acceleration for a range of pressures. Here, satisfactory agreement between the ion velocity profiles measured by LIF and RFEA techniques has allowed the RFEA method to be confidently used to probe the ion beam characteristics in the regions of high gradients in plasma density and DC electric fields which have previously proven difficult.

  2. The scenario-based generalization of radiation therapy margins.

    PubMed

    Fredriksson, Albin; Bokrantz, Rasmus

    2016-03-07

    We give a scenario-based treatment plan optimization formulation that is equivalent to planning with geometric margins if the scenario doses are calculated using the static dose cloud approximation. If the scenario doses are instead calculated more accurately, then our formulation provides a novel robust planning method that overcomes many of the difficulties associated with previous scenario-based robust planning methods. In particular, our method protects only against uncertainties that can occur in practice, it gives a sharp dose fall-off outside high dose regions, and it avoids underdosage of the target in 'easy' scenarios. The method shares the benefits of the previous scenario-based robust planning methods over geometric margins for applications where the static dose cloud approximation is inaccurate, such as irradiation with few fields and irradiation with ion beams. These properties are demonstrated on a suite of phantom cases planned for treatment with scanned proton beams subject to systematic setup uncertainty.

  3. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOEpatents

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  4. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  5. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  6. Energy deposition of H and He ion beams in hydroxyapatite films: a study with implications for ion-beam cancer therapy.

    PubMed

    Limandri, Silvina; de Vera, Pablo; Fadanelli, Raul C; Nagamine, Luiz C C M; Mello, Alexandre; Garcia-Molina, Rafael; Behar, Moni; Abril, Isabel

    2014-02-01

    Ion-beam cancer therapy is a promising technique to treat deep-seated tumors; however, for an accurate treatment planning, the energy deposition by the ions must be well known both in soft and hard human tissues. Although the energy loss of ions in water and other organic and biological materials is fairly well known, scarce information is available for the hard tissues (i.e., bone), for which the current stopping power information relies on the application of simple additivity rules to atomic data. Especially, more knowledge is needed for the main constituent of human bone, calcium hydroxyapatite (HAp), which constitutes 58% of its mass composition. In this work the energy loss of H and He ion beams in HAp films has been obtained experimentally. The experiments have been performed using the Rutherford backscattering technique in an energy range of 450-2000 keV for H and 400-5000 keV for He ions. These measurements are used as a benchmark for theoretical calculations (stopping power and mean excitation energy) based on the dielectric formalism together with the MELF-GOS (Mermin energy loss function-generalized oscillator strength) method to describe the electronic excitation spectrum of HAp. The stopping power calculations are in good agreement with the experiments. Even though these experimental data are obtained for low projectile energies compared with the ones used in hadron therapy, they validate the mean excitation energy obtained theoretically, which is the fundamental quantity to accurately assess energy deposition and depth-dose curves of ion beams at clinically relevant high energies. The effect of the mean excitation energy choice on the depth-dose profile is discussed on the basis of detailed simulations. Finally, implications of the present work on the energy loss of charged particles in human cortical bone are remarked.

  7. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.

  8. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P.more » Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.« less

  9. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  10. Future carbon beams at SPIRAL1 facility: which method is the most efficient?

    PubMed

    Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  11. Radiochromic film diagnostics for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Margarone, Daniele; Candiano, Giacomo; Kim, I. Jong; Jeong, Tae Moon; Pšikal, Jan; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, Georg

    2015-05-01

    Radiochromic film (RCF) based multichannel diagnostics utilizes the concept of a stack detector comprised of alternating layers of RCFs and shielding aluminium layers. An algorithm based on SRIM simulations is used to correct the accumulated dose. Among the standard information that can be obtained is the maximum ion energy and to some extend the beam energy spectrum. The main area where this detector shines though is the geometrical characterization of the beam. Whereas other detectors such as Thomson parabola spectrometer or Faraday cups detect only a fraction of the outburst cone, the RCF stack placed right behind the target absorbs the whole beam. A complete 2D and to some extend 3D imprint of the ion beam allows us to determine parameters such as divergence or beam center shift with respect to the target normal. The obvious drawback of such diagnostics is its invasive character. But considering that only a few successful shots (2-3) are needed per one kind of target to perform the analysis, the drawbacks are acceptable. In this work, we present results obtained with the RCF diagnostics using both conventional accelerators and laser-driven ion beams during 2 experimental campaigns.

  12. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  13. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    PubMed Central

    2012-01-01

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206

  14. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  15. Low material budget floating strip Micromegas for ion transmission radiography

    NASA Astrophysics Data System (ADS)

    Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.

    2017-02-01

    Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.

  16. Status report on the development of a tubular electron beam ion source

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  17. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  18. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences

    2016-07-15

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less

  19. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  20. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced inmore » TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in combination with other ion modalities.« less

  1. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  2. SU-E-T-24: A Simple Correction-Based Method for Independent Monitor Unit (MU) Verification in Monte Carlo (MC) Lung SBRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    2014-06-01

    Purpose: Lung-SBRT uses hypo-fractionated dose in small non-IMRT fields with tissue-heterogeneity corrected plans. An independent MU verification is mandatory for safe and effective delivery of the treatment plan. This report compares planned MU obtained from iPlan-XVM-Calgorithm against spreadsheet-based hand-calculation using most commonly used simple TMR-based method. Methods: Treatment plans of 15 patients who underwent for MC-based lung-SBRT to 50Gy in 5 fractions for PTV V100%=95% were studied. ITV was delineated on MIP images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1- 106.5cc(average=48.6cc). MC-SBRT plans were generated using a combination of non-coplanar conformal arcs/beams using iPlan XVM-Calgorithm (BrainLAB iPlan ver.4.1.2)more » for Novalis-TX consisting of micro-MLCs and 6MV-SRS (1000MU/min) beam. These plans were re-computed using heterogeneity-corrected Pencil-Beam (PB-hete) algorithm without changing any beam parameters, such as MLCs/MUs. Dose-ratio: PB-hete/MC gave beam-by-beam inhomogeneity-correction-factors (ICFs):Individual Correction. For independent-2nd-check, MC-MUs were verified using TMR-based hand-calculation and obtained an average ICF:Average Correction, whereas TMR-based hand-calculation systematically underestimated MC-MUs by ∼5%. Also, first 10 MC-plans were verified with an ion-chamber measurement using homogenous phantom. Results: For both beams/arcs, mean PB-hete dose was systematically overestimated by 5.5±2.6% and mean hand-calculated MU systematic underestimated by 5.5±2.5% compared to XVMC. With individual correction, mean hand-calculated MUs matched with XVMC by - 0.3±1.4%/0.4±1.4 for beams/arcs, respectively. After average 5% correction, hand-calculated MUs matched with XVMC by 0.5±2.5%/0.6±2.0% for beams/arcs, respectively. Smaller dependence on tumor volume(TV)/field size(FS) was also observed. Ion-chamber measurement was within ±3.0%. Conclusion: PB-hete overestimates dose to lung tumor relative to XVMC. XVMC-algorithm is much more-complex and accurate with tissues-heterogeneities. Measurement at machine is time consuming and need extra resources; also direct measurement of dose for heterogeneous treatment plans is not clinically practiced, yet. This simple correction-based method was very helpful for independent-2nd-check of MC-lung-SBRT plans and routinely used in our clinic. A look-up table can be generated to include TV/FS dependence in ICFs.« less

  3. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  4. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  5. Low-energy ion beam-based deposition of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less

  6. Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.

  7. Measurements of the energy distribution of a high brightness rubidium ion beam.

    PubMed

    Ten Haaf, G; Wouters, S H W; Nijhof, D F J; Mutsaers, P H A; Vredenbregt, E J D

    2018-07-01

    The energy distribution of a high brightness rubidium ion beam, which is intended to be used as the source for a focused ion beam instrument, is measured with a retarding field analyzer. The ions are created from a laser-cooled and compressed atomic beam by two-step photoionization in which the ionization laser power is enhanced in a build-up cavity. Particle tracing simulations are performed to ensure the analyzer is able to resolve the distribution. The lowest achieved full width 50% energy spread is (0.205 ± 0.006) eV, which is measured at a beam current of 9 pA. The energy spread originates from the variation in the ionization position of the ions which are created inside an extraction electric field. This extraction field is essential to limit disorder-induced heating which can decrease the ion beam brightness. The ionization position distribution is limited by a tightly focused excitation laser beam. Energy distributions are measured for various ionization and excitation laser intensities and compared with calculations based on numerical solutions of the optical Bloch equations including ionization. A good agreement is found between measurements and calculations. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J. L.; Singh, M.; Perry, D. L.

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  9. Front-end simulation of injector for terawatt accumulator.

    PubMed

    Kropachev, G N; Balabin, A I; Kolomiets, A A; Kulevoy, T V; Pershin, V I; Shumshurov, A V

    2008-02-01

    A terawatt accumulator (TWAC) accelerator/storage ring complex with the laser ion source is in progress at ITEP. The new injector I4 based on the radio frequency quadrupole (RFQ) and interdigital H-mode (IH) linear accelerator is under construction. The front end of the new TWAC injector consists of a laser ion source, an extraction system, and a low energy beam transport (LEBT). The KOBRA3-INP was used for the simulation and optimization of the ion source extraction system. The optimization parameter is the maximum brightness of the beam generated by the laser ion source. Also the KOBRA3-INP code was used for LEBT investigation. The LEBT based on electrostatic grid lenses is chosen for injector I4. The results of the extraction system and LEBT investigations for ion beam matching with RFQ are presented.

  10. Bright focused ion beam sources based on laser-cooled atoms

    PubMed Central

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  11. Bright focused ion beam sources based on laser-cooled atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J. J.; Wilson, T. M.; Steele, A. V.

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of themore » industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.« less

  12. Detection of Fatty Acids from Intact Microorganisms by Molecular Beam Static Secondary Ion Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis

    We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less

  13. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randeniya, S; Mirkovic, D; Titt, U

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less

  14. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  15. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  16. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  17. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen; Bhat, Badekai Ramchandra

    2018-04-01

    Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.

  18. Ion beam activation for materials analysis: Methods and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlon, T.W.

    1981-04-01

    A number of ion beam methods for materials analysis have been developed using Harwell's high voltage accelerators and these are currently being exploited for applications 'in house' and in industry. Ion beam activation is a relatively new area which has exhibited exceptional growth over the last few years. Activation by ion beams to produce a single dominant radioisotope as a surface label (thin layer activation or TLA) is becoming a mature technology offering ever increasing sensitivity for surface loss measurement (currently better than 0.1 ..mu..m or 10/sup -7/ cm/sup 3/ depending on the method of measurement) and remote monitoring ofmore » inaccessible components during studies of wear/erosion/ corrosion/sputtering and the like. With the increasingly established credibility of the method has come the realisation that: (i) more complex and even multiple activation profiles can be used to extract more information on the characteristics of the surface loss process, (ii) that an analogous method can be used even on radiation sensitive materials through the newly established indirect recoil implantation process. (iii) that there is scope for treatment of truly immovable objects through the implantation of fission fragments, (iv) there is vast potential in the area of activation analysis. The current state of development of these methods which greatly extend the scope of conventional TLA will be briefly reviewed. Current applications of these and TLA in industry are discussed.« less

  19. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  20. Ion-beam treatment to prepare surfaces of p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    2001-01-01

    A method of making a low-resistance electrical contact between a p-CdTe layer and outer contact layers by ion beam processing comprising: a) placing a CdS/CdTe device into a chamber and evacuating the chamber; b) orienting the p-CdTe side of the CdS/CdTe layer so that it faces apparatus capable of generating Ar atoms and ions of preferred energy and directionality; c) introducing Ar and igniting the area of apparatus capable of generating Ar atoms and ions of preferred energy and directionality in a manner so that during ion exposure, the source-to-substrate distance is maintained such that it is less than the mean-free path or diffusion length of the Ar atoms and ions at the vacuum pressure; d) allowing exposure of the p-CdTe side of the device to said ion beam for a period less than about 5 minutes; and e) imparting movement to the substrate to control the real uniformity of the ion-beam exposure on the p-CdTe side of the device.

  1. Design of a Prototype Positive Ion Source with Slit Aperture Type Extraction System

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev K.; Vattilli, Prahlad; Choksi, Bhargav; Punyapu, Bharathi; Sidibomma, Rambabu; Bonagiri, Sridhar; Aggrawal, Deepak; Baruah, Ujjwal K.

    2017-04-01

    The neutral beam injector group at IPR aims at developing an experimental positive ion source capable of delivering H+ ion beam having energy of 30 - 40 keV and carrying an ion beam current of 5 A. The slit aperture based extraction system is chosen for extracting and accelerating the ions so as to achieve low divergence of the ion beam (< 0.5°). For producing H+ ions a magnetic multi-pole bucket type plasma chamber is selected. We calculated the magnetic field due to cusp magnets and trajectories (orbits) of the primary electrons to investigate the two magnetic configurations i.e. line cusp and checker board. Numerical simulation is also carried out by using OPERA-3D to study the characteristic performance of the slit aperture type extraction-acceleration system. We report here the results of the studies carried out on various aspects of the design of the slit aperture type positive ion source.

  2. Development of textured magnesium oxide templates and bicrystals using ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Vallejo, Ronald N.

    Recently, there has been an increased research effort in the deposition of near-single-crystal thin films on substrates that do not provide a template for epitaxial crystalline film growth. Ion beam assisted deposition (IBAD) has been demonstrated as one of the most promising methods to artificially control the texture in thin films. Biaxially textured MgO templates of 10 nm thickness were successfully fabricated on glass and silicon substrates without any buffer layers using IBAD. This work has shed insights on several issues. First, surface morphology ˜ 1 nm or better is only a necessary condition for textured IBAD-MgO, but not a sufficient condition. Additional surface preparation must be provided for nucleation and subsequent formation of the textured IBAD-MgO templates. Second, the role of buffer layer on IBAD-MgO texturing. It was found that the ion beam pre-exposure of the substrates prior to IBAD processing provided a sufficient condition for the nucleation and subsequent texture formation of the IBAD grown films. The ion pre-exposure replaced the need for buffer layers in silicon and glass substrates. Finally, by pre-exposing the substrates to Ar + ions, it was found that the ion beam modified the surface and improved the surface roughness of the glass substrates. Textured MgO epi templates were demonstrated for the first time on polymer based substrates (polyimide). This is a crucial step in the realization of epitaxial suspended devices. To achieve an epitaxial film on a sacrificial layer, an epitaxial template film must first be grown prior to subsequent film growth. The role of ion pre-exposure and buffer layer on texture formation was investigated in this part of the work. This thesis also presents groundbreaking results on the fabrication of bicrystal MgO films and bicrystal networks using ion beam assisted deposition. Highly oriented bicrystals, with a common (100) out-of-plane orientation and (110) in-plane orientations having a tilt angle of 45° and 20° have been successfully fabricated. This method has also been used to fabricate two dimensional bicrystal MgO networks in the micrometer scale. The same strategy can be applied to generate nanometer scale bicrystal networks of desired patterns.

  3. Evaluation and utilization of beam simulation codes for the SNS ion source and low energy beam transport developmenta)

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.

    2008-02-01

    Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.

  4. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobjev, G.; Sokolov, A.; Herfurth, F.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} havemore » been measured.« less

  5. Next Generation H- Ion Sources for the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.

    2009-03-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  6. A review of ion sources for medical accelerators (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespreadmore » since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.« less

  7. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  8. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  9. Ion implantation for deterministic single atom devices

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Singh, M.; Perry, D. L.; Wendt, J. R.; Ten Eyck, G.; Manginell, R. P.; Pluym, T.; Luhman, D. R.; Lilly, M. P.; Carroll, M. S.; Bielejec, E.

    2017-12-01

    We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  10. Ion implantation for deterministic single atom devices

    DOE PAGES

    Pacheco, J. L.; Singh, M.; Perry, D. L.; ...

    2017-12-04

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  11. A method of mounting multiple otoliths for beam-based microchemical analyses

    USGS Publications Warehouse

    Donohoe, C.J.; Zimmerman, C.E.

    2010-01-01

    Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).

  12. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  13. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less

  14. Development of economic MeV-ion microbeam technology at Chiang Mai University

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Puttaraksa, N.; Unai, S.; Yu, L. D.; Singkarat, K.; Pussadee, N.; Whitlow, H. J.; Natyanum, S.; Tippawan, U.

    2017-08-01

    Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by computer to cut off the ion beam for controlling the beam size down to the micrometer order. The capillary technique utilizes our home-fabricated tapered glass capillaries to realize microbeams. Either system can be installed inside the endstation of the MeV ion beam line of the accelerator. Both systems have been applied to MeV-ion beam lithography or writing of micro-patterns for microfluidics applications to fabricate lab-on-chip devices. The capillary technique is being developed for MeV-ion beam mapping of biological samples. The paper reports details of the techniques and introduces some applications.

  15. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  16. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  17. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  18. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    NASA Astrophysics Data System (ADS)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  19. Beam ion susceptibility to loss in NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; Liu, Deyong; White, Roscoe

    2016-10-01

    NSTX-U has operated with three additional neutral beam sources whose tangency radii of 1.1, 1.2, and 1.3 m are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams have also be retained for NSTX-U. Here, we present an estimate of the susceptibility of the beam ions from all the various sources to loss under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since losses are often observed at the injection energy, a simple measure of loss susceptibility is the change in canonical toroidal momentum required to move beam ions from their deposition point to the loss boundary, as a function of magnetic moment. To augment this simple estimate, we intend to report some associated transport coefficients of beam ions due to AE activity. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  20. Ion source development for a photoneutralization based NBI system for fusion reactors

    NASA Astrophysics Data System (ADS)

    Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  1. High-resolution stress measurements for microsystem and semiconductor applications

    NASA Astrophysics Data System (ADS)

    Vogel, Dietmar; Keller, Juergen; Michel, Bernd

    2006-04-01

    Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  2. Nitrogen implantation with a scanning electron microscope.

    PubMed

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  3. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  4. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less

  5. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  6. Recent progress of the Laser-driven Ion-beam Trace Probe

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.

  7. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  8. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  9. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams.

    PubMed

    Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-01

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.

  10. Development of thick, long-lived carbon stripper foils for PSR of LANL

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Oyaizu, M.; Kawakami, H.; Ohmori, C.; Hattori, T.; Kawasaki, K.; Borden, M. J.; Macek, R. J.

    1995-02-01

    Thick carbon stripper foils (multi-layer thickness ≈ 200 μg/cm 2) have been developed for use with 800 MeV, H + ion beam in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Foils were prepared by means of the modified controlled ACDC arc discharge method (mCADAD). The lifetime measurements of the foils made by different methods were performed using an 800 MeV proton beam of up to 85 μA in the PSR, and a 3.2 MeV Ne + ion beam of 3 μA at Tokyo Institute of Technology. The foils made by the mCADAD method showed very long lifetimes, as compared to other foils tested, for both 800 MeV p and 3.2 MeV Ne + beam bombardments.

  11. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  12. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  13. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    NASA Astrophysics Data System (ADS)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  15. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less

  16. Channeling effect in polycrystalline deuterium-saturated CVD diamond target bombarded by deuterium ion beam

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.; Chubenko, A. P.; Ralchenko, V. G.; Bolshakov, A. P.

    2015-07-01

    At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on 3He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.

  17. Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.

    2012-08-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. In order to overcome the limitations of the currently used PET technique, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. It was demonstrated that the Timepix detector is able to resolve and visualize this emerging radiation. The investigated dependence of the signal on the beam energy between 89 and 430 MeV/u shows that for all the investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal was moreover correlated with that of the incoming beam. This shows that we register products of prompt processes, which are less likely to be influenced by biological washout processes than the signal registered by the PET techniques coming from decays of beam-induced radioactive nuclei. The studies discussed in this contribution demonstrate that the Timepix detector provides measurements attractive for needs of ion beam therapy. To fully exploit its capabilities further research is needed.

  18. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.

    PubMed

    Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-07-01

    A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.

  19. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  20. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic reconstruction algorithm (filtered back projection). With a more advanced method (sinogram affirmed iterative technique), the values become 1.0 mm, 0.5 mm and 0.4 mm for protons, helium and carbon ions, respectively. These results allow one to conclude that the present adaptation of the stoichiometric calibration yields a highly accurate method for characterizing tissue with DECT for ion beam therapy and potentially for photon beam therapy.

  1. A Monte Carlo software for the 1-dimensional simulation of IBIC experiments

    NASA Astrophysics Data System (ADS)

    Forneris, J.; Jakšić, M.; Pastuović, Ž.; Vittone, E.

    2014-08-01

    The ion beam induced charge (IBIC) microscopy is a valuable tool for the analysis of the electronic properties of semiconductors. In this work, a recently developed Monte Carlo approach for the simulation of IBIC experiments is presented along with a self-standing software equipped with graphical user interface. The method is based on the probabilistic interpretation of the excess charge carrier continuity equations and it offers to the end-user the full control not only of the physical properties ruling the induced charge formation mechanism (i.e., mobility, lifetime, electrostatics, device's geometry), but also of the relevant experimental conditions (ionization profiles, beam dispersion, electronic noise) affecting the measurement of the IBIC pulses. Moreover, the software implements a novel model for the quantitative evaluation of the radiation damage effects on the charge collection efficiency degradation of ion-beam-irradiated devices. The reliability of the model implementation is then validated against a benchmark IBIC experiment.

  2. Sputtering yields of carbon based materials under high particle flux with low energy

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  3. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.

  4. Neutral Beam Injection System for the SHIP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrashitov, G.F.; Abdrashitov, A.G.; Anikeev, A.V.

    2005-01-15

    The injector ion source is based on an arcdischarge plasma box. The plasma emitter is produced by a 1 kA arc discharge in deuterium. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found by means of numerical simulation tomore » provide precise beam formation. The measured angular divergence of the beam is 0.025 rad, which corresponds to a 4.7 cm Gaussian radius of the beam profile measured at focal point.« less

  5. Matrices pattern using FIB; 'Out-of-the-box' way of thinking.

    PubMed

    Fleger, Y; Gotlib-Vainshtein, K; Talyosef, Y

    2017-03-01

    Focused ion beam (FIB) is an extremely valuable tool in nanopatterning and nanofabrication for potentially high-resolution patterning, especially when refers to He ion beam microscopy. The work presented here demonstrates an 'out-of-the-box' method of writing using FIB, which enables creating very large matrices, up to the beam-shift limitation, in short times and with high accuracy unachievable by any other writing technique. The new method allows combining different shapes in nanometric dimensions and high resolutions for wide ranges. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P.

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method tomore » estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.« less

  7. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  8. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieliński, W., E-mail: wiziel@inmat.pw.edu.pl; Płociński, T.; Kurzydłowski, K.J.

    2015-06-15

    We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens preparedmore » by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.« less

  9. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster

    NASA Astrophysics Data System (ADS)

    Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA

    2018-04-01

    Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.

  10. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  11. Formation of long-lived CDn2+ and CHn2+ dications

    NASA Astrophysics Data System (ADS)

    Levy, Y.; Bar-David, A.; Ben-Itzhak, I.; Gertner, I.; Rosner, B.

    1999-08-01

    A systematic study of the formation of CDn2+ and CHn2+ dications in fast charge-stripping collisions with Ar atoms was conducted. The experimental method was based on the detection of the D (or H) fragments of the molecular ion of interest, and thus reducing the effect of the fraction of molecular ions containing the 13C isotope and other beam impurities. We observed long-lived CD22+, CD42+, and CD52+ dications. In the same process neither long-lived CD2+ nor CD32+ were observed. The mean lifetime of CD22+ was determined to be 4.0±1.11.3 µs, and those of CD42+ and CD52+ were longer than 2.1 and 3.3 µs, respectively. The production cross sections of CDn2+ from different CDm+ beams were measured. Long-lived CD22+ was formed from all CDm+ beams (micons/Journals/Common/geq" ALT="geq" ALIGN="TOP"/>2) and also directly from the rf ion source. In contrast, CD42+ and CD52+ were formed only from CD4+ and CD5+, respectively.

  12. Electromagnetic and geometric characterization of accelerated ion beams by laser ablation

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Velardi, L.; Side, D. Delle

    2013-05-01

    Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.

  13. Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV

    NASA Technical Reports Server (NTRS)

    Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.

    1985-01-01

    The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.

  14. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  15. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  16. Transport of ions using RF Carpets in Helium Gas

    NASA Astrophysics Data System (ADS)

    Lambert, Keenan; Kelly, James; Brodeur, Maxime

    2017-09-01

    Radio-Frequency (RF) carpet are critical components of large volume gas cells used to thermalize radioactive ion beams produced at in-flight facilities. RF carpets are formed by a series of co-centric conductive rings on which an alternating potential (in the radio-frequency range) is applied with opposite polarity on adjacent rings. This results in a strong repelling force that keep the ions a certain distance from the carpet. The transport of ions using RF carpet is accomplished using either a potential gradient applied on the individual all strips or traveling wave (using the so-called `ion surfing method'). A test setup has been constructed at the University of Notre Dame to perform studies on the repelling of ions using RF carpets. This test setup has recently been improved by the addiction of circuitry elements allowing the transport of ions using the ion surfing method. The developed circuitry, together with transport results for various ion beam currents, electric force applied on the ions, and traveling wave amplitude and speed will be presented

  17. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  18. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  19. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams.

    PubMed

    Parodi, Katia; Mairani, Andrea; Sommerer, Florian

    2013-07-01

    Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica.

  20. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams

    PubMed Central

    Parodi, Katia; Mairani, Andrea; Sommerer, Florian

    2013-01-01

    Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica. PMID:23824133

  1. High resolution energy analyzer for broad ion beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarov, V.; Hayes, A.; Yevtukhov, R.

    2008-09-15

    Characterization of the ion energy distribution function (IEDF) of low energy high current density ion beams by conventional retarding field and deflection type energy analyzers is limited due to finite ion beam emittance and beam space charge spreading inside the analyzer. These deficiencies are, to a large extent, overcome with the recent development of the variable-focusing retarding field energy analyzer (RFEA), which has a cylindrical focusing electrode preceding the planar retarding grid. The principal concept of this analyzer is conversion of a divergent charged particle beam into a quasiparallel beam before analyzing it by the planar retarding field. This allowsmore » analysis of the beam particle total kinetic energy distribution with greatly improved energy resolution. Whereas this concept was first applied to analyze 5-10 keV pulsed electron beams, the present authors have adapted it to analyze the energy distribution of a low energy ({<=}1 KeV) broad ion beam. In this paper we describe the RFEA design, which was modified from the original, mainly as required by the specifics of broad ion beam energy analysis, and the device experimental characterization and modeling results. Among the modifications, an orifice electrode placed in front of the RFEA provides better spatial resolution of the broad ion beam ion optics emission region and reduces the beam plasma density in the vicinity of analyzer entry. An electron repeller grid placed in front of the RFEA collector was found critical for suppressing secondary electrons, both those incoming to the collector and those released from its surface, and improved energy spectrum measurement repeatability and accuracy. The use of finer mesh single- and double-grid retarding structures reduces the retarding grid lens effect and improves the analyzer energy resolution and accuracy of the measured spectrum mean energy. However, additional analyzer component and configuration improvements did not further change the analyzed IEDF shape or mean energy value. This led us to conclude that the optimized analyzer construction provides an energy resolution considerably narrower than the investigated ion beam energy spectrum full width at half maximum, and the derived energy spectrum is an objective and accurate representation of the analyzed broad ion beam energy distribution characteristics. A quantitative study of the focusing voltage and retarding grid field effects based on the experimental data and modeling results have supported this conclusion.« less

  2. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target.

    PubMed

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.

  3. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.

  4. Electron beams scanning: A novel method

    NASA Astrophysics Data System (ADS)

    Askarbioki, M.; Zarandi, M. B.; Khakshournia, S.; Shirmardi, S. P.; Sharifian, M.

    2018-06-01

    In this research, a spatial electron beam scanning is reported. There are various methods for ion and electron beam scanning. The best known of these methods is the wire scanning wherein the parameters of beam are measured by one or more conductive wires. This article suggests a novel method for e-beam scanning without the previous errors of old wire scanning. In this method, the techniques of atomic physics are applied so that a knife edge has a scanner role and the wires have detector roles. It will determine the 2D e-beam profile readily when the positions of the scanner and detectors are specified.

  5. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  6. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  7. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors.

    PubMed

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A; McGuire, Michael A; Joy, David; Jesse, Stephen; Rondinone, Adam J; Kalinin, Sergei V; Ovchinnikova, Olga S

    2016-03-23

    Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP.

  8. R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor

    NASA Astrophysics Data System (ADS)

    Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.

    2015-11-01

    Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η  >  60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.

  9. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction

    PubMed Central

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    Objective To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). Methods EL4 tumour-bearing C57BL/J mice received 5-bromo-29-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with c-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a 10B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Results Following c-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a 10B-carrier, especially L-para-boronophenylalanine-10B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. Conclusion The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the 10B-carrier used in the BNCR. Advances in knowledge The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control. PMID:23255546

  10. The Development Of New Space Charge Compensation Methods For Multi-Components Ion Beam Extracted From ECR Ion Source at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L.; Zhao, H.W.; Cao, Y.

    2005-03-15

    Two new space charge compensation methods developed in IMP are discussed in this paper. There are negative high voltage electrode method (NHVEM) and electronegative charge gas method (EGM). Some valuable experimental data have been achieved, especially using electronegative gas method in O6+ and O7+ dramatic and stable increasing of ion current was observed.

  11. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy weremore » identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. Conclusions: This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.« less

  12. Nanofabrication on unconventional substrates using transferred hard masks

    DOE PAGES

    Li, Luozhou; Bayn, Igal; Lu, Ming; ...

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  13. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  14. High energy Coulomb-scattered electrons for relativistic particle beams and diagnostics

    DOE PAGES

    Thieberger, P.; Altinbas, Z.; Carlson, C.; ...

    2016-03-29

    A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Lastly, some possiblemore » future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.« less

  15. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  16. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  17. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical model of the ion recombination in the chamber was found by fitting a logistic function to the data. The ion collection efficiency of the Advanced Markus ionization chamber decreases for measurements in electron beams with increasingly higher dose-per-pulse. However, this chamber is still functional for dose measurements in beams with dose-per-pulse values up toward and above 10 Gy, if the ion recombination is taken into account. Our results show that existing models give a less-than-accurate description of the observed ion recombination. This motivates the use of the presented empirical model for measurements with the Advanced Markus chamber in high dose-per-pulse electron beams, as it enables accurate absorbed dose measurements (uncertainty estimation: 2.8-4.0%, k = 1). The model depends on the dose-per-pulse in the beam, and it is also influenced by the polarizing chamber voltage, with increasing ion recombination with a lowering of the voltage. © 2017 American Association of Physicists in Medicine.

  18. Scanning Synchronization of Colliding Bunches for MEIC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less

  19. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  20. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  1. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  2. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less

  3. Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect Relationships if neither Synergism nor Antagonism Occurs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siranart, Nopphon; Blakely, Eleanor A.; Cheng, Alden

    Complex mixed radiation fields exist in interplanetary space, and not much is known about their latent effects on space travelers. In silico synergy analysis default predictions are useful when planning relevant mixed-ion-beam experiments and interpreting their results. These predictions are based on individual dose-effect relationships (IDER) for each component of the mixed-ion beam, assuming no synergy or antagonism. For example, a default hypothesis of simple effect additivity has often been used throughout the study of biology. However, for more than a century pharmacologists interested in mixtures of therapeutic drugs have analyzed conceptual, mathematical and practical questions similar to those thatmore » arise when analyzing mixed radiation fields, and have shown that simple effect additivity often gives unreasonable predictions when the IDER are curvilinear. Various alternatives to simple effect additivity proposed in radiobiology, pharmacometrics, toxicology and other fields are also known to have important limitations. In this work, we analyze upcoming murine Harderian gland (HG) tumor prevalence mixed-beam experiments, using customized open-source software and published IDER from past single-ion experiments. The upcoming experiments will use acute irradiation and the mixed beam will include components of high atomic number and energy (HZE). We introduce a new alternative to simple effect additivity, "incremental effect additivity", which is more suitable for the HG analysis and perhaps for other end points. We use incremental effect additivity to calculate default predictions for mixture dose-effect relationships, including 95% confidence intervals. We have drawn three main conclusions from this work. 1. It is important to supplement mixed-beam experiments with single-ion experiments, with matching end point(s), shielding and dose timing. 2. For HG tumorigenesis due to a mixed beam, simple effect additivity and incremental effect additivity sometimes give default predictions that are numerically close. However, if nontargeted effects are important and the mixed beam includes a number of different HZE components, simple effect additivity becomes unusable and another method is needed such as incremental effect additivity. 3. Eventually, synergy analysis default predictions of the effects of mixed radiation fields will be replaced by more mechanistic, biophysically-based predictions. However, optimizing synergy analyses is an important first step. If mixed-beam experiments indicate little synergy or antagonism, plans by NASA for further experiments and possible missions beyond low earth orbit will be substantially simplified.« less

  4. Ion source development for a photoneutralization based NBI system for fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity)more » implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.« less

  5. Selective deuterium ion acceleration using the Vulcan petawatt laser

    NASA Astrophysics Data System (ADS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  6. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  7. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Nuclear physics for materials technology

    NASA Astrophysics Data System (ADS)

    Conlon, T. W.

    1987-04-01

    Although particle accelerators have traditionally been used to further our knowledge of nuclear physics, the last decade or so has seen a rapid growth of their involvement in materials technology — both to modify materials and to provide analytical information at the atomic level that cannot be obtained in other ways. The deployment of ion beams in these areas has occurred in three phases: first the exploitation of keV ion beams (in ion implantation and SIMS) then MeV light ion beams (using RBS, NRA, PIXE analysis and TLA) and currently MeV heavy ion beams, together with the associated fast recoil atoms and nuclei that they produce in interactions with materials. This trend has been accompanied by the gradual assimilation of methods such as energy analysis, microbeam focussing, particle identification, time of flight and coincidence techniques, etc., which were first developed for experimental nuclear physics use. Current examples of developments in the MeV range relevant to phases 2 and 3 are given.

  9. Removing Beam Current Artifacts in Helium Ion Microscopy: A Comparison of Image Processing Techniques.

    PubMed

    Barlow, Anders J; Portoles, Jose F; Sano, Naoko; Cumpson, Peter J

    2016-10-01

    The development of the helium ion microscope (HIM) enables the imaging of both hard, inorganic materials and soft, organic or biological materials. Advantages include outstanding topographical contrast, superior resolution down to <0.5 nm at high magnification, high depth of field, and no need for conductive coatings. The instrument relies on helium atom adsorption and ionization at a cryogenically cooled tip that is atomically sharp. Under ideal conditions this arrangement provides a beam of ions that is stable for days to weeks, with beam currents in the order of picoamperes. Over time, however, this stability is lost as gaseous contamination builds up in the source region, leading to adsorbed atoms of species other than helium, which ultimately results in beam current fluctuations. This manifests itself as horizontal stripe artifacts in HIM images. We investigate post-processing methods to remove these artifacts from HIM images, such as median filtering, Gaussian blurring, fast Fourier transforms, and principal component analysis. We arrive at a simple method for completely removing beam current fluctuation effects from HIM images while maintaining the full integrity of the information within the image.

  10. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles.

    PubMed

    Kanematsu, Nobuyuki; Komori, Masataka; Yonai, Shunsuke; Ishizaki, Azusa

    2009-04-07

    The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.

  11. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  12. Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1992-03-01

    This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).

  13. Focused Ion Beam Methods for Research and Control of HEMT Fabrication

    NASA Astrophysics Data System (ADS)

    Pevtsov, E. Ph; Bespalov, A. V.; Demenkova, T. A.; Luchnikov, P. A.

    2017-04-01

    The combination of ion-beam spraying and raster electronic microscopy allows to receive images of sections of defects of the growth nature origin in epitaxial films on GaN basis with nanodimensional permission, to carry out their analysis and classification irrespective of conditions of receiving. Results of application of the specified methods for the analysis of technological operations when forming the microwave transistors are considered: formations of locks, receiving of holes and drawing of contacts.

  14. Carbon nanotube collimator fabrication and application

    DOEpatents

    Chow, Lee; Chai, Guangyu; Schenkel, Thomas

    2010-07-06

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  15. New developments of 11C post-accelerated beams for hadron therapy and imaging

    NASA Astrophysics Data System (ADS)

    Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate pristine Bragg Peaks of 11C, in order to compare its performance with 12C, in the context of hadron therapy.

  16. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema, arterial occlusion, venous thrombosis and radiation necrosis). Clinical results in both children and adults will be illustrated and health outcome will be related to the advantages of charged-particle treatment planning, the radiosurgical procedure, dose distribution and dose localization.

  17. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  18. Modeling and design of a beam emission spectroscopy diagnostic for the negative ion source NIO1

    NASA Astrophysics Data System (ADS)

    Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.

    2014-02-01

    Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H- ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.

  19. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory.

    PubMed

    Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.

  20. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less

  1. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  2. SU-E-T-539: Maximum Energy of Helium and Carbon Ions Clinically Needed for Spine, Lung, Prostate and Pancreas Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pompos, A; Choy, H; Jia, X

    2015-06-15

    Purpose: Maximum available kinetic energy of accelerated heavy ions is a critical parameter to consider during the establishment of a heavy ion therapy center. It dictates the maximum range in tissue and determines the size and cost of ion gantry. We have started planning our heavy ion therapy center and we report on the needed ion range. Methods: We analyzed 50 of random SBRT-spine, SBRT- lung, prostate and pancreatic cancer patients from our photon clinic. In the isocentric axial CT cut we recorded the maximum water equivalent depth (WED4Field) of PTV’s most distal edge in four cardinal directions and alsomore » in a beam direction that required the largest penetration, WEDGantry. These depths were then used to calculate the percentage of our patients we would be able to treat as a function of available maximum carbon and helium beam energy. Based on the Anterior-Posterior WED for lung patients and the maximum available ion energy we estimated the largest possible non-coplanar beam entry angle φ (deviation from vertical) in the isocentric vertical sagittal plane. Results: We found that if 430MeV/u C-12, equivalently 220MeV/u He-4, beams are available, more than 96% (98%) of all patients can be treated without any gantry restrictions (in cardinals angles only) respectively. If the energy is reduced to 400MeV/u C-12, equivalently 205MeV/u He-4, the above fractions reduce to 80% (87%) for prostate and 88% (97%) for other sites. This 7% energy decrease translates to almost 5% gantry size and cost decrease for both ions. These energy limits in combination with the WED in the AP direction for lung patients resulted in average non-coplanar angles of φ430MeV/u = 68°±8° and φ400MeV/u = 65°±10° if nozzle clearance permits them. Conclusion: We found that the two worldwide most common maximum carbon beam energies will treat above 80% of all our patients.« less

  3. Hooked differential mobility spectrometry apparatus and method therefore

    DOEpatents

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.

  4. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  5. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  6. Analysis of Vision Loss Caused by Radiation-Induced Optic Neuropathy After Particle Therapy for Head-and-Neck and Skull-Base Tumors Adjacent to Optic Nerves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demizu, Yusuke, E-mail: y_demizu@nifty.co; Murakami, Masao; Miyawaki, Daisuke

    2009-12-01

    Purpose: To assess the incident rates of vision loss (VL; based on counting fingers or more severe) caused by radiation-induced optic neuropathy (RION) after particle therapy for tumors adjacent to optic nerves (ONs), and to evaluate factors that may contribute to VL. Methods and Materials: From August 2001 to August 2006, 104 patients with head-and-neck or skull-base tumors adjacent to ONs were treated with carbon ion or proton radiotherapy. Among them, 145 ONs of 75 patients were irradiated and followed for greater than 12 months. The incident rate of VL and the prognostic factors for occurrence of VL were evaluated.more » The late effects of carbon ion and proton beams were compared on the basis of a biologically effective dose at alpha/beta = 3 gray equivalent (GyE{sub 3}). Results: Eight patients (11%) experienced VL resulting from RION. The onset of VL ranged from 17 to 58 months. The median follow-up was 25 months. No significant difference was observed between the carbon ion and proton beam treatment groups. On univariate analysis, age (>60 years), diabetes mellitus, and maximum dose to the ON (>110 GyE{sub 3}) were significant, whereas on multivariate analysis only diabetes mellitus was found to be significant for VL. Conclusions: The time to the onset of VL was highly variable. There was no statistically significant difference between carbon ion and proton beam treatments over the follow-up period. Based on multivariate analysis, diabetes mellitus correlated with the occurrence of VL. A larger study with longer follow-up is warranted.« less

  7. Swift heavy ion induced topography changes of Tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj K.; Kumar, Avesh; Kanjilal, D.; Mohanty, T.

    2012-12-01

    Monodisperse tin oxide nanocrystalline thin films are grown on silicon substrates by electron beam evaporation method followed by 100 MeV silver ion bombardment with varying ion fluence from 5 × 1011 ions cm-2 to 1 × 1013 ions cm-2 at constant ion flux. Enhancement of crystallinity of thin films with fluence is observed from glancing angle X-ray diffraction studies. Morphological studies by atomic force microscopy reveal the changes in grain size from 25 nm to 44 nm with variation in ion fluence. The effect of initial surface roughness and adatom mobility on topography is reported. In this work correlation between ion beam induced defect concentration with topography and grain size distribution is emphasized.

  8. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    DTIC Science & Technology

    2015-11-25

    ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser

  9. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model

    NASA Astrophysics Data System (ADS)

    Strigari, L.; Torriani, F.; Manganaro, L.; Inaniwa, T.; Dalmasso, F.; Cirio, R.; Attili, A.

    2018-03-01

    Few attempts have been made to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy, and systematic studies to evaluate the impact of hypoxia in treatment with the beam of different ion species are sorely needed. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates, and do not explicitly distinguish between the ion species and fractionation schemes. In this study, a new type of OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ion irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumour) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modelled OER depends on both the LET and ion type, also showing a decrease for an increased dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP has been found upon increasing the ion charge. Higher OER variations as a function of dose per fraction have also been found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). This model could be exploited in the identification of treatment condition optimality in the presence of hypoxia, including fractionation and primary particle selection.

  10. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  11. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  12. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  13. Fabrication of phonon-based metamaterial structures using focused ion beam patterning

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.

    2018-02-01

    The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.

  14. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  15. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  16. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  17. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    NASA Astrophysics Data System (ADS)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are part of: Arico’, Giulia: Ion Spectroscopy for improvement of the Physical Beam Model for Therapy Planning in Ion Beam Therapy, PhD Thesis, University of Heidelberg, 2016.

  18. SU-E-T-571: Newly Emerging Integrated Transmission Detector Systems Provide Online Quality Assurance of External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D; Chung, E; Hess, C

    2015-06-15

    Purpose: Two newly emerging transmission detectors positioned upstream from the patient have been evaluated for online quality assurance of external beam radiotherapy. The prototype for the Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area ion chamber mounted on the linac accessory tray to monitor photon fluence, energy, beam shape, and gantry position during treatment. The ion chamber utilizes a thickness gradient which records variable response dependent on beam position. The prototype of Delta4 Discover™, developed by ScandiDos (Uppsala, Sweden) is a linac accessory tray mounted 4040 diode array that measures photon fluence during patientmore » treatment. Both systems are employable for patient specific QA prior to treatment delivery. Methods: Our institution evaluated the reproducibility of measurements using various beam types, including VMAT treatment plans with both the IQM ion chamber and the Delta4 Discover diode array. Additionally, the IQM’s effect on photon fluence, dose response, simulated beam error detection, and the accuracy of the integrated barometer, thermometer, and inclinometer were characterized. The evaluated photon beam errors are based on the annual tolerances specified in AAPM TG-142. Results: Repeated VMAT treatments were measured with 0.16% reproducibility by the IQM and 0.55% reproducibility by the Delta4 Discover. The IQM attenuated 6, 10, and 15 MV photon beams by 5.43±0.02%, 4.60±0.02%, and 4.21±0.03% respectively. Photon beam profiles were affected <1.5% in the non-penumbra regions. The IQM’s ion chamber’s dose response was linear and the thermometer, barometer, and inclinometer agreed with other calibrated devices. The device detected variations in monitor units delivered (1%), field position (3mm), single MLC leaf positions (13mm), and photon energy. Conclusion: We have characterized two new transmissions detector systems designed to provide in-vivo like measurements upstream from the patient. Both systems demonstrate substantial utility for online treatment verification and QA of photon external beam radiotherapy.« less

  19. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    PubMed

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  20. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.

    PubMed

    Chen, Yiqin; Bi, Kaixi; Wang, Qianjin; Zheng, Mengjie; Liu, Qing; Han, Yunxin; Yang, Junbo; Chang, Shengli; Zhang, Guanhua; Duan, Huigao

    2016-12-27

    Focused ion beam (FIB) milling is a versatile maskless and resistless patterning technique and has been widely used for the fabrication of inverse plasmonic structures such as nanoholes and nanoslits for various applications. However, due to its subtractive milling nature, it is an impractical method to fabricate isolated plasmonic nanoparticles and assemblies which are more commonly adopted in applications. In this work, we propose and demonstrate an approach to reliably and rapidly define plasmonic nanoparticles and their assemblies using FIB milling via a simple "sketch and peel" strategy. Systematic experimental investigations and mechanism studies reveal that the high reliability of this fabrication approach is enabled by a conformally formed sidewall coating due to the ion-milling-induced redeposition. Particularly, we demonstrated that this strategy is also applicable to the state-of-the-art helium ion beam milling technology, with which high-fidelity plasmonic dimers with tiny gaps could be directly and rapidly prototyped. Because the proposed approach enables rapid and reliable patterning of arbitrary plasmonic nanostructures that are not feasible to fabricate via conventional FIB milling process, our work provides the FIB milling technology an additional nanopatterning capability and thus could greatly increase its popularity for utilization in fundamental research and device prototyping.

  1. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  2. 4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bernardi, E., E-mail: elisabetta.debernardi@unimib.it; Ricotti, R.; Riboldi, M.

    2016-02-15

    Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generatedmore » by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.« less

  3. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  4. Recent charge-breeding developments with EBIS/T devices (invited).

    PubMed

    Schwarz, S; Lapierre, A

    2016-02-01

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.

  5. Recent charge-breeding developments with EBIS/T devices (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less

  6. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  7. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  8. A singly charged ion source for radioactive {sup 11}C ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, K.; Noda, A.; Nagatsu, K.

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less

  9. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    NASA Astrophysics Data System (ADS)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  10. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  11. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  12. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    PubMed Central

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel

    2017-01-01

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199

  13. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less

  14. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors

    DOE PAGES

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; ...

    2016-02-23

    Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuM IIIP 2X 6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less

  15. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  16. Study on radiation production in the charge stripping section of the RISP linear accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook

    2015-02-01

    The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.

  17. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  18. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  19. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  20. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  1. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  2. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    NASA Astrophysics Data System (ADS)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  3. Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR

    NASA Astrophysics Data System (ADS)

    Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.

    2016-12-01

    A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.

  4. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  5. Mapping of electrical potential distribution with charged particle beams. [using an X-ray source

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1979-01-01

    Potentials were measured using a beam of soft X-rays in air at 2 x 10 to the -5 power Torr. Ions were detected by a continuous-dynode electron multiplier after they passed through a retarding field. Ultimate resolution depends upon the diameter of the X-ray beam which was 3 mm. When the fields in the region of interest were such to disperse the ions, only a small fraction were detected and the method of measurement was not very reliable. Yet reasonable data could be collected if the ions traveled in parallel paths toward the detector. Development should concentrate on increasing the aperture of the detector from the pinhole which was used to something measured in centimeters. Also increasing the strength of the source would provide a stronger signal and more reliable data. Measurements were made at an estimated ion current to 10 to the -15 power A from a 10 cm length of the X-ray beam, this current being several orders of magnitude below what would have a perturbing effect on the region to be measured. Consequently, the source strength can be increased and prospects for this method of measurement are good.

  6. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  7. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs.

    PubMed

    Mangum, John S; Chan, Lisa H; Schmidt, Ute; Garten, Lauren M; Ginley, David S; Gorman, Brian P

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE PAGES

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; ...

    2018-02-23

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  9. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    PubMed

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  10. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  11. Suppression of Alfven Modes on the National Spherical Torus Experiment Upgrade with Outboard Beam Injection [Suppression of Alfven Modes on the NSTX-U with Outboard Beam Injection

    DOE PAGES

    Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.; ...

    2017-06-29

    In this paper we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfven eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfven modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvenic ions consistingmore » of fusion generated alpha's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k(perpendicular to rho L). A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.« less

  12. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  13. RFI-Based Ion Linac Systems

    NASA Astrophysics Data System (ADS)

    Swenson, Donald A.

    A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.

  14. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  15. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  16. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, William L.

    1982-01-01

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  17. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  18. Time-of-flight SIMS/MSRI reflectron mass analyzer and method

    DOEpatents

    Smentkowski, Vincent S.; Gruen, Dieter M.; Krauss, Alan R.; Schultz, J. Albert; Holecek, John C.

    1999-12-28

    A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.

  19. A compact source for bunches of singly charged atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murböck, T.; Birkl, G.; Schmidt, S.

    2016-04-15

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less

  20. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  1. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  2. Ion source and injection line for high intensity medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less

  3. Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Shimuzu, H.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.

    CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α , γ ) reactions, important at hot p-p chain and ν p-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α )15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α )15O reaction rate is crucial to understand the 511-keV γ -ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  4. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOEpatents

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  5. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOEpatents

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  6. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  7. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Derbenev, Yaroslav S.; Douglas, David R.

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second usesmore » a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.« less

  8. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  9. Negatively Charged Hydrogen Production in a Multicusp Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Trow, John Robert

    1985-06-01

    High energy neutral beams are necessary for the continued development of magnetically confined fusion plasma devices. Neutral beams based on positive ions are not efficient at beam energies of 100 keV or above, however negative ion based neutral beam systems are efficient, even at high beam energies. Volume production of H('-) has many advantages over the other methods, chiefly: simplicity of design and operation, and no need for alkalai metals. Since volume production requires a low electron temperature ((TURN)1 eV) but also requires molecular intermediates only formed by more energetic electrons (>20 eV), double plasma devices with a separate hot electron region are desirable. Therefore an experiment was undertaken to examine H('-) production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the "magnetic filters" used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H('-) production including numerical estimates, based on the experimental measurements, which indicate H('-) production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included here as a separate chapter. This device is shown to be a viable scheme of H('-) (or D('-)) produc- tion and is worthy of further development. There are several more. quantities which still need to be measured listed in the conclusion, along with suggested improvements. *This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development & Technology Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

  10. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N

    2015-01-07

    In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20  ×  20  ×  40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.

  11. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2015-01-01

    In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20  ×  20  ×  40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.

  12. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  13. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  14. Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility

    NASA Astrophysics Data System (ADS)

    Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao

    2017-03-01

    The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.

  15. Pressurized rf cavities in ionizing beams

    DOE PAGES

    Freemire, B.; Tollestrup, A.  V.; Yonehara, K.; ...

    2016-06-20

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less

  16. Optimization of solenoid based low energy beam transport line for high current H+ beams

    NASA Astrophysics Data System (ADS)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  17. A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF.

    PubMed

    Jayamanna, K; Wight, G; Gallop, D; Dube, R; Jovicic, V; Laforge, C; Marchetto, M; Leross, M; Louie, D; Laplante, R; Laxdal, R; McDonald, M; Wiebe, G J; Wang, V; Yan, F

    2010-02-01

    The Off-Line Ion Source (OLIS) [K. Jayamanna, D. Yuan, T. Kuo, M. MacDonald, P. Schmor, and G. Dutto, Rev. Sci. Instrum. 67, 1061 (1996); K. Jayamanna, Rev. Sci. Instrum. 79, 02711 (2008)] facility consists of a high voltage terminal containing a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source [K. Jayamanna and C. Vockenhuber, Rev. Sci. Instrum. 79, 02C712 (2008)], and an electrostatic switch that allows the selection of any one of the sources without mechanical intervention. These sources provide a variety of +1 beams up to mass 30 for Isotope Separator and ACcelerator (ISAC) [R. E. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003)] experiments, commissioning the accelerators, setting up the radioactive experiments, and for tuning the beam lines. The radio frequency quadrupole (RFQ) [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] injector accelerator is a constant velocity machine designed to accept only 2 keV/u and the source extraction energy is limited to 60 kV. Further stripping is then needed downstream of the RFQ to inject the beam into the drift tube linac [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] accelerator that requires A/q up to 6. Base on this constraints a multicharge ion source capable to deliver beams above mass 30 with A/q up to 6 was needed in order to reach full capability of the ISAC facility. A Supernanogan [C. Bieth et al., Nucleonika 48, S93 (2003)] multicharge ion source was then purchased from Pantechnik and was installed in the OLIS terminal. Commissioning and performance of the Supernanogan with some results such as emittance dependence of the charge states as well as charge state efficiencies are presented.

  18. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, Sergei O.

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both ofmore » these milestones have been met.« less

  19. Editorial

    NASA Astrophysics Data System (ADS)

    2006-01-01

    This volume contains the Proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil and the Netherlands. The series brings together physicists, materials scientists and ion beam specialists from all over the world. The official conference language is English.

  20. High spatial resolution microdosimetry with monolithic ΔE-E detector on 12C beam: Monte Carlo simulations and experiment

    NASA Astrophysics Data System (ADS)

    Tran, Linh T.; Bolst, David; Guatelli, Susanna; Biasi, Giordano; Fazzi, Alberto; Sagia, Eleni; Prokopovich, Dale A.; Reinhard, Mark I.; Keat, Ying C.; Petasecca, Marco; Lerch, Michael L. F.; Pola, Andrea; Agosteo, Stefano; Matsufuji, Naruhiro; Jackson, Michael; Rosenfeld, Anatoly B.

    2018-04-01

    Nuclear fragmentation produced in 12C ion therapeutic beams contributes significantly to the Relative Biological Effectiveness (RBE)-weighted dose in the distal edge of the Spread out Bragg Peak (SOBP) and surrounding tissues in out-of-field. Complex mixed radiation field originated by the therapeutic 12C ion beam in a phantom is difficult to measure. This study presents a new method to characterise the radiation field produced in a 12C ion beam using a monolithic ΔE-E telescope which provides the capability to identify the particle components of the mixed radiation field as well as the microdosimetric spectra that allows derivation of the RBE based on a radiobiological model. The response of the monolithic ΔE-E telescope to a 290 MeV/u 12C ion beam at defined positions along the pristine Bragg Peak was studied using the Geant4 Monte Carlo toolkit. The microdosimetric spectra derived from the ΔE stage and the two-dimensional scatter plots of energy deposition in ΔE and E stages of the device in coincidence are presented, as calculated in-field and out-of-field. Partial dose weighted contribution to the microdosimetric spectra from nuclear fragments and recoils, such as 1H, 4He, 3He, 7Li, 9Be and 11B, have been analysed for each position. Comparison of simulation and experimental results are presented and demonstrates that the microdosimetric spectra changes dramatically within 0.5 mm depth increments close to and at the distal edge of the Bragg Peak which is impossible to identify using conventional Tissue Equivalent Proportional Counter (TEPC).

  1. Ion beam figuring of silicon aspheres

    NASA Astrophysics Data System (ADS)

    Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus

    2011-03-01

    Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.

  2. Simple Ultraviolet Short-Pulse Intensity Diagnostic Method Using Atmosphere

    NASA Astrophysics Data System (ADS)

    Aota, Tatsuya; Takahashi, Eiichi; Losev, Leonid L.; Tabuchi, Takeyuki; Kato, Susumu; Matsumoto, Yuji; Okuda, Isao; Owadano, Yoshiro

    2005-05-01

    An ultraviolet (UV) short-pulse intensity diagnostic method using atmosphere as a nonlinear medium was developed. This diagnostic method is based on evaluating the ion charge of the two-photon ionization of atmospheric oxygen upon irradiation with a UV (238-299 nm) short-pulse laser. The observed ion signal increased proportionally to the input intensity to the power of ˜2.2, during the two-photon ionization of atmospheric oxygen. An autocorrelator was constructed and used to successfully measure a UV laser pulse of ˜400 fs duration. Since this diagnostic system is used in the open-air under windowless conditions, it can be set along the beam path and used as a UV intensity monitor.

  3. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  4. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, A. L.; Chen, J. E.; State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Montemore » Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.« less

  6. Focal depth measurement of scanning helium ion microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei

    2014-07-14

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less

  7. Focal depth measurement of scanning helium ion microscope

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-07-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  8. Experimental test of an online ion-optics optimizer

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.

    2018-07-01

    A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.

  9. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  10. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  11. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOEpatents

    Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.

    1995-04-18

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.

  12. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, Lothar, E-mail: l.bischoff@hzdr.de; Mazarov, Paul, E-mail: Paul.Mazarov@raith.de; Bruchhaus, Lars, E-mail: Lars.Bruchhaus@raith.de

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionallymore » into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.« less

  14. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  15. X-ray Topographic Methods and Application to Analysis of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.

    1984-01-01

    Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.

  16. Normal incidence reflectance of ion beam deposited SiC films in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Osantowski, John F.; Herzig, Howard; Gum, Jeffrey S.; Toft, Albert R.

    1988-01-01

    Results are presented from an experimental investigation of the normal-incidence reflectance at 58.4, 92.0, and 121.6 nm wavelength of 30- and 80-nm-thick SiC films produced by ion-beam deposition on unheated 5 x 5-cm microscope slides. The films were deposited in the 2-m evaporator described by Bradford et al. (1969) with chamber base pressure 1 microtorr, operating pressure 40 microtorr, and a 50-62-mA 750-eV Ar ion beam; the reflectance measurements were obtained in the reflector-monochromator system described by Osantowski (1974). Reflectances of over 30 percent were found at 92 and 121.6 nm, almost equal to those of polished CVD films of SiC and degrading only slightly after aging for 4 months. It is suggested that ion-beam deposition may be the best low-temperature technique for coating EUV optics for space astronomy.

  17. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  18. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  19. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-01

    Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.

  20. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

Top